Changes for page N95S31B -- NB-IoT Temperature & Humidity Sensor User Manual
Last modified by Mengting Qiu on 2024/04/02 16:44
Summary
-
Page properties (2 modified, 0 added, 0 removed)
-
Attachments (0 modified, 40 added, 0 removed)
- 1657245163077-232.png
- 1657246476176-652.png
- 1657249419225-449.png
- 1657249468462-536.png
- 1657249793983-486.png
- 1657249831934-534.png
- 1657249864775-321.png
- 1657249930215-289.png
- 1657249978444-674.png
- 1657249990869-686.png
- 1657250217799-140.png
- 1657250255956-604.png
- 1657259653666-883.png
- 1657260785982-288.png
- 1657261119050-993.png
- 1657261278785-153.png
- 1657271519014-786.png
- 1657327959271-447.png
- 1657328609906-564.png
- 1657328659945-416.png
- 1657328756309-230.png
- 1657328884227-504.png
- 1657329814315-101.png
- 1657330452568-615.png
- 1657330472797-498.png
- 1657330501006-241.png
- 1657330533775-472.png
- image-20220708101224-1.png
- image-20220708101605-2.png
- image-20220708110657-3.png
- image-20220708111918-4.png
- image-20220708133731-5.png
- image-20220708140453-6.png
- image-20220708141352-7.jpeg
- image-20220709084038-1.jpeg
- image-20220709084137-2.jpeg
- image-20220709084207-3.jpeg
- image-20220709084458-4.png
- image-20220709085040-1.png
- image-20220709092052-2.png
Details
- Page properties
-
- Title
-
... ... @@ -1,1 +1,1 @@ 1 - LSE01-LoRaWANSoil Moisture&ECSensor User Manual1 +NDDS75 NB-IoT Distance Detect Sensor User Manual - Content
-
... ... @@ -1,19 +1,12 @@ 1 1 (% style="text-align:center" %) 2 -[[image:image-20220 606151504-2.jpeg||height="554" width="554"]]2 +[[image:image-20220709085040-1.png||height="542" width="524"]] 3 3 4 4 5 5 6 6 7 7 8 - 9 - 10 - 11 - 12 - 13 - 14 14 **Table of Contents:** 15 15 16 -{{toc/}} 17 17 18 18 19 19 ... ... @@ -20,777 +20,713 @@ 20 20 21 21 22 22 23 -= 1. Introduction = 16 += 1. Introduction = 24 24 25 -== 1.1 What is LoRaWANoilMoisture&ECSensor ==18 +== 1.1 What is NDDS75 Distance Detection Sensor == 26 26 27 27 ((( 28 28 29 29 30 -The Dragino LSE01 is a (% style="color:#4f81bd" %)**LoRaWAN Soil Moisture & EC Sensor**(%%) for IoT of Agriculture. It is designed to measure the soil moisture of saline-alkali soil and loamy soil. The soil sensor uses FDR method to calculate the soil moisture with the compensation from soil temperature and conductivity. It also has been calibrated in factory for Mineral soil type. 31 -))) 32 - 33 33 ((( 34 -It detects (% style="color:#4f81bd" %)**Soil Moisture**(%%), (% style="color:#4f81bd" %)**Soil Temperature**(%%) and (% style="color:#4f81bd" %)**Soil Conductivity**(%%), and uploads the value via wireless to LoRaWAN IoT Server. 24 +The Dragino NDDS75 is a (% style="color:blue" %)**NB-IoT Distance Detection Sensor**(%%) for Internet of Things solution. It is designed to measure the distance between the sensor and a flat object. The distance detection sensor is a module that uses ultrasonic sensing technology for distance measurement, and temperature compensation is performed internally to improve the reliability of data. 25 +\\The NDDS75 can be applied to scenarios such as horizontal distance measurement, liquid level measurement, parking management system, object proximity and presence detection, intelligent trash can management system, robot obstacle avoidance, automatic control, sewer, bottom water level monitoring, etc. It detects the distance between the measured object and the sensor, and uploads the value via wireless to IoT Server via NB-IoT Network. 26 +\\NarrowBand-Internet of Things (NB-IoT) is a standards-based low power wide area (LPWA) technology developed to enable a wide range of new IoT devices and services. NB-IoT significantly improves the power consumption of user devices, system capacity and spectrum efficiency, especially in deep coverage. 27 +\\NDDS75 supports different uplink methods include (% style="color:blue" %)**TCP, MQTT, UDP and CoAP** (%%)for different application requirement. 28 +\\NDDS75 is powered by (% style="color:blue" %)**8500mAh Li-SOCI2 battery**(%%), It is designed for long term use up to 5 years. (Actually Battery life depends on the use environment, update period & uplink method) 29 +\\To use NDDS75, user needs to check if there is NB-IoT coverage in local area and with the bands NDDS75 supports. If the local operate support it, user needs to get a NB-IoT SIM card from local operator and install NDDS75 to get NB-IoT network connection. 35 35 ))) 36 36 37 -((( 38 -The LoRa wireless technology used in LES01 allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption. 32 + 39 39 ))) 40 40 41 -((( 42 -LES01 is powered by (% style="color:#4f81bd" %)**4000mA or 8500mAh Li-SOCI2 battery**(%%), It is designed for long term use up to 10 years. 43 -))) 44 - 45 -((( 46 -Each LES01 is pre-load with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect after power on. 47 -))) 48 - 49 - 50 50 [[image:1654503236291-817.png]] 51 51 52 52 53 -[[image:165 4503265560-120.png]]38 +[[image:1657327959271-447.png]] 54 54 55 55 56 56 57 -== 1.2 Features == 42 +== 1.2 Features == 58 58 59 -* LoRaWAN 1.0.3 Class A 44 + 45 +* NB-IoT Bands: B1/B3/B8/B5/B20/B28 @H-FDD 60 60 * Ultra low power consumption 61 -* MonitorSoilMoisture62 -* MonitorSoil Temperature63 -* Monitor SoilConductivity64 -* Bands:CN470/EU433/KR920/US915/EU868/AS923/AU915/IN86547 +* Distance Detection by Ultrasonic technology 48 +* Flat object range 280mm - 7500mm 49 +* Accuracy: ±(1cm+S*0.3%) (S: Distance) 50 +* Cable Length: 25cm 65 65 * AT Commands to change parameters 66 66 * Uplink on periodically 67 67 * Downlink to change configure 68 68 * IP66 Waterproof Enclosure 69 -* 4000mAh or 8500mAh Battery for long term use 55 +* Micro SIM card slot for NB-IoT SIM 56 +* 8500mAh Battery for long term use 70 70 71 71 59 +== 1.3 Specification == 72 72 73 -== 1.3 Specification == 74 74 75 - MeasureVolume:Baseonthecentra pin of the probe,aylinderwith 7cm diameter and 10cm height.62 +(% style="color:#037691" %)**Common DC Characteristics:** 76 76 77 -[[image:image-20220606162220-5.png]] 64 +* Supply Voltage: 2.1v ~~ 3.6v 65 +* Operating Temperature: -40 ~~ 85°C 78 78 67 +(% style="color:#037691" %)**NB-IoT Spec:** 79 79 69 +* - B1 @H-FDD: 2100MHz 70 +* - B3 @H-FDD: 1800MHz 71 +* - B8 @H-FDD: 900MHz 72 +* - B5 @H-FDD: 850MHz 73 +* - B20 @H-FDD: 800MHz 74 +* - B28 @H-FDD: 700MHz 80 80 81 - ==1.4 Applications==76 +(% style="color:#037691" %)**Battery:** 82 82 83 -* Smart Agriculture 78 +* Li/SOCI2 un-chargeable battery 79 +* Capacity: 8500mAh 80 +* Self Discharge: <1% / Year @ 25°C 81 +* Max continuously current: 130mA 82 +* Max boost current: 2A, 1 second 84 84 85 -(% class="wikigeneratedid" id="H200B1.5FirmwareChangelog" %) 86 - 84 +(% style="color:#037691" %)**Power Consumption** 87 87 88 -== 1.5 Firmware Change log == 86 +* STOP Mode: 10uA @ 3.3v 87 +* Max transmit power: 350mA@3.3v 89 89 90 90 91 -**LSE01 v1.0 :** Release 92 92 91 +== 1.4 Applications == 93 93 93 +* Smart Buildings & Home Automation 94 +* Logistics and Supply Chain Management 95 +* Smart Metering 96 +* Smart Agriculture 97 +* Smart Cities 98 +* Smart Factory 94 94 95 -= 2. Configure LSE01 to connect to LoRaWAN network = 100 +(% class="wikigeneratedid" id="H200B1.5FirmwareChangelog" %) 101 + 96 96 97 -== 2.1 How it works == 98 98 99 -((( 100 -The LSE01 is configured as LoRaWAN OTAA Class A mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and power on the LSE0150. It will automatically join the network via OTAA and start to send the sensor value 101 -))) 102 102 103 -((( 104 -In case you can’t set the OTAA keys in the LoRaWAN OTAA server, and you have to use the keys from the server, you can [[use AT Commands >>||anchor="H3.200BUsingtheATCommands"]]. 105 -))) 105 +== 1.5 Pin Definitions == 106 106 107 107 108 +[[image:1657328609906-564.png]] 108 108 109 -== 2.2 Quick guide to connect to LoRaWAN server (OTAA) == 110 110 111 -Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LG308>>url:http://www.dragino.com/products/lora/item/140-lg308.html]] as a LoRaWAN gateway in this example. 112 112 112 += 2. Use NDDS75 to communicate with IoT Server = 113 113 114 - [[image:1654503992078-669.png]]114 +== 2.1 How it works == 115 115 116 - 117 -The LG308 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server. 118 - 119 - 120 -(% style="color:blue" %)**Step 1**(%%): Create a device in TTN with the OTAA keys from LSE01. 121 - 122 -Each LSE01 is shipped with a sticker with the default device EUI as below: 123 - 124 -[[image:image-20220606163732-6.jpeg]] 125 - 126 -You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot: 127 - 128 -**Add APP EUI in the application** 129 - 130 - 131 -[[image:1654504596150-405.png]] 132 - 133 - 134 - 135 -**Add APP KEY and DEV EUI** 136 - 137 -[[image:1654504683289-357.png]] 138 - 139 - 140 - 141 -(% style="color:blue" %)**Step 2**(%%): Power on LSE01 142 - 143 - 144 -Put a Jumper on JP2 to power on the device. ( The Jumper must be in FLASH position). 145 - 146 -[[image:image-20220606163915-7.png]] 147 - 148 - 149 -(% style="color:blue" %)**Step 3**(%%)**:** The LSE01 will auto join to the TTN network. After join success, it will start to upload messages to TTN and you can see the messages in the panel. 150 - 151 -[[image:1654504778294-788.png]] 152 - 153 - 154 - 155 -== 2.3 Uplink Payload == 156 - 157 - 158 -=== 2.3.1 MOD~=0(Default Mode) === 159 - 160 -LSE01 will uplink payload via LoRaWAN with below payload format: 161 - 162 162 ((( 163 - Uplinkpayload includesin total11bytes.117 +The NDDS75 is equipped with a NB-IoT module, the pre-loaded firmware in NDDS75 will get environment data from sensors and send the value to local NB-IoT network via the NB-IoT module. The NB-IoT network will forward this value to IoT server via the protocol defined by NDDS75. 164 164 ))) 165 165 166 -(% border="1" cellspacing="10" style="background-color:#ffffcc; width:500px" %) 167 -|((( 168 -**Size** 169 169 170 -**(bytes)** 171 -)))|**2**|**2**|**2**|**2**|**2**|**1** 172 -|**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|((( 173 -Temperature 174 - 175 -(Reserve, Ignore now) 176 -)))|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]]|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]]|((( 177 -MOD & Digital Interrupt 178 - 179 -(Optional) 180 -))) 181 - 182 - 183 - 184 -=== 2.3.2 MOD~=1(Original value) === 185 - 186 -This mode can get the original AD value of moisture and original conductivity (with temperature drift compensation). 187 - 188 -(% border="1" cellspacing="10" style="background-color:#ffffcc; width:500px" %) 189 -|((( 190 -**Size** 191 - 192 -**(bytes)** 193 -)))|**2**|**2**|**2**|**2**|**2**|**1** 194 -|**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|((( 195 -Temperature 196 - 197 -(Reserve, Ignore now) 198 -)))|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]](raw)|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]](raw)|((( 199 -MOD & Digital Interrupt 200 - 201 -(Optional) 202 -))) 203 - 204 - 205 - 206 -=== 2.3.3 Battery Info === 207 - 208 208 ((( 209 - CheckthebatteryvoltageforLSE01.122 +The diagram below shows the working flow in default firmware of NDDS75: 210 210 ))) 211 211 212 212 ((( 213 - Ex1:0x0B45 = 2885mV126 + 214 214 ))) 215 215 216 -((( 217 -Ex2: 0x0B49 = 2889mV 218 -))) 129 +[[image:1657328659945-416.png]] 219 219 220 - 221 - 222 -=== 2.3.4 Soil Moisture === 223 - 224 224 ((( 225 -Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil. 226 -))) 227 - 228 -((( 229 -For example, if the data you get from the register is __0x05 0xDC__, the moisture content in the soil is 230 -))) 231 - 232 -((( 233 233 234 234 ))) 235 235 236 -((( 237 -(% style="color:#4f81bd" %)**05DC(H) = 1500(D) /100 = 15%.** 238 -))) 239 239 136 +== 2.2 Configure the NDDS75 == 240 240 241 241 242 -=== 2. 3.5SoilTemperature ===139 +=== 2.2.1 Test Requirement === 243 243 244 244 ((( 245 - Get the temperature inthe soil. The valuerangeof the registeris -4000 - +800(Decimal), dividethisvalueby 100 to get the temperatureinthesoil. Forexample, if the data youget from theregisteris 0x09 0xEC, thetemperature content in thesoil is142 +To use NDDS75 in your city, make sure meet below requirements: 246 246 ))) 247 247 248 - (((249 -* *Example**:250 - )))145 +* Your local operator has already distributed a NB-IoT Network there. 146 +* The local NB-IoT network used the band that NSE01 supports. 147 +* Your operator is able to distribute the data received in their NB-IoT network to your IoT server. 251 251 252 252 ((( 253 - Ifpayload is0105H:((0x0105&0x8000)>>15===0),temp=0105(H)/100= 2.61°C150 +Below figure shows our testing structure. Here we have NB-IoT network coverage by China Mobile, the band they use is B8. The NDDS75 will use CoAP((% style="color:red" %)120.24.4.116:5683)(%%) or raw UDP((% style="color:red" %)120.24.4.116:5601)(%%) or MQTT((% style="color:red" %)120.24.4.116:1883)(%%)or TCP((% style="color:red" %)120.24.4.116:5600)(%%)protocol to send data to the test server 254 254 ))) 255 255 256 -((( 257 -If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C 258 -))) 259 259 154 +[[image:1657328756309-230.png]] 260 260 261 261 262 -=== 2.3.6 Soil Conductivity (EC) === 263 263 264 -((( 265 -Obtain (% style="color:#4f81bd" %)**__soluble salt concentration__**(%%) in soil or (% style="color:#4f81bd" %)**__soluble ion concentration in liquid fertilizer__**(%%) or (% style="color:#4f81bd" %)**__planting medium__**(%%). The value range of the register is 0 - 20000(Decimal)( Can be greater than 20000). 266 -))) 158 +=== 2.2.2 Insert SIM card === 267 267 268 268 ((( 269 - Forexample, ifthedata youget fromtheregisteris 0x00 0xC8, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm.161 +Insert the NB-IoT Card get from your provider. 270 270 ))) 271 271 272 272 ((( 273 - Generally,theEC value of irrigationwaterislessthan800uS/cm.165 +User need to take out the NB-IoT module and insert the SIM card like below: 274 274 ))) 275 275 276 -((( 277 - 278 -))) 279 279 280 -((( 281 - 282 -))) 169 +[[image:1657328884227-504.png]] 283 283 284 -=== 2.3.7 MOD === 285 285 286 -Firmware version at least v2.1 supports changing mode. 287 287 288 - Forexample,bytes[10]=90173 +=== 2.2.3 Connect USB – TTL to NDDS75 to configure it === 289 289 290 -mod=(bytes[10]>>7)&0x01=1. 291 - 292 - 293 -**Downlink Command:** 294 - 295 -If payload = 0x0A00, workmode=0 296 - 297 -If** **payload =** **0x0A01, workmode=1 298 - 299 - 300 - 301 -=== 2.3.8 Decode payload in The Things Network === 302 - 303 -While using TTN network, you can add the payload format to decode the payload. 304 - 305 - 306 -[[image:1654505570700-128.png]] 307 - 308 308 ((( 309 -The payload decoder function for TTN is here: 310 -))) 311 - 312 312 ((( 313 - LSE01TTNPayloadDecoder:[[https:~~/~~/www.dropbox.com/sh/si8icbrjlamxqdb/AAACYwjsxxr5fj_vpqRtrETAa?dl=0>>https://www.dropbox.com/sh/si8icbrjlamxqdb/AAACYwjsxxr5fj_vpqRtrETAa?dl=0]]177 +User need to configure NDDS75 via serial port to set the (% style="color:blue" %)**Server Address** / **Uplink Topic** (%%)to define where and how-to uplink packets. NDDS75 support AT Commands, user can use a USB to TTL adapter to connect to NDDS75 and use AT Commands to configure it, as below. 314 314 ))) 315 - 316 - 317 -== 2.4 Uplink Interval == 318 - 319 -The LSE01 by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link: [[Change Uplink Interval>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H4.1ChangeUplinkInterval"]] 320 - 321 - 322 - 323 -== 2.5 Downlink Payload == 324 - 325 -By default, LSE50 prints the downlink payload to console port. 326 - 327 -[[image:image-20220606165544-8.png]] 328 - 329 - 330 -((( 331 -**Examples:** 332 332 ))) 333 333 334 -((( 335 - 336 -))) 181 +[[image:image-20220709092052-2.png]] 337 337 338 -* ((( 339 -**Set TDC** 340 -))) 183 +**Connection:** 341 341 342 -((( 343 -If the payload=0100003C, it means set the END Node’s TDC to 0x00003C=60(S), while type code is 01. 344 -))) 185 + (% style="background-color:yellow" %)USB TTL GND <~-~-~-~-> GND 345 345 346 -((( 347 -Payload: 01 00 00 1E TDC=30S 348 -))) 187 + (% style="background-color:yellow" %)USB TTL TXD <~-~-~-~-> UART_RXD 349 349 350 -((( 351 -Payload: 01 00 00 3C TDC=60S 352 -))) 189 + (% style="background-color:yellow" %)USB TTL RXD <~-~-~-~-> UART_TXD 353 353 354 -((( 355 - 356 -))) 357 357 358 -* ((( 359 -**Reset** 360 -))) 192 +In the PC, use below serial tool settings: 361 361 362 -((( 363 -If payload = 0x04FF, it will reset the LSE01 364 -))) 194 +* Baud: (% style="color:green" %)**9600** 195 +* Data bits:** (% style="color:green" %)8(%%)** 196 +* Stop bits: (% style="color:green" %)**1** 197 +* Parity: (% style="color:green" %)**None** 198 +* Flow Control: (% style="color:green" %)**None** 365 365 366 - 367 -* **CFM** 368 - 369 -Downlink Payload: 05000001, Set AT+CFM=1 or 05000000 , set AT+CFM=0 370 - 371 - 372 - 373 -== 2.6 Show Data in DataCake IoT Server == 374 - 375 375 ((( 376 - [[DATACAKE>>url:https://datacake.co/]]providesahumanfriendly interfacetoshow thesensordata,once wehavedatain TTN, we canuse[[DATACAKE>>url:https://datacake.co/]] toconnectto TTNandseethedatain DATACAKE.Belowarethesteps:201 +Make sure the switch is in FLASH position, then power on device by connecting the jumper on NDDS75. NDDS75 will output system info once power on as below, we can enter the (% style="color:green" %)**password: 12345678**(%%) to access AT Command input. 377 377 ))) 378 378 379 -((( 380 - 381 -))) 204 +[[image:1657329814315-101.png]] 382 382 383 383 ((( 384 -(% style="color: blue" %)**Step 1**(%%):Be surethat your deviceisprogrammed and properlyconnectedtothe networkat thistime.207 +(% style="color:red" %)Note: the valid AT Commands can be found at: (%%)[[https:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NDDS75/>>url:https://www.dragino.com/downloads/index.php?dir=NB-IoT/NDDS75/]] 385 385 ))) 386 386 387 -((( 388 -(% style="color:blue" %)**Step 2**(%%): To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps: 389 -))) 390 390 391 391 392 - [[image:1654505857935-743.png]]212 +=== 2.2.4 Use CoAP protocol to uplink data === 393 393 214 +(% style="color:red" %)Note: if you don't have CoAP server, you can refer this link to set up one: (%%)[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/>>http://wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/]] 394 394 395 -[[image:1654505874829-548.png]] 396 396 217 +**Use below commands:** 397 397 398 -(% style="color:blue" %)**Step 3**(%%)**:** Create an account or log in Datacake. 219 +* (% style="color:blue" %)**AT+PRO=1** (%%) ~/~/ Set to use CoAP protocol to uplink 220 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5683 ** (%%)~/~/ to set CoAP server address and port 221 +* (% style="color:blue" %)**AT+URI=5,11,"mqtt",11,"coap",12,"0",15,"c=text1",23,"0" ** (%%) ~/~/Set COAP resource path 399 399 400 - (%style="color:blue"%)**Step4**(%%)**:** SearchtheLSE01andadd DevEUI.223 +For parameter description, please refer to AT command set 401 401 225 +[[image:1657330452568-615.png]] 402 402 403 -[[image:1654505905236-553.png]] 404 404 228 +After configure the server address and (% style="color:green" %)**reset the device**(%%) (via AT+ATZ ), NDDS75 will start to uplink sensor values to CoAP server. 405 405 406 - After added, the sensor data arrive TTN, it willalso arriveand show in Mydevices.230 +[[image:1657330472797-498.png]] 407 407 408 -[[image:1654505925508-181.png]] 409 409 410 410 234 +=== 2.2.5 Use UDP protocol to uplink data(Default protocol) === 411 411 412 -== 2.7 Frequency Plans == 413 413 414 -The LSE01 uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets. 237 +* (% style="color:blue" %)**AT+PRO=2 ** (%%) ~/~/ Set to use UDP protocol to uplink 238 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5601 ** (%%) ~/~/ to set UDP server address and port 239 +* (% style="color:blue" %)**AT+CFM=1 ** (%%) ~/~/If the server does not respond, this command is unnecessary 415 415 416 416 417 - === 2.7.1EU863-870(EU868) ===242 +[[image:1657330501006-241.png]] 418 418 419 -(% style="color:#037691" %)** Uplink:** 420 420 421 - 868.1- SF7BW125to SF12BW125245 +[[image:1657330533775-472.png]] 422 422 423 -868.3 - SF7BW125 to SF12BW125 and SF7BW250 424 424 425 -868.5 - SF7BW125 to SF12BW125 426 426 427 - 867.1-SF7BW125toSF12BW125249 +=== 2.2.6 Use MQTT protocol to uplink data === 428 428 429 - 867.3-SF7BW125toSF12BW125251 +This feature is supported since firmware version v110 430 430 431 -867.5 - SF7BW125 to SF12BW125 432 432 433 -867.7 - SF7BW125 to SF12BW125 254 +* (% style="color:blue" %)**AT+PRO=3 ** (%%) ~/~/Set to use MQTT protocol to uplink 255 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,1883 ** (%%) ~/~/Set MQTT server address and port 256 +* (% style="color:blue" %)**AT+CLIENT=CLIENT ** (%%)~/~/Set up the CLIENT of MQTT 257 +* (% style="color:blue" %)**AT+UNAME=UNAME **(%%)~/~/Set the username of MQTT 258 +* (% style="color:blue" %)**AT+PWD=PWD **(%%)~/~/Set the password of MQTT 259 +* (% style="color:blue" %)**AT+PUBTOPIC=NSE01_PUB **(%%)~/~/Set the sending topic of MQTT 260 +* (% style="color:blue" %)**AT+SUBTOPIC=NSE01_SUB **(%%) ~/~/Set the subscription topic of MQTT 434 434 435 - 867.9SF7BW125 to SF12BW125262 +[[image:1657249978444-674.png]] 436 436 437 -868.8 - FSK 438 438 265 +[[image:1657249990869-686.png]] 439 439 440 -(% style="color:#037691" %)** Downlink:** 441 441 442 -Uplink channels 1-9 (RX1) 268 +((( 269 +MQTT protocol has a much higher power consumption compare vs UDP / CoAP protocol. Please check the power analyze document and adjust the uplink period to a suitable interval. 270 +))) 443 443 444 -869.525 - SF9BW125 (RX2 downlink only) 445 445 446 446 274 +=== 2.2.7 Use TCP protocol to uplink data === 447 447 448 - ===2.7.2US902-928(US915)===276 +This feature is supported since firmware version v110 449 449 450 -Used in USA, Canada and South America. Default use CHE=2 451 451 452 -(% style="color:#037691" %)**Uplink:** 279 +* (% style="color:blue" %)**AT+PRO=4 ** (%%) ~/~/ Set to use TCP protocol to uplink 280 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5600 **(%%) ~/~/ to set TCP server address and port 453 453 454 - 903.9 - SF7BW125to SF10BW125282 +[[image:1657250217799-140.png]] 455 455 456 -904.1 - SF7BW125 to SF10BW125 457 457 458 - 904.3 - SF7BW125to SF10BW125285 +[[image:1657250255956-604.png]] 459 459 460 -904.5 - SF7BW125 to SF10BW125 461 461 462 -904.7 - SF7BW125 to SF10BW125 463 463 464 - 904.9-SF7BW125toSF10BW125289 +=== 2.2.8 Change Update Interval === 465 465 466 - 905.1-SF7BW125toSF10BW125291 +User can use below command to change the (% style="color:green" %)**uplink interval**. 467 467 468 - 905.3-SF7BW125toSF10BW125293 +* (% style="color:blue" %)**AT+TDC=600 ** (%%)~/~/ Set Update Interval to 600s 469 469 295 +((( 296 +(% style="color:red" %)**NOTE:** 297 +))) 470 470 471 -(% style="color:#037691" %)**Downlink:** 299 +((( 300 +(% style="color:red" %)1. By default, the device will send an uplink message every 1 hour. 301 +))) 472 472 473 -923.3 - SF7BW500 to SF12BW500 474 474 475 -923.9 - SF7BW500 to SF12BW500 476 476 477 - 924.5-SF7BW500 toSF12BW500305 +== 2.3 Uplink Payload == 478 478 479 - 925.1-SF7BW500toSF12BW500307 +In this mode, uplink payload includes in total 18 bytes 480 480 481 -925.7 - SF7BW500 to SF12BW500 309 +(% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:510px" %) 310 +|=(% style="width: 60px;" %)((( 311 +**Size(bytes)** 312 +)))|=(% style="width: 50px;" %)**6**|=(% style="width: 25px;" %)2|=(% style="width: 25px;" %)**2**|=(% style="width: 70px;" %)**1**|=(% style="width: 60px;" %)**2**|=(% style="width: 80px;" %)**2**|=(% style="width: 90px;" %)**2**|=(% style="width: 50px;" %)**1** 313 +|(% style="width:97px" %)**Value**|(% style="width:83px" %)[[Device ID>>||anchor="H2.4.1A0A0DeviceID"]]|(% style="width:41px" %)[[Ver>>||anchor="H2.4.2A0VersionInfo"]]|(% style="width:46px" %)[[BAT>>||anchor="H2.4.3A0BatteryInfo"]]|(% style="width:123px" %)[[Signal Strength>>||anchor="H2.4.4A0SignalStrength"]]|(% style="width:108px" %)[[Soil Moisture>>||anchor="H2.4.5A0SoilMoisture"]]|(% style="width:133px" %)[[Soil Temperature>>||anchor="H2.4.6A0SoilTemperature"]]|(% style="width:159px" %)[[Soil Conductivity(EC)>>||anchor="H2.4.7A0SoilConductivity28EC29"]]|(% style="width:80px" %)[[Interrupt>>||anchor="H2.4.8A0DigitalInterrupt"]] 482 482 483 -926.3 - SF7BW500 to SF12BW500 315 +((( 316 +If we use the MQTT client to subscribe to this MQTT topic, we can see the following information when the NSE01 uplink data. 317 +))) 484 484 485 -926.9 - SF7BW500 to SF12BW500 486 486 487 - 927.5-SF7BW500 to SF12BW500320 +[[image:image-20220708111918-4.png]] 488 488 489 -923.3 - SF12BW500(RX2 downlink only) 490 490 323 +The payload is ASCII string, representative same HEX: 491 491 325 +0x72403155615900640c7817075e0a8c02f900 where: 492 492 493 -=== 2.7.3 CN470-510 (CN470) === 327 +* Device ID: 0x 724031556159 = 724031556159 328 +* Version: 0x0064=100=1.0.0 494 494 495 -Used in China, Default use CHE=1 330 +* BAT: 0x0c78 = 3192 mV = 3.192V 331 +* Singal: 0x17 = 23 332 +* Soil Moisture: 0x075e= 1886 = 18.86 % 333 +* Soil Temperature:0x0a8c =2700=27 °C 334 +* Soil Conductivity(EC) = 0x02f9 =761 uS /cm 335 +* Interrupt: 0x00 = 0 496 496 497 - (%style="color:#037691"%)**Uplink:**337 +== 2.4 Payload Explanation and Sensor Interface == 498 498 499 -486.3 - SF7BW125 to SF12BW125 500 500 501 -4 86.5 - SF7BW125toSF12BW125340 +=== 2.4.1 Device ID === 502 502 503 -486.7 - SF7BW125 to SF12BW125 342 +((( 343 +By default, the Device ID equal to the last 6 bytes of IMEI. 344 +))) 504 504 505 -486.9 - SF7BW125 to SF12BW125 346 +((( 347 +User can use (% style="color:blue" %)**AT+DEUI**(%%) to set Device ID 348 +))) 506 506 507 -487.1 - SF7BW125 to SF12BW125 350 +((( 351 +**Example:** 352 +))) 508 508 509 -487.3 - SF7BW125 to SF12BW125 354 +((( 355 +AT+DEUI=A84041F15612 356 +))) 510 510 511 -487.5 - SF7BW125 to SF12BW125 358 +((( 359 +The Device ID is stored in a none-erase area, Upgrade the firmware or run AT+FDR won't erase Device ID. 360 +))) 512 512 513 -487.7 - SF7BW125 to SF12BW125 514 514 515 515 516 - (%style="color:#037691" %)**Downlink:**364 +=== 2.4.2 Version Info === 517 517 518 -506.7 - SF7BW125 to SF12BW125 366 +((( 367 +Specify the software version: 0x64=100, means firmware version 1.00. 368 +))) 519 519 520 -506.9 - SF7BW125 to SF12BW125 370 +((( 371 +For example: 0x00 64 : this device is NSE01 with firmware version 1.0.0. 372 +))) 521 521 522 -507.1 - SF7BW125 to SF12BW125 523 523 524 -507.3 - SF7BW125 to SF12BW125 525 525 526 - 507.5- SF7BW125toSF12BW125376 +=== 2.4.3 Battery Info === 527 527 528 -507.7 - SF7BW125 to SF12BW125 378 +((( 379 +Check the battery voltage for LSE01. 380 +))) 529 529 530 -507.9 - SF7BW125 to SF12BW125 382 +((( 383 +Ex1: 0x0B45 = 2885mV 384 +))) 531 531 532 -508.1 - SF7BW125 to SF12BW125 386 +((( 387 +Ex2: 0x0B49 = 2889mV 388 +))) 533 533 534 -505.3 - SF12BW125 (RX2 downlink only) 535 535 536 536 392 +=== 2.4.4 Signal Strength === 537 537 538 -=== 2.7.4 AU915-928(AU915) === 394 +((( 395 +NB-IoT Network signal Strength. 396 +))) 539 539 540 -Default use CHE=2 398 +((( 399 +**Ex1: 0x1d = 29** 400 +))) 541 541 542 -(% style="color:#037691" %)**Uplink:** 402 +((( 403 +(% style="color:blue" %)**0**(%%) -113dBm or less 404 +))) 543 543 544 -916.8 - SF7BW125 to SF12BW125 406 +((( 407 +(% style="color:blue" %)**1**(%%) -111dBm 408 +))) 545 545 546 -917.0 - SF7BW125 to SF12BW125 410 +((( 411 +(% style="color:blue" %)**2...30**(%%) -109dBm... -53dBm 412 +))) 547 547 548 -917.2 - SF7BW125 to SF12BW125 414 +((( 415 +(% style="color:blue" %)**31** (%%) -51dBm or greater 416 +))) 549 549 550 -917.4 - SF7BW125 to SF12BW125 418 +((( 419 +(% style="color:blue" %)**99** (%%) Not known or not detectable 420 +))) 551 551 552 -917.6 - SF7BW125 to SF12BW125 553 553 554 -917.8 - SF7BW125 to SF12BW125 555 555 556 - 918.0- SF7BW125toSF12BW125424 +=== 2.4.5 Soil Moisture === 557 557 558 -918.2 - SF7BW125 to SF12BW125 426 +((( 427 +((( 428 +Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil. 429 +))) 430 +))) 559 559 432 +((( 433 +((( 434 +For example, if the data you get from the register is **__0x05 0xDC__**, the moisture content in the soil is 435 +))) 436 +))) 560 560 561 -(% style="color:#037691" %)**Downlink:** 438 +((( 439 + 440 +))) 562 562 563 -923.3 - SF7BW500 to SF12BW500 442 +((( 443 +(% style="color:#4f81bd" %)**05DC(H) = 1500(D) /100 = 15%.** 444 +))) 564 564 565 -923.9 - SF7BW500 to SF12BW500 566 566 567 -924.5 - SF7BW500 to SF12BW500 568 568 569 - 925.1-SF7BW500toSF12BW500448 +=== 2.4.6 Soil Temperature === 570 570 571 -925.7 - SF7BW500 to SF12BW500 450 +((( 451 +Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is __**0x09 0xEC**__, the temperature content in the soil is 452 +))) 572 572 573 -926.3 - SF7BW500 to SF12BW500 454 +((( 455 +**Example**: 456 +))) 574 574 575 -926.9 - SF7BW500 to SF12BW500 458 +((( 459 +If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/100 = 2.61 °C 460 +))) 576 576 577 -927.5 - SF7BW500 to SF12BW500 462 +((( 463 +If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C 464 +))) 578 578 579 -923.3 - SF12BW500(RX2 downlink only) 580 580 581 581 468 +=== 2.4.7 Soil Conductivity (EC) === 582 582 583 -=== 2.7.5 AS920-923 & AS923-925 (AS923) === 470 +((( 471 +Obtain (% style="color:#4f81bd" %)**__soluble salt concentration__**(%%) in soil or (% style="color:#4f81bd" %)**__soluble ion concentration in liquid fertilizer__**(%%) or (% style="color:#4f81bd" %)**__planting medium__**(%%). The value range of the register is 0 - 20000(Decimal)( Can be greater than 20000). 472 +))) 584 584 585 -(% style="color:#037691" %)**Default Uplink channel:** 474 +((( 475 +For example, if the data you get from the register is __**0x00 0xC8**__, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm. 476 +))) 586 586 587 -923.2 - SF7BW125 to SF10BW125 478 +((( 479 +Generally, the EC value of irrigation water is less than 800uS / cm. 480 +))) 588 588 589 -923.4 - SF7BW125 to SF10BW125 482 +((( 483 + 484 +))) 590 590 486 +((( 487 + 488 +))) 591 591 592 - (% style="color:#037691"%)**AdditionalUplink Channel**:490 +=== 2.4.8 Digital Interrupt === 593 593 594 -(OTAA mode, channel added by JoinAccept message) 492 +((( 493 +Digital Interrupt refers to pin (% style="color:blue" %)**GPIO_EXTI**(%%), and there are different trigger methods. When there is a trigger, the NSE01 will send a packet to the server. 494 +))) 595 595 596 -(% style="color:#037691" %)**AS920~~AS923 for Japan, Malaysia, Singapore**: 496 +((( 497 +The command is: 498 +))) 597 597 598 -922.2 - SF7BW125 to SF10BW125 500 +((( 501 +(% style="color:blue" %)**AT+INTMOD=3 **(%%) ~/~/(more info about INMOD please refer [[**AT Command Manual**>>url:https://www.dragino.com/downloads/downloads/NB-IoT/NBSN95/DRAGINO_NBSN95-NB_AT%20Commands_v1.1.0.pdf]])**.** 502 +))) 599 599 600 -922.4 - SF7BW125 to SF10BW125 601 601 602 -922.6 - SF7BW125 to SF10BW125 505 +((( 506 +The lower four bits of this data field shows if this packet is generated by interrupt or not. Click here for the hardware and software set up. 507 +))) 603 603 604 -922.8 - SF7BW125 to SF10BW125 605 605 606 -923.0 - SF7BW125 to SF10BW125 510 +((( 511 +Example: 512 +))) 607 607 608 -922.0 - SF7BW125 to SF10BW125 514 +((( 515 +0x(00): Normal uplink packet. 516 +))) 609 609 518 +((( 519 +0x(01): Interrupt Uplink Packet. 520 +))) 610 610 611 -(% style="color:#037691" %)**AS923 ~~ AS925 for Brunei, Cambodia, Hong Kong, Indonesia, Laos, Taiwan, Thailand, Vietnam**: 612 612 613 -923.6 - SF7BW125 to SF10BW125 614 614 615 - 923.8- SF7BW125 toSF10BW125524 +=== 2.4.9 +5V Output === 616 616 617 -924.0 - SF7BW125 to SF10BW125 526 +((( 527 +NSE01 will enable +5V output before all sampling and disable the +5v after all sampling. 528 +))) 618 618 619 -924.2 - SF7BW125 to SF10BW125 620 620 621 -924.4 - SF7BW125 to SF10BW125 531 +((( 532 +The 5V output time can be controlled by AT Command. 533 +))) 622 622 623 -924.6 - SF7BW125 to SF10BW125 535 +((( 536 +(% style="color:blue" %)**AT+5VT=1000** 537 +))) 624 624 539 +((( 540 +Means set 5V valid time to have 1000ms. So the real 5V output will actually have 1000ms + sampling time for other sensors. 541 +))) 625 625 626 -(% style="color:#037691" %)** Downlink:** 627 627 628 -Uplink channels 1-8 (RX1) 629 629 630 - 923.2-SF10BW125(RX2)545 +== 2.5 Downlink Payload == 631 631 547 +By default, NSE01 prints the downlink payload to console port. 632 632 549 +[[image:image-20220708133731-5.png]] 633 633 634 -=== 2.7.6 KR920-923 (KR920) === 635 635 636 -Default channel: 552 +((( 553 +(% style="color:blue" %)**Examples:** 554 +))) 637 637 638 -922.1 - SF7BW125 to SF12BW125 556 +((( 557 + 558 +))) 639 639 640 -922.3 - SF7BW125 to SF12BW125 560 +* ((( 561 +(% style="color:blue" %)**Set TDC** 562 +))) 641 641 642 -922.5 - SF7BW125 to SF12BW125 564 +((( 565 +If the payload=0100003C, it means set the END Node's TDC to 0x00003C=60(S), while type code is 01. 566 +))) 643 643 568 +((( 569 +Payload: 01 00 00 1E TDC=30S 570 +))) 644 644 645 -(% style="color:#037691" %)**Uplink: (OTAA mode, channel added by JoinAccept message)** 572 +((( 573 +Payload: 01 00 00 3C TDC=60S 574 +))) 646 646 647 -922.1 - SF7BW125 to SF12BW125 576 +((( 577 + 578 +))) 648 648 649 -922.3 - SF7BW125 to SF12BW125 580 +* ((( 581 +(% style="color:blue" %)**Reset** 582 +))) 650 650 651 -922.5 - SF7BW125 to SF12BW125 584 +((( 585 +If payload = 0x04FF, it will reset the NSE01 586 +))) 652 652 653 -922.7 - SF7BW125 to SF12BW125 654 654 655 - 922.9-SF7BW125toSF12BW125589 +* (% style="color:blue" %)**INTMOD** 656 656 657 -923.1 - SF7BW125 to SF12BW125 591 +((( 592 +Downlink Payload: 06000003, Set AT+INTMOD=3 593 +))) 658 658 659 -923.3 - SF7BW125 to SF12BW125 660 660 661 661 662 - (% style="color:#037691"%)**Downlink:**597 +== 2.6 LED Indicator == 663 663 664 -Uplink channels 1-7(RX1) 599 +((( 600 +The NSE01 has an internal LED which is to show the status of different state. 665 665 666 -921.9 - SF12BW125 (RX2 downlink only; SF12BW125 might be changed to SF9BW125) 667 667 603 +* When power on, NSE01 will detect if sensor probe is connected, if probe detected, LED will blink four times. (no blinks in this step is no probe) 604 +* Then the LED will be on for 1 second means device is boot normally. 605 +* After NSE01 join NB-IoT network. The LED will be ON for 3 seconds. 606 +* For each uplink probe, LED will be on for 500ms. 607 +))) 668 668 669 669 670 -=== 2.7.7 IN865-867 (IN865) === 671 671 672 -(% style="color:#037691" %)** Uplink:** 673 673 674 - 865.0625- SF7BW125to SF12BW125612 +== 2.7 Installation in Soil == 675 675 676 - 865.4025- SF7BW125toSF12BW125614 +__**Measurement the soil surface**__ 677 677 678 -865.9850 - SF7BW125 to SF12BW125 616 +((( 617 +Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting. [[https:~~/~~/img.alicdn.com/imgextra/i3/2005165265/O1CN010rj9Oh1olPsQxrdUK_!!2005165265.jpg>>url:https://img.alicdn.com/imgextra/i3/2005165265/O1CN010rj9Oh1olPsQxrdUK_!!2005165265.jpg]] 618 +))) 679 679 620 +[[image:1657259653666-883.png]] 680 680 681 -(% style="color:#037691" %) **Downlink:** 682 682 683 -Uplink channels 1-3 (RX1) 623 +((( 624 + 684 684 685 -866.550 - SF10BW125 (RX2) 626 +((( 627 +Dig a hole with diameter > 20CM. 628 +))) 686 686 630 +((( 631 +Horizontal insert the probe to the soil and fill the hole for long term measurement. 632 +))) 633 +))) 687 687 635 +[[image:1654506665940-119.png]] 688 688 637 +((( 638 + 639 +))) 689 689 690 -== 2.8 LED Indicator == 691 691 692 - TheLSE01has aninternal LEDwhich is to show the status of differentstate.642 +== 2.8 Firmware Change Log == 693 693 694 -* Blink once when device power on. 695 -* Solid ON for 5 seconds once device successful Join the network. 696 -* Blink once when device transmit a packet. 697 697 645 +Download URL & Firmware Change log 698 698 647 +[[www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/Firmware/]] 699 699 700 700 650 +Upgrade Instruction: [[Upgrade_Firmware>>||anchor="H5.1200BHowtoUpgradeFirmware"]] 701 701 702 702 703 -== 2.9 Installation in Soil == 704 704 705 - **Measurementhe soilsurface**654 +== 2.9 Battery Analysis == 706 706 656 +=== 2.9.1 Battery Type === 707 707 708 -[[image:1654506634463-199.png]] 709 709 710 710 ((( 711 -((( 712 -Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting. 660 +The NSE01 battery is a combination of an 8500mAh Li/SOCI2 Battery and a Super Capacitor. The battery is none-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter. 713 713 ))) 714 -))) 715 715 716 716 717 - 718 -[[image:1654506665940-119.png]] 719 - 720 720 ((( 721 - Dig aholewithdiameter>20CM.665 +The battery is designed to last for several years depends on the actually use environment and update interval. 722 722 ))) 723 723 724 -((( 725 -Horizontal insert the probe to the soil and fill the hole for long term measurement. 726 -))) 727 727 728 - 729 -== 2.10 Firmware Change Log == 730 - 731 731 ((( 732 - **Firmware downloadlink:**670 +The battery related documents as below: 733 733 ))) 734 734 735 - (((736 -[[ http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/]]737 - )))673 +* [[Battery Dimension>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]] 674 +* [[Lithium-Thionyl Chloride Battery datasheet>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]] 675 +* [[Lithium-ion Battery-Capacitor datasheet>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]] 738 738 739 739 ((( 740 - 678 +[[image:image-20220708140453-6.png]] 741 741 ))) 742 742 743 -((( 744 -**Firmware Upgrade Method: **[[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome]] 745 -))) 746 746 747 -((( 748 - 749 -))) 750 750 751 -((( 752 -**V1.0.** 753 -))) 683 +=== 2.9.2 Power consumption Analyze === 754 754 755 755 ((( 756 - Release686 +Dragino battery powered product are all runs in Low Power mode. We have an update battery calculator which base on the measurement of the real device. User can use this calculator to check the battery life and calculate the battery life if want to use different transmit interval. 757 757 ))) 758 758 759 759 760 -== 2.11 Battery Analysis == 761 - 762 -=== 2.11.1 Battery Type === 763 - 764 764 ((( 765 - The LSE01 battery is a combination of a 4000mAh Li/SOCI2 Battery and a Super Capacitor. The batteryis non-rechargeablebattery type with a lowdischargerate (<2% per year). Thistype ofbattery is commonly used in IoT devices such aswater meter.691 +Instruction to use as below: 766 766 ))) 767 767 768 768 ((( 769 - Thebatterys designedlastforrethan5 years fortheSN50.695 +(% style="color:blue" %)**Step 1: **(%%)Downlink the up-to-date DRAGINO_Battery_Life_Prediction_Table.xlsx from: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/]] 770 770 ))) 771 771 698 + 772 772 ((( 773 -((( 774 -The battery-related documents are as below: 700 +(% style="color:blue" %)**Step 2: **(%%) Open it and choose 775 775 ))) 776 -))) 777 777 778 778 * ((( 779 - [[Battery Dimension>>url:http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/&file=LSN50-Battery-Dimension.pdf]],704 +Product Model 780 780 ))) 781 781 * ((( 782 - [[Lithium-ThionylChloride Battery datasheet>>url:https://www.dragino.com/downloads/downloads/datasheet/Battery/ER26500/ER26500_Datasheet-EN.pdf]],707 +Uplink Interval 783 783 ))) 784 784 * ((( 785 - [[Lithium-ion Battery-Capacitor datasheet>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC_1520_datasheet.jpg]],[[Tech Spec>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC1520%20Technical%20Specification20171123.pdf]]710 +Working Mode 786 786 ))) 787 787 788 - [[image:image-20220610172436-1.png]] 713 +((( 714 +And the Life expectation in difference case will be shown on the right. 715 +))) 789 789 717 +[[image:image-20220708141352-7.jpeg]] 790 790 791 791 792 -=== 2.11.2 Battery Note === 793 793 721 +=== 2.9.3 Battery Note === 722 + 794 794 ((( 795 795 The Li-SICO battery is designed for small current / long period application. It is not good to use a high current, short period transmit method. The recommended minimum period for use of this battery is 5 minutes. If you use a shorter period time to transmit LoRa, then the battery life may be decreased. 796 796 ))) ... ... @@ -797,298 +797,176 @@ 797 797 798 798 799 799 800 -=== 2. 11.3Replace the battery ===729 +=== 2.9.4 Replace the battery === 801 801 802 802 ((( 803 - IfBattery is lower than 2.7v,usershouldreplace the battery ofLSE01.732 +The default battery pack of NSE01 includes a ER26500 plus super capacitor. If user can't find this pack locally, they can find ER26500 or equivalence without the SPC1520 capacitor, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes). 804 804 ))) 805 805 735 + 736 + 737 += 3. Access NB-IoT Module = 738 + 806 806 ((( 807 - You can changethe battery in the LSE01.The type of battery isnot limitedas longas the outputis between 3v to 3.6v. On the main board, there is a diode (D1) between the battery and the maincircuit. If you need to use a battery with lessthan 3.3v, pleaseremovethe D1and shortcut thewopadsofitso therewon’tbe voltage drop between battery andmain board.740 +Users can directly access the AT command set of the NB-IoT module. 808 808 ))) 809 809 810 810 ((( 811 -The defaultbattery packof LSE01 includesa ER18505 plussupercapacitor.Ifusercan’tfind this pack locally, theycan find ER18505orequivalence,whichwillalsoworkinmostcase.The SPC can enlargethebattery lifeforigh frequency use(updateperiod below5minutes)744 +The AT Command set can refer the BC35-G NB-IoT Module AT Command: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=datasheet/other_vendors/BC35-G/>>url:https://www.dragino.com/downloads/index.php?dir=datasheet/other_vendors/BC35-G/]] 812 812 ))) 813 813 747 +[[image:1657261278785-153.png]] 814 814 815 815 816 -= 3. Using the AT Commands = 817 817 818 -= =3.1AccessAT Commands ==751 += 4. Using the AT Commands = 819 819 753 +== 4.1 Access AT Commands == 820 820 821 - LSE01supportsATCommandsetn the stock firmware.Youcanuse a USB toTTLadaptertoconnect to LSE01forusing ATcommand,asbelow.755 +See this link for detail: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/]] 822 822 823 -[[image:1654501986557-872.png||height="391" width="800"]] 824 824 758 +AT+<CMD>? : Help on <CMD> 825 825 826 - Orifyouhavebelowboard,usebelowconnection:760 +AT+<CMD> : Run <CMD> 827 827 762 +AT+<CMD>=<value> : Set the value 828 828 829 - [[image:1654502005655-729.png||height="503"width="801"]]764 +AT+<CMD>=? : Get the value 830 830 831 831 832 - 833 -In the PC, you need to set the serial baud rate to (% style="color:green" %)**9600**(%%) to access the serial console for LSE01. LSE01 will output system info once power on as below: 834 - 835 - 836 - [[image:1654502050864-459.png||height="564" width="806"]] 837 - 838 - 839 -Below are the available commands, a more detailed AT Command manual can be found at [[AT Command Manual>>https://www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0]]: [[https:~~/~~/www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0>>https://www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0]] 840 - 841 - 842 -(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>? **(%%) : Help on <CMD> 843 - 844 -(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD> **(%%) : Run <CMD> 845 - 846 -(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>=<value>**(%%) : Set the value 847 - 848 -(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>=?**(%%) : Get the value 849 - 850 - 851 851 (% style="color:#037691" %)**General Commands**(%%) 852 852 853 - (% style="background-color:#dcdcdc" %)**AT**(%%): Attention769 +AT : Attention 854 854 855 - (% style="background-color:#dcdcdc" %)**AT?**(%%): Short Help771 +AT? : Short Help 856 856 857 - (% style="background-color:#dcdcdc" %)**ATZ**(%%): MCU Reset773 +ATZ : MCU Reset 858 858 859 - (% style="background-color:#dcdcdc" %)**AT+TDC**(%%): Application Data Transmission Interval775 +AT+TDC : Application Data Transmission Interval 860 860 777 +AT+CFG : Print all configurations 861 861 862 - (%style="color:#037691"%)**Keys,IDsand EUIs management**779 +AT+CFGMOD : Working mode selection 863 863 864 - (% style="background-color:#dcdcdc" %)**AT+APPEUI**(%%)ApplicationEUI781 +AT+INTMOD : Set the trigger interrupt mode 865 865 866 - (% style="background-color:#dcdcdc" %)**AT+APPKEY**(%%)ApplicationKey783 +AT+5VT : Set extend the time of 5V power 867 867 868 - (% style="background-color:#dcdcdc" %)**AT+APPSKEY**(%%)Application Session Key785 +AT+PRO : Choose agreement 869 869 870 - (% style="background-color:#dcdcdc" %)**AT+DADDR**(%%)DeviceAddress787 +AT+WEIGRE : Get weight or set weight to 0 871 871 872 - (% style="background-color:#dcdcdc" %)**AT+DEUI**(%%)DeviceEUI789 +AT+WEIGAP : Get or Set the GapValue of weight 873 873 874 - (% style="background-color:#dcdcdc" %)**AT+NWKID**(%%):NetworkID(Youcanenterthiscommandchangeonlyaftersuccessful networkconnection)791 +AT+RXDL : Extend the sending and receiving time 875 875 876 - (% style="background-color:#dcdcdc" %)**AT+NWKSKEY**(%%)NetworkSession KeyJoining and sending dateon LoRa network793 +AT+CNTFAC : Get or set counting parameters 877 877 878 - (% style="background-color:#dcdcdc" %)**AT+CFM**(%%)ConfirmMode795 +AT+SERVADDR : Server Address 879 879 880 -(% style="background-color:#dcdcdc" %)**AT+CFS**(%%) : Confirm Status 881 881 882 -(% style=" background-color:#dcdcdc" %)**AT+JOIN**(%%): JoinLoRa? Network798 +(% style="color:#037691" %)**COAP Management** 883 883 884 - (% style="background-color:#dcdcdc" %)**AT+NJM**(%%)LoRa? Network Join Mode800 +AT+URI : Resource parameters 885 885 886 -(% style="background-color:#dcdcdc" %)**AT+NJS**(%%) : LoRa? Network Join Status 887 887 888 -(% style=" background-color:#dcdcdc" %)**AT+RECV**(%%) :PrintLast Received Data inRaw Format803 +(% style="color:#037691" %)**UDP Management** 889 889 890 - (% style="background-color:#dcdcdc" %)**AT+RECVB**(%%)Print LastReceived DatainBinaryFormat805 +AT+CFM : Upload confirmation mode (only valid for UDP) 891 891 892 -(% style="background-color:#dcdcdc" %)**AT+SEND**(%%) : Send Text Data 893 893 894 -(% style=" background-color:#dcdcdc" %)**AT+SENB**(%%): Send Hexadecimal Data808 +(% style="color:#037691" %)**MQTT Management** 895 895 810 +AT+CLIENT : Get or Set MQTT client 896 896 897 - (%style="color:#037691"%)**LoRaNetworkManagement**812 +AT+UNAME : Get or Set MQTT Username 898 898 899 - (% style="background-color:#dcdcdc" %)**AT+ADR**(%%):AdaptiveRate814 +AT+PWD : Get or Set MQTT password 900 900 901 - (% style="background-color:#dcdcdc" %)**AT+CLASS**(%%):LoRaClass(Currentlyonly supportclassA816 +AT+PUBTOPIC : Get or Set MQTT publish topic 902 902 903 - (% style="background-color:#dcdcdc" %)**AT+DCS**(%%):DutyCycleSetting818 +AT+SUBTOPIC : Get or Set MQTT subscription topic 904 904 905 -(% style="background-color:#dcdcdc" %)**AT+DR**(%%) : Data Rate (Can Only be Modified after ADR=0) 906 906 907 -(% style=" background-color:#dcdcdc" %)**AT+FCD**(%%) : Frame Counter Downlink821 +(% style="color:#037691" %)**Information** 908 908 909 - (% style="background-color:#dcdcdc" %)**AT+FCU**(%%): Frame CounterUplink823 +AT+FDR : Factory Data Reset 910 910 911 - (% style="background-color:#dcdcdc" %)**AT+JN1DL**(%%):JoinAcceptDelay1825 +AT+PWORD : Serial Access Password 912 912 913 -(% style="background-color:#dcdcdc" %)**AT+JN2DL**(%%) : Join Accept Delay2 914 914 915 -(% style="background-color:#dcdcdc" %)**AT+PNM**(%%) : Public Network Mode 916 916 917 - (% style="background-color:#dcdcdc"%)**AT+RX1DL**(%%): Receive Delay1829 += 5. FAQ = 918 918 919 - (% style="background-color:#dcdcdc"%)**AT+RX2DL**(%%): ReceiveDelay2831 +== 5.1 How to Upgrade Firmware == 920 920 921 -(% style="background-color:#dcdcdc" %)**AT+RX2DR**(%%) : Rx2 Window Data Rate 922 922 923 -(% style="background-color:#dcdcdc" %)**AT+RX2FQ**(%%) : Rx2 Window Frequency 924 - 925 -(% style="background-color:#dcdcdc" %)**AT+TXP**(%%) : Transmit Power 926 - 927 -(% style="background-color:#dcdcdc" %)**AT+ MOD**(%%) : Set work mode 928 - 929 - 930 -(% style="color:#037691" %)**Information** 931 - 932 -(% style="background-color:#dcdcdc" %)**AT+RSSI**(%%) : RSSI of the Last Received Packet 933 - 934 -(% style="background-color:#dcdcdc" %)**AT+SNR**(%%) : SNR of the Last Received Packet 935 - 936 -(% style="background-color:#dcdcdc" %)**AT+VER**(%%) : Image Version and Frequency Band 937 - 938 -(% style="background-color:#dcdcdc" %)**AT+FDR**(%%) : Factory Data Reset 939 - 940 -(% style="background-color:#dcdcdc" %)**AT+PORT**(%%) : Application Port 941 - 942 -(% style="background-color:#dcdcdc" %)**AT+CHS**(%%) : Get or Set Frequency (Unit: Hz) for Single Channel Mode 943 - 944 - (% style="background-color:#dcdcdc" %)**AT+CHE**(%%) : Get or Set eight channels mode, Only for US915, AU915, CN470 945 - 946 - 947 -= 4. FAQ = 948 - 949 -== 4.1 How to change the LoRa Frequency Bands/Region? == 950 - 951 951 ((( 952 -You can follow the instructions for [[how to upgrade image>>||anchor="H2.10200BFirmwareChangeLog"]]. 953 -When downloading the images, choose the required image file for download. 835 +User can upgrade the firmware for 1) bug fix, 2) new feature release. 954 954 ))) 955 955 956 956 ((( 957 - 839 +Please see this link for how to upgrade: [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H2.HardwareUpgradeMethodSupportList>>http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H2.HardwareUpgradeMethodSupportList]] 958 958 ))) 959 959 960 960 ((( 961 - Howtosetup LSE01 towork in 8 channel modeBy default,thefrequency bandsUS915,AU915, CN470 work in 72 frequencies.Many gatewaysare8 channelgateways, andin thiscase,theOTAA join timeand uplink scheduleis longandunpredictable while the end nodeis hoppingin 72 frequencies.843 +(% style="color:red" %)Notice, NSE01 and LSE01 share the same mother board. They use the same connection and method to update. 962 962 ))) 963 963 964 -((( 965 - 966 -))) 967 967 968 -((( 969 -You can configure the end node to work in 8 channel mode by using the AT+CHE command. The 500kHz channels are always included for OTAA. 970 -))) 971 971 972 -((( 973 - 974 -))) 848 +== 5.2 Can I calibrate NSE01 to different soil types? == 975 975 976 976 ((( 977 - Forexample,in **US915**band,the frequencytablesasbelow. By default,the endnodewilluse all channels(0~~71)forOTAAJoinprocess.AftertheOTAAJoin,theend nodewilluse these allchannels(0~~71)tosenduplinkkets.851 +NSE01 is calibrated for saline-alkali soil and loamy soil. If users want to use it for other soil, they can calibrate the value in the IoT platform base on the value measured by saline-alkali soil and loamy soil. The formula can be found at [[this link>>https://www.dragino.com/downloads/downloads/LoRa_End_Node/LSE01/Calibrate_to_other_Soil_20220605.pdf]]. 978 978 ))) 979 979 980 -[[image:image-20220606154726-3.png]] 981 981 855 += 6. Trouble Shooting = 982 982 983 - Whenyouuse the TTNnetwork,theUS915 frequencybandsuseare:857 +== 6.1 Connection problem when uploading firmware == 984 984 985 -* 903.9 - SF7BW125 to SF10BW125 986 -* 904.1 - SF7BW125 to SF10BW125 987 -* 904.3 - SF7BW125 to SF10BW125 988 -* 904.5 - SF7BW125 to SF10BW125 989 -* 904.7 - SF7BW125 to SF10BW125 990 -* 904.9 - SF7BW125 to SF10BW125 991 -* 905.1 - SF7BW125 to SF10BW125 992 -* 905.3 - SF7BW125 to SF10BW125 993 -* 904.6 - SF8BW500 994 994 995 995 ((( 996 -Because the end node is now hopping in 72 frequency, it makes it difficult for the devices to Join the TTN network and uplink data. To solve this issue, you can access the device via the AT commands and run: 997 - 998 -* (% style="color:#037691" %)**AT+CHE=2** 999 -* (% style="color:#037691" %)**ATZ** 861 +**Please see: **[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H3.3Troubleshooting>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H3.3Troubleshooting]] 1000 1000 ))) 1001 1001 864 +(% class="wikigeneratedid" %) 1002 1002 ((( 1003 1003 1004 - 1005 -to set the end node to work in 8 channel mode. The device will work in Channel 8-15 & 64-71 for OTAA, and channel 8-15 for Uplink. 1006 1006 ))) 1007 1007 1008 -((( 1009 - 1010 -))) 1011 1011 1012 -((( 1013 -The **AU915** band is similar. Below are the AU915 Uplink Channels. 1014 -))) 870 +== 6.2 AT Command input doesn't work == 1015 1015 1016 -[[image:image-20220606154825-4.png]] 1017 - 1018 - 1019 - 1020 -= 5. Trouble Shooting = 1021 - 1022 -== 5.1 Why I can’t join TTN in US915 / AU915 bands? == 1023 - 1024 -It is due to channel mapping. Please see the [[Eight Channel Mode>>doc:Main.LoRaWAN Communication Debug.WebHome||anchor="H2.NoticeofUS9152FCN4702FAU915Frequencyband"]] section above for details. 1025 - 1026 - 1027 -== 5.2 AT Command input doesn’t work == 1028 - 1029 1029 ((( 1030 -In the case if user can see the console output but can’t type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn’t send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string. 1031 -))) 873 +In the case if user can see the console output but can't type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn't send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string. 1032 1032 1033 - 1034 -== 5.3 Device rejoin in at the second uplink packet == 1035 - 1036 -(% style="color:#4f81bd" %)**Issue describe as below:** 1037 - 1038 -[[image:1654500909990-784.png]] 1039 - 1040 - 1041 -(% style="color:#4f81bd" %)**Cause for this issue:** 1042 - 1043 -((( 1044 -The fuse on LSE01 is not large enough, some of the soil probe require large current up to 5v 800mA, in a short pulse. When this happen, it cause the device reboot so user see rejoin. 875 + 1045 1045 ))) 1046 1046 1047 1047 1048 - (% style="color:#4f81bd"%)**Solution:**879 += 7. Order Info = 1049 1049 1050 -All new shipped LSE01 after 2020-May-30 will have this to fix. For the customer who see this issue, please bypass the fuse as below: 1051 1051 1052 - [[image:1654500929571-736.png||height="458" width="832"]]882 +Part Number**:** (% style="color:#4f81bd" %)**NSE01** 1053 1053 1054 1054 1055 -= 6. Order Info = 1056 - 1057 - 1058 -Part Number**:** (% style="color:#4f81bd" %)**LSE01-XX-YY** 1059 - 1060 - 1061 -(% style="color:#4f81bd" %)**XX**(%%)**:** The default frequency band 1062 - 1063 -* (% style="color:red" %)**AS923**(%%): LoRaWAN AS923 band 1064 -* (% style="color:red" %)**AU915**(%%): LoRaWAN AU915 band 1065 -* (% style="color:red" %)**EU433**(%%): LoRaWAN EU433 band 1066 -* (% style="color:red" %)**EU868**(%%): LoRaWAN EU868 band 1067 -* (% style="color:red" %)**KR920**(%%): LoRaWAN KR920 band 1068 -* (% style="color:red" %)**US915**(%%): LoRaWAN US915 band 1069 -* (% style="color:red" %)**IN865**(%%): LoRaWAN IN865 band 1070 -* (% style="color:red" %)**CN470**(%%): LoRaWAN CN470 band 1071 - 1072 -(% style="color:#4f81bd" %)**YY**(%%)**: **Battery Option 1073 - 1074 -* (% style="color:red" %)**4**(%%): 4000mAh battery 1075 -* (% style="color:red" %)**8**(%%): 8500mAh battery 1076 - 1077 1077 (% class="wikigeneratedid" %) 1078 1078 ((( 1079 1079 1080 1080 ))) 1081 1081 1082 -= 7. Packing Info =890 += 8. Packing Info = 1083 1083 1084 1084 ((( 1085 1085 1086 1086 1087 1087 (% style="color:#037691" %)**Package Includes**: 1088 -))) 1089 1089 1090 -* (((1091 - LSE01LoRaWAN SoilMoisture& EC Sensorx 1897 +* NSE01 NB-IoT Soil Moisture & EC Sensor x 1 898 +* External antenna x 1 1092 1092 ))) 1093 1093 1094 1094 ((( ... ... @@ -1095,24 +1095,19 @@ 1095 1095 1096 1096 1097 1097 (% style="color:#037691" %)**Dimension and weight**: 1098 -))) 1099 1099 1100 -* (((1101 - DeviceSize:cm906 +* Size: 195 x 125 x 55 mm 907 +* Weight: 420g 1102 1102 ))) 1103 -* ((( 1104 -Device Weight: g 1105 -))) 1106 -* ((( 1107 -Package Size / pcs : cm 1108 -))) 1109 -* ((( 1110 -Weight / pcs : g 1111 1111 910 +((( 1112 1112 912 + 913 + 914 + 1113 1113 ))) 1114 1114 1115 -= 8. Support =917 += 9. Support = 1116 1116 1117 1117 * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule. 1118 1118 * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.com]]
- 1657245163077-232.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +81.0 KB - Content
- 1657246476176-652.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +492.6 KB - Content
- 1657249419225-449.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +81.0 KB - Content
- 1657249468462-536.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +483.6 KB - Content
- 1657249793983-486.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +85.8 KB - Content
- 1657249831934-534.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +72.5 KB - Content
- 1657249864775-321.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +87.0 KB - Content
- 1657249930215-289.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +77.3 KB - Content
- 1657249978444-674.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +139.5 KB - Content
- 1657249990869-686.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +96.9 KB - Content
- 1657250217799-140.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +98.7 KB - Content
- 1657250255956-604.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +99.0 KB - Content
- 1657259653666-883.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +344.4 KB - Content
- 1657260785982-288.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +138.2 KB - Content
- 1657261119050-993.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +126.1 KB - Content
- 1657261278785-153.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +126.1 KB - Content
- 1657271519014-786.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +71.5 KB - Content
- 1657327959271-447.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +78.3 KB - Content
- 1657328609906-564.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +492.6 KB - Content
- 1657328659945-416.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +78.8 KB - Content
- 1657328756309-230.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +78.5 KB - Content
- 1657328884227-504.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +483.6 KB - Content
- 1657329814315-101.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +85.3 KB - Content
- 1657330452568-615.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +71.3 KB - Content
- 1657330472797-498.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +68.9 KB - Content
- 1657330501006-241.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +119.2 KB - Content
- 1657330533775-472.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +74.9 KB - Content
- image-20220708101224-1.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +22.2 KB - Content
- image-20220708101605-2.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +87.5 KB - Content
- image-20220708110657-3.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +251.7 KB - Content
- image-20220708111918-4.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +38.8 KB - Content
- image-20220708133731-5.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +8.7 KB - Content
- image-20220708140453-6.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +132.7 KB - Content
- image-20220708141352-7.jpeg
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +102.7 KB - Content
- image-20220709084038-1.jpeg
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +72.0 KB - Content
- image-20220709084137-2.jpeg
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +72.0 KB - Content
- image-20220709084207-3.jpeg
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +72.0 KB - Content
- image-20220709084458-4.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +199.5 KB - Content
- image-20220709085040-1.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +200.4 KB - Content
- image-20220709092052-2.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +247.3 KB - Content