<
From version < 38.1 >
edited by Xiaoling
on 2022/06/25 16:31
To version < 65.3 >
edited by Xiaoling
on 2022/07/08 15:04
>
Change comment: There is no comment for this version

Summary

Details

Page properties
Title
... ... @@ -1,1 +1,1 @@
1 -LSE01-LoRaWAN Soil Moisture & EC Sensor User Manual
1 +NSE01 - NB-IoT Soil Moisture & EC Sensor User Manual
Content
... ... @@ -20,1075 +20,797 @@
20 20  
21 21  
22 22  
23 -= 1. Introduction =
23 += 1.  Introduction =
24 24  
25 -== 1.1 ​What is LoRaWAN Soil Moisture & EC Sensor ==
25 +== 1.1 ​ What is LoRaWAN Soil Moisture & EC Sensor ==
26 26  
27 27  (((
28 28  
29 29  
30 -The Dragino LSE01 is a (% style="color:#4f81bd" %)**LoRaWAN Soil Moisture & EC Sensor**(%%) for IoT of Agriculture. It is designed to measure the soil moisture of saline-alkali soil and loamy soil. The soil sensor uses FDR method to calculate the soil moisture with the compensation from soil temperature and conductivity. It also has been calibrated in factory for Mineral soil type.
31 -)))
30 +Dragino NSE01 is an (% style="color:blue" %)**NB-IOT soil moisture & EC sensor**(%%) for agricultural IoT. Used to measure the soil moisture of saline-alkali soil and loam. The soil sensor uses the FDR method to calculate soil moisture and compensates it with soil temperature and electrical conductivity. It has also been calibrated for mineral soil types at the factory.
32 32  
33 -(((
34 -It detects (% style="color:#4f81bd" %)**Soil Moisture**(%%), (% style="color:#4f81bd" %)**Soil Temperature**(%%) and (% style="color:#4f81bd" %)**Soil Conductivity**(%%), and uploads the value via wireless to LoRaWAN IoT Server.
35 -)))
32 +It can detect (% style="color:blue" %)**Soil Moisture, Soil Temperature and Soil Conductivity**(%%), and upload its value to the server wirelessly.
36 36  
37 -(((
38 -The LoRa wireless technology used in LES01 allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption.
39 -)))
34 +The wireless technology used in NSE01 allows the device to send data at a low data rate and reach ultra-long distances, providing ultra-long-distance spread spectrum Communication.
40 40  
41 -(((
42 -LES01 is powered by (% style="color:#4f81bd" %)**4000mA or 8500mAh Li-SOCI2 battery**(%%), It is designed for long term use up to 10 years.
43 -)))
36 +NSE01 are powered by (% style="color:blue" %)**8500mAh Li-SOCI2**(%%) batteries, which can be used for up to 5 years.  
44 44  
45 -(((
46 -Each LES01 is pre-load with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect after power on.
38 +
47 47  )))
48 48  
49 -
50 50  [[image:1654503236291-817.png]]
51 51  
52 52  
53 -[[image:1654503265560-120.png]]
44 +[[image:1657245163077-232.png]]
54 54  
55 55  
56 56  
57 -== 1.2 ​Features ==
48 +== 1.2 ​ Features ==
58 58  
59 -* LoRaWAN 1.0.3 Class A
60 -* Ultra low power consumption
50 +* NB-IoT Bands: B1/B3/B8/B5/B20/B28 @H-FDD
61 61  * Monitor Soil Moisture
62 62  * Monitor Soil Temperature
63 63  * Monitor Soil Conductivity
64 -* Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865
65 65  * AT Commands to change parameters
66 66  * Uplink on periodically
67 67  * Downlink to change configure
68 68  * IP66 Waterproof Enclosure
69 -* 4000mAh or 8500mAh Battery for long term use
58 +* Ultra-Low Power consumption
59 +* AT Commands to change parameters
60 +* Micro SIM card slot for NB-IoT SIM
61 +* 8500mAh Battery for long term use
70 70  
71 71  
72 72  
73 -== 1.3 Specification ==
74 74  
75 -Measure Volume: Base on the centra pin of the probe, a cylinder with 7cm diameter and 10cm height.
66 +== 1.3  Specification ==
76 76  
77 -[[image:image-20220606162220-5.png]]
78 78  
69 +(% style="color:#037691" %)**Common DC Characteristics:**
79 79  
71 +* Supply Voltage: 2.1v ~~ 3.6v
72 +* Operating Temperature: -40 ~~ 85°C
80 80  
81 -== ​1.4 Applications ==
82 82  
83 -* Smart Agriculture
84 84  
85 -(% class="wikigeneratedid" id="H200B1.5FirmwareChangelog" %)
86 -​
76 +(% style="color:#037691" %)**NB-IoT Spec:**
87 87  
88 -== 1.5 Firmware Change log ==
78 +* - B1 @H-FDD: 2100MHz
79 +* - B3 @H-FDD: 1800MHz
80 +* - B8 @H-FDD: 900MHz
81 +* - B5 @H-FDD: 850MHz
82 +* - B20 @H-FDD: 800MHz
83 +* - B28 @H-FDD: 700MHz
89 89  
90 90  
91 -**LSE01 v1.0 :**  Release
92 92  
87 +Probe(% style="color:#037691" %)** Specification:**
93 93  
89 +Measure Volume: Base on the centra pin of the probe, a cylinder with 7cm diameter and 10cm height.
94 94  
95 -= 2. Configure LSE01 to connect to LoRaWAN network =
91 +[[image:image-20220708101224-1.png]]
96 96  
97 -== 2.1 How it works ==
98 98  
99 -(((
100 -The LSE01 is configured as LoRaWAN OTAA Class A mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and power on the LSE0150. It will automatically join the network via OTAA and start to send the sensor value
101 -)))
102 102  
103 -(((
104 -In case you can’t set the OTAA keys in the LoRaWAN OTAA server, and you have to use the keys from the server, you can [[use AT Commands >>||anchor="H3.200BUsingtheATCommands"]].
105 -)))
95 +== ​1.4  Applications ==
106 106  
97 +* Smart Agriculture
107 107  
99 +(% class="wikigeneratedid" id="H200B1.5FirmwareChangelog" %)
100 +​
108 108  
109 -== 2.2 ​Quick guide to connect to LoRaWAN server (OTAA) ==
102 +== 1. Pin Definitions ==
110 110  
111 -Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LG308>>url:http://www.dragino.com/products/lora/item/140-lg308.html]] as a LoRaWAN gateway in this example.
112 112  
105 +[[image:1657246476176-652.png]]
113 113  
114 -[[image:1654503992078-669.png]]
115 115  
116 116  
117 -The LG308 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
109 += 2.  Use NSE01 to communicate with IoT Server =
118 118  
111 +== 2.1  How it works ==
119 119  
120 -(% style="color:blue" %)**Step 1**(%%):  Create a device in TTN with the OTAA keys from LSE01.
121 121  
122 -Each LSE01 is shipped with a sticker with the default device EUI as below:
114 +(((
115 +The NSE01 is equipped with a NB-IoT module, the pre-loaded firmware in NSE01 will get environment data from sensors and send the value to local NB-IoT network via the NB-IoT module.  The NB-IoT network will forward this value to IoT server via the protocol defined by NSE01.
116 +)))
123 123  
124 -[[image:image-20220606163732-6.jpeg]]
125 125  
126 -You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot:
119 +(((
120 +The diagram below shows the working flow in default firmware of NSE01:
121 +)))
127 127  
128 -**Add APP EUI in the application**
123 +[[image:image-20220708101605-2.png]]
129 129  
125 +(((
126 +
127 +)))
130 130  
131 -[[image:1654504596150-405.png]]
132 132  
133 133  
131 +== 2.2 ​ Configure the NSE01 ==
134 134  
135 -**Add APP KEY and DEV EUI**
136 136  
137 -[[image:1654504683289-357.png]]
134 +=== 2.2.1 Test Requirement ===
138 138  
139 139  
137 +To use NSE01 in your city, make sure meet below requirements:
140 140  
141 -(% style="color:blue" %)**Step 2**(%%): Power on LSE01
139 +* Your local operator has already distributed a NB-IoT Network there.
140 +* The local NB-IoT network used the band that NSE01 supports.
141 +* Your operator is able to distribute the data received in their NB-IoT network to your IoT server.
142 142  
143 -
144 -Put a Jumper on JP2 to power on the device. ( The Jumper must be in FLASH position).
145 -
146 -[[image:image-20220606163915-7.png]]
147 -
148 -
149 -(% style="color:blue" %)**Step 3**(%%)**:** The LSE01 will auto join to the TTN network. After join success, it will start to upload messages to TTN and you can see the messages in the panel.
150 -
151 -[[image:1654504778294-788.png]]
152 -
153 -
154 -
155 -== 2.3 Uplink Payload ==
156 -
157 -
158 -=== 2.3.1 MOD~=0(Default Mode) ===
159 -
160 -LSE01 will uplink payload via LoRaWAN with below payload format: 
161 -
162 162  (((
163 -Uplink payload includes in total 11 bytes.
144 +Below figure shows our testing structure. Here we have NB-IoT network coverage by China Mobile, the band they use is B8.  The NSE01 will use CoAP((% style="color:red" %)120.24.4.116:5683)(%%) or raw UDP((% style="color:red" %)120.24.4.116:5601)(%%) or MQTT((% style="color:red" %)120.24.4.116:1883)(%%)or TCP((% style="color:red" %)120.24.4.116:5600)(%%)protocol to send data to the test server
164 164  )))
165 165  
166 -(% border="1" cellspacing="10" style="background-color:#ffffcc; width:500px" %)
167 -|(((
168 -**Size**
169 169  
170 -**(bytes)**
171 -)))|**2**|**2**|**2**|**2**|**2**|**1**
172 -|**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(((
173 -Temperature
148 +[[image:1657249419225-449.png]]
174 174  
175 -(Reserve, Ignore now)
176 -)))|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]]|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]]|(((
177 -MOD & Digital Interrupt
178 178  
179 -(Optional)
180 -)))
181 181  
152 +=== 2.2.2 Insert SIM card ===
182 182  
154 +Insert the NB-IoT Card get from your provider.
183 183  
184 -=== 2.3.2 MOD~=1(Original value) ===
156 +User need to take out the NB-IoT module and insert the SIM card like below:
185 185  
186 -This mode can get the original AD value of moisture and original conductivity (with temperature drift compensation).
187 187  
188 -(% border="1" cellspacing="10" style="background-color:#ffffcc; width:500px" %)
189 -|(((
190 -**Size**
159 +[[image:1657249468462-536.png]]
191 191  
192 -**(bytes)**
193 -)))|**2**|**2**|**2**|**2**|**2**|**1**
194 -|**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(((
195 -Temperature
196 196  
197 -(Reserve, Ignore now)
198 -)))|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]](raw)|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]](raw)|(((
199 -MOD & Digital Interrupt
200 200  
201 -(Optional)
202 -)))
163 +=== 2.2.3 Connect USB – TTL to NSE01 to configure it ===
203 203  
204 -
205 -
206 -=== 2.3.3 Battery Info ===
207 -
208 208  (((
209 -Check the battery voltage for LSE01.
210 -)))
211 -
212 212  (((
213 -Ex1: 0x0B45 = 2885mV
167 +User need to configure NSE01 via serial port to set the (% style="color:blue" %)**Server Address** / **Uplink Topic** (%%)to define where and how-to uplink packets. NSE01 support AT Commands, user can use a USB to TTL adapter to connect to NSE01 and use AT Commands to configure it, as below.
214 214  )))
215 -
216 -(((
217 -Ex2: 0x0B49 = 2889mV
218 218  )))
219 219  
220 220  
172 +**Connection:**
221 221  
222 -=== 2.3.4 Soil Moisture ===
174 + (% style="background-color:yellow" %)USB TTL GND <~-~-~-~-> GND
223 223  
224 -(((
225 -Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil.
226 -)))
176 + (% style="background-color:yellow" %)USB TTL TXD <~-~-~-~-> UART_RXD
227 227  
228 -(((
229 -For example, if the data you get from the register is __0x05 0xDC__, the moisture content in the soil is
230 -)))
178 + (% style="background-color:yellow" %)USB TTL RXD <~-~-~-~-> UART_TXD
231 231  
232 -(((
233 -
234 -)))
235 235  
236 -(((
237 -(% style="color:#4f81bd" %)**05DC(H) = 1500(D) /100 = 15%.**
238 -)))
181 +In the PC, use below serial tool settings:
239 239  
183 +* Baud:  (% style="color:green" %)**9600**
184 +* Data bits:** (% style="color:green" %)8(%%)**
185 +* Stop bits: (% style="color:green" %)**1**
186 +* Parity:  (% style="color:green" %)**None**
187 +* Flow Control: (% style="color:green" %)**None**
240 240  
241 -
242 -=== 2.3.5 Soil Temperature ===
243 -
244 244  (((
245 - Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is 0x09 0xEC, the temperature content in the soil is
190 +Make sure the switch is in FLASH position, then power on device by connecting the jumper on NSE01. NSE01 will output system info once power on as below, we can enter the (% style="color:green" %)**password: 12345678**(%%) to access AT Command input.
246 246  )))
247 247  
248 -(((
249 -**Example**:
250 -)))
193 +[[image:image-20220708110657-3.png]]
251 251  
252 -(((
253 -If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/100 = 2.61 °C
254 -)))
195 +(% style="color:red" %)Note: the valid AT Commands can be found at: (%%)[[http:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/]]
255 255  
256 -(((
257 -If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C
258 -)))
259 259  
260 260  
199 +=== 2.2.4 Use CoAP protocol to uplink data ===
261 261  
262 -=== 2.3.6 Soil Conductivity (EC) ===
201 +(% style="color:red" %)Note: if you don't have CoAP server, you can refer this link to set up one: (%%)[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/>>http://wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/]]
263 263  
264 -(((
265 -Obtain (% style="color:#4f81bd" %)**__soluble salt concentration__**(%%) in soil or (% style="color:#4f81bd" %)**__soluble ion concentration in liquid fertilizer__**(%%) or (% style="color:#4f81bd" %)**__planting medium__**(%%). The value range of the register is 0 - 20000(Decimal)( Can be greater than 20000).
266 -)))
267 267  
268 -(((
269 -For example, if the data you get from the register is 0x00 0xC8, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm.
270 -)))
204 +**Use below commands:**
271 271  
272 -(((
273 -Generally, the EC value of irrigation water is less than 800uS / cm.
274 -)))
206 +* (% style="color:blue" %)**AT+PRO=1**  (%%) ~/~/ Set to use CoAP protocol to uplink
207 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5683   ** (%%)~/~/ to set CoAP server address and port
208 +* (% style="color:blue" %)**AT+URI=5,11,"mqtt",11,"coap",12,"0",15,"c=text1",23,"0" ** (%%) ~/~/Set COAP resource path
275 275  
276 -(((
277 -
278 -)))
210 +For parameter description, please refer to AT command set
279 279  
280 -(((
281 -
282 -)))
212 +[[image:1657249793983-486.png]]
283 283  
284 -=== 2.3.7 MOD ===
285 285  
286 -Firmware version at least v2.1 supports changing mode.
215 +After configure the server address and (% style="color:green" %)**reset the device**(%%) (via AT+ATZ ), NSE01 will start to uplink sensor values to CoAP server.
287 287  
288 -For example, bytes[10]=90
217 +[[image:1657249831934-534.png]]
289 289  
290 -mod=(bytes[10]>>7)&0x01=1.
291 291  
292 292  
293 -**Downlink Command:**
221 +=== 2.2.5 Use UDP protocol to uplink data(Default protocol) ===
294 294  
295 -If payload = 0x0A00, workmode=0
223 +This feature is supported since firmware version v1.0.1
296 296  
297 -If** **payload =** **0x0A01, workmode=1
298 298  
226 +* (% style="color:blue" %)**AT+PRO=2   ** (%%) ~/~/ Set to use UDP protocol to uplink
227 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5601   ** (%%) ~/~/ to set UDP server address and port
228 +* (% style="color:blue" %)**AT+CFM=1       ** (%%) ~/~/If the server does not respond, this command is unnecessary
299 299  
230 +[[image:1657249864775-321.png]]
300 300  
301 -=== 2.3.8 ​Decode payload in The Things Network ===
302 302  
303 -While using TTN network, you can add the payload format to decode the payload.
233 +[[image:1657249930215-289.png]]
304 304  
305 305  
306 -[[image:1654505570700-128.png]]
307 307  
308 -(((
309 -The payload decoder function for TTN is here:
310 -)))
237 +=== 2.2.6 Use MQTT protocol to uplink data ===
311 311  
312 -(((
313 -LSE01 TTN Payload Decoder: [[https:~~/~~/www.dropbox.com/sh/si8icbrjlamxqdb/AAACYwjsxxr5fj_vpqRtrETAa?dl=0>>https://www.dropbox.com/sh/si8icbrjlamxqdb/AAACYwjsxxr5fj_vpqRtrETAa?dl=0]]
314 -)))
239 +This feature is supported since firmware version v110
315 315  
316 316  
317 -== 2.4 Uplink Interval ==
242 +* (% style="color:blue" %)**AT+PRO=3   ** (%%) ~/~/Set to use MQTT protocol to uplink
243 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,1883   ** (%%) ~/~/Set MQTT server address and port
244 +* (% style="color:blue" %)**AT+CLIENT=CLIENT       ** (%%)~/~/Set up the CLIENT of MQTT
245 +* (% style="color:blue" %)**AT+UNAME=UNAME                               **(%%)~/~/Set the username of MQTT
246 +* (% style="color:blue" %)**AT+PWD=PWD                                        **(%%)~/~/Set the password of MQTT
247 +* (% style="color:blue" %)**AT+PUBTOPIC=NSE01_PUB                    **(%%)~/~/Set the sending topic of MQTT
248 +* (% style="color:blue" %)**AT+SUBTOPIC=NSE01_SUB          **(%%) ~/~/Set the subscription topic of MQTT
318 318  
319 -The LSE01 by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link: [[Change Uplink Interval>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H4.1ChangeUplinkInterval"]]
250 +[[image:1657249978444-674.png]]
320 320  
321 321  
253 +[[image:1657249990869-686.png]]
322 322  
323 -== 2.5 Downlink Payload ==
324 324  
325 -By default, LSE50 prints the downlink payload to console port.
326 -
327 -[[image:image-20220606165544-8.png]]
328 -
329 -
330 330  (((
331 -**Examples:**
257 +MQTT protocol has a much higher power consumption compare vs UDP / CoAP protocol. Please check the power analyze document and adjust the uplink period to a suitable interval.
332 332  )))
333 333  
334 -(((
335 -
336 -)))
337 337  
338 -* (((
339 -**Set TDC**
340 -)))
341 341  
342 -(((
343 -If the payload=0100003C, it means set the END Node’s TDC to 0x00003C=60(S), while type code is 01.
344 -)))
262 +=== 2.2.7 Use TCP protocol to uplink data ===
345 345  
346 -(((
347 -Payload:    01 00 00 1E    TDC=30S
348 -)))
264 +This feature is supported since firmware version v110
349 349  
350 -(((
351 -Payload:    01 00 00 3C    TDC=60S
352 -)))
353 353  
354 -(((
355 -
356 -)))
267 +* (% style="color:blue" %)**AT+PRO=4   ** (%%) ~/~/ Set to use TCP protocol to uplink
268 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5600   **(%%) ~/~/ to set TCP server address and port
357 357  
358 -* (((
359 -**Reset**
360 -)))
270 +[[image:1657250217799-140.png]]
361 361  
362 -(((
363 -If payload = 0x04FF, it will reset the LSE01
364 -)))
365 365  
273 +[[image:1657250255956-604.png]]
366 366  
367 -* **CFM**
368 368  
369 -Downlink Payload: 05000001, Set AT+CFM=1 or 05000000 , set AT+CFM=0
370 370  
277 +=== 2.2.8 Change Update Interval ===
371 371  
279 +User can use below command to change the (% style="color:green" %)**uplink interval**.
372 372  
373 -== 2.6 ​Show Data in DataCake IoT Server ==
281 +* (% style="color:blue" %)**AT+TDC=600      ** (%%)~/~/ Set Update Interval to 600s
374 374  
375 375  (((
376 -[[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps:
284 +(% style="color:red" %)**NOTE:**
377 377  )))
378 378  
379 379  (((
380 -
288 +(% style="color:red" %)1. By default, the device will send an uplink message every 1 hour.
381 381  )))
382 382  
383 -(((
384 -(% style="color:blue" %)**Step 1**(%%):  Be sure that your device is programmed and properly connected to the network at this time.
385 -)))
386 386  
387 -(((
388 -(% style="color:blue" %)**Step 2**(%%):  To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps:
389 -)))
390 390  
293 +== 2.3  Uplink Payload ==
391 391  
392 -[[image:1654505857935-743.png]]
295 +In this mode, uplink payload includes in total 18 bytes
393 393  
297 +(% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:510px" %)
298 +|=(% style="width: 50px;" %)(((
299 +**Size(bytes)**
300 +)))|=(% style="width: 50px;" %)**6**|=(% style="width: 25px;" %)2|=(% style="width: 25px;" %)**2**|=(% style="width: 80px;" %)**1**|=(% style="width: 80px;" %)**2**|=(% style="width: 80px;" %)**2**|=(% style="width: 80px;" %)**2**|=(% style="width: 40px;" %)**1**
301 +|(% style="width:97px" %)**Value**|(% style="width:83px" %)[[Device ID>>||anchor="H"]]|(% style="width:41px" %)[[Ver>>||anchor="H"]]|(% style="width:46px" %)[[BAT>>||anchor="H"]]|(% style="width:123px" %)[[Signal Strength>>||anchor="H"]]|(% style="width:108px" %)[[Soil Moisture>>||anchor="H"]]|(% style="width:133px" %)[[Soil Temperature>>||anchor="H"]]|(% style="width:159px" %)[[Soil Conductivity(EC)>>||anchor="H"]]|(% style="width:80px" %)[[Interrupt>>||anchor="H"]]
394 394  
395 -[[image:1654505874829-548.png]]
303 +If we use the MQTT client to subscribe to this MQTT topic, we can see the following information when the NSE01 uplink data.
396 396  
397 397  
398 -(% style="color:blue" %)**Step 3**(%%)**:**  Create an account or log in Datacake.
306 +[[image:image-20220708111918-4.png]]
399 399  
400 -(% style="color:blue" %)**Step 4**(%%)**:**  Search the LSE01 and add DevEUI.
401 401  
309 +The payload is ASCII string, representative same HEX:
402 402  
403 -[[image:1654505905236-553.png]]
311 +0x72403155615900640c7817075e0a8c02f900 where:
404 404  
313 +* Device ID: 0x 724031556159 = 724031556159
314 +* Version: 0x0064=100=1.0.0
405 405  
406 -After added, the sensor data arrive TTN, it will also arrive and show in Mydevices.
316 +* BAT: 0x0c78 = 3192 mV = 3.192V
317 +* Singal: 0x17 = 23
318 +* Soil Moisture: 0x075e= 1886 = 18.86  %
319 +* Soil Temperature:0x0a8c =2700=27 °C
320 +* Soil Conductivity(EC) = 0x02f9 =761 uS /cm
321 +* Interrupt: 0x00 = 0
407 407  
408 -[[image:1654505925508-181.png]]
409 409  
410 410  
411 411  
412 -== 2.7 Frequency Plans ==
326 +== 2. Payload Explanation and Sensor Interface ==
413 413  
414 -The LSE01 uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.
415 415  
329 +=== 2.4.1  Device ID ===
416 416  
417 -=== 2.7.1 EU863-870 (EU868) ===
331 +By default, the Device ID equal to the last 6 bytes of IMEI.
418 418  
419 -(% style="color:#037691" %)** Uplink:**
333 +User can use (% style="color:blue" %)**AT+DEUI**(%%) to set Device ID
420 420  
421 -868.1 - SF7BW125 to SF12BW125
335 +**Example:**
422 422  
423 -868.3 - SF7BW125 to SF12BW125 and SF7BW250
337 +AT+DEUI=A84041F15612
424 424  
425 -868.5 - SF7BW125 to SF12BW125
339 +The Device ID is stored in a none-erase area, Upgrade the firmware or run AT+FDR won't erase Device ID.
426 426  
427 -867.1 - SF7BW125 to SF12BW125
428 428  
429 -867.3 - SF7BW125 to SF12BW125
430 430  
431 -867.5 - SF7BW125 to SF12BW125
343 +=== 2.4.2  Version Info ===
432 432  
433 -867.7 - SF7BW125 to SF12BW125
345 +Specify the software version: 0x64=100, means firmware version 1.00.
434 434  
435 -867.9 - SF7BW125 to SF12BW125
347 +For example: 0x00 64 : this device is NSE01 with firmware version 1.0.0.
436 436  
437 -868.8 - FSK
438 438  
439 439  
440 -(% style="color:#037691" %)** Downlink:**
351 +=== 2.4.3  Battery Info ===
441 441  
442 -Uplink channels 1-9 (RX1)
353 +(((
354 +Check the battery voltage for LSE01.
355 +)))
443 443  
444 -869.525 - SF9BW125 (RX2 downlink only)
357 +(((
358 +Ex1: 0x0B45 = 2885mV
359 +)))
445 445  
361 +(((
362 +Ex2: 0x0B49 = 2889mV
363 +)))
446 446  
447 447  
448 -=== 2.7.2 US902-928(US915) ===
449 449  
450 -Used in USA, Canada and South America. Default use CHE=2
367 +=== 2.4.4  Signal Strength ===
451 451  
452 -(% style="color:#037691" %)**Uplink:**
369 +NB-IoT Network signal Strength.
453 453  
454 -903.9 - SF7BW125 to SF10BW125
371 +**Ex1: 0x1d = 29**
455 455  
456 -904.1 - SF7BW125 to SF10BW125
373 +(% style="color:blue" %)**0**(%%)  -113dBm or less
457 457  
458 -904.3 - SF7BW125 to SF10BW125
375 +(% style="color:blue" %)**1**(%%)  -111dBm
459 459  
460 -904.5 - SF7BW125 to SF10BW125
377 +(% style="color:blue" %)**2...30**(%%) -109dBm... -53dBm
461 461  
462 -904.7 - SF7BW125 to SF10BW125
379 +(% style="color:blue" %)**31**  (%%) -51dBm or greater
463 463  
464 -904.9 - SF7BW125 to SF10BW125
381 +(% style="color:blue" %)**99**   (%%) Not known or not detectable
465 465  
466 -905.1 - SF7BW125 to SF10BW125
467 467  
468 -905.3 - SF7BW125 to SF10BW125
469 469  
385 +=== 2.4.5  Soil Moisture ===
470 470  
471 -(% style="color:#037691" %)**Downlink:**
387 +(((
388 +Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil.
389 +)))
472 472  
473 -923.3 - SF7BW500 to SF12BW500
391 +(((
392 +For example, if the data you get from the register is **__0x05 0xDC__**, the moisture content in the soil is
393 +)))
474 474  
475 -923.9 - SF7BW500 to SF12BW500
395 +(((
396 +
397 +)))
476 476  
477 -924.5 - SF7BW500 to SF12BW500
399 +(((
400 +(% style="color:#4f81bd" %)**05DC(H) = 1500(D) /100 = 15%.**
401 +)))
478 478  
479 -925.1 - SF7BW500 to SF12BW500
480 480  
481 -925.7 - SF7BW500 to SF12BW500
482 482  
483 -926.3 - SF7BW500 to SF12BW500
405 +=== 2.4.6  Soil Temperature ===
484 484  
485 -926.9 - SF7BW500 to SF12BW500
407 +(((
408 + Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is __**0x09 0xEC**__, the temperature content in the soil is
409 +)))
486 486  
487 -927.5 - SF7BW500 to SF12BW500
411 +(((
412 +**Example**:
413 +)))
488 488  
489 -923.3 - SF12BW500(RX2 downlink only)
415 +(((
416 +If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/100 = 2.61 °C
417 +)))
490 490  
419 +(((
420 +If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C
421 +)))
491 491  
492 492  
493 -=== 2.7.3 CN470-510 (CN470) ===
494 494  
495 -Used in China, Default use CHE=1
425 +=== 2.4.7  Soil Conductivity (EC) ===
496 496  
497 -(% style="color:#037691" %)**Uplink:**
427 +(((
428 +Obtain (% style="color:#4f81bd" %)**__soluble salt concentration__**(%%) in soil or (% style="color:#4f81bd" %)**__soluble ion concentration in liquid fertilizer__**(%%) or (% style="color:#4f81bd" %)**__planting medium__**(%%). The value range of the register is 0 - 20000(Decimal)( Can be greater than 20000).
429 +)))
498 498  
499 -486.3 - SF7BW125 to SF12BW125
431 +(((
432 +For example, if the data you get from the register is __**0x00 0xC8**__, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm.
433 +)))
500 500  
501 -486.5 - SF7BW125 to SF12BW125
435 +(((
436 +Generally, the EC value of irrigation water is less than 800uS / cm.
437 +)))
502 502  
503 -486.7 - SF7BW125 to SF12BW125
439 +(((
440 +
441 +)))
504 504  
505 -486.9 - SF7BW125 to SF12BW125
443 +(((
444 +
445 +)))
506 506  
507 -487.1 - SF7BW125 to SF12BW125
447 +=== 2.4. Digital Interrupt ===
508 508  
509 -487.3 - SF7BW125 to SF12BW125
449 +Digital Interrupt refers to pin (% style="color:blue" %)**GPIO_EXTI**(%%), and there are different trigger methods. When there is a trigger, the NSE01 will send a packet to the server.
510 510  
511 -487.5 - SF7BW125 to SF12BW125
451 +The command is:
512 512  
513 -487.7 - SF7BW125 to SF12BW125
453 +(% style="color:blue" %)**AT+INTMOD=3 **(%%) ~/~/(more info about INMOD please refer [[**AT Command Manual**>>url:https://www.dragino.com/downloads/downloads/NB-IoT/NBSN95/DRAGINO_NBSN95-NB_AT%20Commands_v1.1.0.pdf]])**.**
514 514  
515 515  
516 -(% style="color:#037691" %)**Downlink:**
456 +The lower four bits of this data field shows if this packet is generated by interrupt or not. [[Click here>>||anchor="H"]] for the hardware and software set up.
517 517  
518 -506.7 - SF7BW125 to SF12BW125
519 519  
520 -506.9 - SF7BW125 to SF12BW125
459 +Example:
521 521  
522 -507.1 - SF7BW125 to SF12BW125
461 +0x(00): Normal uplink packet.
523 523  
524 -507.3 - SF7BW125 to SF12BW125
463 +0x(01): Interrupt Uplink Packet.
525 525  
526 -507.5 - SF7BW125 to SF12BW125
527 527  
528 -507.7 - SF7BW125 to SF12BW125
529 529  
530 -507.9 - SF7BW125 to SF12BW125
467 +=== 2.4.9  ​+5V Output ===
531 531  
532 -508.1 - SF7BW125 to SF12BW125
469 +NSE01 will enable +5V output before all sampling and disable the +5v after all sampling. 
533 533  
534 -505.3 - SF12BW125 (RX2 downlink only)
535 535  
472 +The 5V output time can be controlled by AT Command.
536 536  
474 +(% style="color:blue" %)**AT+5VT=1000**
537 537  
538 -=== 2.7.4 AU915-928(AU915) ===
476 +Means set 5V valid time to have 1000ms. So the real 5V output will actually have 1000ms + sampling time for other sensors.
539 539  
540 -Default use CHE=2
541 541  
542 -(% style="color:#037691" %)**Uplink:**
543 543  
544 -916.8 - SF7BW125 to SF12BW125
480 +== 2.5  Downlink Payload ==
545 545  
546 -917.0 - SF7BW125 to SF12BW125
482 +By default, NSE01 prints the downlink payload to console port.
547 547  
548 -917.2 - SF7BW125 to SF12BW125
484 +[[image:image-20220708133731-5.png]]
549 549  
550 -917.4 - SF7BW125 to SF12BW125
551 551  
552 -917.6 - SF7BW125 to SF12BW125
487 +(((
488 +(% style="color:blue" %)**Examples:**
489 +)))
553 553  
554 -917.8 - SF7BW125 to SF12BW125
491 +(((
492 +
493 +)))
555 555  
556 -918.0 - SF7BW125 to SF12BW125
495 +* (((
496 +(% style="color:blue" %)**Set TDC**
497 +)))
557 557  
558 -918.2 - SF7BW125 to SF12BW125
499 +(((
500 +If the payload=0100003C, it means set the END Node's TDC to 0x00003C=60(S), while type code is 01.
501 +)))
559 559  
503 +(((
504 +Payload:    01 00 00 1E    TDC=30S
505 +)))
560 560  
561 -(% style="color:#037691" %)**Downlink:**
507 +(((
508 +Payload:    01 00 00 3C    TDC=60S
509 +)))
562 562  
563 -923.3 - SF7BW500 to SF12BW500
511 +(((
512 +
513 +)))
564 564  
565 -923.9 - SF7BW500 to SF12BW500
515 +* (((
516 +(% style="color:blue" %)**Reset**
517 +)))
566 566  
567 -924.5 - SF7BW500 to SF12BW500
519 +(((
520 +If payload = 0x04FF, it will reset the NSE01
521 +)))
568 568  
569 -925.1 - SF7BW500 to SF12BW500
570 570  
571 -925.7 - SF7BW500 to SF12BW500
524 +* (% style="color:blue" %)**INTMOD**
572 572  
573 -926.3 - SF7BW500 to SF12BW500
526 +Downlink Payload: 06000003, Set AT+INTMOD=3
574 574  
575 -926.9 - SF7BW500 to SF12BW500
576 576  
577 -927.5 - SF7BW500 to SF12BW500
578 578  
579 -923.3 - SF12BW500(RX2 downlink only)
530 +== 2. ​LED Indicator ==
580 580  
532 +(((
533 +The NSE01 has an internal LED which is to show the status of different state.
581 581  
582 582  
583 -=== 2.7.5 AS920-923 & AS923-925 (AS923) ===
536 +* When power on, NSE01 will detect if sensor probe is connected, if probe detected, LED will blink four times. (no blinks in this step is no probe)
537 +* Then the LED will be on for 1 second means device is boot normally.
538 +* After NSE01 join NB-IoT network. The LED will be ON for 3 seconds.
539 +* For each uplink probe, LED will be on for 500ms.
540 +)))
584 584  
585 -(% style="color:#037691" %)**Default Uplink channel:**
586 586  
587 -923.2 - SF7BW125 to SF10BW125
588 588  
589 -923.4 - SF7BW125 to SF10BW125
590 590  
545 +== 2.7  Installation in Soil ==
591 591  
592 -(% style="color:#037691" %)**Additional Uplink Channel**:
547 +__**Measurement the soil surface**__
593 593  
594 -(OTAA mode, channel added by JoinAccept message)
549 +Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting. [[https:~~/~~/img.alicdn.com/imgextra/i3/2005165265/O1CN010rj9Oh1olPsQxrdUK_!!2005165265.jpg>>url:https://img.alicdn.com/imgextra/i3/2005165265/O1CN010rj9Oh1olPsQxrdUK_!!2005165265.jpg]]
595 595  
596 -(% style="color:#037691" %)**AS920~~AS923 for Japan, Malaysia, Singapore**:
551 +[[image:1657259653666-883.png]] ​
597 597  
598 -922.2 - SF7BW125 to SF10BW125
599 599  
600 -922.4 - SF7BW125 to SF10BW125
554 +(((
555 +
601 601  
602 -922.6 - SF7BW125 to SF10BW125
557 +(((
558 +Dig a hole with diameter > 20CM.
559 +)))
603 603  
604 -922.8 - SF7BW125 to SF10BW125
561 +(((
562 +Horizontal insert the probe to the soil and fill the hole for long term measurement.
563 +)))
564 +)))
605 605  
606 -923.0 - SF7BW125 to SF10BW125
566 +[[image:1654506665940-119.png]]
607 607  
608 -922.0 - SF7BW125 to SF10BW125
568 +(((
569 +
570 +)))
609 609  
610 610  
611 -(% style="color:#037691" %)**AS923 ~~ AS925 for Brunei, Cambodia, Hong Kong, Indonesia, Laos, Taiwan, Thailand, Vietnam**:
573 +== 2.8  ​Firmware Change Log ==
612 612  
613 -923.6 - SF7BW125 to SF10BW125
614 614  
615 -923.8 - SF7BW125 to SF10BW125
576 +Download URL & Firmware Change log
616 616  
617 -924.0 - SF7BW125 to SF10BW125
578 +[[www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/Firmware/]]
618 618  
619 -924.2 - SF7BW125 to SF10BW125
620 620  
621 -924.4 - SF7BW125 to SF10BW125
581 +Upgrade Instruction: [[Upgrade_Firmware>>||anchor="H"]]
622 622  
623 -924.6 - SF7BW125 to SF10BW125
624 624  
625 625  
626 -(% style="color:#037691" %)** Downlink:**
585 +== 2.9  ​Battery Analysis ==
627 627  
628 -Uplink channels 1-8 (RX1)
587 +=== 2.9.1  ​Battery Type ===
629 629  
630 -923.2 - SF10BW125 (RX2)
631 631  
590 +The NSE01 battery is a combination of an 8500mAh Li/SOCI2 Battery and a Super Capacitor. The battery is none-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter.
632 632  
633 633  
634 -=== 2.7.6 KR920-923 (KR920) ===
593 +The battery is designed to last for several years depends on the actually use environment and update interval. 
635 635  
636 -Default channel:
637 637  
638 -922.1 - SF7BW125 to SF12BW125
596 +The battery related documents as below:
639 639  
640 -922.3 - SF7BW125 to SF12BW125
598 +* [[Battery Dimension>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]
599 +* [[Lithium-Thionyl Chloride Battery>>url:http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]][[ datasheet>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]
600 +* [[Lithium-ion Battery-Capacitor datasheet>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]
641 641  
642 -922.5 - SF7BW125 to SF12BW125
643 -
644 -
645 -(% style="color:#037691" %)**Uplink: (OTAA mode, channel added by JoinAccept message)**
646 -
647 -922.1 - SF7BW125 to SF12BW125
648 -
649 -922.3 - SF7BW125 to SF12BW125
650 -
651 -922.5 - SF7BW125 to SF12BW125
652 -
653 -922.7 - SF7BW125 to SF12BW125
654 -
655 -922.9 - SF7BW125 to SF12BW125
656 -
657 -923.1 - SF7BW125 to SF12BW125
658 -
659 -923.3 - SF7BW125 to SF12BW125
660 -
661 -
662 -(% style="color:#037691" %)**Downlink:**
663 -
664 -Uplink channels 1-7(RX1)
665 -
666 -921.9 - SF12BW125 (RX2 downlink only; SF12BW125 might be changed to SF9BW125)
667 -
668 -
669 -
670 -=== 2.7.7 IN865-867 (IN865) ===
671 -
672 -(% style="color:#037691" %)** Uplink:**
673 -
674 -865.0625 - SF7BW125 to SF12BW125
675 -
676 -865.4025 - SF7BW125 to SF12BW125
677 -
678 -865.9850 - SF7BW125 to SF12BW125
679 -
680 -
681 -(% style="color:#037691" %) **Downlink:**
682 -
683 -Uplink channels 1-3 (RX1)
684 -
685 -866.550 - SF10BW125 (RX2)
686 -
687 -
688 -
689 -
690 -== 2.8 LED Indicator ==
691 -
692 -The LSE01 has an internal LED which is to show the status of different state.
693 -
694 -* Blink once when device power on.
695 -* Solid ON for 5 seconds once device successful Join the network.
696 -* Blink once when device transmit a packet.
697 -
698 -
699 -
700 -
701 -
702 -
703 -== 2.9 Installation in Soil ==
704 -
705 -**Measurement the soil surface**
706 -
707 -
708 -[[image:1654506634463-199.png]] ​
709 -
710 710  (((
711 -(((
712 -Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting.
603 +[[image:image-20220708140453-6.png]]
713 713  )))
714 -)))
715 715  
716 716  
717 717  
718 -[[image:1654506665940-119.png]]
608 +=== 2.9.2  Power consumption Analyze ===
719 719  
720 720  (((
721 -Dig a hole with diameter > 20CM.
611 +Dragino battery powered product are all runs in Low Power mode. We have an update battery calculator which base on the measurement of the real device. User can use this calculator to check the battery life and calculate the battery life if want to use different transmit interval.
722 722  )))
723 723  
724 -(((
725 -Horizontal insert the probe to the soil and fill the hole for long term measurement.
726 -)))
727 727  
728 -
729 -== 2.10 ​Firmware Change Log ==
730 -
731 731  (((
732 -**Firmware download link:**
616 +Instruction to use as below:
733 733  )))
734 734  
735 735  (((
736 -[[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/]]
620 +(% style="color:blue" %)**Step 1:  **(%%)Downlink the up-to-date DRAGINO_Battery_Life_Prediction_Table.xlsx from: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/]]
737 737  )))
738 738  
739 -(((
740 -
741 -)))
742 742  
743 743  (((
744 -**Firmware Upgrade Method: **[[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome]]
625 +(% style="color:blue" %)**Step 2: **(%%) Open it and choose
745 745  )))
746 746  
747 -(((
748 -
628 +* (((
629 +Product Model
749 749  )))
750 -
751 -(((
752 -**V1.0.**
631 +* (((
632 +Uplink Interval
753 753  )))
634 +* (((
635 +Working Mode
636 +)))
754 754  
755 755  (((
756 -Release
639 +And the Life expectation in difference case will be shown on the right.
757 757  )))
758 758  
642 +[[image:image-20220708141352-7.jpeg]]
759 759  
760 -== 2.11 ​Battery Analysis ==
761 761  
762 -=== 2.11.1 ​Battery Type ===
763 763  
764 -(((
765 -The LSE01 battery is a combination of a 4000mAh Li/SOCI2 Battery and a Super Capacitor. The battery is non-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter.
766 -)))
646 +=== 2.9.3  ​Battery Note ===
767 767  
768 768  (((
769 -The battery is designed to last for more than 5 years for the LSN50.
649 +The Li-SICO battery is designed for small current / long period application. It is not good to use a high current, short period transmit method. The recommended minimum period for use of this battery is 5 minutes. If you use a shorter period time to transmit LoRa, then the battery life may be decreased.
770 770  )))
771 771  
772 -(((
773 -(((
774 -The battery-related documents are as below:
775 -)))
776 -)))
777 777  
778 -* (((
779 -[[Battery Dimension>>url:http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/&file=LSN50-Battery-Dimension.pdf]],
780 -)))
781 -* (((
782 -[[Lithium-Thionyl Chloride Battery  datasheet>>url:https://www.dragino.com/downloads/downloads/datasheet/Battery/ER26500/ER26500_Datasheet-EN.pdf]],
783 -)))
784 -* (((
785 -[[Lithium-ion Battery-Capacitor datasheet>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC_1520_datasheet.jpg]], [[Tech Spec>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC1520%20Technical%20Specification20171123.pdf]]
786 -)))
787 787  
788 - [[image:image-20220610172436-1.png]]
654 +=== 2.9.4  Replace the battery ===
789 789  
790 -
791 -
792 -=== 2.11.2 ​Battery Note ===
793 -
794 794  (((
795 -The Li-SICO battery is designed for small current / long period application. It is not good to use a high current, short period transmit method. The recommended minimum period for use of this battery is 5 minutes. If you use a shorter period time to transmit LoRa, then the battery life may be decreased.
657 +The default battery pack of NSE01 includes a ER26500 plus super capacitor. If user can't find this pack locally, they can find ER26500 or equivalence without the SPC1520 capacitor, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes).
796 796  )))
797 797  
798 798  
799 799  
800 -=== 2.11.3 Replace the battery ===
662 += 3. ​ Access NB-IoT Module =
801 801  
802 802  (((
803 -If Battery is lower than 2.7v, user should replace the battery of LSE01.
665 +Users can directly access the AT command set of the NB-IoT module.
804 804  )))
805 805  
806 806  (((
807 -You can change the battery in the LSE01.The type of battery is not limited as long as the output is between 3v to 3.6v. On the main board, there is a diode (D1) between the battery and the main circuit. If you need to use a battery with less than 3.3v, please remove the D1 and shortcut the two pads of it so there won’t be voltage drop between battery and main board.
669 +The AT Command set can refer the BC35-G NB-IoT Module AT Command: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=datasheet/other_vendors/BC35-G/>>url:https://www.dragino.com/downloads/index.php?dir=datasheet/other_vendors/BC35-G/]] 
808 808  )))
809 809  
810 -(((
811 -The default battery pack of LSE01 includes a ER18505 plus super capacitor. If user can’t find this pack locally, they can find ER18505 or equivalence, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes)
812 -)))
672 +[[image:1657261278785-153.png]]
813 813  
814 814  
815 815  
816 -= 3. Using the AT Commands =
676 += 4.  Using the AT Commands =
817 817  
818 -== 3.1 Access AT Commands ==
678 +== 4.1  Access AT Commands ==
819 819  
680 +See this link for detail: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/]]
820 820  
821 -LSE01 supports AT Command set in the stock firmware. You can use a USB to TTL adapter to connect to LSE01 for using AT command, as below.
822 822  
823 -[[image:1654501986557-872.png||height="391" width="800"]]
683 +AT+<CMD>?  : Help on <CMD>
824 824  
685 +AT+<CMD>         : Run <CMD>
825 825  
826 -Or if you have below board, use below connection:
687 +AT+<CMD>=<value> : Set the value
827 827  
689 +AT+<CMD>=?  : Get the value
828 828  
829 -[[image:1654502005655-729.png||height="503" width="801"]]
830 830  
831 -
832 -
833 -In the PC, you need to set the serial baud rate to (% style="color:green" %)**9600**(%%) to access the serial console for LSE01. LSE01 will output system info once power on as below:
834 -
835 -
836 - [[image:1654502050864-459.png||height="564" width="806"]]
837 -
838 -
839 -Below are the available commands, a more detailed AT Command manual can be found at [[AT Command Manual>>https://www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0]]: [[https:~~/~~/www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0>>https://www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0]]
840 -
841 -
842 -(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>? **(%%) : Help on <CMD>
843 -
844 -(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD> **(%%) : Run <CMD>
845 -
846 -(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>=<value>**(%%) : Set the value
847 -
848 -(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>=?**(%%)  : Get the value
849 -
850 -
851 851  (% style="color:#037691" %)**General Commands**(%%)      
852 852  
853 -(% style="background-color:#dcdcdc" %)**AT**(%%)  : Attention       
694 +AT  : Attention       
854 854  
855 -(% style="background-color:#dcdcdc" %)**AT?**(%%)  : Short Help     
696 +AT?  : Short Help     
856 856  
857 -(% style="background-color:#dcdcdc" %)**ATZ**(%%)  : MCU Reset    
698 +ATZ  : MCU Reset    
858 858  
859 -(% style="background-color:#dcdcdc" %)**AT+TDC**(%%)  : Application Data Transmission Interval 
700 +AT+TDC  : Application Data Transmission Interval
860 860  
702 +AT+CFG  : Print all configurations
861 861  
862 -(% style="color:#037691" %)**Keys, IDs and EUIs management**
704 +AT+CFGMOD           : Working mode selection
863 863  
864 -(% style="background-color:#dcdcdc" %)**AT+APPEUI**(%%)              : Application EUI      
706 +AT+INTMOD            : Set the trigger interrupt mode
865 865  
866 -(% style="background-color:#dcdcdc" %)**AT+APPKEY**(%%)              : Application Key     
708 +AT+5VT  : Set extend the time of 5V power  
867 867  
868 -(% style="background-color:#dcdcdc" %)**AT+APPSKEY**(%%)            : Application Session Key
710 +AT+PRO  : Choose agreement
869 869  
870 -(% style="background-color:#dcdcdc" %)**AT+DADDR**(%%)              : Device Address     
712 +AT+WEIGRE  : Get weight or set weight to 0
871 871  
872 -(% style="background-color:#dcdcdc" %)**AT+DEUI**(%%)                   : Device EUI     
714 +AT+WEIGAP  : Get or Set the GapValue of weight
873 873  
874 -(% style="background-color:#dcdcdc" %)**AT+NWKID**(%%)               : Network ID (You can enter this command change only after successful network connection
716 +AT+RXDL  : Extend the sending and receiving time
875 875  
876 -(% style="background-color:#dcdcdc" %)**AT+NWKSKEY**(%%)          : Network Session Key Joining and sending date on LoRa network  
718 +AT+CNTFAC  : Get or set counting parameters
877 877  
878 -(% style="background-color:#dcdcdc" %)**AT+CFM**(%%)  : Confirm Mode       
720 +AT+SERVADDR  : Server Address
879 879  
880 -(% style="background-color:#dcdcdc" %)**AT+CFS**(%%)                     : Confirm Status       
881 881  
882 -(% style="background-color:#dcdcdc" %)**AT+JOIN**(%%)  : Join LoRa? Network       
723 +(% style="color:#037691" %)**COAP Management**      
883 883  
884 -(% style="background-color:#dcdcdc" %)**AT+NJM**(%%)  : LoRa? Network Join Mode    
725 +AT+URI            : Resource parameters
885 885  
886 -(% style="background-color:#dcdcdc" %)**AT+NJS**(%%)                     : LoRa? Network Join Status    
887 887  
888 -(% style="background-color:#dcdcdc" %)**AT+RECV**(%%)                  : Print Last Received Data in Raw Format
728 +(% style="color:#037691" %)**UDP Management**
889 889  
890 -(% style="background-color:#dcdcdc" %)**AT+RECVB**(%%)                : Print Last Received Data in Binary Format      
730 +AT+CFM          : Upload confirmation mode (only valid for UDP)
891 891  
892 -(% style="background-color:#dcdcdc" %)**AT+SEND**(%%)                  : Send Text Data      
893 893  
894 -(% style="background-color:#dcdcdc" %)**AT+SENB**(%%)                  : Send Hexadecimal Data
733 +(% style="color:#037691" %)**MQTT Management**
895 895  
735 +AT+CLIENT               : Get or Set MQTT client
896 896  
897 -(% style="color:#037691" %)**LoRa Network Management**
737 +AT+UNAME  : Get or Set MQTT Username
898 898  
899 -(% style="background-color:#dcdcdc" %)**AT+ADR**(%%)          : Adaptive Rate
739 +AT+PWD                  : Get or Set MQTT password
900 900  
901 -(% style="background-color:#dcdcdc" %)**AT+CLASS**(%%)  : LoRa Class(Currently only support class A
741 +AT+PUBTOPI : Get or Set MQTT publish topic
902 902  
903 -(% style="background-color:#dcdcdc" %)**AT+DCS**(%%)  : Duty Cycle Settin
743 +AT+SUBTOPIC  : Get or Set MQTT subscription topic
904 904  
905 -(% style="background-color:#dcdcdc" %)**AT+DR**(%%)  : Data Rate (Can Only be Modified after ADR=0)     
906 906  
907 -(% style="background-color:#dcdcdc" %)**AT+FCD**(%%)  : Frame Counter Downlink       
746 +(% style="color:#037691" %)**Information**          
908 908  
909 -(% style="background-color:#dcdcdc" %)**AT+FCU**(%%)  : Frame Counter Uplink   
748 +AT+FDR  : Factory Data Reset
910 910  
911 -(% style="background-color:#dcdcdc" %)**AT+JN1DL**(%%)  : Join Accept Delay1
750 +AT+PWOR : Serial Access Password
912 912  
913 -(% style="background-color:#dcdcdc" %)**AT+JN2DL**(%%)  : Join Accept Delay2
914 914  
915 -(% style="background-color:#dcdcdc" %)**AT+PNM**(%%)  : Public Network Mode   
916 916  
917 -(% style="background-color:#dcdcdc" %)**AT+RX1DL**(%%)  : Receive Delay1      
754 += ​5.  FAQ =
918 918  
919 -(% style="background-color:#dcdcdc" %)**AT+RX2DL**(%%)  : Receive Delay2      
756 +== 5.1 How to Upgrade Firmware ==
920 920  
921 -(% style="background-color:#dcdcdc" %)**AT+RX2DR**(%%)  : Rx2 Window Data Rate 
922 922  
923 -(% style="background-color:#dcdcdc" %)**AT+RX2FQ**(%%)  : Rx2 Window Frequency
924 -
925 -(% style="background-color:#dcdcdc" %)**AT+TXP**(%%)  : Transmit Power
926 -
927 -(% style="background-color:#dcdcdc" %)**AT+ MOD**(%%)  : Set work mode
928 -
929 -
930 -(% style="color:#037691" %)**Information** 
931 -
932 -(% style="background-color:#dcdcdc" %)**AT+RSSI**(%%)           : RSSI of the Last Received Packet   
933 -
934 -(% style="background-color:#dcdcdc" %)**AT+SNR**(%%)           : SNR of the Last Received Packet   
935 -
936 -(% style="background-color:#dcdcdc" %)**AT+VER**(%%)           : Image Version and Frequency Band       
937 -
938 -(% style="background-color:#dcdcdc" %)**AT+FDR**(%%)           : Factory Data Reset
939 -
940 -(% style="background-color:#dcdcdc" %)**AT+PORT**(%%)  : Application Port    
941 -
942 -(% style="background-color:#dcdcdc" %)**AT+CHS**(%%)  : Get or Set Frequency (Unit: Hz) for Single Channel Mode
943 -
944 - (% style="background-color:#dcdcdc" %)**AT+CHE**(%%)  : Get or Set eight channels mode, Only for US915, AU915, CN470
945 -
946 -
947 -= ​4. FAQ =
948 -
949 -== 4.1 ​How to change the LoRa Frequency Bands/Region? ==
950 -
951 951  (((
952 -You can follow the instructions for [[how to upgrade image>>||anchor="H2.10200BFirmwareChangeLog"]].
953 -When downloading the images, choose the required image file for download. ​
760 +User can upgrade the firmware for 1) bug fix, 2) new feature release.
954 954  )))
955 955  
956 956  (((
957 -
764 +Please see this link for how to upgrade:  [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H2.HardwareUpgradeMethodSupportList>>http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H2.HardwareUpgradeMethodSupportList]]
958 958  )))
959 959  
960 960  (((
961 -How to set up LSE01 to work in 8 channel mode By default, the frequency bands US915, AU915, CN470 work in 72 frequencies. Many gateways are 8 channel gateways, and in this case, the OTAA join time and uplink schedule is long and unpredictable while the end node is hopping in 72 frequencies.
768 +(% style="color:red" %)Notice, NSE01 and LSE01 share the same mother board. They use the same connection and method to update.
962 962  )))
963 963  
964 -(((
965 -
966 -)))
967 967  
968 -(((
969 -You can configure the end node to work in 8 channel mode by using the AT+CHE command. The 500kHz channels are always included for OTAA.
970 -)))
971 971  
972 -(((
973 -
974 -)))
773 += 6.  Trouble Shooting =
975 975  
976 -(((
977 -For example, in **US915** band, the frequency table is as below. By default, the end node will use all channels (0~~71) for OTAA Join process. After the OTAA Join, the end node will use these all channels (0~~71) to send uplink packets.
978 -)))
775 +== 6.1  ​Connection problem when uploading firmware ==
979 979  
980 -[[image:image-20220606154726-3.png]]
981 981  
982 -
983 -When you use the TTN network, the US915 frequency bands use are:
984 -
985 -* 903.9 - SF7BW125 to SF10BW125
986 -* 904.1 - SF7BW125 to SF10BW125
987 -* 904.3 - SF7BW125 to SF10BW125
988 -* 904.5 - SF7BW125 to SF10BW125
989 -* 904.7 - SF7BW125 to SF10BW125
990 -* 904.9 - SF7BW125 to SF10BW125
991 -* 905.1 - SF7BW125 to SF10BW125
992 -* 905.3 - SF7BW125 to SF10BW125
993 -* 904.6 - SF8BW500
994 -
778 +(% class="wikigeneratedid" %)
995 995  (((
996 -Because the end node is now hopping in 72 frequency, it makes it difficult for the devices to Join the TTN network and uplink data. To solve this issue, you can access the device via the AT commands and run:
997 -
998 -* (% style="color:#037691" %)**AT+CHE=2**
999 -* (% style="color:#037691" %)**ATZ**
780 +(% style="font-size:14px" %)**Please see: **(%%)[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H3.3Troubleshooting>>http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H3.3Troubleshooting||style="background-color: rgb(255, 255, 255); font-size: 14px;"]]
1000 1000  )))
1001 1001  
1002 -(((
1003 -
1004 1004  
1005 -to set the end node to work in 8 channel mode. The device will work in Channel 8-15 & 64-71 for OTAA, and channel 8-15 for Uplink.
1006 -)))
1007 1007  
1008 -(((
1009 -
1010 -)))
785 +== 6.2  AT Command input doesn't work ==
1011 1011  
1012 1012  (((
1013 -The **AU915** band is similar. Below are the AU915 Uplink Channels.
788 +In the case if user can see the console output but can't type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn't send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.
1014 1014  )))
1015 1015  
1016 -[[image:image-20220606154825-4.png]]
1017 1017  
1018 1018  
793 += 7. ​ Order Info =
1019 1019  
1020 -= 5. Trouble Shooting =
1021 1021  
1022 -== 5.1 ​Why I can’t join TTN in US915 / AU915 bands? ==
796 +Part Number**:** (% style="color:#4f81bd" %)**NSE01**
1023 1023  
1024 -It is due to channel mapping. Please see the [[Eight Channel Mode>>doc:Main.LoRaWAN Communication Debug.WebHome||anchor="H2.NoticeofUS9152FCN4702FAU915Frequencyband"]] section above for details.
1025 1025  
1026 -
1027 -== 5.2 AT Command input doesn’t work ==
1028 -
1029 -(((
1030 -In the case if user can see the console output but can’t type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn’t send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.
1031 -)))
1032 -
1033 -
1034 -== 5.3 Device rejoin in at the second uplink packet ==
1035 -
1036 -(% style="color:#4f81bd" %)**Issue describe as below:**
1037 -
1038 -[[image:1654500909990-784.png]]
1039 -
1040 -
1041 -(% style="color:#4f81bd" %)**Cause for this issue:**
1042 -
1043 -(((
1044 -The fuse on LSE01 is not large enough, some of the soil probe require large current up to 5v 800mA, in a short pulse. When this happen, it cause the device reboot so user see rejoin.
1045 -)))
1046 -
1047 -
1048 -(% style="color:#4f81bd" %)**Solution: **
1049 -
1050 -All new shipped LSE01 after 2020-May-30 will have this to fix. For the customer who see this issue, please bypass the fuse as below:
1051 -
1052 -[[image:1654500929571-736.png||height="458" width="832"]]
1053 -
1054 -
1055 -= 6. ​Order Info =
1056 -
1057 -
1058 -Part Number**:** (% style="color:#4f81bd" %)**LSE01-XX-YY**
1059 -
1060 -
1061 -(% style="color:#4f81bd" %)**XX**(%%)**:** The default frequency band
1062 -
1063 -* (% style="color:red" %)**AS923**(%%): LoRaWAN AS923 band
1064 -* (% style="color:red" %)**AU915**(%%): LoRaWAN AU915 band
1065 -* (% style="color:red" %)**EU433**(%%): LoRaWAN EU433 band
1066 -* (% style="color:red" %)**EU868**(%%): LoRaWAN EU868 band
1067 -* (% style="color:red" %)**KR920**(%%): LoRaWAN KR920 band
1068 -* (% style="color:red" %)**US915**(%%): LoRaWAN US915 band
1069 -* (% style="color:red" %)**IN865**(%%):  LoRaWAN IN865 band
1070 -* (% style="color:red" %)**CN470**(%%): LoRaWAN CN470 band
1071 -
1072 -(% style="color:#4f81bd" %)**YY**(%%)**: **Battery Option
1073 -
1074 -* (% style="color:red" %)**4**(%%): 4000mAh battery
1075 -* (% style="color:red" %)**8**(%%): 8500mAh battery
1076 -
1077 1077  (% class="wikigeneratedid" %)
1078 1078  (((
1079 1079  
1080 1080  )))
1081 1081  
1082 -= 7. Packing Info =
804 += 8.  Packing Info =
1083 1083  
1084 1084  (((
1085 1085  
1086 1086  
1087 1087  (% style="color:#037691" %)**Package Includes**:
1088 -)))
1089 1089  
1090 -* (((
1091 -LSE01 LoRaWAN Soil Moisture & EC Sensor x 1
811 +
812 +* NSE01 NB-IoT Soil Moisture & EC Sensor x 1
813 +* External antenna x 1
1092 1092  )))
1093 1093  
1094 1094  (((
... ... @@ -1095,24 +1095,20 @@
1095 1095  
1096 1096  
1097 1097  (% style="color:#037691" %)**Dimension and weight**:
1098 -)))
1099 1099  
1100 -* (((
1101 -Device Size: cm
821 +
822 +* Size: 195 x 125 x 55 mm
823 +* Weight:   420g
1102 1102  )))
1103 -* (((
1104 -Device Weight: g
1105 -)))
1106 -* (((
1107 -Package Size / pcs : cm
1108 -)))
1109 -* (((
1110 -Weight / pcs : g
1111 1111  
826 +(((
1112 1112  
828 +
829 +
830 +
1113 1113  )))
1114 1114  
1115 -= 8. Support =
833 += 9.  Support =
1116 1116  
1117 1117  * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
1118 1118  * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.com]]
1657245163077-232.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +81.0 KB
Content
1657246476176-652.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +492.6 KB
Content
1657249419225-449.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +81.0 KB
Content
1657249468462-536.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +483.6 KB
Content
1657249793983-486.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +85.8 KB
Content
1657249831934-534.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +72.5 KB
Content
1657249864775-321.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +87.0 KB
Content
1657249930215-289.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +77.3 KB
Content
1657249978444-674.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +139.5 KB
Content
1657249990869-686.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +96.9 KB
Content
1657250217799-140.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +98.7 KB
Content
1657250255956-604.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +99.0 KB
Content
1657259653666-883.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +344.4 KB
Content
1657260785982-288.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +138.2 KB
Content
1657261119050-993.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +126.1 KB
Content
1657261278785-153.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +126.1 KB
Content
image-20220708101224-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +22.2 KB
Content
image-20220708101605-2.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +87.5 KB
Content
image-20220708110657-3.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +251.7 KB
Content
image-20220708111918-4.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +38.8 KB
Content
image-20220708133731-5.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +8.7 KB
Content
image-20220708140453-6.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +132.7 KB
Content
image-20220708141352-7.jpeg
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +102.7 KB
Content
Copyright ©2010-2022 Dragino Technology Co., LTD. All rights reserved
Dragino Wiki v2.0