Last modified by Mengting Qiu on 2024/04/02 16:44

From version 37.1
edited by Xiaoling
on 2022/06/25 16:29
Change comment: There is no comment for this version
To version 78.1
edited by Xiaoling
on 2022/07/09 09:05
Change comment: Uploaded new attachment "1657328756309-230.png", version {1}

Summary

Details

Page properties
Title
... ... @@ -1,1 +1,1 @@
1 -LSE01-LoRaWAN Soil Moisture & EC Sensor User Manual
1 +NDDS75 NB-IoT Distance Detect Sensor User Manual
Content
... ... @@ -1,19 +1,12 @@
1 1  (% style="text-align:center" %)
2 -[[image:image-20220606151504-2.jpeg||height="554" width="554"]]
2 +[[image:image-20220709085040-1.png||height="542" width="524"]]
3 3  
4 4  
5 5  
6 6  
7 7  
8 -
9 -
10 -
11 -
12 -
13 -
14 14  **Table of Contents:**
15 15  
16 -{{toc/}}
17 17  
18 18  
19 19  
... ... @@ -20,775 +20,719 @@
20 20  
21 21  
22 22  
23 -= 1. Introduction =
16 += 1.  Introduction =
24 24  
25 -== 1.1 ​What is LoRaWAN Soil Moisture & EC Sensor ==
18 +== 1.1 ​ What is NDDS75 Distance Detection Sensor ==
26 26  
27 27  (((
28 28  
29 29  
30 -The Dragino LSE01 is a (% style="color:#4f81bd" %)**LoRaWAN Soil Moisture & EC Sensor**(%%) for IoT of Agriculture. It is designed to measure the soil moisture of saline-alkali soil and loamy soil. The soil sensor uses FDR method to calculate the soil moisture with the compensation from soil temperature and conductivity. It also has been calibrated in factory for Mineral soil type.
31 -)))
32 -
33 33  (((
34 -It detects (% style="color:#4f81bd" %)**Soil Moisture**(%%), (% style="color:#4f81bd" %)**Soil Temperature**(%%) and (% style="color:#4f81bd" %)**Soil Conductivity**(%%), and uploads the value via wireless to LoRaWAN IoT Server.
24 +The Dragino NDDS75 is a (% style="color:blue" %)**NB-IoT Distance Detection Sensor**(%%) for Internet of Things solution. It is designed to measure the distance between the sensor and a flat object. The distance detection sensor is a module that uses ultrasonic sensing technology for distance measurement, and temperature compensation is performed internally to improve the reliability of data.
25 +\\The NDDS75 can be applied to scenarios such as horizontal distance measurement, liquid level measurement, parking management system, object proximity and presence detection, intelligent trash can management system, robot obstacle avoidance, automatic control, sewer, bottom water level monitoring, etc. It detects the distance between the measured object and the sensor, and uploads the value via wireless to IoT Server via NB-IoT Network.
26 +\\NarrowBand-Internet of Things (NB-IoT) is a standards-based low power wide area (LPWA) technology developed to enable a wide range of new IoT devices and services. NB-IoT significantly improves the power consumption of user devices, system capacity and spectrum efficiency, especially in deep coverage.
27 +\\NDDS75 supports different uplink methods include (% style="color:blue" %)**TCP, MQTT, UDP and CoAP** (%%)for different application requirement.
28 +\\NDDS75 is powered by (% style="color:blue" %)**8500mAh Li-SOCI2 battery**(%%), It is designed for long term use up to 5 years. (Actually Battery life depends on the use environment, update period & uplink method)
29 +\\To use NDDS75, user needs to check if there is NB-IoT coverage in local area and with the bands NDDS75 supports. If the local operate support it, user needs to get a NB-IoT SIM card from local operator and install NDDS75 to get NB-IoT network connection.
35 35  )))
36 36  
37 -(((
38 -The LoRa wireless technology used in LES01 allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption.
32 +
39 39  )))
40 40  
41 -(((
42 -LES01 is powered by (% style="color:#4f81bd" %)**4000mA or 8500mAh Li-SOCI2 battery**(%%), It is designed for long term use up to 10 years.
43 -)))
44 -
45 -(((
46 -Each LES01 is pre-load with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect after power on.
47 -)))
48 -
49 -
50 50  [[image:1654503236291-817.png]]
51 51  
52 52  
53 -[[image:1654503265560-120.png]]
38 +[[image:1657327959271-447.png]]
54 54  
55 55  
56 56  
57 -== 1.2 ​Features ==
42 +== 1.2 ​ Features ==
58 58  
59 -* LoRaWAN 1.0.3 Class A
44 +
45 +* NB-IoT Bands: B1/B3/B8/B5/B20/B28 @H-FDD
60 60  * Ultra low power consumption
61 -* Monitor Soil Moisture
62 -* Monitor Soil Temperature
63 -* Monitor Soil Conductivity
64 -* Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865
47 +* Distance Detection by Ultrasonic technology
48 +* Flat object range 280mm - 7500mm
49 +* Accuracy: ±(1cm+S*0.3%) (S: Distance)
50 +* Cable Length: 25cm
65 65  * AT Commands to change parameters
66 66  * Uplink on periodically
67 67  * Downlink to change configure
68 68  * IP66 Waterproof Enclosure
69 -* 4000mAh or 8500mAh Battery for long term use
55 +* Micro SIM card slot for NB-IoT SIM
56 +* 8500mAh Battery for long term use
70 70  
71 71  
72 72  
60 +== 1.3  Specification ==
73 73  
74 -== 1.3 Specification ==
75 75  
76 -Measure Volume: Base on the centra pin of the probe, a cylinder with 7cm diameter and 10cm height.
63 +(% style="color:#037691" %)**Common DC Characteristics:**
77 77  
78 -[[image:image-20220606162220-5.png]]
65 +* Supply Voltage: 2.1v ~~ 3.6v
66 +* Operating Temperature: -40 ~~ 85°C
79 79  
68 +(% style="color:#037691" %)**NB-IoT Spec:**
80 80  
70 +* - B1 @H-FDD: 2100MHz
71 +* - B3 @H-FDD: 1800MHz
72 +* - B8 @H-FDD: 900MHz
73 +* - B5 @H-FDD: 850MHz
74 +* - B20 @H-FDD: 800MHz
75 +* - B28 @H-FDD: 700MHz
81 81  
82 -== ​1.4 Applications ==
83 83  
84 -* Smart Agriculture
78 +(% style="color:#037691" %)**Battery:**
85 85  
86 -(% class="wikigeneratedid" id="H200B1.5FirmwareChangelog" %)
87 -​
80 +* Li/SOCI2 un-chargeable battery
81 +* Capacity: 8500mAh
82 +* Self Discharge: <1% / Year @ 25°C
83 +* Max continuously current: 130mA
84 +* Max boost current: 2A, 1 second
88 88  
89 -== 1.5 Firmware Change log ==
90 90  
87 +(% style="color:#037691" %)**Power Consumption**
91 91  
92 -**LSE01 v1.0 :**  Release
89 +* STOP Mode: 10uA @ 3.3v
90 +* Max transmit power: 350mA@3.3v
93 93  
94 94  
95 95  
96 -= 2. Configure LSE01 to connect to LoRaWAN network =
97 97  
98 -== 2.1 How it works ==
95 +== 1.4  Applications ==
99 99  
100 -(((
101 -The LSE01 is configured as LoRaWAN OTAA Class A mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and power on the LSE0150. It will automatically join the network via OTAA and start to send the sensor value
102 -)))
97 +* Smart Buildings & Home Automation
98 +* Logistics and Supply Chain Management
99 +* Smart Metering
100 +* Smart Agriculture
101 +* Smart Cities
102 +* Smart Factory
103 103  
104 -(((
105 -In case you can’t set the OTAA keys in the LoRaWAN OTAA server, and you have to use the keys from the server, you can [[use AT Commands >>||anchor="H3.200BUsingtheATCommands"]].
106 -)))
104 +(% class="wikigeneratedid" id="H200B1.5FirmwareChangelog" %)
105 +​
107 107  
108 108  
109 109  
110 -== 2.2 ​Quick guide to connect to LoRaWAN server (OTAA) ==
109 +== 1. Pin Definitions ==
111 111  
112 -Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LG308>>url:http://www.dragino.com/products/lora/item/140-lg308.html]] as a LoRaWAN gateway in this example.
113 113  
112 +[[image:1657328609906-564.png]]
114 114  
115 -[[image:1654503992078-669.png]]
116 116  
117 117  
118 -The LG308 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
119 119  
117 += 2.  Use NSE01 to communicate with IoT Server =
120 120  
121 -(% style="color:blue" %)**Step 1**(%%):  Create a device in TTN with the OTAA keys from LSE01.
119 +== 2.How it works ==
122 122  
123 -Each LSE01 is shipped with a sticker with the default device EUI as below:
124 -
125 -[[image:image-20220606163732-6.jpeg]]
126 -
127 -You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot:
128 -
129 -**Add APP EUI in the application**
130 -
131 -
132 -[[image:1654504596150-405.png]]
133 -
134 -
135 -
136 -**Add APP KEY and DEV EUI**
137 -
138 -[[image:1654504683289-357.png]]
139 -
140 -
141 -
142 -(% style="color:blue" %)**Step 2**(%%): Power on LSE01
143 -
144 -
145 -Put a Jumper on JP2 to power on the device. ( The Jumper must be in FLASH position).
146 -
147 -[[image:image-20220606163915-7.png]]
148 -
149 -
150 -(% style="color:blue" %)**Step 3**(%%)**:** The LSE01 will auto join to the TTN network. After join success, it will start to upload messages to TTN and you can see the messages in the panel.
151 -
152 -[[image:1654504778294-788.png]]
153 -
154 -
155 -
156 -== 2.3 Uplink Payload ==
157 -
158 -
159 -=== 2.3.1 MOD~=0(Default Mode) ===
160 -
161 -LSE01 will uplink payload via LoRaWAN with below payload format: 
162 -
163 163  (((
164 -Uplink payload includes in total 11 bytes.
122 +The NDDS75 is equipped with a NB-IoT module, the pre-loaded firmware in NDDS75 will get environment data from sensors and send the value to local NB-IoT network via the NB-IoT module.  The NB-IoT network will forward this value to IoT server via the protocol defined by NDDS75.
165 165  )))
166 166  
167 -(% border="1" cellspacing="10" style="background-color:#ffffcc; width:500px" %)
168 -|(((
169 -**Size**
170 170  
171 -**(bytes)**
172 -)))|**2**|**2**|**2**|**2**|**2**|**1**
173 -|**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(((
174 -Temperature
175 -
176 -(Reserve, Ignore now)
177 -)))|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]]|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]]|(((
178 -MOD & Digital Interrupt
179 -
180 -(Optional)
181 -)))
182 -
183 -
184 -
185 -
186 -=== 2.3.2 MOD~=1(Original value) ===
187 -
188 -This mode can get the original AD value of moisture and original conductivity (with temperature drift compensation).
189 -
190 -(% border="1" cellspacing="10" style="background-color:#ffffcc; width:500px" %)
191 -|(((
192 -**Size**
193 -
194 -**(bytes)**
195 -)))|**2**|**2**|**2**|**2**|**2**|**1**
196 -|**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(((
197 -Temperature
198 -
199 -(Reserve, Ignore now)
200 -)))|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]](raw)|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]](raw)|(((
201 -MOD & Digital Interrupt
202 -
203 -(Optional)
204 -)))
205 -
206 -
207 -
208 -
209 -=== 2.3.3 Battery Info ===
210 -
211 211  (((
212 -Check the battery voltage for LSE01.
127 +The diagram below shows the working flow in default firmware of NDDS75:
213 213  )))
214 214  
215 215  (((
216 -Ex1: 0x0B45 = 2885mV
131 +
217 217  )))
218 218  
219 -(((
220 -Ex2: 0x0B49 = 2889mV
221 -)))
134 +[[image:1657328659945-416.png]]
222 222  
223 -
224 -
225 -=== 2.3.4 Soil Moisture ===
226 -
227 227  (((
228 -Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil.
229 -)))
230 -
231 -(((
232 -For example, if the data you get from the register is __0x05 0xDC__, the moisture content in the soil is
233 -)))
234 -
235 -(((
236 236  
237 237  )))
238 238  
239 -(((
240 -(% style="color:#4f81bd" %)**05DC(H) = 1500(D) /100 = 15%.**
241 -)))
242 242  
141 +== 2.2 ​ Configure the NSE01 ==
243 243  
244 244  
245 -=== 2.3.5 Soil Temperature ===
144 +=== 2.2.1 Test Requirement ===
246 246  
247 -(((
248 - Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is 0x09 0xEC, the temperature content in the soil is
249 -)))
250 250  
251 251  (((
252 -**Example**:
148 +To use NSE01 in your city, make sure meet below requirements:
253 253  )))
254 254  
255 -(((
256 -If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/100 = 2.61 °C
257 -)))
151 +* Your local operator has already distributed a NB-IoT Network there.
152 +* The local NB-IoT network used the band that NSE01 supports.
153 +* Your operator is able to distribute the data received in their NB-IoT network to your IoT server.
258 258  
259 259  (((
260 -If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C
156 +Below figure shows our testing structure. Here we have NB-IoT network coverage by China Mobile, the band they use is B8.  The NSE01 will use CoAP((% style="color:red" %)120.24.4.116:5683)(%%) or raw UDP((% style="color:red" %)120.24.4.116:5601)(%%) or MQTT((% style="color:red" %)120.24.4.116:1883)(%%)or TCP((% style="color:red" %)120.24.4.116:5600)(%%)protocol to send data to the test server
261 261  )))
262 262  
263 263  
160 +[[image:1657249419225-449.png]]
264 264  
265 -=== 2.3.6 Soil Conductivity (EC) ===
266 266  
267 -(((
268 -Obtain (% style="color:#4f81bd" %)**__soluble salt concentration__**(%%) in soil or (% style="color:#4f81bd" %)**__soluble ion concentration in liquid fertilizer__**(%%) or (% style="color:#4f81bd" %)**__planting medium__**(%%). The value range of the register is 0 - 20000(Decimal)( Can be greater than 20000).
269 -)))
270 270  
271 -(((
272 -For example, if the data you get from the register is 0x00 0xC8, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm.
273 -)))
164 +=== 2.2.2 Insert SIM card ===
274 274  
275 275  (((
276 -Generally, the EC value of irrigation water is less than 800uS / cm.
167 +Insert the NB-IoT Card get from your provider.
277 277  )))
278 278  
279 279  (((
280 -
171 +User need to take out the NB-IoT module and insert the SIM card like below:
281 281  )))
282 282  
283 -(((
284 -
285 -)))
286 286  
287 -=== 2.3.7 MOD ===
175 +[[image:1657249468462-536.png]]
288 288  
289 -Firmware version at least v2.1 supports changing mode.
290 290  
291 -For example, bytes[10]=90
292 292  
293 -mod=(bytes[10]>>7)&0x01=1.
179 +=== 2.2.3 Connect USB – TTL to NSE01 to configure it ===
294 294  
295 -
296 -**Downlink Command:**
297 -
298 -If payload = 0x0A00, workmode=0
299 -
300 -If** **payload =** **0x0A01, workmode=1
301 -
302 -
303 -
304 -=== 2.3.8 ​Decode payload in The Things Network ===
305 -
306 -While using TTN network, you can add the payload format to decode the payload.
307 -
308 -
309 -[[image:1654505570700-128.png]]
310 -
311 311  (((
312 -The payload decoder function for TTN is here:
313 -)))
314 -
315 315  (((
316 -LSE01 TTN Payload Decoder: [[https:~~/~~/www.dropbox.com/sh/si8icbrjlamxqdb/AAACYwjsxxr5fj_vpqRtrETAa?dl=0>>https://www.dropbox.com/sh/si8icbrjlamxqdb/AAACYwjsxxr5fj_vpqRtrETAa?dl=0]]
183 +User need to configure NSE01 via serial port to set the (% style="color:blue" %)**Server Address** / **Uplink Topic** (%%)to define where and how-to uplink packets. NSE01 support AT Commands, user can use a USB to TTL adapter to connect to NSE01 and use AT Commands to configure it, as below.
317 317  )))
185 +)))
318 318  
319 319  
320 -== 2.4 Uplink Interval ==
188 +**Connection:**
321 321  
322 -The LSE01 by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link: [[Change Uplink Interval>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H4.1ChangeUplinkInterval"]]
190 + (% style="background-color:yellow" %)USB TTL GND <~-~-~-~-> GND
323 323  
192 + (% style="background-color:yellow" %)USB TTL TXD <~-~-~-~-> UART_RXD
324 324  
194 + (% style="background-color:yellow" %)USB TTL RXD <~-~-~-~-> UART_TXD
325 325  
326 -== 2.5 Downlink Payload ==
327 327  
328 -By default, LSE50 prints the downlink payload to console port.
197 +In the PC, use below serial tool settings:
329 329  
330 -[[image:image-20220606165544-8.png]]
199 +* Baud:  (% style="color:green" %)**9600**
200 +* Data bits:** (% style="color:green" %)8(%%)**
201 +* Stop bits: (% style="color:green" %)**1**
202 +* Parity:  (% style="color:green" %)**None**
203 +* Flow Control: (% style="color:green" %)**None**
331 331  
332 -
333 333  (((
334 -**Examples:**
206 +Make sure the switch is in FLASH position, then power on device by connecting the jumper on NSE01. NSE01 will output system info once power on as below, we can enter the (% style="color:green" %)**password: 12345678**(%%) to access AT Command input.
335 335  )))
336 336  
337 -(((
338 -
339 -)))
209 +[[image:image-20220708110657-3.png]]
340 340  
341 -* (((
342 -**Set TDC**
343 -)))
344 -
345 345  (((
346 -If the payload=0100003C, it means set the END Node’s TDC to 0x00003C=60(S), while type code is 01.
212 +(% style="color:red" %)Note: the valid AT Commands can be found at: (%%)[[http:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/]]
347 347  )))
348 348  
349 -(((
350 -Payload:    01 00 00 1E    TDC=30S
351 -)))
352 352  
353 -(((
354 -Payload:    01 00 00 3C    TDC=60S
355 -)))
356 356  
357 -(((
358 -
359 -)))
217 +=== 2.2.4 Use CoAP protocol to uplink data ===
360 360  
361 -* (((
362 -**Reset**
363 -)))
219 +(% style="color:red" %)Note: if you don't have CoAP server, you can refer this link to set up one: (%%)[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/>>http://wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/]]
364 364  
365 -(((
366 -If payload = 0x04FF, it will reset the LSE01
367 -)))
368 368  
222 +**Use below commands:**
369 369  
370 -* **CFM**
224 +* (% style="color:blue" %)**AT+PRO=1**  (%%) ~/~/ Set to use CoAP protocol to uplink
225 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5683   ** (%%)~/~/ to set CoAP server address and port
226 +* (% style="color:blue" %)**AT+URI=5,11,"mqtt",11,"coap",12,"0",15,"c=text1",23,"0" ** (%%) ~/~/Set COAP resource path
371 371  
372 -Downlink Payload: 05000001, Set AT+CFM=1 or 05000000 , set AT+CFM=0
228 +For parameter description, please refer to AT command set
373 373  
230 +[[image:1657249793983-486.png]]
374 374  
375 375  
376 -== 2.6 ​Show Data in DataCake IoT Server ==
233 +After configure the server address and (% style="color:green" %)**reset the device**(%%) (via AT+ATZ ), NSE01 will start to uplink sensor values to CoAP server.
377 377  
378 -(((
379 -[[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps:
380 -)))
235 +[[image:1657249831934-534.png]]
381 381  
382 -(((
383 -
384 -)))
385 385  
386 -(((
387 -(% style="color:blue" %)**Step 1**(%%):  Be sure that your device is programmed and properly connected to the network at this time.
388 -)))
389 389  
390 -(((
391 -(% style="color:blue" %)**Step 2**(%%):  To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps:
392 -)))
239 +=== 2.2.5 Use UDP protocol to uplink data(Default protocol) ===
393 393  
241 +This feature is supported since firmware version v1.0.1
394 394  
395 -[[image:1654505857935-743.png]]
396 396  
244 +* (% style="color:blue" %)**AT+PRO=2   ** (%%) ~/~/ Set to use UDP protocol to uplink
245 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5601   ** (%%) ~/~/ to set UDP server address and port
246 +* (% style="color:blue" %)**AT+CFM=1       ** (%%) ~/~/If the server does not respond, this command is unnecessary
397 397  
398 -[[image:1654505874829-548.png]]
248 +[[image:1657249864775-321.png]]
399 399  
400 400  
401 -(% style="color:blue" %)**Step 3**(%%)**:**  Create an account or log in Datacake.
251 +[[image:1657249930215-289.png]]
402 402  
403 -(% style="color:blue" %)**Step 4**(%%)**:**  Search the LSE01 and add DevEUI.
404 404  
405 405  
406 -[[image:1654505905236-553.png]]
255 +=== 2.2.6 Use MQTT protocol to uplink data ===
407 407  
257 +This feature is supported since firmware version v110
408 408  
409 -After added, the sensor data arrive TTN, it will also arrive and show in Mydevices.
410 410  
411 -[[image:1654505925508-181.png]]
260 +* (% style="color:blue" %)**AT+PRO=3   ** (%%) ~/~/Set to use MQTT protocol to uplink
261 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,1883   ** (%%) ~/~/Set MQTT server address and port
262 +* (% style="color:blue" %)**AT+CLIENT=CLIENT       ** (%%)~/~/Set up the CLIENT of MQTT
263 +* (% style="color:blue" %)**AT+UNAME=UNAME                               **(%%)~/~/Set the username of MQTT
264 +* (% style="color:blue" %)**AT+PWD=PWD                                        **(%%)~/~/Set the password of MQTT
265 +* (% style="color:blue" %)**AT+PUBTOPIC=NSE01_PUB                    **(%%)~/~/Set the sending topic of MQTT
266 +* (% style="color:blue" %)**AT+SUBTOPIC=NSE01_SUB          **(%%) ~/~/Set the subscription topic of MQTT
412 412  
268 +[[image:1657249978444-674.png]]
413 413  
414 414  
415 -== 2.7 Frequency Plans ==
271 +[[image:1657249990869-686.png]]
416 416  
417 -The LSE01 uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.
418 418  
274 +(((
275 +MQTT protocol has a much higher power consumption compare vs UDP / CoAP protocol. Please check the power analyze document and adjust the uplink period to a suitable interval.
276 +)))
419 419  
420 -=== 2.7.1 EU863-870 (EU868) ===
421 421  
422 -(% style="color:#037691" %)** Uplink:**
423 423  
424 -868.1 - SF7BW125 to SF12BW125
280 +=== 2.2.7 Use TCP protocol to uplink data ===
425 425  
426 -868.3 - SF7BW125 to SF12BW125 and SF7BW250
282 +This feature is supported since firmware version v110
427 427  
428 -868.5 - SF7BW125 to SF12BW125
429 429  
430 -867.1 - SF7BW125 to SF12BW125
285 +* (% style="color:blue" %)**AT+PRO=4   ** (%%) ~/~/ Set to use TCP protocol to uplink
286 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5600   **(%%) ~/~/ to set TCP server address and port
431 431  
432 -867.3 - SF7BW125 to SF12BW125
288 +[[image:1657250217799-140.png]]
433 433  
434 -867.5 - SF7BW125 to SF12BW125
435 435  
436 -867.7 - SF7BW125 to SF12BW125
291 +[[image:1657250255956-604.png]]
437 437  
438 -867.9 - SF7BW125 to SF12BW125
439 439  
440 -868.8 - FSK
441 441  
295 +=== 2.2.8 Change Update Interval ===
442 442  
443 -(% style="color:#037691" %)** Downlink:**
297 +User can use below command to change the (% style="color:green" %)**uplink interval**.
444 444  
445 -Uplink channels 1-9 (RX1)
299 +* (% style="color:blue" %)**AT+TDC=600      ** (%%)~/~/ Set Update Interval to 600s
446 446  
447 -869.525 - SF9BW125 (RX2 downlink only)
301 +(((
302 +(% style="color:red" %)**NOTE:**
303 +)))
448 448  
305 +(((
306 +(% style="color:red" %)1. By default, the device will send an uplink message every 1 hour.
307 +)))
449 449  
450 450  
451 -=== 2.7.2 US902-928(US915) ===
452 452  
453 -Used in USA, Canada and South America. Default use CHE=2
311 +== 2.3  Uplink Payload ==
454 454  
455 -(% style="color:#037691" %)**Uplink:**
313 +In this mode, uplink payload includes in total 18 bytes
456 456  
457 -903.9 - SF7BW125 to SF10BW125
315 +(% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:510px" %)
316 +|=(% style="width: 60px;" %)(((
317 +**Size(bytes)**
318 +)))|=(% style="width: 50px;" %)**6**|=(% style="width: 25px;" %)2|=(% style="width: 25px;" %)**2**|=(% style="width: 70px;" %)**1**|=(% style="width: 60px;" %)**2**|=(% style="width: 80px;" %)**2**|=(% style="width: 90px;" %)**2**|=(% style="width: 50px;" %)**1**
319 +|(% style="width:97px" %)**Value**|(% style="width:83px" %)[[Device ID>>||anchor="H2.4.1A0A0DeviceID"]]|(% style="width:41px" %)[[Ver>>||anchor="H2.4.2A0VersionInfo"]]|(% style="width:46px" %)[[BAT>>||anchor="H2.4.3A0BatteryInfo"]]|(% style="width:123px" %)[[Signal Strength>>||anchor="H2.4.4A0SignalStrength"]]|(% style="width:108px" %)[[Soil Moisture>>||anchor="H2.4.5A0SoilMoisture"]]|(% style="width:133px" %)[[Soil Temperature>>||anchor="H2.4.6A0SoilTemperature"]]|(% style="width:159px" %)[[Soil Conductivity(EC)>>||anchor="H2.4.7A0SoilConductivity28EC29"]]|(% style="width:80px" %)[[Interrupt>>||anchor="H2.4.8A0DigitalInterrupt"]]
458 458  
459 -904.1 - SF7BW125 to SF10BW125
321 +(((
322 +If we use the MQTT client to subscribe to this MQTT topic, we can see the following information when the NSE01 uplink data.
323 +)))
460 460  
461 -904.3 - SF7BW125 to SF10BW125
462 462  
463 -904.5 - SF7BW125 to SF10BW125
326 +[[image:image-20220708111918-4.png]]
464 464  
465 -904.7 - SF7BW125 to SF10BW125
466 466  
467 -904.9 - SF7BW125 to SF10BW125
329 +The payload is ASCII string, representative same HEX:
468 468  
469 -905.1 - SF7BW125 to SF10BW125
331 +0x72403155615900640c7817075e0a8c02f900 where:
470 470  
471 -905.3 - SF7BW125 to SF10BW125
333 +* Device ID: 0x 724031556159 = 724031556159
334 +* Version: 0x0064=100=1.0.0
472 472  
336 +* BAT: 0x0c78 = 3192 mV = 3.192V
337 +* Singal: 0x17 = 23
338 +* Soil Moisture: 0x075e= 1886 = 18.86  %
339 +* Soil Temperature:0x0a8c =2700=27 °C
340 +* Soil Conductivity(EC) = 0x02f9 =761 uS /cm
341 +* Interrupt: 0x00 = 0
473 473  
474 -(% style="color:#037691" %)**Downlink:**
343 +== 2.4  Payload Explanation and Sensor Interface ==
475 475  
476 -923.3 - SF7BW500 to SF12BW500
477 477  
478 -923.9 - SF7BW500 to SF12BW500
346 +=== 2.4.1  Device ID ===
479 479  
480 -924.5 - SF7BW500 to SF12BW500
348 +(((
349 +By default, the Device ID equal to the last 6 bytes of IMEI.
350 +)))
481 481  
482 -925.1 - SF7BW500 to SF12BW500
352 +(((
353 +User can use (% style="color:blue" %)**AT+DEUI**(%%) to set Device ID
354 +)))
483 483  
484 -925.7 - SF7BW500 to SF12BW500
356 +(((
357 +**Example:**
358 +)))
485 485  
486 -926.3 - SF7BW500 to SF12BW500
360 +(((
361 +AT+DEUI=A84041F15612
362 +)))
487 487  
488 -926.9 - SF7BW500 to SF12BW500
364 +(((
365 +The Device ID is stored in a none-erase area, Upgrade the firmware or run AT+FDR won't erase Device ID.
366 +)))
489 489  
490 -927.5 - SF7BW500 to SF12BW500
491 491  
492 -923.3 - SF12BW500(RX2 downlink only)
493 493  
370 +=== 2.4.2  Version Info ===
494 494  
372 +(((
373 +Specify the software version: 0x64=100, means firmware version 1.00.
374 +)))
495 495  
496 -=== 2.7.3 CN470-510 (CN470) ===
376 +(((
377 +For example: 0x00 64 : this device is NSE01 with firmware version 1.0.0.
378 +)))
497 497  
498 -Used in China, Default use CHE=1
499 499  
500 -(% style="color:#037691" %)**Uplink:**
501 501  
502 -486.3 - SF7BW125 to SF12BW125
382 +=== 2.4.3  Battery Info ===
503 503  
504 -486.5 - SF7BW125 to SF12BW125
384 +(((
385 +Check the battery voltage for LSE01.
386 +)))
505 505  
506 -486.7 - SF7BW125 to SF12BW125
388 +(((
389 +Ex1: 0x0B45 = 2885mV
390 +)))
507 507  
508 -486.9 - SF7BW125 to SF12BW125
392 +(((
393 +Ex2: 0x0B49 = 2889mV
394 +)))
509 509  
510 -487.1 - SF7BW125 to SF12BW125
511 511  
512 -487.3 - SF7BW125 to SF12BW125
513 513  
514 -487.5 - SF7BW125 to SF12BW125
398 +=== 2.4. Signal Strength ===
515 515  
516 -487.7 - SF7BW125 to SF12BW125
400 +(((
401 +NB-IoT Network signal Strength.
402 +)))
517 517  
404 +(((
405 +**Ex1: 0x1d = 29**
406 +)))
518 518  
519 -(% style="color:#037691" %)**Downlink:**
408 +(((
409 +(% style="color:blue" %)**0**(%%)  -113dBm or less
410 +)))
520 520  
521 -506.7 - SF7BW125 to SF12BW125
412 +(((
413 +(% style="color:blue" %)**1**(%%)  -111dBm
414 +)))
522 522  
523 -506.9 - SF7BW125 to SF12BW125
416 +(((
417 +(% style="color:blue" %)**2...30**(%%) -109dBm... -53dBm
418 +)))
524 524  
525 -507.1 - SF7BW125 to SF12BW125
420 +(((
421 +(% style="color:blue" %)**31**  (%%) -51dBm or greater
422 +)))
526 526  
527 -507.3 - SF7BW125 to SF12BW125
424 +(((
425 +(% style="color:blue" %)**99**   (%%) Not known or not detectable
426 +)))
528 528  
529 -507.5 - SF7BW125 to SF12BW125
530 530  
531 -507.7 - SF7BW125 to SF12BW125
532 532  
533 -507.9 - SF7BW125 to SF12BW125
430 +=== 2.4.5  Soil Moisture ===
534 534  
535 -508.1 - SF7BW125 to SF12BW125
432 +(((
433 +(((
434 +Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil.
435 +)))
436 +)))
536 536  
537 -505.3 - SF12BW125 (RX2 downlink only)
438 +(((
439 +(((
440 +For example, if the data you get from the register is **__0x05 0xDC__**, the moisture content in the soil is
441 +)))
442 +)))
538 538  
444 +(((
445 +
446 +)))
539 539  
448 +(((
449 +(% style="color:#4f81bd" %)**05DC(H) = 1500(D) /100 = 15%.**
450 +)))
540 540  
541 -=== 2.7.4 AU915-928(AU915) ===
542 542  
543 -Default use CHE=2
544 544  
545 -(% style="color:#037691" %)**Uplink:**
454 +=== 2.4.6  Soil Temperature ===
546 546  
547 -916.8 - SF7BW125 to SF12BW125
456 +(((
457 +Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is __**0x09 0xEC**__, the temperature content in the soil is
458 +)))
548 548  
549 -917.0 - SF7BW125 to SF12BW125
460 +(((
461 +**Example**:
462 +)))
550 550  
551 -917.2 - SF7BW125 to SF12BW125
464 +(((
465 +If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/100 = 2.61 °C
466 +)))
552 552  
553 -917.4 - SF7BW125 to SF12BW125
468 +(((
469 +If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C
470 +)))
554 554  
555 -917.6 - SF7BW125 to SF12BW125
556 556  
557 -917.8 - SF7BW125 to SF12BW125
558 558  
559 -918.0 - SF7BW125 to SF12BW125
474 +=== 2.4.7  Soil Conductivity (EC) ===
560 560  
561 -918.2 - SF7BW125 to SF12BW125
476 +(((
477 +Obtain (% style="color:#4f81bd" %)**__soluble salt concentration__**(%%) in soil or (% style="color:#4f81bd" %)**__soluble ion concentration in liquid fertilizer__**(%%) or (% style="color:#4f81bd" %)**__planting medium__**(%%). The value range of the register is 0 - 20000(Decimal)( Can be greater than 20000).
478 +)))
562 562  
480 +(((
481 +For example, if the data you get from the register is __**0x00 0xC8**__, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm.
482 +)))
563 563  
564 -(% style="color:#037691" %)**Downlink:**
484 +(((
485 +Generally, the EC value of irrigation water is less than 800uS / cm.
486 +)))
565 565  
566 -923.3 - SF7BW500 to SF12BW500
488 +(((
489 +
490 +)))
567 567  
568 -923.9 - SF7BW500 to SF12BW500
492 +(((
493 +
494 +)))
569 569  
570 -924.5 - SF7BW500 to SF12BW500
496 +=== 2.4. Digital Interrupt ===
571 571  
572 -925.1 - SF7BW500 to SF12BW500
498 +(((
499 +Digital Interrupt refers to pin (% style="color:blue" %)**GPIO_EXTI**(%%), and there are different trigger methods. When there is a trigger, the NSE01 will send a packet to the server.
500 +)))
573 573  
574 -925.7 - SF7BW500 to SF12BW500
502 +(((
503 +The command is:
504 +)))
575 575  
576 -926.3 - SF7BW500 to SF12BW500
506 +(((
507 +(% style="color:blue" %)**AT+INTMOD=3 **(%%) ~/~/(more info about INMOD please refer [[**AT Command Manual**>>url:https://www.dragino.com/downloads/downloads/NB-IoT/NBSN95/DRAGINO_NBSN95-NB_AT%20Commands_v1.1.0.pdf]])**.**
508 +)))
577 577  
578 -926.9 - SF7BW500 to SF12BW500
579 579  
580 -927.5 - SF7BW500 to SF12BW500
511 +(((
512 +The lower four bits of this data field shows if this packet is generated by interrupt or not. Click here for the hardware and software set up.
513 +)))
581 581  
582 -923.3 - SF12BW500(RX2 downlink only)
583 583  
516 +(((
517 +Example:
518 +)))
584 584  
520 +(((
521 +0x(00): Normal uplink packet.
522 +)))
585 585  
586 -=== 2.7.5 AS920-923 & AS923-925 (AS923) ===
524 +(((
525 +0x(01): Interrupt Uplink Packet.
526 +)))
587 587  
588 -(% style="color:#037691" %)**Default Uplink channel:**
589 589  
590 -923.2 - SF7BW125 to SF10BW125
591 591  
592 -923.4 - SF7BW125 to SF10BW125
530 +=== 2.4.9  ​+5V Output ===
593 593  
532 +(((
533 +NSE01 will enable +5V output before all sampling and disable the +5v after all sampling. 
534 +)))
594 594  
595 -(% style="color:#037691" %)**Additional Uplink Channel**:
596 596  
597 -(OTAA mode, channel added by JoinAccept message)
537 +(((
538 +The 5V output time can be controlled by AT Command.
539 +)))
598 598  
599 -(% style="color:#037691" %)**AS920~~AS923 for Japan, Malaysia, Singapore**:
541 +(((
542 +(% style="color:blue" %)**AT+5VT=1000**
543 +)))
600 600  
601 -922.2 - SF7BW125 to SF10BW125
545 +(((
546 +Means set 5V valid time to have 1000ms. So the real 5V output will actually have 1000ms + sampling time for other sensors.
547 +)))
602 602  
603 -922.4 - SF7BW125 to SF10BW125
604 604  
605 -922.6 - SF7BW125 to SF10BW125
606 606  
607 -922.8 - SF7BW125 to SF10BW125
551 +== 2.5  Downlink Payload ==
608 608  
609 -923.0 - SF7BW125 to SF10BW125
553 +By default, NSE01 prints the downlink payload to console port.
610 610  
611 -922.0 - SF7BW125 to SF10BW125
555 +[[image:image-20220708133731-5.png]]
612 612  
613 613  
614 -(% style="color:#037691" %)**AS923 ~~ AS925 for Brunei, Cambodia, Hong Kong, Indonesia, Laos, Taiwan, Thailand, Vietnam**:
558 +(((
559 +(% style="color:blue" %)**Examples:**
560 +)))
615 615  
616 -923.6 - SF7BW125 to SF10BW125
562 +(((
563 +
564 +)))
617 617  
618 -923.8 - SF7BW125 to SF10BW125
566 +* (((
567 +(% style="color:blue" %)**Set TDC**
568 +)))
619 619  
620 -924.0 - SF7BW125 to SF10BW125
570 +(((
571 +If the payload=0100003C, it means set the END Node's TDC to 0x00003C=60(S), while type code is 01.
572 +)))
621 621  
622 -924.2 - SF7BW125 to SF10BW125
574 +(((
575 +Payload:    01 00 00 1E    TDC=30S
576 +)))
623 623  
624 -924.4 - SF7BW125 to SF10BW125
578 +(((
579 +Payload:    01 00 00 3C    TDC=60S
580 +)))
625 625  
626 -924.6 - SF7BW125 to SF10BW125
582 +(((
583 +
584 +)))
627 627  
586 +* (((
587 +(% style="color:blue" %)**Reset**
588 +)))
628 628  
629 -(% style="color:#037691" %)** Downlink:**
590 +(((
591 +If payload = 0x04FF, it will reset the NSE01
592 +)))
630 630  
631 -Uplink channels 1-8 (RX1)
632 632  
633 -923.2 - SF10BW125 (RX2)
595 +* (% style="color:blue" %)**INTMOD**
634 634  
597 +(((
598 +Downlink Payload: 06000003, Set AT+INTMOD=3
599 +)))
635 635  
636 636  
637 -=== 2.7.6 KR920-923 (KR920) ===
638 638  
639 -Default channel:
603 +== 2.6  ​LED Indicator ==
640 640  
641 -922.1 - SF7BW125 to SF12BW125
605 +(((
606 +The NSE01 has an internal LED which is to show the status of different state.
642 642  
643 -922.3 - SF7BW125 to SF12BW125
644 644  
645 -922.5 - SF7BW125 to SF12BW125
609 +* When power on, NSE01 will detect if sensor probe is connected, if probe detected, LED will blink four times. (no blinks in this step is no probe)
610 +* Then the LED will be on for 1 second means device is boot normally.
611 +* After NSE01 join NB-IoT network. The LED will be ON for 3 seconds.
612 +* For each uplink probe, LED will be on for 500ms.
613 +)))
646 646  
647 647  
648 -(% style="color:#037691" %)**Uplink: (OTAA mode, channel added by JoinAccept message)**
649 649  
650 -922.1 - SF7BW125 to SF12BW125
651 651  
652 -922.3 - SF7BW125 to SF12BW125
618 +== 2.7  Installation in Soil ==
653 653  
654 -922.5 - SF7BW125 to SF12BW125
620 +__**Measurement the soil surface**__
655 655  
656 -922.7 - SF7BW125 to SF12BW125
622 +(((
623 +Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting. [[https:~~/~~/img.alicdn.com/imgextra/i3/2005165265/O1CN010rj9Oh1olPsQxrdUK_!!2005165265.jpg>>url:https://img.alicdn.com/imgextra/i3/2005165265/O1CN010rj9Oh1olPsQxrdUK_!!2005165265.jpg]]
624 +)))
657 657  
658 -922.9 - SF7BW125 to SF12BW125
626 +[[image:1657259653666-883.png]] ​
659 659  
660 -923.1 - SF7BW125 to SF12BW125
661 661  
662 -923.3 - SF7BW125 to SF12BW125
629 +(((
630 +
663 663  
632 +(((
633 +Dig a hole with diameter > 20CM.
634 +)))
664 664  
665 -(% style="color:#037691" %)**Downlink:**
636 +(((
637 +Horizontal insert the probe to the soil and fill the hole for long term measurement.
638 +)))
639 +)))
666 666  
667 -Uplink channels 1-7(RX1)
641 +[[image:1654506665940-119.png]]
668 668  
669 -921.9 - SF12BW125 (RX2 downlink only; SF12BW125 might be changed to SF9BW125)
643 +(((
644 +
645 +)))
670 670  
671 671  
648 +== 2.8  ​Firmware Change Log ==
672 672  
673 -=== 2.7.7 IN865-867 (IN865) ===
674 674  
675 -(% style="color:#037691" %)** Uplink:**
651 +Download URL & Firmware Change log
676 676  
677 -865.0625 - SF7BW125 to SF12BW125
653 +[[www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/Firmware/]]
678 678  
679 -865.4025 - SF7BW125 to SF12BW125
680 680  
681 -865.9850 - SF7BW125 to SF12BW125
656 +Upgrade Instruction: [[Upgrade_Firmware>>||anchor="H5.1200BHowtoUpgradeFirmware"]]
682 682  
683 683  
684 -(% style="color:#037691" %) **Downlink:**
685 685  
686 -Uplink channels 1-3 (RX1)
660 +== 2.9  ​Battery Analysis ==
687 687  
688 -866.550 - SF10BW125 (RX2)
662 +=== 2.9.1  ​Battery Type ===
689 689  
690 690  
691 -
692 -
693 -== 2.8 LED Indicator ==
694 -
695 -The LSE01 has an internal LED which is to show the status of different state.
696 -
697 -* Blink once when device power on.
698 -* Solid ON for 5 seconds once device successful Join the network.
699 -* Blink once when device transmit a packet.
700 -
701 -== 2.9 Installation in Soil ==
702 -
703 -**Measurement the soil surface**
704 -
705 -
706 -[[image:1654506634463-199.png]] ​
707 -
708 708  (((
709 -(((
710 -Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting.
666 +The NSE01 battery is a combination of an 8500mAh Li/SOCI2 Battery and a Super Capacitor. The battery is none-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter.
711 711  )))
712 -)))
713 713  
714 714  
715 -
716 -[[image:1654506665940-119.png]]
717 -
718 718  (((
719 -Dig a hole with diameter > 20CM.
671 +The battery is designed to last for several years depends on the actually use environment and update interval. 
720 720  )))
721 721  
722 -(((
723 -Horizontal insert the probe to the soil and fill the hole for long term measurement.
724 -)))
725 725  
726 -
727 -== 2.10 ​Firmware Change Log ==
728 -
729 729  (((
730 -**Firmware download link:**
676 +The battery related documents as below:
731 731  )))
732 732  
733 -(((
734 -[[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/]]
735 -)))
679 +* [[Battery Dimension>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]
680 +* [[Lithium-Thionyl Chloride Battery datasheet>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]
681 +* [[Lithium-ion Battery-Capacitor datasheet>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]
736 736  
737 737  (((
738 -
684 +[[image:image-20220708140453-6.png]]
739 739  )))
740 740  
741 -(((
742 -**Firmware Upgrade Method: **[[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome]]
743 -)))
744 744  
745 -(((
746 -
747 -)))
748 748  
749 -(((
750 -**V1.0.**
751 -)))
689 +=== 2.9.2  Power consumption Analyze ===
752 752  
753 753  (((
754 -Release
692 +Dragino battery powered product are all runs in Low Power mode. We have an update battery calculator which base on the measurement of the real device. User can use this calculator to check the battery life and calculate the battery life if want to use different transmit interval.
755 755  )))
756 756  
757 757  
758 -== 2.11 ​Battery Analysis ==
759 -
760 -=== 2.11.1 ​Battery Type ===
761 -
762 762  (((
763 -The LSE01 battery is a combination of a 4000mAh Li/SOCI2 Battery and a Super Capacitor. The battery is non-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter.
697 +Instruction to use as below:
764 764  )))
765 765  
766 766  (((
767 -The battery is designed to last for more than 5 years for the LSN50.
701 +(% style="color:blue" %)**Step 1:  **(%%)Downlink the up-to-date DRAGINO_Battery_Life_Prediction_Table.xlsx from: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/]]
768 768  )))
769 769  
704 +
770 770  (((
771 -(((
772 -The battery-related documents are as below:
706 +(% style="color:blue" %)**Step 2: **(%%) Open it and choose
773 773  )))
774 -)))
775 775  
776 776  * (((
777 -[[Battery Dimension>>url:http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/&file=LSN50-Battery-Dimension.pdf]],
710 +Product Model
778 778  )))
779 779  * (((
780 -[[Lithium-Thionyl Chloride Battery  datasheet>>url:https://www.dragino.com/downloads/downloads/datasheet/Battery/ER26500/ER26500_Datasheet-EN.pdf]],
713 +Uplink Interval
781 781  )))
782 782  * (((
783 -[[Lithium-ion Battery-Capacitor datasheet>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC_1520_datasheet.jpg]], [[Tech Spec>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC1520%20Technical%20Specification20171123.pdf]]
716 +Working Mode
784 784  )))
785 785  
786 - [[image:image-20220610172436-1.png]]
719 +(((
720 +And the Life expectation in difference case will be shown on the right.
721 +)))
787 787  
723 +[[image:image-20220708141352-7.jpeg]]
788 788  
789 789  
790 -=== 2.11.2 ​Battery Note ===
791 791  
727 +=== 2.9.3  ​Battery Note ===
728 +
792 792  (((
793 793  The Li-SICO battery is designed for small current / long period application. It is not good to use a high current, short period transmit method. The recommended minimum period for use of this battery is 5 minutes. If you use a shorter period time to transmit LoRa, then the battery life may be decreased.
794 794  )))
... ... @@ -795,298 +795,176 @@
795 795  
796 796  
797 797  
798 -=== 2.11.3 Replace the battery ===
735 +=== 2.9. Replace the battery ===
799 799  
800 800  (((
801 -If Battery is lower than 2.7v, user should replace the battery of LSE01.
738 +The default battery pack of NSE01 includes a ER26500 plus super capacitor. If user can't find this pack locally, they can find ER26500 or equivalence without the SPC1520 capacitor, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes).
802 802  )))
803 803  
741 +
742 +
743 += 3. ​ Access NB-IoT Module =
744 +
804 804  (((
805 -You can change the battery in the LSE01.The type of battery is not limited as long as the output is between 3v to 3.6v. On the main board, there is a diode (D1) between the battery and the main circuit. If you need to use a battery with less than 3.3v, please remove the D1 and shortcut the two pads of it so there won’t be voltage drop between battery and main board.
746 +Users can directly access the AT command set of the NB-IoT module.
806 806  )))
807 807  
808 808  (((
809 -The default battery pack of LSE01 includes a ER18505 plus super capacitor. If user can’t find this pack locally, they can find ER18505 or equivalence, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes)
750 +The AT Command set can refer the BC35-G NB-IoT Module AT Command: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=datasheet/other_vendors/BC35-G/>>url:https://www.dragino.com/downloads/index.php?dir=datasheet/other_vendors/BC35-G/]] 
810 810  )))
811 811  
753 +[[image:1657261278785-153.png]]
812 812  
813 813  
814 -= 3. ​Using the AT Commands =
815 815  
816 -== 3.1 Access AT Commands ==
757 += 4.  Using the AT Commands =
817 817  
759 +== 4.1  Access AT Commands ==
818 818  
819 -LSE01 supports AT Command set in the stock firmware. You can use a USB to TTL adapter to connect to LSE01 for using AT command, as below.
761 +See this link for detail: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/]]
820 820  
821 -[[image:1654501986557-872.png||height="391" width="800"]]
822 822  
764 +AT+<CMD>?  : Help on <CMD>
823 823  
824 -Or if you have below board, use below connection:
766 +AT+<CMD>         : Run <CMD>
825 825  
768 +AT+<CMD>=<value> : Set the value
826 826  
827 -[[image:1654502005655-729.png||height="503" width="801"]]
770 +AT+<CMD>=?  : Get the value
828 828  
829 829  
830 -
831 -In the PC, you need to set the serial baud rate to (% style="color:green" %)**9600**(%%) to access the serial console for LSE01. LSE01 will output system info once power on as below:
832 -
833 -
834 - [[image:1654502050864-459.png||height="564" width="806"]]
835 -
836 -
837 -Below are the available commands, a more detailed AT Command manual can be found at [[AT Command Manual>>https://www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0]]: [[https:~~/~~/www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0>>https://www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0]]
838 -
839 -
840 -(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>? **(%%) : Help on <CMD>
841 -
842 -(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD> **(%%) : Run <CMD>
843 -
844 -(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>=<value>**(%%) : Set the value
845 -
846 -(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>=?**(%%)  : Get the value
847 -
848 -
849 849  (% style="color:#037691" %)**General Commands**(%%)      
850 850  
851 -(% style="background-color:#dcdcdc" %)**AT**(%%)  : Attention       
775 +AT  : Attention       
852 852  
853 -(% style="background-color:#dcdcdc" %)**AT?**(%%)  : Short Help     
777 +AT?  : Short Help     
854 854  
855 -(% style="background-color:#dcdcdc" %)**ATZ**(%%)  : MCU Reset    
779 +ATZ  : MCU Reset    
856 856  
857 -(% style="background-color:#dcdcdc" %)**AT+TDC**(%%)  : Application Data Transmission Interval 
781 +AT+TDC  : Application Data Transmission Interval
858 858  
783 +AT+CFG  : Print all configurations
859 859  
860 -(% style="color:#037691" %)**Keys, IDs and EUIs management**
785 +AT+CFGMOD           : Working mode selection
861 861  
862 -(% style="background-color:#dcdcdc" %)**AT+APPEUI**(%%)              : Application EUI      
787 +AT+INTMOD            : Set the trigger interrupt mode
863 863  
864 -(% style="background-color:#dcdcdc" %)**AT+APPKEY**(%%)              : Application Key     
789 +AT+5VT  : Set extend the time of 5V power  
865 865  
866 -(% style="background-color:#dcdcdc" %)**AT+APPSKEY**(%%)            : Application Session Key
791 +AT+PRO  : Choose agreement
867 867  
868 -(% style="background-color:#dcdcdc" %)**AT+DADDR**(%%)              : Device Address     
793 +AT+WEIGRE  : Get weight or set weight to 0
869 869  
870 -(% style="background-color:#dcdcdc" %)**AT+DEUI**(%%)                   : Device EUI     
795 +AT+WEIGAP  : Get or Set the GapValue of weight
871 871  
872 -(% style="background-color:#dcdcdc" %)**AT+NWKID**(%%)               : Network ID (You can enter this command change only after successful network connection
797 +AT+RXDL  : Extend the sending and receiving time
873 873  
874 -(% style="background-color:#dcdcdc" %)**AT+NWKSKEY**(%%)          : Network Session Key Joining and sending date on LoRa network  
799 +AT+CNTFAC  : Get or set counting parameters
875 875  
876 -(% style="background-color:#dcdcdc" %)**AT+CFM**(%%)  : Confirm Mode       
801 +AT+SERVADDR  : Server Address
877 877  
878 -(% style="background-color:#dcdcdc" %)**AT+CFS**(%%)                     : Confirm Status       
879 879  
880 -(% style="background-color:#dcdcdc" %)**AT+JOIN**(%%)  : Join LoRa? Network       
804 +(% style="color:#037691" %)**COAP Management**      
881 881  
882 -(% style="background-color:#dcdcdc" %)**AT+NJM**(%%)  : LoRa? Network Join Mode    
806 +AT+URI            : Resource parameters
883 883  
884 -(% style="background-color:#dcdcdc" %)**AT+NJS**(%%)                     : LoRa? Network Join Status    
885 885  
886 -(% style="background-color:#dcdcdc" %)**AT+RECV**(%%)                  : Print Last Received Data in Raw Format
809 +(% style="color:#037691" %)**UDP Management**
887 887  
888 -(% style="background-color:#dcdcdc" %)**AT+RECVB**(%%)                : Print Last Received Data in Binary Format      
811 +AT+CFM          : Upload confirmation mode (only valid for UDP)
889 889  
890 -(% style="background-color:#dcdcdc" %)**AT+SEND**(%%)                  : Send Text Data      
891 891  
892 -(% style="background-color:#dcdcdc" %)**AT+SENB**(%%)                  : Send Hexadecimal Data
814 +(% style="color:#037691" %)**MQTT Management**
893 893  
816 +AT+CLIENT               : Get or Set MQTT client
894 894  
895 -(% style="color:#037691" %)**LoRa Network Management**
818 +AT+UNAME  : Get or Set MQTT Username
896 896  
897 -(% style="background-color:#dcdcdc" %)**AT+ADR**(%%)          : Adaptive Rate
820 +AT+PWD                  : Get or Set MQTT password
898 898  
899 -(% style="background-color:#dcdcdc" %)**AT+CLASS**(%%)  : LoRa Class(Currently only support class A
822 +AT+PUBTOPI : Get or Set MQTT publish topic
900 900  
901 -(% style="background-color:#dcdcdc" %)**AT+DCS**(%%)  : Duty Cycle Settin
824 +AT+SUBTOPIC  : Get or Set MQTT subscription topic
902 902  
903 -(% style="background-color:#dcdcdc" %)**AT+DR**(%%)  : Data Rate (Can Only be Modified after ADR=0)     
904 904  
905 -(% style="background-color:#dcdcdc" %)**AT+FCD**(%%)  : Frame Counter Downlink       
827 +(% style="color:#037691" %)**Information**          
906 906  
907 -(% style="background-color:#dcdcdc" %)**AT+FCU**(%%)  : Frame Counter Uplink   
829 +AT+FDR  : Factory Data Reset
908 908  
909 -(% style="background-color:#dcdcdc" %)**AT+JN1DL**(%%)  : Join Accept Delay1
831 +AT+PWOR : Serial Access Password
910 910  
911 -(% style="background-color:#dcdcdc" %)**AT+JN2DL**(%%)  : Join Accept Delay2
912 912  
913 -(% style="background-color:#dcdcdc" %)**AT+PNM**(%%)  : Public Network Mode   
914 914  
915 -(% style="background-color:#dcdcdc" %)**AT+RX1DL**(%%)  : Receive Delay1      
835 += ​5.  FAQ =
916 916  
917 -(% style="background-color:#dcdcdc" %)**AT+RX2DL**(%%)  : Receive Delay2      
837 +== 5.1 How to Upgrade Firmware ==
918 918  
919 -(% style="background-color:#dcdcdc" %)**AT+RX2DR**(%%)  : Rx2 Window Data Rate 
920 920  
921 -(% style="background-color:#dcdcdc" %)**AT+RX2FQ**(%%)  : Rx2 Window Frequency
922 -
923 -(% style="background-color:#dcdcdc" %)**AT+TXP**(%%)  : Transmit Power
924 -
925 -(% style="background-color:#dcdcdc" %)**AT+ MOD**(%%)  : Set work mode
926 -
927 -
928 -(% style="color:#037691" %)**Information** 
929 -
930 -(% style="background-color:#dcdcdc" %)**AT+RSSI**(%%)           : RSSI of the Last Received Packet   
931 -
932 -(% style="background-color:#dcdcdc" %)**AT+SNR**(%%)           : SNR of the Last Received Packet   
933 -
934 -(% style="background-color:#dcdcdc" %)**AT+VER**(%%)           : Image Version and Frequency Band       
935 -
936 -(% style="background-color:#dcdcdc" %)**AT+FDR**(%%)           : Factory Data Reset
937 -
938 -(% style="background-color:#dcdcdc" %)**AT+PORT**(%%)  : Application Port    
939 -
940 -(% style="background-color:#dcdcdc" %)**AT+CHS**(%%)  : Get or Set Frequency (Unit: Hz) for Single Channel Mode
941 -
942 - (% style="background-color:#dcdcdc" %)**AT+CHE**(%%)  : Get or Set eight channels mode, Only for US915, AU915, CN470
943 -
944 -
945 -= ​4. FAQ =
946 -
947 -== 4.1 ​How to change the LoRa Frequency Bands/Region? ==
948 -
949 949  (((
950 -You can follow the instructions for [[how to upgrade image>>||anchor="H2.10200BFirmwareChangeLog"]].
951 -When downloading the images, choose the required image file for download. ​
841 +User can upgrade the firmware for 1) bug fix, 2) new feature release.
952 952  )))
953 953  
954 954  (((
955 -
845 +Please see this link for how to upgrade:  [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H2.HardwareUpgradeMethodSupportList>>http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H2.HardwareUpgradeMethodSupportList]]
956 956  )))
957 957  
958 958  (((
959 -How to set up LSE01 to work in 8 channel mode By default, the frequency bands US915, AU915, CN470 work in 72 frequencies. Many gateways are 8 channel gateways, and in this case, the OTAA join time and uplink schedule is long and unpredictable while the end node is hopping in 72 frequencies.
849 +(% style="color:red" %)Notice, NSE01 and LSE01 share the same mother board. They use the same connection and method to update.
960 960  )))
961 961  
962 -(((
963 -
964 -)))
965 965  
966 -(((
967 -You can configure the end node to work in 8 channel mode by using the AT+CHE command. The 500kHz channels are always included for OTAA.
968 -)))
969 969  
970 -(((
971 -
972 -)))
854 +== 5.2  Can I calibrate NSE01 to different soil types? ==
973 973  
974 974  (((
975 -For example, in **US915** band, the frequency table is as below. By default, the end node will use all channels (0~~71) for OTAA Join process. After the OTAA Join, the end node will use these all channels (0~~71) to send uplink packets.
857 +NSE01 is calibrated for saline-alkali soil and loamy soil. If users want to use it for other soil, they can calibrate the value in the IoT platform base on the value measured by saline-alkali soil and loamy soil. The formula can be found at [[this link>>https://www.dragino.com/downloads/downloads/LoRa_End_Node/LSE01/Calibrate_to_other_Soil_20220605.pdf]].
976 976  )))
977 977  
978 -[[image:image-20220606154726-3.png]]
979 979  
861 += 6.  Trouble Shooting =
980 980  
981 -When you use the TTN network, the US915 frequency bands use are:
863 +== 6.1  ​Connection problem when uploading firmware ==
982 982  
983 -* 903.9 - SF7BW125 to SF10BW125
984 -* 904.1 - SF7BW125 to SF10BW125
985 -* 904.3 - SF7BW125 to SF10BW125
986 -* 904.5 - SF7BW125 to SF10BW125
987 -* 904.7 - SF7BW125 to SF10BW125
988 -* 904.9 - SF7BW125 to SF10BW125
989 -* 905.1 - SF7BW125 to SF10BW125
990 -* 905.3 - SF7BW125 to SF10BW125
991 -* 904.6 - SF8BW500
992 992  
993 993  (((
994 -Because the end node is now hopping in 72 frequency, it makes it difficult for the devices to Join the TTN network and uplink data. To solve this issue, you can access the device via the AT commands and run:
995 -
996 -* (% style="color:#037691" %)**AT+CHE=2**
997 -* (% style="color:#037691" %)**ATZ**
867 +**Please see: **[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H3.3Troubleshooting>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H3.3Troubleshooting]]
998 998  )))
999 999  
870 +(% class="wikigeneratedid" %)
1000 1000  (((
1001 1001  
1002 -
1003 -to set the end node to work in 8 channel mode. The device will work in Channel 8-15 & 64-71 for OTAA, and channel 8-15 for Uplink.
1004 1004  )))
1005 1005  
1006 -(((
1007 -
1008 -)))
1009 1009  
1010 -(((
1011 -The **AU915** band is similar. Below are the AU915 Uplink Channels.
1012 -)))
876 +== 6.2  AT Command input doesn't work ==
1013 1013  
1014 -[[image:image-20220606154825-4.png]]
1015 -
1016 -
1017 -
1018 -= 5. Trouble Shooting =
1019 -
1020 -== 5.1 ​Why I can’t join TTN in US915 / AU915 bands? ==
1021 -
1022 -It is due to channel mapping. Please see the [[Eight Channel Mode>>doc:Main.LoRaWAN Communication Debug.WebHome||anchor="H2.NoticeofUS9152FCN4702FAU915Frequencyband"]] section above for details.
1023 -
1024 -
1025 -== 5.2 AT Command input doesn’t work ==
1026 -
1027 1027  (((
1028 -In the case if user can see the console output but can’t type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn’t send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.
1029 -)))
879 +In the case if user can see the console output but can't type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn't send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.
1030 1030  
1031 -
1032 -== 5.3 Device rejoin in at the second uplink packet ==
1033 -
1034 -(% style="color:#4f81bd" %)**Issue describe as below:**
1035 -
1036 -[[image:1654500909990-784.png]]
1037 -
1038 -
1039 -(% style="color:#4f81bd" %)**Cause for this issue:**
1040 -
1041 -(((
1042 -The fuse on LSE01 is not large enough, some of the soil probe require large current up to 5v 800mA, in a short pulse. When this happen, it cause the device reboot so user see rejoin.
881 +
1043 1043  )))
1044 1044  
1045 1045  
1046 -(% style="color:#4f81bd" %)**Solution: **
885 += 7. ​ Order Info =
1047 1047  
1048 -All new shipped LSE01 after 2020-May-30 will have this to fix. For the customer who see this issue, please bypass the fuse as below:
1049 1049  
1050 -[[image:1654500929571-736.png||height="458" width="832"]]
888 +Part Number**:** (% style="color:#4f81bd" %)**NSE01**
1051 1051  
1052 1052  
1053 -= 6. ​Order Info =
1054 -
1055 -
1056 -Part Number**:** (% style="color:#4f81bd" %)**LSE01-XX-YY**
1057 -
1058 -
1059 -(% style="color:#4f81bd" %)**XX**(%%)**:** The default frequency band
1060 -
1061 -* (% style="color:red" %)**AS923**(%%): LoRaWAN AS923 band
1062 -* (% style="color:red" %)**AU915**(%%): LoRaWAN AU915 band
1063 -* (% style="color:red" %)**EU433**(%%): LoRaWAN EU433 band
1064 -* (% style="color:red" %)**EU868**(%%): LoRaWAN EU868 band
1065 -* (% style="color:red" %)**KR920**(%%): LoRaWAN KR920 band
1066 -* (% style="color:red" %)**US915**(%%): LoRaWAN US915 band
1067 -* (% style="color:red" %)**IN865**(%%):  LoRaWAN IN865 band
1068 -* (% style="color:red" %)**CN470**(%%): LoRaWAN CN470 band
1069 -
1070 -(% style="color:#4f81bd" %)**YY**(%%)**: **Battery Option
1071 -
1072 -* (% style="color:red" %)**4**(%%): 4000mAh battery
1073 -* (% style="color:red" %)**8**(%%): 8500mAh battery
1074 -
1075 1075  (% class="wikigeneratedid" %)
1076 1076  (((
1077 1077  
1078 1078  )))
1079 1079  
1080 -= 7. Packing Info =
896 += 8.  Packing Info =
1081 1081  
1082 1082  (((
1083 1083  
1084 1084  
1085 1085  (% style="color:#037691" %)**Package Includes**:
1086 -)))
1087 1087  
1088 -* (((
1089 -LSE01 LoRaWAN Soil Moisture & EC Sensor x 1
903 +* NSE01 NB-IoT Soil Moisture & EC Sensor x 1
904 +* External antenna x 1
1090 1090  )))
1091 1091  
1092 1092  (((
... ... @@ -1093,24 +1093,19 @@
1093 1093  
1094 1094  
1095 1095  (% style="color:#037691" %)**Dimension and weight**:
1096 -)))
1097 1097  
1098 -* (((
1099 -Device Size: cm
912 +* Size: 195 x 125 x 55 mm
913 +* Weight:   420g
1100 1100  )))
1101 -* (((
1102 -Device Weight: g
1103 -)))
1104 -* (((
1105 -Package Size / pcs : cm
1106 -)))
1107 -* (((
1108 -Weight / pcs : g
1109 1109  
916 +(((
1110 1110  
918 +
919 +
920 +
1111 1111  )))
1112 1112  
1113 -= 8. Support =
923 += 9.  Support =
1114 1114  
1115 1115  * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
1116 1116  * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.com]]
1657245163077-232.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +81.0 KB
Content
1657246476176-652.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +492.6 KB
Content
1657249419225-449.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +81.0 KB
Content
1657249468462-536.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +483.6 KB
Content
1657249793983-486.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +85.8 KB
Content
1657249831934-534.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +72.5 KB
Content
1657249864775-321.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +87.0 KB
Content
1657249930215-289.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +77.3 KB
Content
1657249978444-674.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +139.5 KB
Content
1657249990869-686.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +96.9 KB
Content
1657250217799-140.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +98.7 KB
Content
1657250255956-604.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +99.0 KB
Content
1657259653666-883.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +344.4 KB
Content
1657260785982-288.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +138.2 KB
Content
1657261119050-993.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +126.1 KB
Content
1657261278785-153.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +126.1 KB
Content
1657271519014-786.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +71.5 KB
Content
1657327959271-447.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +78.3 KB
Content
1657328609906-564.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +492.6 KB
Content
1657328659945-416.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +78.8 KB
Content
1657328756309-230.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +78.5 KB
Content
image-20220708101224-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +22.2 KB
Content
image-20220708101605-2.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +87.5 KB
Content
image-20220708110657-3.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +251.7 KB
Content
image-20220708111918-4.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +38.8 KB
Content
image-20220708133731-5.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +8.7 KB
Content
image-20220708140453-6.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +132.7 KB
Content
image-20220708141352-7.jpeg
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +102.7 KB
Content
image-20220709084038-1.jpeg
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +72.0 KB
Content
image-20220709084137-2.jpeg
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +72.0 KB
Content
image-20220709084207-3.jpeg
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +72.0 KB
Content
image-20220709084458-4.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +199.5 KB
Content
image-20220709085040-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +200.4 KB
Content