<
From version < 38.1 >
edited by Xiaoling
on 2022/06/25 16:31
To version < 65.11 >
edited by Xiaoling
on 2022/07/08 15:44
>
Change comment: There is no comment for this version

Summary

Details

Page properties
Title
... ... @@ -1,1 +1,1 @@
1 -LSE01-LoRaWAN Soil Moisture & EC Sensor User Manual
1 +NSE01 - NB-IoT Soil Moisture & EC Sensor User Manual
Content
... ... @@ -20,777 +20,638 @@
20 20  
21 21  
22 22  
23 -= 1. Introduction =
24 24  
25 -== 1.1 ​What is LoRaWAN Soil Moisture & EC Sensor ==
24 += 1.  Introduction =
26 26  
26 +== 1.1 ​ What is LoRaWAN Soil Moisture & EC Sensor ==
27 +
27 27  (((
28 28  
29 29  
30 -The Dragino LSE01 is a (% style="color:#4f81bd" %)**LoRaWAN Soil Moisture & EC Sensor**(%%) for IoT of Agriculture. It is designed to measure the soil moisture of saline-alkali soil and loamy soil. The soil sensor uses FDR method to calculate the soil moisture with the compensation from soil temperature and conductivity. It also has been calibrated in factory for Mineral soil type.
31 +(((
32 +Dragino NSE01 is an (% style="color:blue" %)**NB-IOT soil moisture & EC sensor**(%%) for agricultural IoT. Used to measure the soil moisture of saline-alkali soil and loam. The soil sensor uses the FDR method to calculate soil moisture and compensates it with soil temperature and electrical conductivity. It has also been calibrated for mineral soil types at the factory.
31 31  )))
32 32  
33 33  (((
34 -It detects (% style="color:#4f81bd" %)**Soil Moisture**(%%), (% style="color:#4f81bd" %)**Soil Temperature**(%%) and (% style="color:#4f81bd" %)**Soil Conductivity**(%%), and uploads the value via wireless to LoRaWAN IoT Server.
36 +It can detect (% style="color:blue" %)**Soil Moisture, Soil Temperature and Soil Conductivity**(%%), and upload its value to the server wirelessly.
35 35  )))
36 36  
37 37  (((
38 -The LoRa wireless technology used in LES01 allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption.
40 +The wireless technology used in NSE01 allows the device to send data at a low data rate and reach ultra-long distances, providing ultra-long-distance spread spectrum Communication.
39 39  )))
40 40  
41 41  (((
42 -LES01 is powered by (% style="color:#4f81bd" %)**4000mA or 8500mAh Li-SOCI2 battery**(%%), It is designed for long term use up to 10 years.
44 +NSE01 are powered by (% style="color:blue" %)**8500mAh Li-SOCI2**(%%) batteries, which can be used for up to 5 years.  
43 43  )))
44 44  
45 -(((
46 -Each LES01 is pre-load with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect after power on.
47 +
47 47  )))
48 48  
49 -
50 50  [[image:1654503236291-817.png]]
51 51  
52 52  
53 -[[image:1654503265560-120.png]]
53 +[[image:1657245163077-232.png]]
54 54  
55 55  
56 56  
57 -== 1.2 ​Features ==
57 +== 1.2 ​ Features ==
58 58  
59 -* LoRaWAN 1.0.3 Class A
60 -* Ultra low power consumption
59 +* NB-IoT Bands: B1/B3/B8/B5/B20/B28 @H-FDD
61 61  * Monitor Soil Moisture
62 62  * Monitor Soil Temperature
63 63  * Monitor Soil Conductivity
64 -* Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865
65 65  * AT Commands to change parameters
66 66  * Uplink on periodically
67 67  * Downlink to change configure
68 68  * IP66 Waterproof Enclosure
69 -* 4000mAh or 8500mAh Battery for long term use
67 +* Ultra-Low Power consumption
68 +* AT Commands to change parameters
69 +* Micro SIM card slot for NB-IoT SIM
70 +* 8500mAh Battery for long term use
70 70  
71 71  
73 +== 1.3  Specification ==
72 72  
73 -== 1.3 Specification ==
74 74  
75 -Measure Volume: Base on the centra pin of the probe, a cylinder with 7cm diameter and 10cm height.
76 +(% style="color:#037691" %)**Common DC Characteristics:**
76 76  
77 -[[image:image-20220606162220-5.png]]
78 +* Supply Voltage: 2.1v ~~ 3.6v
79 +* Operating Temperature: -40 ~~ 85°C
78 78  
81 +(% style="color:#037691" %)**NB-IoT Spec:**
79 79  
83 +* - B1 @H-FDD: 2100MHz
84 +* - B3 @H-FDD: 1800MHz
85 +* - B8 @H-FDD: 900MHz
86 +* - B5 @H-FDD: 850MHz
87 +* - B20 @H-FDD: 800MHz
88 +* - B28 @H-FDD: 700MHz
80 80  
81 -== 1.4 Applications ==
90 +Probe(% style="color:#037691" %)** Specification:**
82 82  
83 -* Smart Agriculture
92 +Measure Volume: Base on the centra pin of the probe, a cylinder with 7cm diameter and 10cm height.
84 84  
85 -(% class="wikigeneratedid" id="H200B1.5FirmwareChangelog" %)
86 -​
94 +[[image:image-20220708101224-1.png]]
87 87  
88 -== 1.5 Firmware Change log ==
89 89  
90 90  
91 -**LSE01 v1.0 :**  Release
98 +== 1.4  Applications ==
92 92  
100 +* Smart Agriculture
93 93  
102 +(% class="wikigeneratedid" id="H200B1.5FirmwareChangelog" %)
103 +​
94 94  
95 -= 2. Configure LSE01 to connect to LoRaWAN network =
105 +== 1. Pin Definitions ==
96 96  
97 -== 2.1 How it works ==
98 98  
99 -(((
100 -The LSE01 is configured as LoRaWAN OTAA Class A mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and power on the LSE0150. It will automatically join the network via OTAA and start to send the sensor value
101 -)))
108 +[[image:1657246476176-652.png]]
102 102  
103 -(((
104 -In case you can’t set the OTAA keys in the LoRaWAN OTAA server, and you have to use the keys from the server, you can [[use AT Commands >>||anchor="H3.200BUsingtheATCommands"]].
105 -)))
106 106  
107 107  
112 += 2.  Use NSE01 to communicate with IoT Server =
108 108  
109 -== 2.2 ​Quick guide to connect to LoRaWAN server (OTAA) ==
114 +== 2. How it works ==
110 110  
111 -Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LG308>>url:http://www.dragino.com/products/lora/item/140-lg308.html]] as a LoRaWAN gateway in this example.
112 112  
113 -
114 -[[image:1654503992078-669.png]]
115 -
116 -
117 -The LG308 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
118 -
119 -
120 -(% style="color:blue" %)**Step 1**(%%):  Create a device in TTN with the OTAA keys from LSE01.
121 -
122 -Each LSE01 is shipped with a sticker with the default device EUI as below:
123 -
124 -[[image:image-20220606163732-6.jpeg]]
125 -
126 -You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot:
127 -
128 -**Add APP EUI in the application**
129 -
130 -
131 -[[image:1654504596150-405.png]]
132 -
133 -
134 -
135 -**Add APP KEY and DEV EUI**
136 -
137 -[[image:1654504683289-357.png]]
138 -
139 -
140 -
141 -(% style="color:blue" %)**Step 2**(%%): Power on LSE01
142 -
143 -
144 -Put a Jumper on JP2 to power on the device. ( The Jumper must be in FLASH position).
145 -
146 -[[image:image-20220606163915-7.png]]
147 -
148 -
149 -(% style="color:blue" %)**Step 3**(%%)**:** The LSE01 will auto join to the TTN network. After join success, it will start to upload messages to TTN and you can see the messages in the panel.
150 -
151 -[[image:1654504778294-788.png]]
152 -
153 -
154 -
155 -== 2.3 Uplink Payload ==
156 -
157 -
158 -=== 2.3.1 MOD~=0(Default Mode) ===
159 -
160 -LSE01 will uplink payload via LoRaWAN with below payload format: 
161 -
162 162  (((
163 -Uplink payload includes in total 11 bytes.
118 +The NSE01 is equipped with a NB-IoT module, the pre-loaded firmware in NSE01 will get environment data from sensors and send the value to local NB-IoT network via the NB-IoT module.  The NB-IoT network will forward this value to IoT server via the protocol defined by NSE01.
164 164  )))
165 165  
166 -(% border="1" cellspacing="10" style="background-color:#ffffcc; width:500px" %)
167 -|(((
168 -**Size**
169 169  
170 -**(bytes)**
171 -)))|**2**|**2**|**2**|**2**|**2**|**1**
172 -|**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(((
173 -Temperature
174 -
175 -(Reserve, Ignore now)
176 -)))|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]]|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]]|(((
177 -MOD & Digital Interrupt
178 -
179 -(Optional)
180 -)))
181 -
182 -
183 -
184 -=== 2.3.2 MOD~=1(Original value) ===
185 -
186 -This mode can get the original AD value of moisture and original conductivity (with temperature drift compensation).
187 -
188 -(% border="1" cellspacing="10" style="background-color:#ffffcc; width:500px" %)
189 -|(((
190 -**Size**
191 -
192 -**(bytes)**
193 -)))|**2**|**2**|**2**|**2**|**2**|**1**
194 -|**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(((
195 -Temperature
196 -
197 -(Reserve, Ignore now)
198 -)))|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]](raw)|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]](raw)|(((
199 -MOD & Digital Interrupt
200 -
201 -(Optional)
202 -)))
203 -
204 -
205 -
206 -=== 2.3.3 Battery Info ===
207 -
208 208  (((
209 -Check the battery voltage for LSE01.
123 +The diagram below shows the working flow in default firmware of NSE01:
210 210  )))
211 211  
212 -(((
213 -Ex1: 0x0B45 = 2885mV
214 -)))
126 +[[image:image-20220708101605-2.png]]
215 215  
216 216  (((
217 -Ex2: 0x0B49 = 2889mV
218 -)))
219 -
220 -
221 -
222 -=== 2.3.4 Soil Moisture ===
223 -
224 -(((
225 -Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil.
226 -)))
227 -
228 -(((
229 -For example, if the data you get from the register is __0x05 0xDC__, the moisture content in the soil is
230 -)))
231 -
232 -(((
233 233  
234 234  )))
235 235  
236 -(((
237 -(% style="color:#4f81bd" %)**05DC(H) = 1500(D) /100 = 15%.**
238 -)))
239 239  
240 240  
134 +== 2.2 ​ Configure the NSE01 ==
241 241  
242 -=== 2.3.5 Soil Temperature ===
243 243  
244 -(((
245 - Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is 0x09 0xEC, the temperature content in the soil is
246 -)))
137 +=== 2.2.1 Test Requirement ===
247 247  
248 -(((
249 -**Example**:
250 -)))
251 251  
252 252  (((
253 -If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/100 = 2.61 °C
141 +To use NSE01 in your city, make sure meet below requirements:
254 254  )))
255 255  
256 -(((
257 -If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C
258 -)))
144 +* Your local operator has already distributed a NB-IoT Network there.
145 +* The local NB-IoT network used the band that NSE01 supports.
146 +* Your operator is able to distribute the data received in their NB-IoT network to your IoT server.
259 259  
260 -
261 -
262 -=== 2.3.6 Soil Conductivity (EC) ===
263 -
264 264  (((
265 -Obtain (% style="color:#4f81bd" %)**__soluble salt concentration__**(%%) in soil or (% style="color:#4f81bd" %)**__soluble ion concentration in liquid fertilizer__**(%%) or (% style="color:#4f81bd" %)**__planting medium__**(%%). The value range of the register is 0 - 20000(Decimal)( Can be greater than 20000).
149 +Below figure shows our testing structure. Here we have NB-IoT network coverage by China Mobile, the band they use is B8.  The NSE01 will use CoAP((% style="color:red" %)120.24.4.116:5683)(%%) or raw UDP((% style="color:red" %)120.24.4.116:5601)(%%) or MQTT((% style="color:red" %)120.24.4.116:1883)(%%)or TCP((% style="color:red" %)120.24.4.116:5600)(%%)protocol to send data to the test server
266 266  )))
267 267  
268 -(((
269 -For example, if the data you get from the register is 0x00 0xC8, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm.
270 -)))
271 271  
272 -(((
273 -Generally, the EC value of irrigation water is less than 800uS / cm.
274 -)))
153 +[[image:1657249419225-449.png]]
275 275  
276 -(((
277 -
278 -)))
279 279  
280 -(((
281 -
282 -)))
283 283  
284 -=== 2.3.7 MOD ===
157 +=== 2.2.2 Insert SIM card ===
285 285  
286 -Firmware version at least v2.1 supports changing mode.
287 -
288 -For example, bytes[10]=90
289 -
290 -mod=(bytes[10]>>7)&0x01=1.
291 -
292 -
293 -**Downlink Command:**
294 -
295 -If payload = 0x0A00, workmode=0
296 -
297 -If** **payload =** **0x0A01, workmode=1
298 -
299 -
300 -
301 -=== 2.3.8 ​Decode payload in The Things Network ===
302 -
303 -While using TTN network, you can add the payload format to decode the payload.
304 -
305 -
306 -[[image:1654505570700-128.png]]
307 -
308 308  (((
309 -The payload decoder function for TTN is here:
160 +Insert the NB-IoT Card get from your provider.
310 310  )))
311 311  
312 312  (((
313 -LSE01 TTN Payload Decoder: [[https:~~/~~/www.dropbox.com/sh/si8icbrjlamxqdb/AAACYwjsxxr5fj_vpqRtrETAa?dl=0>>https://www.dropbox.com/sh/si8icbrjlamxqdb/AAACYwjsxxr5fj_vpqRtrETAa?dl=0]]
164 +User need to take out the NB-IoT module and insert the SIM card like below:
314 314  )))
315 315  
316 316  
317 -== 2.4 Uplink Interval ==
168 +[[image:1657249468462-536.png]]
318 318  
319 -The LSE01 by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link: [[Change Uplink Interval>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H4.1ChangeUplinkInterval"]]
320 320  
321 321  
172 +=== 2.2.3 Connect USB – TTL to NSE01 to configure it ===
322 322  
323 -== 2.5 Downlink Payload ==
324 -
325 -By default, LSE50 prints the downlink payload to console port.
326 -
327 -[[image:image-20220606165544-8.png]]
328 -
329 -
330 330  (((
331 -**Examples:**
332 -)))
333 -
334 334  (((
335 -
176 +User need to configure NSE01 via serial port to set the (% style="color:blue" %)**Server Address** / **Uplink Topic** (%%)to define where and how-to uplink packets. NSE01 support AT Commands, user can use a USB to TTL adapter to connect to NSE01 and use AT Commands to configure it, as below.
336 336  )))
337 -
338 -* (((
339 -**Set TDC**
340 340  )))
341 341  
342 -(((
343 -If the payload=0100003C, it means set the END Node’s TDC to 0x00003C=60(S), while type code is 01.
344 -)))
345 345  
346 -(((
347 -Payload:    01 00 00 1E    TDC=30S
348 -)))
181 +**Connection:**
349 349  
350 -(((
351 -Payload:    01 00 00 3C    TDC=60S
352 -)))
183 + (% style="background-color:yellow" %)USB TTL GND <~-~-~-~-> GND
353 353  
354 -(((
355 -
356 -)))
185 + (% style="background-color:yellow" %)USB TTL TXD <~-~-~-~-> UART_RXD
357 357  
358 -* (((
359 -**Reset**
360 -)))
187 + (% style="background-color:yellow" %)USB TTL RXD <~-~-~-~-> UART_TXD
361 361  
362 -(((
363 -If payload = 0x04FF, it will reset the LSE01
364 -)))
365 365  
190 +In the PC, use below serial tool settings:
366 366  
367 -* **CFM**
192 +* Baud:  (% style="color:green" %)**9600**
193 +* Data bits:** (% style="color:green" %)8(%%)**
194 +* Stop bits: (% style="color:green" %)**1**
195 +* Parity:  (% style="color:green" %)**None**
196 +* Flow Control: (% style="color:green" %)**None**
368 368  
369 -Downlink Payload: 05000001, Set AT+CFM=1 or 05000000 , set AT+CFM=0
370 -
371 -
372 -
373 -== 2.6 ​Show Data in DataCake IoT Server ==
374 -
375 375  (((
376 -[[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps:
199 +Make sure the switch is in FLASH position, then power on device by connecting the jumper on NSE01. NSE01 will output system info once power on as below, we can enter the (% style="color:green" %)**password: 12345678**(%%) to access AT Command input.
377 377  )))
378 378  
379 -(((
380 -
381 -)))
202 +[[image:image-20220708110657-3.png]]
382 382  
383 -(((
384 -(% style="color:blue" %)**Step 1**(%%):  Be sure that your device is programmed and properly connected to the network at this time.
385 -)))
204 +(% style="color:red" %)Note: the valid AT Commands can be found at: (%%)[[http:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/]]
386 386  
387 -(((
388 -(% style="color:blue" %)**Step 2**(%%):  To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps:
389 -)))
390 390  
391 391  
392 -[[image:1654505857935-743.png]]
208 +=== 2.2.4 Use CoAP protocol to uplink data ===
393 393  
210 +(% style="color:red" %)Note: if you don't have CoAP server, you can refer this link to set up one: (%%)[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/>>http://wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/]]
394 394  
395 -[[image:1654505874829-548.png]]
396 396  
213 +**Use below commands:**
397 397  
398 -(% style="color:blue" %)**Step 3**(%%)**:**  Create an account or log in Datacake.
215 +* (% style="color:blue" %)**AT+PRO=1**  (%%) ~/~/ Set to use CoAP protocol to uplink
216 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5683   ** (%%)~/~/ to set CoAP server address and port
217 +* (% style="color:blue" %)**AT+URI=5,11,"mqtt",11,"coap",12,"0",15,"c=text1",23,"0" ** (%%) ~/~/Set COAP resource path
399 399  
400 -(% style="color:blue" %)**Step 4**(%%)**:**  Search the LSE01 and add DevEUI.
219 +For parameter description, please refer to AT command set
401 401  
221 +[[image:1657249793983-486.png]]
402 402  
403 -[[image:1654505905236-553.png]]
404 404  
224 +After configure the server address and (% style="color:green" %)**reset the device**(%%) (via AT+ATZ ), NSE01 will start to uplink sensor values to CoAP server.
405 405  
406 -After added, the sensor data arrive TTN, it will also arrive and show in Mydevices.
226 +[[image:1657249831934-534.png]]
407 407  
408 -[[image:1654505925508-181.png]]
409 409  
410 410  
230 +=== 2.2.5 Use UDP protocol to uplink data(Default protocol) ===
411 411  
412 -== 2.7 Frequency Plans ==
232 +This feature is supported since firmware version v1.0.1
413 413  
414 -The LSE01 uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.
415 415  
235 +* (% style="color:blue" %)**AT+PRO=2   ** (%%) ~/~/ Set to use UDP protocol to uplink
236 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5601   ** (%%) ~/~/ to set UDP server address and port
237 +* (% style="color:blue" %)**AT+CFM=1       ** (%%) ~/~/If the server does not respond, this command is unnecessary
416 416  
417 -=== 2.7.1 EU863-870 (EU868) ===
239 +[[image:1657249864775-321.png]]
418 418  
419 -(% style="color:#037691" %)** Uplink:**
420 420  
421 -868.1 - SF7BW125 to SF12BW125
242 +[[image:1657249930215-289.png]]
422 422  
423 -868.3 - SF7BW125 to SF12BW125 and SF7BW250
424 424  
425 -868.5 - SF7BW125 to SF12BW125
426 426  
427 -867.1 - SF7BW125 to SF12BW125
246 +=== 2.2.6 Use MQTT protocol to uplink data ===
428 428  
429 -867.3 - SF7BW125 to SF12BW125
248 +This feature is supported since firmware version v110
430 430  
431 -867.5 - SF7BW125 to SF12BW125
432 432  
433 -867.7 - SF7BW125 to SF12BW125
251 +* (% style="color:blue" %)**AT+PRO=3   ** (%%) ~/~/Set to use MQTT protocol to uplink
252 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,1883   ** (%%) ~/~/Set MQTT server address and port
253 +* (% style="color:blue" %)**AT+CLIENT=CLIENT       ** (%%)~/~/Set up the CLIENT of MQTT
254 +* (% style="color:blue" %)**AT+UNAME=UNAME                               **(%%)~/~/Set the username of MQTT
255 +* (% style="color:blue" %)**AT+PWD=PWD                                        **(%%)~/~/Set the password of MQTT
256 +* (% style="color:blue" %)**AT+PUBTOPIC=NSE01_PUB                    **(%%)~/~/Set the sending topic of MQTT
257 +* (% style="color:blue" %)**AT+SUBTOPIC=NSE01_SUB          **(%%) ~/~/Set the subscription topic of MQTT
434 434  
435 -867.9 - SF7BW125 to SF12BW125
259 +[[image:1657249978444-674.png]]
436 436  
437 -868.8 - FSK
438 438  
262 +[[image:1657249990869-686.png]]
439 439  
440 -(% style="color:#037691" %)** Downlink:**
441 441  
442 -Uplink channels 1-9 (RX1)
265 +(((
266 +MQTT protocol has a much higher power consumption compare vs UDP / CoAP protocol. Please check the power analyze document and adjust the uplink period to a suitable interval.
267 +)))
443 443  
444 -869.525 - SF9BW125 (RX2 downlink only)
445 445  
446 446  
271 +=== 2.2.7 Use TCP protocol to uplink data ===
447 447  
448 -=== 2.7.2 US902-928(US915) ===
273 +This feature is supported since firmware version v110
449 449  
450 -Used in USA, Canada and South America. Default use CHE=2
451 451  
452 -(% style="color:#037691" %)**Uplink:**
276 +* (% style="color:blue" %)**AT+PRO=4   ** (%%) ~/~/ Set to use TCP protocol to uplink
277 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5600   **(%%) ~/~/ to set TCP server address and port
453 453  
454 -903.9 - SF7BW125 to SF10BW125
279 +[[image:1657250217799-140.png]]
455 455  
456 -904.1 - SF7BW125 to SF10BW125
457 457  
458 -904.3 - SF7BW125 to SF10BW125
282 +[[image:1657250255956-604.png]]
459 459  
460 -904.5 - SF7BW125 to SF10BW125
461 461  
462 -904.7 - SF7BW125 to SF10BW125
463 463  
464 -904.9 - SF7BW125 to SF10BW125
286 +=== 2.2.8 Change Update Interval ===
465 465  
466 -905.1 - SF7BW125 to SF10BW125
288 +User can use below command to change the (% style="color:green" %)**uplink interval**.
467 467  
468 -905.3 - SF7BW125 to SF10BW125
290 +* (% style="color:blue" %)**AT+TDC=600      ** (%%)~/~/ Set Update Interval to 600s
469 469  
292 +(((
293 +(% style="color:red" %)**NOTE:**
294 +)))
470 470  
471 -(% style="color:#037691" %)**Downlink:**
296 +(((
297 +(% style="color:red" %)1. By default, the device will send an uplink message every 1 hour.
298 +)))
472 472  
473 -923.3 - SF7BW500 to SF12BW500
474 474  
475 -923.9 - SF7BW500 to SF12BW500
476 476  
477 -924.5 - SF7BW500 to SF12BW500
302 +== 2. Uplink Payload ==
478 478  
479 -925.1 - SF7BW500 to SF12BW500
304 +In this mode, uplink payload includes in total 18 bytes
480 480  
481 -925.7 - SF7BW500 to SF12BW500
306 +(% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:510px" %)
307 +|=(% style="width: 50px;" %)(((
308 +**Size(bytes)**
309 +)))|=(% style="width: 50px;" %)**6**|=(% style="width: 25px;" %)2|=(% style="width: 25px;" %)**2**|=(% style="width: 80px;" %)**1**|=(% style="width: 80px;" %)**2**|=(% style="width: 80px;" %)**2**|=(% style="width: 80px;" %)**2**|=(% style="width: 40px;" %)**1**
310 +|(% style="width:97px" %)**Value**|(% style="width:83px" %)[[Device ID>>||anchor="H2.4.1A0A0DeviceID"]]|(% style="width:41px" %)[[Ver>>||anchor="H2.4.2A0VersionInfo"]]|(% style="width:46px" %)[[BAT>>||anchor="H2.4.3A0BatteryInfo"]]|(% style="width:123px" %)[[Signal Strength>>||anchor="H2.4.4A0SignalStrength"]]|(% style="width:108px" %)[[Soil Moisture>>||anchor="H2.4.5A0SoilMoisture"]]|(% style="width:133px" %)[[Soil Temperature>>||anchor="H2.4.6A0SoilTemperature"]]|(% style="width:159px" %)[[Soil Conductivity(EC)>>||anchor="H2.4.7A0SoilConductivity28EC29"]]|(% style="width:80px" %)[[Interrupt>>||anchor="H2.4.8A0DigitalInterrupt"]]
482 482  
483 -926.3 - SF7BW500 to SF12BW500
312 +If we use the MQTT client to subscribe to this MQTT topic, we can see the following information when the NSE01 uplink data.
484 484  
485 -926.9 - SF7BW500 to SF12BW500
486 486  
487 -927.5 - SF7BW500 to SF12BW500
315 +[[image:image-20220708111918-4.png]]
488 488  
489 -923.3 - SF12BW500(RX2 downlink only)
490 490  
318 +The payload is ASCII string, representative same HEX:
491 491  
320 +0x72403155615900640c7817075e0a8c02f900 where:
492 492  
493 -=== 2.7.3 CN470-510 (CN470) ===
322 +* Device ID: 0x 724031556159 = 724031556159
323 +* Version: 0x0064=100=1.0.0
494 494  
495 -Used in China, Default use CHE=1
325 +* BAT: 0x0c78 = 3192 mV = 3.192V
326 +* Singal: 0x17 = 23
327 +* Soil Moisture: 0x075e= 1886 = 18.86  %
328 +* Soil Temperature:0x0a8c =2700=27 °C
329 +* Soil Conductivity(EC) = 0x02f9 =761 uS /cm
330 +* Interrupt: 0x00 = 0
496 496  
497 -(% style="color:#037691" %)**Uplink:**
498 498  
499 -486.3 - SF7BW125 to SF12BW125
333 +== 2.4  Payload Explanation and Sensor Interface ==
500 500  
501 -486.5 - SF7BW125 to SF12BW125
502 502  
503 -486.7 - SF7BW125 to SF12BW125
336 +=== 2.4.1  Device ID ===
504 504  
505 -486.9 - SF7BW125 to SF12BW125
338 +By default, the Device ID equal to the last 6 bytes of IMEI.
506 506  
507 -487.1 - SF7BW125 to SF12BW125
340 +User can use (% style="color:blue" %)**AT+DEUI**(%%) to set Device ID
508 508  
509 -487.3 - SF7BW125 to SF12BW125
342 +**Example:**
510 510  
511 -487.5 - SF7BW125 to SF12BW125
344 +AT+DEUI=A84041F15612
512 512  
513 -487.7 - SF7BW125 to SF12BW125
346 +The Device ID is stored in a none-erase area, Upgrade the firmware or run AT+FDR won't erase Device ID.
514 514  
515 515  
516 -(% style="color:#037691" %)**Downlink:**
517 517  
518 -506.7 - SF7BW125 to SF12BW125
350 +=== 2.4.2  Version Info ===
519 519  
520 -506.9 - SF7BW125 to SF12BW125
352 +Specify the software version: 0x64=100, means firmware version 1.00.
521 521  
522 -507.1 - SF7BW125 to SF12BW125
354 +For example: 0x00 64 : this device is NSE01 with firmware version 1.0.0.
523 523  
524 -507.3 - SF7BW125 to SF12BW125
525 525  
526 -507.5 - SF7BW125 to SF12BW125
527 527  
528 -507.7 - SF7BW125 to SF12BW125
358 +=== 2.4.3  Battery Info ===
529 529  
530 -507.9 - SF7BW125 to SF12BW125
360 +(((
361 +Check the battery voltage for LSE01.
362 +)))
531 531  
532 -508.1 - SF7BW125 to SF12BW125
364 +(((
365 +Ex1: 0x0B45 = 2885mV
366 +)))
533 533  
534 -505.3 - SF12BW125 (RX2 downlink only)
368 +(((
369 +Ex2: 0x0B49 = 2889mV
370 +)))
535 535  
536 536  
537 537  
538 -=== 2.7.4 AU915-928(AU915) ===
374 +=== 2.4.4  Signal Strength ===
539 539  
540 -Default use CHE=2
376 +NB-IoT Network signal Strength.
541 541  
542 -(% style="color:#037691" %)**Uplink:**
378 +**Ex1: 0x1d = 29**
543 543  
544 -916.8 - SF7BW125 to SF12BW125
380 +(% style="color:blue" %)**0**(%%)  -113dBm or less
545 545  
546 -917.0 - SF7BW125 to SF12BW125
382 +(% style="color:blue" %)**1**(%%)  -111dBm
547 547  
548 -917.2 - SF7BW125 to SF12BW125
384 +(% style="color:blue" %)**2...30**(%%) -109dBm... -53dBm
549 549  
550 -917.4 - SF7BW125 to SF12BW125
386 +(% style="color:blue" %)**31**  (%%) -51dBm or greater
551 551  
552 -917.6 - SF7BW125 to SF12BW125
388 +(% style="color:blue" %)**99**   (%%) Not known or not detectable
553 553  
554 -917.8 - SF7BW125 to SF12BW125
555 555  
556 -918.0 - SF7BW125 to SF12BW125
557 557  
558 -918.2 - SF7BW125 to SF12BW125
392 +=== 2.4.5  Soil Moisture ===
559 559  
394 +(((
395 +Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil.
396 +)))
560 560  
561 -(% style="color:#037691" %)**Downlink:**
398 +(((
399 +For example, if the data you get from the register is **__0x05 0xDC__**, the moisture content in the soil is
400 +)))
562 562  
563 -923.3 - SF7BW500 to SF12BW500
402 +(((
403 +
404 +)))
564 564  
565 -923.9 - SF7BW500 to SF12BW500
406 +(((
407 +(% style="color:#4f81bd" %)**05DC(H) = 1500(D) /100 = 15%.**
408 +)))
566 566  
567 -924.5 - SF7BW500 to SF12BW500
568 568  
569 -925.1 - SF7BW500 to SF12BW500
570 570  
571 -925.7 - SF7BW500 to SF12BW500
412 +=== 2.4.6  Soil Temperature ===
572 572  
573 -926.3 - SF7BW500 to SF12BW500
414 +(((
415 + Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is __**0x09 0xEC**__, the temperature content in the soil is
416 +)))
574 574  
575 -926.9 - SF7BW500 to SF12BW500
418 +(((
419 +**Example**:
420 +)))
576 576  
577 -927.5 - SF7BW500 to SF12BW500
422 +(((
423 +If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/100 = 2.61 °C
424 +)))
578 578  
579 -923.3 - SF12BW500(RX2 downlink only)
426 +(((
427 +If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C
428 +)))
580 580  
581 581  
582 582  
583 -=== 2.7.5 AS920-923 & AS923-925 (AS923) ===
432 +=== 2.4. Soil Conductivity (EC) ===
584 584  
585 -(% style="color:#037691" %)**Default Uplink channel:**
434 +(((
435 +Obtain (% style="color:#4f81bd" %)**__soluble salt concentration__**(%%) in soil or (% style="color:#4f81bd" %)**__soluble ion concentration in liquid fertilizer__**(%%) or (% style="color:#4f81bd" %)**__planting medium__**(%%). The value range of the register is 0 - 20000(Decimal)( Can be greater than 20000).
436 +)))
586 586  
587 -923.2 - SF7BW125 to SF10BW125
438 +(((
439 +For example, if the data you get from the register is __**0x00 0xC8**__, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm.
440 +)))
588 588  
589 -923.4 - SF7BW125 to SF10BW125
442 +(((
443 +Generally, the EC value of irrigation water is less than 800uS / cm.
444 +)))
590 590  
446 +(((
447 +
448 +)))
591 591  
592 -(% style="color:#037691" %)**Additional Uplink Channel**:
450 +(((
451 +
452 +)))
593 593  
594 -(OTAA mode, channel added by JoinAccept message)
454 +=== 2.4.8  Digital Interrupt ===
595 595  
596 -(% style="color:#037691" %)**AS920~~AS923 for Japan, Malaysia, Singapore**:
456 +Digital Interrupt refers to pin (% style="color:blue" %)**GPIO_EXTI**(%%), and there are different trigger methods. When there is a trigger, the NSE01 will send a packet to the server.
597 597  
598 -922.2 - SF7BW125 to SF10BW125
458 +The command is:
599 599  
600 -922.4 - SF7BW125 to SF10BW125
460 +(% style="color:blue" %)**AT+INTMOD=3 **(%%) ~/~/(more info about INMOD please refer [[**AT Command Manual**>>url:https://www.dragino.com/downloads/downloads/NB-IoT/NBSN95/DRAGINO_NBSN95-NB_AT%20Commands_v1.1.0.pdf]])**.**
601 601  
602 -922.6 - SF7BW125 to SF10BW125
603 603  
604 -922.8 - SF7BW125 to SF10BW125
463 +The lower four bits of this data field shows if this packet is generated by interrupt or not. Click here for the hardware and software set up.
605 605  
606 -923.0 - SF7BW125 to SF10BW125
607 607  
608 -922.0 - SF7BW125 to SF10BW125
466 +Example:
609 609  
468 +0x(00): Normal uplink packet.
610 610  
611 -(% style="color:#037691" %)**AS923 ~~ AS925 for Brunei, Cambodia, Hong Kong, Indonesia, Laos, Taiwan, Thailand, Vietnam**:
470 +0x(01): Interrupt Uplink Packet.
612 612  
613 -923.6 - SF7BW125 to SF10BW125
614 614  
615 -923.8 - SF7BW125 to SF10BW125
616 616  
617 -924.0 - SF7BW125 to SF10BW125
474 +=== 2.4. ​+5V Output ===
618 618  
619 -924.2 - SF7BW125 to SF10BW125
476 +NSE01 will enable +5V output before all sampling and disable the +5v after all sampling. 
620 620  
621 -924.4 - SF7BW125 to SF10BW125
622 622  
623 -924.6 - SF7BW125 to SF10BW125
479 +The 5V output time can be controlled by AT Command.
624 624  
481 +(% style="color:blue" %)**AT+5VT=1000**
625 625  
626 -(% style="color:#037691" %)** Downlink:**
483 +Means set 5V valid time to have 1000ms. So the real 5V output will actually have 1000ms + sampling time for other sensors.
627 627  
628 -Uplink channels 1-8 (RX1)
629 629  
630 -923.2 - SF10BW125 (RX2)
631 631  
487 +== 2.5  Downlink Payload ==
632 632  
489 +By default, NSE01 prints the downlink payload to console port.
633 633  
634 -=== 2.7.6 KR920-923 (KR920) ===
491 +[[image:image-20220708133731-5.png]]
635 635  
636 -Default channel:
637 637  
638 -922.1 - SF7BW125 to SF12BW125
494 +(((
495 +(% style="color:blue" %)**Examples:**
496 +)))
639 639  
640 -922.3 - SF7BW125 to SF12BW125
498 +(((
499 +
500 +)))
641 641  
642 -922.5 - SF7BW125 to SF12BW125
502 +* (((
503 +(% style="color:blue" %)**Set TDC**
504 +)))
643 643  
506 +(((
507 +If the payload=0100003C, it means set the END Node's TDC to 0x00003C=60(S), while type code is 01.
508 +)))
644 644  
645 -(% style="color:#037691" %)**Uplink: (OTAA mode, channel added by JoinAccept message)**
510 +(((
511 +Payload:    01 00 00 1E    TDC=30S
512 +)))
646 646  
647 -922.1 - SF7BW125 to SF12BW125
514 +(((
515 +Payload:    01 00 00 3C    TDC=60S
516 +)))
648 648  
649 -922.3 - SF7BW125 to SF12BW125
518 +(((
519 +
520 +)))
650 650  
651 -922.5 - SF7BW125 to SF12BW125
522 +* (((
523 +(% style="color:blue" %)**Reset**
524 +)))
652 652  
653 -922.7 - SF7BW125 to SF12BW125
526 +(((
527 +If payload = 0x04FF, it will reset the NSE01
528 +)))
654 654  
655 -922.9 - SF7BW125 to SF12BW125
656 656  
657 -923.1 - SF7BW125 to SF12BW125
531 +* (% style="color:blue" %)**INTMOD**
658 658  
659 -923.3 - SF7BW125 to SF12BW125
533 +Downlink Payload: 06000003, Set AT+INTMOD=3
660 660  
661 661  
662 -(% style="color:#037691" %)**Downlink:**
663 663  
664 -Uplink channels 1-7(RX1)
537 +== 2.6  ​LED Indicator ==
665 665  
666 -921.9 - SF12BW125 (RX2 downlink only; SF12BW125 might be changed to SF9BW125)
539 +(((
540 +The NSE01 has an internal LED which is to show the status of different state.
667 667  
668 668  
543 +* When power on, NSE01 will detect if sensor probe is connected, if probe detected, LED will blink four times. (no blinks in this step is no probe)
544 +* Then the LED will be on for 1 second means device is boot normally.
545 +* After NSE01 join NB-IoT network. The LED will be ON for 3 seconds.
546 +* For each uplink probe, LED will be on for 500ms.
547 +)))
669 669  
670 -=== 2.7.7 IN865-867 (IN865) ===
671 671  
672 -(% style="color:#037691" %)** Uplink:**
673 673  
674 -865.0625 - SF7BW125 to SF12BW125
675 675  
676 -865.4025 - SF7BW125 to SF12BW125
552 +== 2.7  Installation in Soil ==
677 677  
678 -865.9850 - SF7BW125 to SF12BW125
554 +__**Measurement the soil surface**__
679 679  
556 +Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting. [[https:~~/~~/img.alicdn.com/imgextra/i3/2005165265/O1CN010rj9Oh1olPsQxrdUK_!!2005165265.jpg>>url:https://img.alicdn.com/imgextra/i3/2005165265/O1CN010rj9Oh1olPsQxrdUK_!!2005165265.jpg]]
680 680  
681 -(% style="color:#037691" %) **Downlink:**
558 +[[image:1657259653666-883.png]] ​
682 682  
683 -Uplink channels 1-3 (RX1)
684 684  
685 -866.550 - SF10BW125 (RX2)
561 +(((
562 +
686 686  
564 +(((
565 +Dig a hole with diameter > 20CM.
566 +)))
687 687  
568 +(((
569 +Horizontal insert the probe to the soil and fill the hole for long term measurement.
570 +)))
571 +)))
688 688  
573 +[[image:1654506665940-119.png]]
689 689  
690 -== 2.8 LED Indicator ==
575 +(((
576 +
577 +)))
691 691  
692 -The LSE01 has an internal LED which is to show the status of different state.
693 693  
694 -* Blink once when device power on.
695 -* Solid ON for 5 seconds once device successful Join the network.
696 -* Blink once when device transmit a packet.
580 +== 2.8  ​Firmware Change Log ==
697 697  
698 698  
583 +Download URL & Firmware Change log
699 699  
585 +[[www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/Firmware/]]
700 700  
701 701  
588 +Upgrade Instruction: [[Upgrade_Firmware>>||anchor="H5.1200BHowtoUpgradeFirmware"]]
702 702  
703 -== 2.9 Installation in Soil ==
704 704  
705 -**Measurement the soil surface**
706 706  
592 +== 2.9  ​Battery Analysis ==
707 707  
708 -[[image:1654506634463-199.png]]
594 +=== 2.9.Battery Type ===
709 709  
710 -(((
711 -(((
712 -Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting.
713 -)))
714 -)))
715 715  
597 +The NSE01 battery is a combination of an 8500mAh Li/SOCI2 Battery and a Super Capacitor. The battery is none-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter.
716 716  
717 717  
718 -[[image:1654506665940-119.png]]
600 +The battery is designed to last for several years depends on the actually use environment and update interval. 
719 719  
720 -(((
721 -Dig a hole with diameter > 20CM.
722 -)))
723 723  
724 -(((
725 -Horizontal insert the probe to the soil and fill the hole for long term measurement.
726 -)))
603 +The battery related documents as below:
727 727  
605 +* [[Battery Dimension>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]
606 +* [[Lithium-Thionyl Chloride Battery datasheet>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]
607 +* [[Lithium-ion Battery-Capacitor datasheet>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]
728 728  
729 -== 2.10 ​Firmware Change Log ==
730 -
731 731  (((
732 -**Firmware download link:**
610 +[[image:image-20220708140453-6.png]]
733 733  )))
734 734  
735 -(((
736 -[[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/]]
737 -)))
738 738  
739 -(((
740 -
741 -)))
742 742  
743 -(((
744 -**Firmware Upgrade Method: **[[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome]]
745 -)))
615 +=== 2.9.2  Power consumption Analyze ===
746 746  
747 747  (((
748 -
618 +Dragino battery powered product are all runs in Low Power mode. We have an update battery calculator which base on the measurement of the real device. User can use this calculator to check the battery life and calculate the battery life if want to use different transmit interval.
749 749  )))
750 750  
751 -(((
752 -**V1.0.**
753 -)))
754 754  
755 755  (((
756 -Release
623 +Instruction to use as below:
757 757  )))
758 758  
759 -
760 -== 2.11 ​Battery Analysis ==
761 -
762 -=== 2.11.1 ​Battery Type ===
763 -
764 764  (((
765 -The LSE01 battery is a combination of a 4000mAh Li/SOCI2 Battery and a Super Capacitor. The battery is non-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter.
627 +(% style="color:blue" %)**Step 1:  **(%%)Downlink the up-to-date DRAGINO_Battery_Life_Prediction_Table.xlsx from: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/]]
766 766  )))
767 767  
768 -(((
769 -The battery is designed to last for more than 5 years for the LSN50.
770 -)))
771 771  
772 772  (((
773 -(((
774 -The battery-related documents are as below:
632 +(% style="color:blue" %)**Step 2: **(%%) Open it and choose
775 775  )))
776 -)))
777 777  
778 778  * (((
779 -[[Battery Dimension>>url:http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/&file=LSN50-Battery-Dimension.pdf]],
636 +Product Model
780 780  )))
781 781  * (((
782 -[[Lithium-Thionyl Chloride Battery  datasheet>>url:https://www.dragino.com/downloads/downloads/datasheet/Battery/ER26500/ER26500_Datasheet-EN.pdf]],
639 +Uplink Interval
783 783  )))
784 784  * (((
785 -[[Lithium-ion Battery-Capacitor datasheet>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC_1520_datasheet.jpg]], [[Tech Spec>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC1520%20Technical%20Specification20171123.pdf]]
642 +Working Mode
786 786  )))
787 787  
788 - [[image:image-20220610172436-1.png]]
645 +(((
646 +And the Life expectation in difference case will be shown on the right.
647 +)))
789 789  
649 +[[image:image-20220708141352-7.jpeg]]
790 790  
791 791  
792 -=== 2.11.2 ​Battery Note ===
793 793  
653 +=== 2.9.3  ​Battery Note ===
654 +
794 794  (((
795 795  The Li-SICO battery is designed for small current / long period application. It is not good to use a high current, short period transmit method. The recommended minimum period for use of this battery is 5 minutes. If you use a shorter period time to transmit LoRa, then the battery life may be decreased.
796 796  )))
... ... @@ -797,298 +797,166 @@
797 797  
798 798  
799 799  
800 -=== 2.11.3 Replace the battery ===
661 +=== 2.9. Replace the battery ===
801 801  
802 802  (((
803 -If Battery is lower than 2.7v, user should replace the battery of LSE01.
664 +The default battery pack of NSE01 includes a ER26500 plus super capacitor. If user can't find this pack locally, they can find ER26500 or equivalence without the SPC1520 capacitor, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes).
804 804  )))
805 805  
667 +
668 +
669 += 3. ​ Access NB-IoT Module =
670 +
806 806  (((
807 -You can change the battery in the LSE01.The type of battery is not limited as long as the output is between 3v to 3.6v. On the main board, there is a diode (D1) between the battery and the main circuit. If you need to use a battery with less than 3.3v, please remove the D1 and shortcut the two pads of it so there won’t be voltage drop between battery and main board.
672 +Users can directly access the AT command set of the NB-IoT module.
808 808  )))
809 809  
810 810  (((
811 -The default battery pack of LSE01 includes a ER18505 plus super capacitor. If user can’t find this pack locally, they can find ER18505 or equivalence, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes)
676 +The AT Command set can refer the BC35-G NB-IoT Module AT Command: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=datasheet/other_vendors/BC35-G/>>url:https://www.dragino.com/downloads/index.php?dir=datasheet/other_vendors/BC35-G/]] 
812 812  )))
813 813  
679 +[[image:1657261278785-153.png]]
814 814  
815 815  
816 -= 3. ​Using the AT Commands =
817 817  
818 -== 3.1 Access AT Commands ==
683 += 4.  Using the AT Commands =
819 819  
685 +== 4.1  Access AT Commands ==
820 820  
821 -LSE01 supports AT Command set in the stock firmware. You can use a USB to TTL adapter to connect to LSE01 for using AT command, as below.
687 +See this link for detail: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/]]
822 822  
823 -[[image:1654501986557-872.png||height="391" width="800"]]
824 824  
690 +AT+<CMD>?  : Help on <CMD>
825 825  
826 -Or if you have below board, use below connection:
692 +AT+<CMD>         : Run <CMD>
827 827  
694 +AT+<CMD>=<value> : Set the value
828 828  
829 -[[image:1654502005655-729.png||height="503" width="801"]]
696 +AT+<CMD>=?  : Get the value
830 830  
831 831  
832 -
833 -In the PC, you need to set the serial baud rate to (% style="color:green" %)**9600**(%%) to access the serial console for LSE01. LSE01 will output system info once power on as below:
834 -
835 -
836 - [[image:1654502050864-459.png||height="564" width="806"]]
837 -
838 -
839 -Below are the available commands, a more detailed AT Command manual can be found at [[AT Command Manual>>https://www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0]]: [[https:~~/~~/www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0>>https://www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0]]
840 -
841 -
842 -(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>? **(%%) : Help on <CMD>
843 -
844 -(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD> **(%%) : Run <CMD>
845 -
846 -(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>=<value>**(%%) : Set the value
847 -
848 -(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>=?**(%%)  : Get the value
849 -
850 -
851 851  (% style="color:#037691" %)**General Commands**(%%)      
852 852  
853 -(% style="background-color:#dcdcdc" %)**AT**(%%)  : Attention       
701 +AT  : Attention       
854 854  
855 -(% style="background-color:#dcdcdc" %)**AT?**(%%)  : Short Help     
703 +AT?  : Short Help     
856 856  
857 -(% style="background-color:#dcdcdc" %)**ATZ**(%%)  : MCU Reset    
705 +ATZ  : MCU Reset    
858 858  
859 -(% style="background-color:#dcdcdc" %)**AT+TDC**(%%)  : Application Data Transmission Interval 
707 +AT+TDC  : Application Data Transmission Interval
860 860  
709 +AT+CFG  : Print all configurations
861 861  
862 -(% style="color:#037691" %)**Keys, IDs and EUIs management**
711 +AT+CFGMOD           : Working mode selection
863 863  
864 -(% style="background-color:#dcdcdc" %)**AT+APPEUI**(%%)              : Application EUI      
713 +AT+INTMOD            : Set the trigger interrupt mode
865 865  
866 -(% style="background-color:#dcdcdc" %)**AT+APPKEY**(%%)              : Application Key     
715 +AT+5VT  : Set extend the time of 5V power  
867 867  
868 -(% style="background-color:#dcdcdc" %)**AT+APPSKEY**(%%)            : Application Session Key
717 +AT+PRO  : Choose agreement
869 869  
870 -(% style="background-color:#dcdcdc" %)**AT+DADDR**(%%)              : Device Address     
719 +AT+WEIGRE  : Get weight or set weight to 0
871 871  
872 -(% style="background-color:#dcdcdc" %)**AT+DEUI**(%%)                   : Device EUI     
721 +AT+WEIGAP  : Get or Set the GapValue of weight
873 873  
874 -(% style="background-color:#dcdcdc" %)**AT+NWKID**(%%)               : Network ID (You can enter this command change only after successful network connection
723 +AT+RXDL  : Extend the sending and receiving time
875 875  
876 -(% style="background-color:#dcdcdc" %)**AT+NWKSKEY**(%%)          : Network Session Key Joining and sending date on LoRa network  
725 +AT+CNTFAC  : Get or set counting parameters
877 877  
878 -(% style="background-color:#dcdcdc" %)**AT+CFM**(%%)  : Confirm Mode       
727 +AT+SERVADDR  : Server Address
879 879  
880 -(% style="background-color:#dcdcdc" %)**AT+CFS**(%%)                     : Confirm Status       
881 881  
882 -(% style="background-color:#dcdcdc" %)**AT+JOIN**(%%)  : Join LoRa? Network       
730 +(% style="color:#037691" %)**COAP Management**      
883 883  
884 -(% style="background-color:#dcdcdc" %)**AT+NJM**(%%)  : LoRa? Network Join Mode    
732 +AT+URI            : Resource parameters
885 885  
886 -(% style="background-color:#dcdcdc" %)**AT+NJS**(%%)                     : LoRa? Network Join Status    
887 887  
888 -(% style="background-color:#dcdcdc" %)**AT+RECV**(%%)                  : Print Last Received Data in Raw Format
735 +(% style="color:#037691" %)**UDP Management**
889 889  
890 -(% style="background-color:#dcdcdc" %)**AT+RECVB**(%%)                : Print Last Received Data in Binary Format      
737 +AT+CFM          : Upload confirmation mode (only valid for UDP)
891 891  
892 -(% style="background-color:#dcdcdc" %)**AT+SEND**(%%)                  : Send Text Data      
893 893  
894 -(% style="background-color:#dcdcdc" %)**AT+SENB**(%%)                  : Send Hexadecimal Data
740 +(% style="color:#037691" %)**MQTT Management**
895 895  
742 +AT+CLIENT               : Get or Set MQTT client
896 896  
897 -(% style="color:#037691" %)**LoRa Network Management**
744 +AT+UNAME  : Get or Set MQTT Username
898 898  
899 -(% style="background-color:#dcdcdc" %)**AT+ADR**(%%)          : Adaptive Rate
746 +AT+PWD                  : Get or Set MQTT password
900 900  
901 -(% style="background-color:#dcdcdc" %)**AT+CLASS**(%%)  : LoRa Class(Currently only support class A
748 +AT+PUBTOPI : Get or Set MQTT publish topic
902 902  
903 -(% style="background-color:#dcdcdc" %)**AT+DCS**(%%)  : Duty Cycle Settin
750 +AT+SUBTOPIC  : Get or Set MQTT subscription topic
904 904  
905 -(% style="background-color:#dcdcdc" %)**AT+DR**(%%)  : Data Rate (Can Only be Modified after ADR=0)     
906 906  
907 -(% style="background-color:#dcdcdc" %)**AT+FCD**(%%)  : Frame Counter Downlink       
753 +(% style="color:#037691" %)**Information**          
908 908  
909 -(% style="background-color:#dcdcdc" %)**AT+FCU**(%%)  : Frame Counter Uplink   
755 +AT+FDR  : Factory Data Reset
910 910  
911 -(% style="background-color:#dcdcdc" %)**AT+JN1DL**(%%)  : Join Accept Delay1
757 +AT+PWOR : Serial Access Password
912 912  
913 -(% style="background-color:#dcdcdc" %)**AT+JN2DL**(%%)  : Join Accept Delay2
914 914  
915 -(% style="background-color:#dcdcdc" %)**AT+PNM**(%%)  : Public Network Mode   
916 916  
917 -(% style="background-color:#dcdcdc" %)**AT+RX1DL**(%%)  : Receive Delay1      
761 += ​5.  FAQ =
918 918  
919 -(% style="background-color:#dcdcdc" %)**AT+RX2DL**(%%)  : Receive Delay2      
763 +== 5.1 How to Upgrade Firmware ==
920 920  
921 -(% style="background-color:#dcdcdc" %)**AT+RX2DR**(%%)  : Rx2 Window Data Rate 
922 922  
923 -(% style="background-color:#dcdcdc" %)**AT+RX2FQ**(%%)  : Rx2 Window Frequency
924 -
925 -(% style="background-color:#dcdcdc" %)**AT+TXP**(%%)  : Transmit Power
926 -
927 -(% style="background-color:#dcdcdc" %)**AT+ MOD**(%%)  : Set work mode
928 -
929 -
930 -(% style="color:#037691" %)**Information** 
931 -
932 -(% style="background-color:#dcdcdc" %)**AT+RSSI**(%%)           : RSSI of the Last Received Packet   
933 -
934 -(% style="background-color:#dcdcdc" %)**AT+SNR**(%%)           : SNR of the Last Received Packet   
935 -
936 -(% style="background-color:#dcdcdc" %)**AT+VER**(%%)           : Image Version and Frequency Band       
937 -
938 -(% style="background-color:#dcdcdc" %)**AT+FDR**(%%)           : Factory Data Reset
939 -
940 -(% style="background-color:#dcdcdc" %)**AT+PORT**(%%)  : Application Port    
941 -
942 -(% style="background-color:#dcdcdc" %)**AT+CHS**(%%)  : Get or Set Frequency (Unit: Hz) for Single Channel Mode
943 -
944 - (% style="background-color:#dcdcdc" %)**AT+CHE**(%%)  : Get or Set eight channels mode, Only for US915, AU915, CN470
945 -
946 -
947 -= ​4. FAQ =
948 -
949 -== 4.1 ​How to change the LoRa Frequency Bands/Region? ==
950 -
951 951  (((
952 -You can follow the instructions for [[how to upgrade image>>||anchor="H2.10200BFirmwareChangeLog"]].
953 -When downloading the images, choose the required image file for download. ​
767 +User can upgrade the firmware for 1) bug fix, 2) new feature release.
954 954  )))
955 955  
956 956  (((
957 -
771 +Please see this link for how to upgrade:  [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H2.HardwareUpgradeMethodSupportList>>http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H2.HardwareUpgradeMethodSupportList]]
958 958  )))
959 959  
960 960  (((
961 -How to set up LSE01 to work in 8 channel mode By default, the frequency bands US915, AU915, CN470 work in 72 frequencies. Many gateways are 8 channel gateways, and in this case, the OTAA join time and uplink schedule is long and unpredictable while the end node is hopping in 72 frequencies.
775 +(% style="color:red" %)Notice, NSE01 and LSE01 share the same mother board. They use the same connection and method to update.
962 962  )))
963 963  
964 -(((
965 -
966 -)))
967 967  
968 -(((
969 -You can configure the end node to work in 8 channel mode by using the AT+CHE command. The 500kHz channels are always included for OTAA.
970 -)))
971 971  
972 -(((
973 -
974 -)))
780 += 6.  Trouble Shooting =
975 975  
976 -(((
977 -For example, in **US915** band, the frequency table is as below. By default, the end node will use all channels (0~~71) for OTAA Join process. After the OTAA Join, the end node will use these all channels (0~~71) to send uplink packets.
978 -)))
782 +== 6.1  ​Connection problem when uploading firmware ==
979 979  
980 -[[image:image-20220606154726-3.png]]
981 981  
982 -
983 -When you use the TTN network, the US915 frequency bands use are:
984 -
985 -* 903.9 - SF7BW125 to SF10BW125
986 -* 904.1 - SF7BW125 to SF10BW125
987 -* 904.3 - SF7BW125 to SF10BW125
988 -* 904.5 - SF7BW125 to SF10BW125
989 -* 904.7 - SF7BW125 to SF10BW125
990 -* 904.9 - SF7BW125 to SF10BW125
991 -* 905.1 - SF7BW125 to SF10BW125
992 -* 905.3 - SF7BW125 to SF10BW125
993 -* 904.6 - SF8BW500
994 -
785 +(% class="wikigeneratedid" %)
995 995  (((
996 -Because the end node is now hopping in 72 frequency, it makes it difficult for the devices to Join the TTN network and uplink data. To solve this issue, you can access the device via the AT commands and run:
997 -
998 -* (% style="color:#037691" %)**AT+CHE=2**
999 -* (% style="color:#037691" %)**ATZ**
787 +(% style="font-size:14px" %)**Please see: **(%%)[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H3.3Troubleshooting>>http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H3.3Troubleshooting||style="background-color: rgb(255, 255, 255); font-size: 14px;"]]
1000 1000  )))
1001 1001  
1002 -(((
1003 -
1004 1004  
1005 -to set the end node to work in 8 channel mode. The device will work in Channel 8-15 & 64-71 for OTAA, and channel 8-15 for Uplink.
1006 -)))
1007 1007  
1008 -(((
1009 -
1010 -)))
792 +== 6.2  AT Command input doesn't work ==
1011 1011  
1012 1012  (((
1013 -The **AU915** band is similar. Below are the AU915 Uplink Channels.
795 +In the case if user can see the console output but can't type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn't send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.
1014 1014  )))
1015 1015  
1016 -[[image:image-20220606154825-4.png]]
1017 1017  
1018 1018  
800 += 7. ​ Order Info =
1019 1019  
1020 -= 5. Trouble Shooting =
1021 1021  
1022 -== 5.1 ​Why I can’t join TTN in US915 / AU915 bands? ==
803 +Part Number**:** (% style="color:#4f81bd" %)**NSE01**
1023 1023  
1024 -It is due to channel mapping. Please see the [[Eight Channel Mode>>doc:Main.LoRaWAN Communication Debug.WebHome||anchor="H2.NoticeofUS9152FCN4702FAU915Frequencyband"]] section above for details.
1025 1025  
1026 -
1027 -== 5.2 AT Command input doesn’t work ==
1028 -
1029 -(((
1030 -In the case if user can see the console output but can’t type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn’t send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.
1031 -)))
1032 -
1033 -
1034 -== 5.3 Device rejoin in at the second uplink packet ==
1035 -
1036 -(% style="color:#4f81bd" %)**Issue describe as below:**
1037 -
1038 -[[image:1654500909990-784.png]]
1039 -
1040 -
1041 -(% style="color:#4f81bd" %)**Cause for this issue:**
1042 -
1043 -(((
1044 -The fuse on LSE01 is not large enough, some of the soil probe require large current up to 5v 800mA, in a short pulse. When this happen, it cause the device reboot so user see rejoin.
1045 -)))
1046 -
1047 -
1048 -(% style="color:#4f81bd" %)**Solution: **
1049 -
1050 -All new shipped LSE01 after 2020-May-30 will have this to fix. For the customer who see this issue, please bypass the fuse as below:
1051 -
1052 -[[image:1654500929571-736.png||height="458" width="832"]]
1053 -
1054 -
1055 -= 6. ​Order Info =
1056 -
1057 -
1058 -Part Number**:** (% style="color:#4f81bd" %)**LSE01-XX-YY**
1059 -
1060 -
1061 -(% style="color:#4f81bd" %)**XX**(%%)**:** The default frequency band
1062 -
1063 -* (% style="color:red" %)**AS923**(%%): LoRaWAN AS923 band
1064 -* (% style="color:red" %)**AU915**(%%): LoRaWAN AU915 band
1065 -* (% style="color:red" %)**EU433**(%%): LoRaWAN EU433 band
1066 -* (% style="color:red" %)**EU868**(%%): LoRaWAN EU868 band
1067 -* (% style="color:red" %)**KR920**(%%): LoRaWAN KR920 band
1068 -* (% style="color:red" %)**US915**(%%): LoRaWAN US915 band
1069 -* (% style="color:red" %)**IN865**(%%):  LoRaWAN IN865 band
1070 -* (% style="color:red" %)**CN470**(%%): LoRaWAN CN470 band
1071 -
1072 -(% style="color:#4f81bd" %)**YY**(%%)**: **Battery Option
1073 -
1074 -* (% style="color:red" %)**4**(%%): 4000mAh battery
1075 -* (% style="color:red" %)**8**(%%): 8500mAh battery
1076 -
1077 1077  (% class="wikigeneratedid" %)
1078 1078  (((
1079 1079  
1080 1080  )))
1081 1081  
1082 -= 7. Packing Info =
811 += 8.  Packing Info =
1083 1083  
1084 1084  (((
1085 1085  
1086 1086  
1087 1087  (% style="color:#037691" %)**Package Includes**:
1088 -)))
1089 1089  
1090 -* (((
1091 -LSE01 LoRaWAN Soil Moisture & EC Sensor x 1
818 +
819 +* NSE01 NB-IoT Soil Moisture & EC Sensor x 1
820 +* External antenna x 1
1092 1092  )))
1093 1093  
1094 1094  (((
... ... @@ -1095,24 +1095,20 @@
1095 1095  
1096 1096  
1097 1097  (% style="color:#037691" %)**Dimension and weight**:
1098 -)))
1099 1099  
1100 -* (((
1101 -Device Size: cm
828 +
829 +* Size: 195 x 125 x 55 mm
830 +* Weight:   420g
1102 1102  )))
1103 -* (((
1104 -Device Weight: g
1105 -)))
1106 -* (((
1107 -Package Size / pcs : cm
1108 -)))
1109 -* (((
1110 -Weight / pcs : g
1111 1111  
833 +(((
1112 1112  
835 +
836 +
837 +
1113 1113  )))
1114 1114  
1115 -= 8. Support =
840 += 9.  Support =
1116 1116  
1117 1117  * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
1118 1118  * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.com]]
1657245163077-232.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +81.0 KB
Content
1657246476176-652.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +492.6 KB
Content
1657249419225-449.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +81.0 KB
Content
1657249468462-536.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +483.6 KB
Content
1657249793983-486.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +85.8 KB
Content
1657249831934-534.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +72.5 KB
Content
1657249864775-321.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +87.0 KB
Content
1657249930215-289.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +77.3 KB
Content
1657249978444-674.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +139.5 KB
Content
1657249990869-686.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +96.9 KB
Content
1657250217799-140.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +98.7 KB
Content
1657250255956-604.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +99.0 KB
Content
1657259653666-883.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +344.4 KB
Content
1657260785982-288.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +138.2 KB
Content
1657261119050-993.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +126.1 KB
Content
1657261278785-153.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +126.1 KB
Content
image-20220708101224-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +22.2 KB
Content
image-20220708101605-2.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +87.5 KB
Content
image-20220708110657-3.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +251.7 KB
Content
image-20220708111918-4.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +38.8 KB
Content
image-20220708133731-5.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +8.7 KB
Content
image-20220708140453-6.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +132.7 KB
Content
image-20220708141352-7.jpeg
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +102.7 KB
Content
Copyright ©2010-2022 Dragino Technology Co., LTD. All rights reserved
Dragino Wiki v2.0