Last modified by Mengting Qiu on 2024/04/02 16:44

From version 37.1
edited by Xiaoling
on 2022/06/25 16:29
Change comment: There is no comment for this version
To version 90.2
edited by Xiaoling
on 2022/07/09 09:45
Change comment: There is no comment for this version

Summary

Details

Page properties
Title
... ... @@ -1,1 +1,1 @@
1 -LSE01-LoRaWAN Soil Moisture & EC Sensor User Manual
1 +NDDS75 NB-IoT Distance Detect Sensor User Manual
Content
... ... @@ -1,19 +1,12 @@
1 1  (% style="text-align:center" %)
2 -[[image:image-20220606151504-2.jpeg||height="554" width="554"]]
2 +[[image:image-20220709085040-1.png||height="542" width="524"]]
3 3  
4 4  
5 5  
6 6  
7 7  
8 -
9 -
10 -
11 -
12 -
13 -
14 14  **Table of Contents:**
15 15  
16 -{{toc/}}
17 17  
18 18  
19 19  
... ... @@ -20,775 +20,723 @@
20 20  
21 21  
22 22  
23 -= 1. Introduction =
16 += 1.  Introduction =
24 24  
25 -== 1.1 ​What is LoRaWAN Soil Moisture & EC Sensor ==
18 +== 1.1 ​ What is NDDS75 Distance Detection Sensor ==
26 26  
27 27  (((
28 28  
29 29  
30 -The Dragino LSE01 is a (% style="color:#4f81bd" %)**LoRaWAN Soil Moisture & EC Sensor**(%%) for IoT of Agriculture. It is designed to measure the soil moisture of saline-alkali soil and loamy soil. The soil sensor uses FDR method to calculate the soil moisture with the compensation from soil temperature and conductivity. It also has been calibrated in factory for Mineral soil type.
31 -)))
32 -
33 33  (((
34 -It detects (% style="color:#4f81bd" %)**Soil Moisture**(%%), (% style="color:#4f81bd" %)**Soil Temperature**(%%) and (% style="color:#4f81bd" %)**Soil Conductivity**(%%), and uploads the value via wireless to LoRaWAN IoT Server.
24 +The Dragino NDDS75 is a (% style="color:blue" %)**NB-IoT Distance Detection Sensor**(%%) for Internet of Things solution. It is designed to measure the distance between the sensor and a flat object. The distance detection sensor is a module that uses ultrasonic sensing technology for distance measurement, and temperature compensation is performed internally to improve the reliability of data.
25 +\\The NDDS75 can be applied to scenarios such as horizontal distance measurement, liquid level measurement, parking management system, object proximity and presence detection, intelligent trash can management system, robot obstacle avoidance, automatic control, sewer, bottom water level monitoring, etc. It detects the distance between the measured object and the sensor, and uploads the value via wireless to IoT Server via NB-IoT Network.
26 +\\NarrowBand-Internet of Things (NB-IoT) is a standards-based low power wide area (LPWA) technology developed to enable a wide range of new IoT devices and services. NB-IoT significantly improves the power consumption of user devices, system capacity and spectrum efficiency, especially in deep coverage.
27 +\\NDDS75 supports different uplink methods include (% style="color:blue" %)**TCP, MQTT, UDP and CoAP** (%%)for different application requirement.
28 +\\NDDS75 is powered by (% style="color:blue" %)**8500mAh Li-SOCI2 battery**(%%), It is designed for long term use up to 5 years. (Actually Battery life depends on the use environment, update period & uplink method)
29 +\\To use NDDS75, user needs to check if there is NB-IoT coverage in local area and with the bands NDDS75 supports. If the local operate support it, user needs to get a NB-IoT SIM card from local operator and install NDDS75 to get NB-IoT network connection.
35 35  )))
36 36  
37 -(((
38 -The LoRa wireless technology used in LES01 allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption.
32 +
39 39  )))
40 40  
41 -(((
42 -LES01 is powered by (% style="color:#4f81bd" %)**4000mA or 8500mAh Li-SOCI2 battery**(%%), It is designed for long term use up to 10 years.
43 -)))
44 -
45 -(((
46 -Each LES01 is pre-load with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect after power on.
47 -)))
48 -
49 -
50 50  [[image:1654503236291-817.png]]
51 51  
52 52  
53 -[[image:1654503265560-120.png]]
38 +[[image:1657327959271-447.png]]
54 54  
55 55  
56 56  
57 -== 1.2 ​Features ==
42 +== 1.2 ​ Features ==
58 58  
59 -* LoRaWAN 1.0.3 Class A
44 +
45 +* NB-IoT Bands: B1/B3/B8/B5/B20/B28 @H-FDD
60 60  * Ultra low power consumption
61 -* Monitor Soil Moisture
62 -* Monitor Soil Temperature
63 -* Monitor Soil Conductivity
64 -* Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865
47 +* Distance Detection by Ultrasonic technology
48 +* Flat object range 280mm - 7500mm
49 +* Accuracy: ±(1cm+S*0.3%) (S: Distance)
50 +* Cable Length: 25cm
65 65  * AT Commands to change parameters
66 66  * Uplink on periodically
67 67  * Downlink to change configure
68 68  * IP66 Waterproof Enclosure
69 -* 4000mAh or 8500mAh Battery for long term use
55 +* Micro SIM card slot for NB-IoT SIM
56 +* 8500mAh Battery for long term use
70 70  
58 +== 1.3  Specification ==
71 71  
72 72  
61 +(% style="color:#037691" %)**Common DC Characteristics:**
73 73  
74 -== 1.3 Specification ==
63 +* Supply Voltage: 2.1v ~~ 3.6v
64 +* Operating Temperature: -40 ~~ 85°C
75 75  
76 -Measure Volume: Base on the centra pin of the probe, a cylinder with 7cm diameter and 10cm height.
66 +(% style="color:#037691" %)**NB-IoT Spec:**
77 77  
78 -[[image:image-20220606162220-5.png]]
68 +* - B1 @H-FDD: 2100MHz
69 +* - B3 @H-FDD: 1800MHz
70 +* - B8 @H-FDD: 900MHz
71 +* - B5 @H-FDD: 850MHz
72 +* - B20 @H-FDD: 800MHz
73 +* - B28 @H-FDD: 700MHz
79 79  
75 +(% style="color:#037691" %)**Battery:**
80 80  
77 +* Li/SOCI2 un-chargeable battery
78 +* Capacity: 8500mAh
79 +* Self Discharge: <1% / Year @ 25°C
80 +* Max continuously current: 130mA
81 +* Max boost current: 2A, 1 second
81 81  
82 -== 1.4 Applications ==
83 +(% style="color:#037691" %)**Power Consumption**
83 83  
85 +* STOP Mode: 10uA @ 3.3v
86 +* Max transmit power: 350mA@3.3v
87 +
88 +
89 +== ​1.4  Applications ==
90 +
91 +* Smart Buildings & Home Automation
92 +* Logistics and Supply Chain Management
93 +* Smart Metering
84 84  * Smart Agriculture
95 +* Smart Cities
96 +* Smart Factory
85 85  
86 86  (% class="wikigeneratedid" id="H200B1.5FirmwareChangelog" %)
87 87  ​
88 88  
89 -== 1.5 Firmware Change log ==
90 90  
91 91  
92 -**LSE01 v1.0 :**  Release
103 +== 1.5  Pin Definitions ==
93 93  
94 94  
106 +[[image:1657328609906-564.png]]
95 95  
96 -= 2. Configure LSE01 to connect to LoRaWAN network =
97 97  
98 -== 2.1 How it works ==
99 99  
110 += 2.  Use NDDS75 to communicate with IoT Server =
111 +
112 +== 2.1  How it works ==
113 +
100 100  (((
101 -The LSE01 is configured as LoRaWAN OTAA Class A mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and power on the LSE0150. It will automatically join the network via OTAA and start to send the sensor value
115 +The NDDS75 is equipped with a NB-IoT module, the pre-loaded firmware in NDDS75 will get environment data from sensors and send the value to local NB-IoT network via the NB-IoT module The NB-IoT network will forward this value to IoT server via the protocol defined by NDDS75.
102 102  )))
103 103  
118 +
104 104  (((
105 -In case you can’t set the OTAA keys in the LoRaWAN OTAA server, and you have to use the keys from the server, you can [[use AT Commands >>||anchor="H3.200BUsingtheATCommands"]].
120 +The diagram below shows the working flow in default firmware of NDDS75:
106 106  )))
107 107  
123 +(((
124 +
125 +)))
108 108  
127 +[[image:1657328659945-416.png]]
109 109  
110 -== 2.2 ​Quick guide to connect to LoRaWAN server (OTAA) ==
129 +(((
130 +
131 +)))
111 111  
112 -Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LG308>>url:http://www.dragino.com/products/lora/item/140-lg308.html]] as a LoRaWAN gateway in this example.
113 113  
134 +== 2.2 ​ Configure the NDDS75 ==
114 114  
115 -[[image:1654503992078-669.png]]
116 116  
137 +=== 2.2.1 Test Requirement ===
117 117  
118 -The LG308 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
139 +(((
140 +To use NDDS75 in your city, make sure meet below requirements:
141 +)))
119 119  
143 +* Your local operator has already distributed a NB-IoT Network there.
144 +* The local NB-IoT network used the band that NSE01 supports.
145 +* Your operator is able to distribute the data received in their NB-IoT network to your IoT server.
120 120  
121 -(% style="color:blue" %)**Step 1**(%%):  Create a device in TTN with the OTAA keys from LSE01.
147 +(((
148 +Below figure shows our testing structure. Here we have NB-IoT network coverage by China Mobile, the band they use is B8.  The NDDS75 will use CoAP((% style="color:red" %)120.24.4.116:5683)(%%) or raw UDP((% style="color:red" %)120.24.4.116:5601)(%%) or MQTT((% style="color:red" %)120.24.4.116:1883)(%%)or TCP((% style="color:red" %)120.24.4.116:5600)(%%)protocol to send data to the test server
149 +)))
122 122  
123 -Each LSE01 is shipped with a sticker with the default device EUI as below:
124 124  
125 -[[image:image-20220606163732-6.jpeg]]
152 +[[image:1657328756309-230.png]]
126 126  
127 -You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot:
128 128  
129 -**Add APP EUI in the application**
130 130  
156 +=== 2.2.2 Insert SIM card ===
131 131  
132 -[[image:1654504596150-405.png]]
158 +(((
159 +Insert the NB-IoT Card get from your provider.
160 +)))
133 133  
162 +(((
163 +User need to take out the NB-IoT module and insert the SIM card like below:
164 +)))
134 134  
135 135  
136 -**Add APP KEY and DEV EUI**
167 +[[image:1657328884227-504.png]]
137 137  
138 -[[image:1654504683289-357.png]]
139 139  
140 140  
171 +=== 2.2.3 Connect USB – TTL to NDDS75 to configure it ===
141 141  
142 -(% style="color:blue" %)**Step 2**(%%): Power on LSE01
173 +(((
174 +(((
175 +User need to configure NDDS75 via serial port to set the (% style="color:blue" %)**Server Address** / **Uplink Topic** (%%)to define where and how-to uplink packets. NDDS75 support AT Commands, user can use a USB to TTL adapter to connect to NDDS75 and use AT Commands to configure it, as below.
176 +)))
177 +)))
143 143  
179 +[[image:image-20220709092052-2.png]]
144 144  
145 -Put a Jumper on JP2 to power on the device. ( The Jumper must be in FLASH position).
181 +**Connection:**
146 146  
147 -[[image:image-20220606163915-7.png]]
183 + (% style="background-color:yellow" %)USB TTL GND <~-~-~-~-> GND
148 148  
185 + (% style="background-color:yellow" %)USB TTL TXD <~-~-~-~-> UART_RXD
149 149  
150 -(% style="color:blue" %)**Step 3**(%%)**:** The LSE01 will auto join to the TTN network. After join success, it will start to upload messages to TTN and you can see the messages in the panel.
187 + (% style="background-color:yellow" %)USB TTL RXD <~-~-~-~-> UART_TXD
151 151  
152 -[[image:1654504778294-788.png]]
153 153  
190 +In the PC, use below serial tool settings:
154 154  
192 +* Baud:  (% style="color:green" %)**9600**
193 +* Data bits:** (% style="color:green" %)8(%%)**
194 +* Stop bits: (% style="color:green" %)**1**
195 +* Parity:  (% style="color:green" %)**None**
196 +* Flow Control: (% style="color:green" %)**None**
155 155  
156 -== 2.3 Uplink Payload ==
157 -
158 -
159 -=== 2.3.1 MOD~=0(Default Mode) ===
160 -
161 -LSE01 will uplink payload via LoRaWAN with below payload format: 
162 -
163 163  (((
164 -Uplink payload includes in total 11 bytes.
199 +Make sure the switch is in FLASH position, then power on device by connecting the jumper on NDDS75. NDDS75 will output system info once power on as below, we can enter the (% style="color:green" %)**password: 12345678**(%%) to access AT Command input.
165 165  )))
166 166  
167 -(% border="1" cellspacing="10" style="background-color:#ffffcc; width:500px" %)
168 -|(((
169 -**Size**
202 +[[image:1657329814315-101.png]]
170 170  
171 -**(bytes)**
172 -)))|**2**|**2**|**2**|**2**|**2**|**1**
173 -|**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(((
174 -Temperature
175 -
176 -(Reserve, Ignore now)
177 -)))|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]]|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]]|(((
178 -MOD & Digital Interrupt
179 -
180 -(Optional)
204 +(((
205 +(% style="color:red" %)Note: the valid AT Commands can be found at: (%%)[[https:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NDDS75/>>url:https://www.dragino.com/downloads/index.php?dir=NB-IoT/NDDS75/]]
181 181  )))
182 182  
183 183  
184 184  
210 +=== 2.2.4 Use CoAP protocol to uplink data ===
185 185  
186 -=== 2.3.2 MOD~=1(Original value) ===
212 +(% style="color:red" %)Note: if you don't have CoAP server, you can refer this link to set up one: (%%)[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/>>http://wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/]]
187 187  
188 -This mode can get the original AD value of moisture and original conductivity (with temperature drift compensation).
189 189  
190 -(% border="1" cellspacing="10" style="background-color:#ffffcc; width:500px" %)
191 -|(((
192 -**Size**
215 +**Use below commands:**
193 193  
194 -**(bytes)**
195 -)))|**2**|**2**|**2**|**2**|**2**|**1**
196 -|**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(((
197 -Temperature
217 +* (% style="color:blue" %)**AT+PRO=1**  (%%) ~/~/ Set to use CoAP protocol to uplink
218 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5683   ** (%%)~/~/ to set CoAP server address and port
219 +* (% style="color:blue" %)**AT+URI=5,11,"mqtt",11,"coap",12,"0",15,"c=text1",23,"0" ** (%%) ~/~/Set COAP resource path
198 198  
199 -(Reserve, Ignore now)
200 -)))|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]](raw)|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]](raw)|(((
201 -MOD & Digital Interrupt
221 +For parameter description, please refer to AT command set
202 202  
203 -(Optional)
204 -)))
223 +[[image:1657330452568-615.png]]
205 205  
206 206  
226 +After configure the server address and (% style="color:green" %)**reset the device**(%%) (via AT+ATZ ), NDDS75 will start to uplink sensor values to CoAP server.
207 207  
228 +[[image:1657330472797-498.png]]
208 208  
209 -=== 2.3.3 Battery Info ===
210 210  
211 -(((
212 -Check the battery voltage for LSE01.
213 -)))
214 214  
215 -(((
216 -Ex1: 0x0B45 = 2885mV
217 -)))
232 +=== 2.2.5 Use UDP protocol to uplink data(Default protocol) ===
218 218  
219 -(((
220 -Ex2: 0x0B49 = 2889mV
221 -)))
222 222  
235 +* (% style="color:blue" %)**AT+PRO=2   ** (%%) ~/~/ Set to use UDP protocol to uplink
236 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5601   ** (%%) ~/~/ to set UDP server address and port
237 +* (% style="color:blue" %)**AT+CFM=1       ** (%%) ~/~/If the server does not respond, this command is unnecessary
223 223  
239 +[[image:1657330501006-241.png]]
224 224  
225 -=== 2.3.4 Soil Moisture ===
226 226  
227 -(((
228 -Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil.
229 -)))
242 +[[image:1657330533775-472.png]]
230 230  
231 -(((
232 -For example, if the data you get from the register is __0x05 0xDC__, the moisture content in the soil is
233 -)))
234 234  
235 -(((
236 -
237 -)))
238 238  
239 -(((
240 -(% style="color:#4f81bd" %)**05DC(H) = 1500(D) /100 = 15%.**
241 -)))
246 +=== 2.2.6 Use MQTT protocol to uplink data ===
242 242  
243 243  
249 +* (% style="color:blue" %)**AT+PRO=3   ** (%%) ~/~/Set to use MQTT protocol to uplink
250 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,1883   ** (%%) ~/~/Set MQTT server address and port
251 +* (% style="color:blue" %)**AT+CLIENT=CLIENT       ** (%%)~/~/Set up the CLIENT of MQTT
252 +* (% style="color:blue" %)**AT+UNAME=UNAME                               **(%%)~/~/Set the username of MQTT
253 +* (% style="color:blue" %)**AT+PWD=PWD                                        **(%%)~/~/Set the password of MQTT
254 +* (% style="color:blue" %)**AT+PUBTOPIC=NDDS75_PUB                 **(%%)~/~/Set the sending topic of MQTT
255 +* (% style="color:blue" %)**AT+SUBTOPIC=NDDS75_SUB          **(%%) ~/~/Set the subscription topic of MQTT
244 244  
245 -=== 2.3.5 Soil Temperature ===
257 +[[image:1657249978444-674.png]]
246 246  
247 -(((
248 - Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is 0x09 0xEC, the temperature content in the soil is
249 -)))
250 250  
251 -(((
252 -**Example**:
253 -)))
260 +[[image:1657330723006-866.png]]
254 254  
255 -(((
256 -If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/100 = 2.61 °C
257 -)))
258 258  
259 259  (((
260 -If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C
264 +MQTT protocol has a much higher power consumption compare vs UDP / CoAP protocol. Please check the power analyze document and adjust the uplink period to a suitable interval.
261 261  )))
262 262  
263 263  
264 264  
265 -=== 2.3.6 Soil Conductivity (EC) ===
269 +=== 2.2.7 Use TCP protocol to uplink data ===
266 266  
267 -(((
268 -Obtain (% style="color:#4f81bd" %)**__soluble salt concentration__**(%%) in soil or (% style="color:#4f81bd" %)**__soluble ion concentration in liquid fertilizer__**(%%) or (% style="color:#4f81bd" %)**__planting medium__**(%%). The value range of the register is 0 - 20000(Decimal)( Can be greater than 20000).
269 -)))
270 270  
271 -(((
272 -For example, if the data you get from the register is 0x00 0xC8, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm.
273 -)))
272 +* (% style="color:blue" %)**AT+PRO=4   ** (%%) ~/~/ Set to use TCP protocol to uplink
273 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5600   **(%%) ~/~/ to set TCP server address and port
274 274  
275 -(((
276 -Generally, the EC value of irrigation water is less than 800uS / cm.
277 -)))
275 +[[image:image-20220709093918-1.png]]
278 278  
279 -(((
280 -
281 -)))
282 282  
283 -(((
284 -
285 -)))
278 +[[image:image-20220709093918-2.png]]
286 286  
287 -=== 2.3.7 MOD ===
288 288  
289 -Firmware version at least v2.1 supports changing mode.
290 290  
291 -For example, bytes[10]=90
282 +=== 2.2.8 Change Update Interval ===
292 292  
293 -mod=(bytes[10]>>7)&0x01=1.
284 +User can use below command to change the (% style="color:green" %)**uplink interval**.
294 294  
286 +* (% style="color:blue" %)**AT+TDC=600      ** (%%)~/~/ Set Update Interval to 600s
295 295  
296 -**Downlink Command:**
297 -
298 -If payload = 0x0A00, workmode=0
299 -
300 -If** **payload =** **0x0A01, workmode=1
301 -
302 -
303 -
304 -=== 2.3.8 ​Decode payload in The Things Network ===
305 -
306 -While using TTN network, you can add the payload format to decode the payload.
307 -
308 -
309 -[[image:1654505570700-128.png]]
310 -
311 311  (((
312 -The payload decoder function for TTN is here:
289 +(% style="color:red" %)**NOTE:**
313 313  )))
314 314  
315 315  (((
316 -LSE01 TTN Payload Decoder: [[https:~~/~~/www.dropbox.com/sh/si8icbrjlamxqdb/AAACYwjsxxr5fj_vpqRtrETAa?dl=0>>https://www.dropbox.com/sh/si8icbrjlamxqdb/AAACYwjsxxr5fj_vpqRtrETAa?dl=0]]
293 +(% style="color:red" %)1. By default, the device will send an uplink message every 1 hour.
317 317  )))
318 318  
319 319  
320 -== 2.4 Uplink Interval ==
321 321  
322 -The LSE01 by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link: [[Change Uplink Interval>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H4.1ChangeUplinkInterval"]]
298 +== 2. Uplink Payload ==
323 323  
300 +In this mode, uplink payload includes in total 14 bytes
324 324  
325 325  
326 -== 2.5 Downlink Payload ==
303 +(% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:510px" %)
304 +|=(% style="width: 60px;" %)(((
305 +**Size(bytes)**
306 +)))|=(% style="width: 50px;" %)**6**|=(% style="width: 25px;" %)2|=(% style="width: 25px;" %)**2**|=(% style="width: 70px;" %)**1**|=(% style="width: 60px;" %)**2**|=(% style="width: 50px;" %)**1**
307 +|(% style="width:97px" %)**Value**|(% style="width:83px" %)[[Device ID>>||anchor="H2.4.1A0A0DeviceID"]]|(% style="width:41px" %)[[Ver>>||anchor="H2.4.2A0VersionInfo"]]|(% style="width:46px" %)[[BAT>>||anchor="H2.4.3A0BatteryInfo"]]|(% style="width:123px" %)[[Signal Strength>>||anchor="H2.4.4A0SignalStrength"]]|(% style="width:108px" %)[[Distance (unit: mm)>>||anchor="H2.4.5A0SoilMoisture"]]|(% style="width:80px" %)[[Interrupt>>||anchor="H2.4.8A0DigitalInterrupt"]]
327 327  
328 -By default, LSE50 prints the downlink payload to console port.
309 +(((
310 +If we use the MQTT client to subscribe to this MQTT topic, we can see the following information when the NDDS751 uplink data.
311 +)))
329 329  
330 -[[image:image-20220606165544-8.png]]
331 331  
314 +[[image:1657331036973-987.png]]
332 332  
333 333  (((
334 -**Examples:**
317 +The payload is ASCII string, representative same HEX:
335 335  )))
336 336  
337 337  (((
338 -
321 +0x72403155615900640c6c19029200 where:
339 339  )))
340 340  
341 341  * (((
342 -**Set TDC**
325 +Device ID: 0x724031556159 = 724031556159
343 343  )))
344 -
345 -(((
346 -If the payload=0100003C, it means set the END Node’s TDC to 0x00003C=60(S), while type code is 01.
327 +* (((
328 +Version: 0x0064=100=1.0.0
347 347  )))
348 348  
349 -(((
350 -Payload:    01 00 00 1E    TDC=30S
331 +* (((
332 +BAT: 0x0c6c = 3180 mV = 3.180V
351 351  )))
352 -
353 -(((
354 -Payload:    01 00 00 3C    TDC=60S
334 +* (((
335 +Signal: 0x19 = 25
355 355  )))
356 -
357 -(((
358 -
337 +* (((
338 +Distance: 0x0292= 658 mm
359 359  )))
360 -
361 361  * (((
362 -**Reset**
341 +Interrupt: 0x00 = 0
363 363  )))
364 364  
365 -(((
366 -If payload = 0x04FF, it will reset the LSE01
367 -)))
368 368  
369 369  
370 -* **CFM**
371 371  
372 -Downlink Payload: 05000001, Set AT+CFM=1 or 05000000 , set AT+CFM=0
347 +== 2.4  Payload Explanation and Sensor Interface ==
373 373  
374 374  
350 +=== 2.4.1  Device ID ===
375 375  
376 -== 2.6 ​Show Data in DataCake IoT Server ==
352 +(((
353 +By default, the Device ID equal to the last 6 bytes of IMEI.
354 +)))
377 377  
378 378  (((
379 -[[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps:
357 +User can use (% style="color:blue" %)**AT+DEUI**(%%) to set Device ID
380 380  )))
381 381  
382 382  (((
383 -
361 +**Example:**
384 384  )))
385 385  
386 386  (((
387 -(% style="color:blue" %)**Step 1**(%%):  Be sure that your device is programmed and properly connected to the network at this time.
365 +AT+DEUI=A84041F15612
388 388  )))
389 389  
390 390  (((
391 -(% style="color:blue" %)**Step 2**(%%):  To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps:
369 +The Device ID is stored in a none-erase area, Upgrade the firmware or run AT+FDR won't erase Device ID.
392 392  )))
393 393  
394 394  
395 -[[image:1654505857935-743.png]]
396 396  
374 +=== 2.4.2  Version Info ===
397 397  
398 -[[image:1654505874829-548.png]]
376 +(((
377 +Specify the software version: 0x64=100, means firmware version 1.00.
378 +)))
399 399  
380 +(((
381 +For example: 0x00 64 : this device is NSE01 with firmware version 1.0.0.
382 +)))
400 400  
401 -(% style="color:blue" %)**Step 3**(%%)**:**  Create an account or log in Datacake.
402 402  
403 -(% style="color:blue" %)**Step 4**(%%)**:**  Search the LSE01 and add DevEUI.
404 404  
386 +=== 2.4.3  Battery Info ===
405 405  
406 -[[image:1654505905236-553.png]]
388 +(((
389 +Check the battery voltage for LSE01.
390 +)))
407 407  
392 +(((
393 +Ex1: 0x0B45 = 2885mV
394 +)))
408 408  
409 -After added, the sensor data arrive TTN, it will also arrive and show in Mydevices.
396 +(((
397 +Ex2: 0x0B49 = 2889mV
398 +)))
410 410  
411 -[[image:1654505925508-181.png]]
412 412  
413 413  
402 +=== 2.4.4  Signal Strength ===
414 414  
415 -== 2.7 Frequency Plans ==
404 +(((
405 +NB-IoT Network signal Strength.
406 +)))
416 416  
417 -The LSE01 uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.
408 +(((
409 +**Ex1: 0x1d = 29**
410 +)))
418 418  
412 +(((
413 +(% style="color:blue" %)**0**(%%)  -113dBm or less
414 +)))
419 419  
420 -=== 2.7.1 EU863-870 (EU868) ===
416 +(((
417 +(% style="color:blue" %)**1**(%%)  -111dBm
418 +)))
421 421  
422 -(% style="color:#037691" %)** Uplink:**
420 +(((
421 +(% style="color:blue" %)**2...30**(%%) -109dBm... -53dBm
422 +)))
423 423  
424 -868.1 - SF7BW125 to SF12BW125
424 +(((
425 +(% style="color:blue" %)**31**  (%%) -51dBm or greater
426 +)))
425 425  
426 -868.3 - SF7BW125 to SF12BW125 and SF7BW250
428 +(((
429 +(% style="color:blue" %)**99**   (%%) Not known or not detectable
430 +)))
427 427  
428 -868.5 - SF7BW125 to SF12BW125
429 429  
430 -867.1 - SF7BW125 to SF12BW125
431 431  
432 -867.3 - SF7BW125 to SF12BW125
434 +=== 2.4.5  Soil Moisture ===
433 433  
434 -867.5 - SF7BW125 to SF12BW125
436 +(((
437 +(((
438 +Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil.
439 +)))
440 +)))
435 435  
436 -867.7 - SF7BW125 to SF12BW125
442 +(((
443 +(((
444 +For example, if the data you get from the register is **__0x05 0xDC__**, the moisture content in the soil is
445 +)))
446 +)))
437 437  
438 -867.9 - SF7BW125 to SF12BW125
448 +(((
449 +
450 +)))
439 439  
440 -868.8 - FSK
452 +(((
453 +(% style="color:#4f81bd" %)**05DC(H) = 1500(D) /100 = 15%.**
454 +)))
441 441  
442 442  
443 -(% style="color:#037691" %)** Downlink:**
444 444  
445 -Uplink channels 1-9 (RX1)
458 +=== 2.4.6  Soil Temperature ===
446 446  
447 -869.525 - SF9BW125 (RX2 downlink only)
460 +(((
461 +Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is __**0x09 0xEC**__, the temperature content in the soil is
462 +)))
448 448  
464 +(((
465 +**Example**:
466 +)))
449 449  
468 +(((
469 +If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/100 = 2.61 °C
470 +)))
450 450  
451 -=== 2.7.2 US902-928(US915) ===
472 +(((
473 +If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C
474 +)))
452 452  
453 -Used in USA, Canada and South America. Default use CHE=2
454 454  
455 -(% style="color:#037691" %)**Uplink:**
456 456  
457 -903.9 - SF7BW125 to SF10BW125
478 +=== 2.4.7  Soil Conductivity (EC) ===
458 458  
459 -904.1 - SF7BW125 to SF10BW125
480 +(((
481 +Obtain (% style="color:#4f81bd" %)**__soluble salt concentration__**(%%) in soil or (% style="color:#4f81bd" %)**__soluble ion concentration in liquid fertilizer__**(%%) or (% style="color:#4f81bd" %)**__planting medium__**(%%). The value range of the register is 0 - 20000(Decimal)( Can be greater than 20000).
482 +)))
460 460  
461 -904.3 - SF7BW125 to SF10BW125
484 +(((
485 +For example, if the data you get from the register is __**0x00 0xC8**__, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm.
486 +)))
462 462  
463 -904.5 - SF7BW125 to SF10BW125
488 +(((
489 +Generally, the EC value of irrigation water is less than 800uS / cm.
490 +)))
464 464  
465 -904.7 - SF7BW125 to SF10BW125
492 +(((
493 +
494 +)))
466 466  
467 -904.9 - SF7BW125 to SF10BW125
496 +(((
497 +
498 +)))
468 468  
469 -905.1 - SF7BW125 to SF10BW125
500 +=== 2.4.8  Digital Interrupt ===
470 470  
471 -905.3 - SF7BW125 to SF10BW125
502 +(((
503 +Digital Interrupt refers to pin (% style="color:blue" %)**GPIO_EXTI**(%%), and there are different trigger methods. When there is a trigger, the NSE01 will send a packet to the server.
504 +)))
472 472  
506 +(((
507 +The command is:
508 +)))
473 473  
474 -(% style="color:#037691" %)**Downlink:**
510 +(((
511 +(% style="color:blue" %)**AT+INTMOD=3 **(%%) ~/~/(more info about INMOD please refer [[**AT Command Manual**>>url:https://www.dragino.com/downloads/downloads/NB-IoT/NBSN95/DRAGINO_NBSN95-NB_AT%20Commands_v1.1.0.pdf]])**.**
512 +)))
475 475  
476 -923.3 - SF7BW500 to SF12BW500
477 477  
478 -923.9 - SF7BW500 to SF12BW500
515 +(((
516 +The lower four bits of this data field shows if this packet is generated by interrupt or not. Click here for the hardware and software set up.
517 +)))
479 479  
480 -924.5 - SF7BW500 to SF12BW500
481 481  
482 -925.1 - SF7BW500 to SF12BW500
520 +(((
521 +Example:
522 +)))
483 483  
484 -925.7 - SF7BW500 to SF12BW500
524 +(((
525 +0x(00): Normal uplink packet.
526 +)))
485 485  
486 -926.3 - SF7BW500 to SF12BW500
528 +(((
529 +0x(01): Interrupt Uplink Packet.
530 +)))
487 487  
488 -926.9 - SF7BW500 to SF12BW500
489 489  
490 -927.5 - SF7BW500 to SF12BW500
491 491  
492 -923.3 - SF12BW500(RX2 downlink only)
534 +=== 2.4.9  ​+5V Output ===
493 493  
536 +(((
537 +NSE01 will enable +5V output before all sampling and disable the +5v after all sampling. 
538 +)))
494 494  
495 495  
496 -=== 2.7.3 CN470-510 (CN470) ===
541 +(((
542 +The 5V output time can be controlled by AT Command.
543 +)))
497 497  
498 -Used in China, Default use CHE=1
545 +(((
546 +(% style="color:blue" %)**AT+5VT=1000**
547 +)))
499 499  
500 -(% style="color:#037691" %)**Uplink:**
549 +(((
550 +Means set 5V valid time to have 1000ms. So the real 5V output will actually have 1000ms + sampling time for other sensors.
551 +)))
501 501  
502 -486.3 - SF7BW125 to SF12BW125
503 503  
504 -486.5 - SF7BW125 to SF12BW125
505 505  
506 -486.7 - SF7BW125 to SF12BW125
555 +== 2.5  Downlink Payload ==
507 507  
508 -486.9 - SF7BW125 to SF12BW125
557 +By default, NSE01 prints the downlink payload to console port.
509 509  
510 -487.1 - SF7BW125 to SF12BW125
559 +[[image:image-20220708133731-5.png]]
511 511  
512 -487.3 - SF7BW125 to SF12BW125
513 513  
514 -487.5 - SF7BW125 to SF12BW125
562 +(((
563 +(% style="color:blue" %)**Examples:**
564 +)))
515 515  
516 -487.7 - SF7BW125 to SF12BW125
566 +(((
567 +
568 +)))
517 517  
570 +* (((
571 +(% style="color:blue" %)**Set TDC**
572 +)))
518 518  
519 -(% style="color:#037691" %)**Downlink:**
574 +(((
575 +If the payload=0100003C, it means set the END Node's TDC to 0x00003C=60(S), while type code is 01.
576 +)))
520 520  
521 -506.7 - SF7BW125 to SF12BW125
578 +(((
579 +Payload:    01 00 00 1E    TDC=30S
580 +)))
522 522  
523 -506.9 - SF7BW125 to SF12BW125
582 +(((
583 +Payload:    01 00 00 3C    TDC=60S
584 +)))
524 524  
525 -507.1 - SF7BW125 to SF12BW125
586 +(((
587 +
588 +)))
526 526  
527 -507.3 - SF7BW125 to SF12BW125
590 +* (((
591 +(% style="color:blue" %)**Reset**
592 +)))
528 528  
529 -507.5 - SF7BW125 to SF12BW125
594 +(((
595 +If payload = 0x04FF, it will reset the NSE01
596 +)))
530 530  
531 -507.7 - SF7BW125 to SF12BW125
532 532  
533 -507.9 - SF7BW125 to SF12BW125
599 +* (% style="color:blue" %)**INTMOD**
534 534  
535 -508.1 - SF7BW125 to SF12BW125
601 +(((
602 +Downlink Payload: 06000003, Set AT+INTMOD=3
603 +)))
536 536  
537 -505.3 - SF12BW125 (RX2 downlink only)
538 538  
539 539  
607 +== 2.6  ​LED Indicator ==
540 540  
541 -=== 2.7.4 AU915-928(AU915) ===
609 +(((
610 +The NSE01 has an internal LED which is to show the status of different state.
542 542  
543 -Default use CHE=2
544 544  
545 -(% style="color:#037691" %)**Uplink:**
613 +* When power on, NSE01 will detect if sensor probe is connected, if probe detected, LED will blink four times. (no blinks in this step is no probe)
614 +* Then the LED will be on for 1 second means device is boot normally.
615 +* After NSE01 join NB-IoT network. The LED will be ON for 3 seconds.
616 +* For each uplink probe, LED will be on for 500ms.
617 +)))
546 546  
547 -916.8 - SF7BW125 to SF12BW125
548 548  
549 -917.0 - SF7BW125 to SF12BW125
550 550  
551 -917.2 - SF7BW125 to SF12BW125
552 552  
553 -917.4 - SF7BW125 to SF12BW125
622 +== 2.7  Installation in Soil ==
554 554  
555 -917.6 - SF7BW125 to SF12BW125
624 +__**Measurement the soil surface**__
556 556  
557 -917.8 - SF7BW125 to SF12BW125
626 +(((
627 +Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting. [[https:~~/~~/img.alicdn.com/imgextra/i3/2005165265/O1CN010rj9Oh1olPsQxrdUK_!!2005165265.jpg>>url:https://img.alicdn.com/imgextra/i3/2005165265/O1CN010rj9Oh1olPsQxrdUK_!!2005165265.jpg]]
628 +)))
558 558  
559 -918.0 - SF7BW125 to SF12BW125
630 +[[image:1657259653666-883.png]] ​
560 560  
561 -918.2 - SF7BW125 to SF12BW125
562 562  
633 +(((
634 +
563 563  
564 -(% style="color:#037691" %)**Downlink:**
636 +(((
637 +Dig a hole with diameter > 20CM.
638 +)))
565 565  
566 -923.3 - SF7BW500 to SF12BW500
640 +(((
641 +Horizontal insert the probe to the soil and fill the hole for long term measurement.
642 +)))
643 +)))
567 567  
568 -923.9 - SF7BW500 to SF12BW500
645 +[[image:1654506665940-119.png]]
569 569  
570 -924.5 - SF7BW500 to SF12BW500
647 +(((
648 +
649 +)))
571 571  
572 -925.1 - SF7BW500 to SF12BW500
573 573  
574 -925.7 - SF7BW500 to SF12BW500
652 +== 2. Firmware Change Log ==
575 575  
576 -926.3 - SF7BW500 to SF12BW500
577 577  
578 -926.9 - SF7BW500 to SF12BW500
655 +Download URL & Firmware Change log
579 579  
580 -927.5 - SF7BW500 to SF12BW500
657 +[[www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/Firmware/]]
581 581  
582 -923.3 - SF12BW500(RX2 downlink only)
583 583  
660 +Upgrade Instruction: [[Upgrade_Firmware>>||anchor="H5.1200BHowtoUpgradeFirmware"]]
584 584  
585 585  
586 -=== 2.7.5 AS920-923 & AS923-925 (AS923) ===
587 587  
588 -(% style="color:#037691" %)**Default Uplink channel:**
664 +== 2.9  ​Battery Analysis ==
589 589  
590 -923.2 - SF7BW125 to SF10BW125
666 +=== 2.9.1  ​Battery Type ===
591 591  
592 -923.4 - SF7BW125 to SF10BW125
593 593  
594 -
595 -(% style="color:#037691" %)**Additional Uplink Channel**:
596 -
597 -(OTAA mode, channel added by JoinAccept message)
598 -
599 -(% style="color:#037691" %)**AS920~~AS923 for Japan, Malaysia, Singapore**:
600 -
601 -922.2 - SF7BW125 to SF10BW125
602 -
603 -922.4 - SF7BW125 to SF10BW125
604 -
605 -922.6 - SF7BW125 to SF10BW125
606 -
607 -922.8 - SF7BW125 to SF10BW125
608 -
609 -923.0 - SF7BW125 to SF10BW125
610 -
611 -922.0 - SF7BW125 to SF10BW125
612 -
613 -
614 -(% style="color:#037691" %)**AS923 ~~ AS925 for Brunei, Cambodia, Hong Kong, Indonesia, Laos, Taiwan, Thailand, Vietnam**:
615 -
616 -923.6 - SF7BW125 to SF10BW125
617 -
618 -923.8 - SF7BW125 to SF10BW125
619 -
620 -924.0 - SF7BW125 to SF10BW125
621 -
622 -924.2 - SF7BW125 to SF10BW125
623 -
624 -924.4 - SF7BW125 to SF10BW125
625 -
626 -924.6 - SF7BW125 to SF10BW125
627 -
628 -
629 -(% style="color:#037691" %)** Downlink:**
630 -
631 -Uplink channels 1-8 (RX1)
632 -
633 -923.2 - SF10BW125 (RX2)
634 -
635 -
636 -
637 -=== 2.7.6 KR920-923 (KR920) ===
638 -
639 -Default channel:
640 -
641 -922.1 - SF7BW125 to SF12BW125
642 -
643 -922.3 - SF7BW125 to SF12BW125
644 -
645 -922.5 - SF7BW125 to SF12BW125
646 -
647 -
648 -(% style="color:#037691" %)**Uplink: (OTAA mode, channel added by JoinAccept message)**
649 -
650 -922.1 - SF7BW125 to SF12BW125
651 -
652 -922.3 - SF7BW125 to SF12BW125
653 -
654 -922.5 - SF7BW125 to SF12BW125
655 -
656 -922.7 - SF7BW125 to SF12BW125
657 -
658 -922.9 - SF7BW125 to SF12BW125
659 -
660 -923.1 - SF7BW125 to SF12BW125
661 -
662 -923.3 - SF7BW125 to SF12BW125
663 -
664 -
665 -(% style="color:#037691" %)**Downlink:**
666 -
667 -Uplink channels 1-7(RX1)
668 -
669 -921.9 - SF12BW125 (RX2 downlink only; SF12BW125 might be changed to SF9BW125)
670 -
671 -
672 -
673 -=== 2.7.7 IN865-867 (IN865) ===
674 -
675 -(% style="color:#037691" %)** Uplink:**
676 -
677 -865.0625 - SF7BW125 to SF12BW125
678 -
679 -865.4025 - SF7BW125 to SF12BW125
680 -
681 -865.9850 - SF7BW125 to SF12BW125
682 -
683 -
684 -(% style="color:#037691" %) **Downlink:**
685 -
686 -Uplink channels 1-3 (RX1)
687 -
688 -866.550 - SF10BW125 (RX2)
689 -
690 -
691 -
692 -
693 -== 2.8 LED Indicator ==
694 -
695 -The LSE01 has an internal LED which is to show the status of different state.
696 -
697 -* Blink once when device power on.
698 -* Solid ON for 5 seconds once device successful Join the network.
699 -* Blink once when device transmit a packet.
700 -
701 -== 2.9 Installation in Soil ==
702 -
703 -**Measurement the soil surface**
704 -
705 -
706 -[[image:1654506634463-199.png]] ​
707 -
708 708  (((
709 -(((
710 -Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting.
670 +The NSE01 battery is a combination of an 8500mAh Li/SOCI2 Battery and a Super Capacitor. The battery is none-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter.
711 711  )))
712 -)))
713 713  
714 714  
715 -
716 -[[image:1654506665940-119.png]]
717 -
718 718  (((
719 -Dig a hole with diameter > 20CM.
675 +The battery is designed to last for several years depends on the actually use environment and update interval. 
720 720  )))
721 721  
722 -(((
723 -Horizontal insert the probe to the soil and fill the hole for long term measurement.
724 -)))
725 725  
726 -
727 -== 2.10 ​Firmware Change Log ==
728 -
729 729  (((
730 -**Firmware download link:**
680 +The battery related documents as below:
731 731  )))
732 732  
733 -(((
734 -[[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/]]
735 -)))
683 +* [[Battery Dimension>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]
684 +* [[Lithium-Thionyl Chloride Battery datasheet>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]
685 +* [[Lithium-ion Battery-Capacitor datasheet>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]
736 736  
737 737  (((
738 -
688 +[[image:image-20220708140453-6.png]]
739 739  )))
740 740  
741 -(((
742 -**Firmware Upgrade Method: **[[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome]]
743 -)))
744 744  
745 -(((
746 -
747 -)))
748 748  
749 -(((
750 -**V1.0.**
751 -)))
693 +=== 2.9.2  Power consumption Analyze ===
752 752  
753 753  (((
754 -Release
696 +Dragino battery powered product are all runs in Low Power mode. We have an update battery calculator which base on the measurement of the real device. User can use this calculator to check the battery life and calculate the battery life if want to use different transmit interval.
755 755  )))
756 756  
757 757  
758 -== 2.11 ​Battery Analysis ==
759 -
760 -=== 2.11.1 ​Battery Type ===
761 -
762 762  (((
763 -The LSE01 battery is a combination of a 4000mAh Li/SOCI2 Battery and a Super Capacitor. The battery is non-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter.
701 +Instruction to use as below:
764 764  )))
765 765  
766 766  (((
767 -The battery is designed to last for more than 5 years for the LSN50.
705 +(% style="color:blue" %)**Step 1:  **(%%)Downlink the up-to-date DRAGINO_Battery_Life_Prediction_Table.xlsx from: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/]]
768 768  )))
769 769  
708 +
770 770  (((
771 -(((
772 -The battery-related documents are as below:
710 +(% style="color:blue" %)**Step 2: **(%%) Open it and choose
773 773  )))
774 -)))
775 775  
776 776  * (((
777 -[[Battery Dimension>>url:http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/&file=LSN50-Battery-Dimension.pdf]],
714 +Product Model
778 778  )))
779 779  * (((
780 -[[Lithium-Thionyl Chloride Battery  datasheet>>url:https://www.dragino.com/downloads/downloads/datasheet/Battery/ER26500/ER26500_Datasheet-EN.pdf]],
717 +Uplink Interval
781 781  )))
782 782  * (((
783 -[[Lithium-ion Battery-Capacitor datasheet>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC_1520_datasheet.jpg]], [[Tech Spec>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC1520%20Technical%20Specification20171123.pdf]]
720 +Working Mode
784 784  )))
785 785  
786 - [[image:image-20220610172436-1.png]]
723 +(((
724 +And the Life expectation in difference case will be shown on the right.
725 +)))
787 787  
727 +[[image:image-20220708141352-7.jpeg]]
788 788  
789 789  
790 -=== 2.11.2 ​Battery Note ===
791 791  
731 +=== 2.9.3  ​Battery Note ===
732 +
792 792  (((
793 793  The Li-SICO battery is designed for small current / long period application. It is not good to use a high current, short period transmit method. The recommended minimum period for use of this battery is 5 minutes. If you use a shorter period time to transmit LoRa, then the battery life may be decreased.
794 794  )))
... ... @@ -795,298 +795,176 @@
795 795  
796 796  
797 797  
798 -=== 2.11.3 Replace the battery ===
739 +=== 2.9. Replace the battery ===
799 799  
800 800  (((
801 -If Battery is lower than 2.7v, user should replace the battery of LSE01.
742 +The default battery pack of NSE01 includes a ER26500 plus super capacitor. If user can't find this pack locally, they can find ER26500 or equivalence without the SPC1520 capacitor, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes).
802 802  )))
803 803  
745 +
746 +
747 += 3. ​ Access NB-IoT Module =
748 +
804 804  (((
805 -You can change the battery in the LSE01.The type of battery is not limited as long as the output is between 3v to 3.6v. On the main board, there is a diode (D1) between the battery and the main circuit. If you need to use a battery with less than 3.3v, please remove the D1 and shortcut the two pads of it so there won’t be voltage drop between battery and main board.
750 +Users can directly access the AT command set of the NB-IoT module.
806 806  )))
807 807  
808 808  (((
809 -The default battery pack of LSE01 includes a ER18505 plus super capacitor. If user can’t find this pack locally, they can find ER18505 or equivalence, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes)
754 +The AT Command set can refer the BC35-G NB-IoT Module AT Command: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=datasheet/other_vendors/BC35-G/>>url:https://www.dragino.com/downloads/index.php?dir=datasheet/other_vendors/BC35-G/]] 
810 810  )))
811 811  
757 +[[image:1657261278785-153.png]]
812 812  
813 813  
814 -= 3. ​Using the AT Commands =
815 815  
816 -== 3.1 Access AT Commands ==
761 += 4.  Using the AT Commands =
817 817  
763 +== 4.1  Access AT Commands ==
818 818  
819 -LSE01 supports AT Command set in the stock firmware. You can use a USB to TTL adapter to connect to LSE01 for using AT command, as below.
765 +See this link for detail: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/]]
820 820  
821 -[[image:1654501986557-872.png||height="391" width="800"]]
822 822  
768 +AT+<CMD>?  : Help on <CMD>
823 823  
824 -Or if you have below board, use below connection:
770 +AT+<CMD>         : Run <CMD>
825 825  
772 +AT+<CMD>=<value> : Set the value
826 826  
827 -[[image:1654502005655-729.png||height="503" width="801"]]
774 +AT+<CMD>=?  : Get the value
828 828  
829 829  
830 -
831 -In the PC, you need to set the serial baud rate to (% style="color:green" %)**9600**(%%) to access the serial console for LSE01. LSE01 will output system info once power on as below:
832 -
833 -
834 - [[image:1654502050864-459.png||height="564" width="806"]]
835 -
836 -
837 -Below are the available commands, a more detailed AT Command manual can be found at [[AT Command Manual>>https://www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0]]: [[https:~~/~~/www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0>>https://www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0]]
838 -
839 -
840 -(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>? **(%%) : Help on <CMD>
841 -
842 -(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD> **(%%) : Run <CMD>
843 -
844 -(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>=<value>**(%%) : Set the value
845 -
846 -(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>=?**(%%)  : Get the value
847 -
848 -
849 849  (% style="color:#037691" %)**General Commands**(%%)      
850 850  
851 -(% style="background-color:#dcdcdc" %)**AT**(%%)  : Attention       
779 +AT  : Attention       
852 852  
853 -(% style="background-color:#dcdcdc" %)**AT?**(%%)  : Short Help     
781 +AT?  : Short Help     
854 854  
855 -(% style="background-color:#dcdcdc" %)**ATZ**(%%)  : MCU Reset    
783 +ATZ  : MCU Reset    
856 856  
857 -(% style="background-color:#dcdcdc" %)**AT+TDC**(%%)  : Application Data Transmission Interval 
785 +AT+TDC  : Application Data Transmission Interval
858 858  
787 +AT+CFG  : Print all configurations
859 859  
860 -(% style="color:#037691" %)**Keys, IDs and EUIs management**
789 +AT+CFGMOD           : Working mode selection
861 861  
862 -(% style="background-color:#dcdcdc" %)**AT+APPEUI**(%%)              : Application EUI      
791 +AT+INTMOD            : Set the trigger interrupt mode
863 863  
864 -(% style="background-color:#dcdcdc" %)**AT+APPKEY**(%%)              : Application Key     
793 +AT+5VT  : Set extend the time of 5V power  
865 865  
866 -(% style="background-color:#dcdcdc" %)**AT+APPSKEY**(%%)            : Application Session Key
795 +AT+PRO  : Choose agreement
867 867  
868 -(% style="background-color:#dcdcdc" %)**AT+DADDR**(%%)              : Device Address     
797 +AT+WEIGRE  : Get weight or set weight to 0
869 869  
870 -(% style="background-color:#dcdcdc" %)**AT+DEUI**(%%)                   : Device EUI     
799 +AT+WEIGAP  : Get or Set the GapValue of weight
871 871  
872 -(% style="background-color:#dcdcdc" %)**AT+NWKID**(%%)               : Network ID (You can enter this command change only after successful network connection
801 +AT+RXDL  : Extend the sending and receiving time
873 873  
874 -(% style="background-color:#dcdcdc" %)**AT+NWKSKEY**(%%)          : Network Session Key Joining and sending date on LoRa network  
803 +AT+CNTFAC  : Get or set counting parameters
875 875  
876 -(% style="background-color:#dcdcdc" %)**AT+CFM**(%%)  : Confirm Mode       
805 +AT+SERVADDR  : Server Address
877 877  
878 -(% style="background-color:#dcdcdc" %)**AT+CFS**(%%)                     : Confirm Status       
879 879  
880 -(% style="background-color:#dcdcdc" %)**AT+JOIN**(%%)  : Join LoRa? Network       
808 +(% style="color:#037691" %)**COAP Management**      
881 881  
882 -(% style="background-color:#dcdcdc" %)**AT+NJM**(%%)  : LoRa? Network Join Mode    
810 +AT+URI            : Resource parameters
883 883  
884 -(% style="background-color:#dcdcdc" %)**AT+NJS**(%%)                     : LoRa? Network Join Status    
885 885  
886 -(% style="background-color:#dcdcdc" %)**AT+RECV**(%%)                  : Print Last Received Data in Raw Format
813 +(% style="color:#037691" %)**UDP Management**
887 887  
888 -(% style="background-color:#dcdcdc" %)**AT+RECVB**(%%)                : Print Last Received Data in Binary Format      
815 +AT+CFM          : Upload confirmation mode (only valid for UDP)
889 889  
890 -(% style="background-color:#dcdcdc" %)**AT+SEND**(%%)                  : Send Text Data      
891 891  
892 -(% style="background-color:#dcdcdc" %)**AT+SENB**(%%)                  : Send Hexadecimal Data
818 +(% style="color:#037691" %)**MQTT Management**
893 893  
820 +AT+CLIENT               : Get or Set MQTT client
894 894  
895 -(% style="color:#037691" %)**LoRa Network Management**
822 +AT+UNAME  : Get or Set MQTT Username
896 896  
897 -(% style="background-color:#dcdcdc" %)**AT+ADR**(%%)          : Adaptive Rate
824 +AT+PWD                  : Get or Set MQTT password
898 898  
899 -(% style="background-color:#dcdcdc" %)**AT+CLASS**(%%)  : LoRa Class(Currently only support class A
826 +AT+PUBTOPI : Get or Set MQTT publish topic
900 900  
901 -(% style="background-color:#dcdcdc" %)**AT+DCS**(%%)  : Duty Cycle Settin
828 +AT+SUBTOPIC  : Get or Set MQTT subscription topic
902 902  
903 -(% style="background-color:#dcdcdc" %)**AT+DR**(%%)  : Data Rate (Can Only be Modified after ADR=0)     
904 904  
905 -(% style="background-color:#dcdcdc" %)**AT+FCD**(%%)  : Frame Counter Downlink       
831 +(% style="color:#037691" %)**Information**          
906 906  
907 -(% style="background-color:#dcdcdc" %)**AT+FCU**(%%)  : Frame Counter Uplink   
833 +AT+FDR  : Factory Data Reset
908 908  
909 -(% style="background-color:#dcdcdc" %)**AT+JN1DL**(%%)  : Join Accept Delay1
835 +AT+PWOR : Serial Access Password
910 910  
911 -(% style="background-color:#dcdcdc" %)**AT+JN2DL**(%%)  : Join Accept Delay2
912 912  
913 -(% style="background-color:#dcdcdc" %)**AT+PNM**(%%)  : Public Network Mode   
914 914  
915 -(% style="background-color:#dcdcdc" %)**AT+RX1DL**(%%)  : Receive Delay1      
839 += ​5.  FAQ =
916 916  
917 -(% style="background-color:#dcdcdc" %)**AT+RX2DL**(%%)  : Receive Delay2      
841 +== 5.1 How to Upgrade Firmware ==
918 918  
919 -(% style="background-color:#dcdcdc" %)**AT+RX2DR**(%%)  : Rx2 Window Data Rate 
920 920  
921 -(% style="background-color:#dcdcdc" %)**AT+RX2FQ**(%%)  : Rx2 Window Frequency
922 -
923 -(% style="background-color:#dcdcdc" %)**AT+TXP**(%%)  : Transmit Power
924 -
925 -(% style="background-color:#dcdcdc" %)**AT+ MOD**(%%)  : Set work mode
926 -
927 -
928 -(% style="color:#037691" %)**Information** 
929 -
930 -(% style="background-color:#dcdcdc" %)**AT+RSSI**(%%)           : RSSI of the Last Received Packet   
931 -
932 -(% style="background-color:#dcdcdc" %)**AT+SNR**(%%)           : SNR of the Last Received Packet   
933 -
934 -(% style="background-color:#dcdcdc" %)**AT+VER**(%%)           : Image Version and Frequency Band       
935 -
936 -(% style="background-color:#dcdcdc" %)**AT+FDR**(%%)           : Factory Data Reset
937 -
938 -(% style="background-color:#dcdcdc" %)**AT+PORT**(%%)  : Application Port    
939 -
940 -(% style="background-color:#dcdcdc" %)**AT+CHS**(%%)  : Get or Set Frequency (Unit: Hz) for Single Channel Mode
941 -
942 - (% style="background-color:#dcdcdc" %)**AT+CHE**(%%)  : Get or Set eight channels mode, Only for US915, AU915, CN470
943 -
944 -
945 -= ​4. FAQ =
946 -
947 -== 4.1 ​How to change the LoRa Frequency Bands/Region? ==
948 -
949 949  (((
950 -You can follow the instructions for [[how to upgrade image>>||anchor="H2.10200BFirmwareChangeLog"]].
951 -When downloading the images, choose the required image file for download. ​
845 +User can upgrade the firmware for 1) bug fix, 2) new feature release.
952 952  )))
953 953  
954 954  (((
955 -
849 +Please see this link for how to upgrade:  [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H2.HardwareUpgradeMethodSupportList>>http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H2.HardwareUpgradeMethodSupportList]]
956 956  )))
957 957  
958 958  (((
959 -How to set up LSE01 to work in 8 channel mode By default, the frequency bands US915, AU915, CN470 work in 72 frequencies. Many gateways are 8 channel gateways, and in this case, the OTAA join time and uplink schedule is long and unpredictable while the end node is hopping in 72 frequencies.
853 +(% style="color:red" %)Notice, NSE01 and LSE01 share the same mother board. They use the same connection and method to update.
960 960  )))
961 961  
962 -(((
963 -
964 -)))
965 965  
966 -(((
967 -You can configure the end node to work in 8 channel mode by using the AT+CHE command. The 500kHz channels are always included for OTAA.
968 -)))
969 969  
970 -(((
971 -
972 -)))
858 +== 5.2  Can I calibrate NSE01 to different soil types? ==
973 973  
974 974  (((
975 -For example, in **US915** band, the frequency table is as below. By default, the end node will use all channels (0~~71) for OTAA Join process. After the OTAA Join, the end node will use these all channels (0~~71) to send uplink packets.
861 +NSE01 is calibrated for saline-alkali soil and loamy soil. If users want to use it for other soil, they can calibrate the value in the IoT platform base on the value measured by saline-alkali soil and loamy soil. The formula can be found at [[this link>>https://www.dragino.com/downloads/downloads/LoRa_End_Node/LSE01/Calibrate_to_other_Soil_20220605.pdf]].
976 976  )))
977 977  
978 -[[image:image-20220606154726-3.png]]
979 979  
865 += 6.  Trouble Shooting =
980 980  
981 -When you use the TTN network, the US915 frequency bands use are:
867 +== 6.1  ​Connection problem when uploading firmware ==
982 982  
983 -* 903.9 - SF7BW125 to SF10BW125
984 -* 904.1 - SF7BW125 to SF10BW125
985 -* 904.3 - SF7BW125 to SF10BW125
986 -* 904.5 - SF7BW125 to SF10BW125
987 -* 904.7 - SF7BW125 to SF10BW125
988 -* 904.9 - SF7BW125 to SF10BW125
989 -* 905.1 - SF7BW125 to SF10BW125
990 -* 905.3 - SF7BW125 to SF10BW125
991 -* 904.6 - SF8BW500
992 992  
993 993  (((
994 -Because the end node is now hopping in 72 frequency, it makes it difficult for the devices to Join the TTN network and uplink data. To solve this issue, you can access the device via the AT commands and run:
995 -
996 -* (% style="color:#037691" %)**AT+CHE=2**
997 -* (% style="color:#037691" %)**ATZ**
871 +**Please see: **[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H3.3Troubleshooting>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H3.3Troubleshooting]]
998 998  )))
999 999  
874 +(% class="wikigeneratedid" %)
1000 1000  (((
1001 1001  
1002 -
1003 -to set the end node to work in 8 channel mode. The device will work in Channel 8-15 & 64-71 for OTAA, and channel 8-15 for Uplink.
1004 1004  )))
1005 1005  
1006 -(((
1007 -
1008 -)))
1009 1009  
1010 -(((
1011 -The **AU915** band is similar. Below are the AU915 Uplink Channels.
1012 -)))
880 +== 6.2  AT Command input doesn't work ==
1013 1013  
1014 -[[image:image-20220606154825-4.png]]
1015 -
1016 -
1017 -
1018 -= 5. Trouble Shooting =
1019 -
1020 -== 5.1 ​Why I can’t join TTN in US915 / AU915 bands? ==
1021 -
1022 -It is due to channel mapping. Please see the [[Eight Channel Mode>>doc:Main.LoRaWAN Communication Debug.WebHome||anchor="H2.NoticeofUS9152FCN4702FAU915Frequencyband"]] section above for details.
1023 -
1024 -
1025 -== 5.2 AT Command input doesn’t work ==
1026 -
1027 1027  (((
1028 -In the case if user can see the console output but can’t type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn’t send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.
1029 -)))
883 +In the case if user can see the console output but can't type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn't send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.
1030 1030  
1031 -
1032 -== 5.3 Device rejoin in at the second uplink packet ==
1033 -
1034 -(% style="color:#4f81bd" %)**Issue describe as below:**
1035 -
1036 -[[image:1654500909990-784.png]]
1037 -
1038 -
1039 -(% style="color:#4f81bd" %)**Cause for this issue:**
1040 -
1041 -(((
1042 -The fuse on LSE01 is not large enough, some of the soil probe require large current up to 5v 800mA, in a short pulse. When this happen, it cause the device reboot so user see rejoin.
885 +
1043 1043  )))
1044 1044  
1045 1045  
1046 -(% style="color:#4f81bd" %)**Solution: **
889 += 7. ​ Order Info =
1047 1047  
1048 -All new shipped LSE01 after 2020-May-30 will have this to fix. For the customer who see this issue, please bypass the fuse as below:
1049 1049  
1050 -[[image:1654500929571-736.png||height="458" width="832"]]
892 +Part Number**:** (% style="color:#4f81bd" %)**NSE01**
1051 1051  
1052 1052  
1053 -= 6. ​Order Info =
1054 -
1055 -
1056 -Part Number**:** (% style="color:#4f81bd" %)**LSE01-XX-YY**
1057 -
1058 -
1059 -(% style="color:#4f81bd" %)**XX**(%%)**:** The default frequency band
1060 -
1061 -* (% style="color:red" %)**AS923**(%%): LoRaWAN AS923 band
1062 -* (% style="color:red" %)**AU915**(%%): LoRaWAN AU915 band
1063 -* (% style="color:red" %)**EU433**(%%): LoRaWAN EU433 band
1064 -* (% style="color:red" %)**EU868**(%%): LoRaWAN EU868 band
1065 -* (% style="color:red" %)**KR920**(%%): LoRaWAN KR920 band
1066 -* (% style="color:red" %)**US915**(%%): LoRaWAN US915 band
1067 -* (% style="color:red" %)**IN865**(%%):  LoRaWAN IN865 band
1068 -* (% style="color:red" %)**CN470**(%%): LoRaWAN CN470 band
1069 -
1070 -(% style="color:#4f81bd" %)**YY**(%%)**: **Battery Option
1071 -
1072 -* (% style="color:red" %)**4**(%%): 4000mAh battery
1073 -* (% style="color:red" %)**8**(%%): 8500mAh battery
1074 -
1075 1075  (% class="wikigeneratedid" %)
1076 1076  (((
1077 1077  
1078 1078  )))
1079 1079  
1080 -= 7. Packing Info =
900 += 8.  Packing Info =
1081 1081  
1082 1082  (((
1083 1083  
1084 1084  
1085 1085  (% style="color:#037691" %)**Package Includes**:
1086 -)))
1087 1087  
1088 -* (((
1089 -LSE01 LoRaWAN Soil Moisture & EC Sensor x 1
907 +* NSE01 NB-IoT Soil Moisture & EC Sensor x 1
908 +* External antenna x 1
1090 1090  )))
1091 1091  
1092 1092  (((
... ... @@ -1093,24 +1093,19 @@
1093 1093  
1094 1094  
1095 1095  (% style="color:#037691" %)**Dimension and weight**:
1096 -)))
1097 1097  
1098 -* (((
1099 -Device Size: cm
916 +* Size: 195 x 125 x 55 mm
917 +* Weight:   420g
1100 1100  )))
1101 -* (((
1102 -Device Weight: g
1103 -)))
1104 -* (((
1105 -Package Size / pcs : cm
1106 -)))
1107 -* (((
1108 -Weight / pcs : g
1109 1109  
920 +(((
1110 1110  
922 +
923 +
924 +
1111 1111  )))
1112 1112  
1113 -= 8. Support =
927 += 9.  Support =
1114 1114  
1115 1115  * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
1116 1116  * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.com]]
1657245163077-232.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +81.0 KB
Content
1657246476176-652.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +492.6 KB
Content
1657249419225-449.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +81.0 KB
Content
1657249468462-536.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +483.6 KB
Content
1657249793983-486.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +85.8 KB
Content
1657249831934-534.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +72.5 KB
Content
1657249864775-321.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +87.0 KB
Content
1657249930215-289.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +77.3 KB
Content
1657249978444-674.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +139.5 KB
Content
1657249990869-686.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +96.9 KB
Content
1657250217799-140.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +98.7 KB
Content
1657250255956-604.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +99.0 KB
Content
1657259653666-883.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +344.4 KB
Content
1657260785982-288.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +138.2 KB
Content
1657261119050-993.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +126.1 KB
Content
1657261278785-153.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +126.1 KB
Content
1657271519014-786.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +71.5 KB
Content
1657327959271-447.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +78.3 KB
Content
1657328609906-564.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +492.6 KB
Content
1657328659945-416.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +78.8 KB
Content
1657328756309-230.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +78.5 KB
Content
1657328884227-504.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +483.6 KB
Content
1657329814315-101.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +85.3 KB
Content
1657330452568-615.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +71.3 KB
Content
1657330472797-498.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +68.9 KB
Content
1657330501006-241.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +119.2 KB
Content
1657330533775-472.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +74.9 KB
Content
1657330723006-866.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +74.1 KB
Content
1657331036973-987.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +83.8 KB
Content
image-20220708101224-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +22.2 KB
Content
image-20220708101605-2.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +87.5 KB
Content
image-20220708110657-3.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +251.7 KB
Content
image-20220708111918-4.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +38.8 KB
Content
image-20220708133731-5.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +8.7 KB
Content
image-20220708140453-6.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +132.7 KB
Content
image-20220708141352-7.jpeg
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +102.7 KB
Content
image-20220709084038-1.jpeg
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +72.0 KB
Content
image-20220709084137-2.jpeg
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +72.0 KB
Content
image-20220709084207-3.jpeg
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +72.0 KB
Content
image-20220709084458-4.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +199.5 KB
Content
image-20220709085040-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +200.4 KB
Content
image-20220709092052-2.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +247.3 KB
Content
image-20220709093918-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +42.2 KB
Content
image-20220709093918-2.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +61.9 KB
Content