Changes for page N95S31B -- NB-IoT Temperature & Humidity Sensor User Manual
Last modified by Mengting Qiu on 2024/04/02 16:44
Summary
-
Page properties (2 modified, 0 added, 0 removed)
-
Attachments (0 modified, 30 added, 0 removed)
- 1657245163077-232.png
- 1657246476176-652.png
- 1657249419225-449.png
- 1657249468462-536.png
- 1657249793983-486.png
- 1657249831934-534.png
- 1657249864775-321.png
- 1657249930215-289.png
- 1657249978444-674.png
- 1657249990869-686.png
- 1657250217799-140.png
- 1657250255956-604.png
- 1657259653666-883.png
- 1657260785982-288.png
- 1657261119050-993.png
- 1657261278785-153.png
- 1657271519014-786.png
- 1657327959271-447.png
- image-20220708101224-1.png
- image-20220708101605-2.png
- image-20220708110657-3.png
- image-20220708111918-4.png
- image-20220708133731-5.png
- image-20220708140453-6.png
- image-20220708141352-7.jpeg
- image-20220709084038-1.jpeg
- image-20220709084137-2.jpeg
- image-20220709084207-3.jpeg
- image-20220709084458-4.png
- image-20220709085040-1.png
Details
- Page properties
-
- Title
-
... ... @@ -1,1 +1,1 @@ 1 - LSE01-LoRaWANSoil Moisture&ECSensor User Manual1 +NDDS75 NB-IoT Distance Detect Sensor User Manual - Content
-
... ... @@ -1,19 +1,12 @@ 1 1 (% style="text-align:center" %) 2 -[[image:image-20220 606151504-2.jpeg||height="554" width="554"]]2 +[[image:image-20220709085040-1.png||height="542" width="524"]] 3 3 4 4 5 5 6 6 7 7 8 - 9 - 10 - 11 - 12 - 13 - 14 14 **Table of Contents:** 15 15 16 -{{toc/}} 17 17 18 18 19 19 ... ... @@ -20,775 +20,709 @@ 20 20 21 21 22 22 23 -= 1. Introduction = 16 += 1. Introduction = 24 24 25 -== 1.1 What is LoRaWANoilMoisture&ECSensor ==18 +== 1.1 What is NDDS75 Distance Detection Sensor == 26 26 27 27 ((( 28 28 29 29 30 -The Dragino LSE01 is a (% style="color:#4f81bd" %)**LoRaWAN Soil Moisture & EC Sensor**(%%) for IoT of Agriculture. It is designed to measure the soil moisture of saline-alkali soil and loamy soil. The soil sensor uses FDR method to calculate the soil moisture with the compensation from soil temperature and conductivity. It also has been calibrated in factory for Mineral soil type. 31 -))) 32 - 33 33 ((( 34 -It detects (% style="color:#4f81bd" %)**Soil Moisture**(%%), (% style="color:#4f81bd" %)**Soil Temperature**(%%) and (% style="color:#4f81bd" %)**Soil Conductivity**(%%), and uploads the value via wireless to LoRaWAN IoT Server. 24 +The Dragino NDDS75 is a (% style="color:blue" %)**NB-IoT Distance Detection Sensor**(%%) for Internet of Things solution. It is designed to measure the distance between the sensor and a flat object. The distance detection sensor is a module that uses ultrasonic sensing technology for distance measurement, and temperature compensation is performed internally to improve the reliability of data. 25 +\\The NDDS75 can be applied to scenarios such as horizontal distance measurement, liquid level measurement, parking management system, object proximity and presence detection, intelligent trash can management system, robot obstacle avoidance, automatic control, sewer, bottom water level monitoring, etc. It detects the distance between the measured object and the sensor, and uploads the value via wireless to IoT Server via NB-IoT Network. 26 +\\NarrowBand-Internet of Things (NB-IoT) is a standards-based low power wide area (LPWA) technology developed to enable a wide range of new IoT devices and services. NB-IoT significantly improves the power consumption of user devices, system capacity and spectrum efficiency, especially in deep coverage. 27 +\\NDDS75 supports different uplink methods include (% style="color:blue" %)**TCP, MQTT, UDP and CoAP** (%%)for different application requirement. 28 +\\NDDS75 is powered by (% style="color:blue" %)**8500mAh Li-SOCI2 battery**(%%), It is designed for long term use up to 5 years. (Actually Battery life depends on the use environment, update period & uplink method) 29 +\\To use NDDS75, user needs to check if there is NB-IoT coverage in local area and with the bands NDDS75 supports. If the local operate support it, user needs to get a NB-IoT SIM card from local operator and install NDDS75 to get NB-IoT network connection. 35 35 ))) 36 36 37 -((( 38 -The LoRa wireless technology used in LES01 allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption. 32 + 39 39 ))) 40 40 41 -((( 42 -LES01 is powered by (% style="color:#4f81bd" %)**4000mA or 8500mAh Li-SOCI2 battery**(%%), It is designed for long term use up to 10 years. 43 -))) 44 - 45 -((( 46 -Each LES01 is pre-load with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect after power on. 47 -))) 48 - 49 - 50 50 [[image:1654503236291-817.png]] 51 51 52 52 53 -[[image:165 4503265560-120.png]]38 +[[image:1657327959271-447.png]] 54 54 55 55 56 56 57 -== 1.2 Features == 42 +== 1.2 Features == 58 58 59 -* LoRaWAN 1.0.3 Class A 44 + 45 +* NB-IoT Bands: B1/B3/B8/B5/B20/B28 @H-FDD 60 60 * Ultra low power consumption 61 -* MonitorSoilMoisture62 -* MonitorSoil Temperature63 -* Monitor SoilConductivity64 -* Bands:CN470/EU433/KR920/US915/EU868/AS923/AU915/IN86547 +* Distance Detection by Ultrasonic technology 48 +* Flat object range 280mm - 7500mm 49 +* Accuracy: ±(1cm+S*0.3%) (S: Distance) 50 +* Cable Length: 25cm 65 65 * AT Commands to change parameters 66 66 * Uplink on periodically 67 67 * Downlink to change configure 68 68 * IP66 Waterproof Enclosure 69 -* 4000mAh or 8500mAh Battery for long term use 55 +* Micro SIM card slot for NB-IoT SIM 56 +* 8500mAh Battery for long term use 70 70 71 71 72 72 60 +== 1.3 Specification == 73 73 74 -== 1.3 Specification == 75 75 76 - MeasureVolume:Baseonthecentra pin of the probe,aylinderwith 7cm diameter and 10cm height.63 +(% style="color:#037691" %)**Common DC Characteristics:** 77 77 78 -[[image:image-20220606162220-5.png]] 65 +* Supply Voltage: 2.1v ~~ 3.6v 66 +* Operating Temperature: -40 ~~ 85°C 79 79 68 +(% style="color:#037691" %)**NB-IoT Spec:** 80 80 70 +* - B1 @H-FDD: 2100MHz 71 +* - B3 @H-FDD: 1800MHz 72 +* - B8 @H-FDD: 900MHz 73 +* - B5 @H-FDD: 850MHz 74 +* - B20 @H-FDD: 800MHz 75 +* - B28 @H-FDD: 700MHz 81 81 82 -== 1.4 Applications == 83 83 84 - *SmartAgriculture78 +(% style="color:#037691" %)**Battery:** 85 85 86 -(% class="wikigeneratedid" id="H200B1.5FirmwareChangelog" %) 87 - 80 +* Li/SOCI2 un-chargeable battery 81 +* Capacity: 8500mAh 82 +* Self Discharge: <1% / Year @ 25°C 83 +* Max continuously current: 130mA 84 +* Max boost current: 2A, 1 second 88 88 89 -== 1.5 Firmware Change log == 90 90 87 +(% style="color:#037691" %)**Power Consumption** 91 91 92 -**LSE01 v1.0 :** Release 89 +* STOP Mode: 10uA @ 3.3v 90 +* Max transmit power: 350mA@3.3v 93 93 94 94 95 95 96 -= 2. Configure LSE01 to connect to LoRaWAN network = 97 97 98 -== 2.1Howitworks ==95 +== 1.4 Applications == 99 99 100 -((( 101 -The LSE01 is configured as LoRaWAN OTAA Class A mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and power on the LSE0150. It will automatically join the network via OTAA and start to send the sensor value 102 -))) 97 +* Smart Agriculture 103 103 104 -((( 105 -In case you can’t set the OTAA keys in the LoRaWAN OTAA server, and you have to use the keys from the server, you can [[use AT Commands >>||anchor="H3.200BUsingtheATCommands"]]. 106 -))) 99 +(% class="wikigeneratedid" id="H200B1.5FirmwareChangelog" %) 100 + 107 107 102 +== 1.5 Pin Definitions == 108 108 109 109 110 - == 2.2 Quickguideto connect to LoRaWAN server (OTAA) ==105 +[[image:1657246476176-652.png]] 111 111 112 -Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LG308>>url:http://www.dragino.com/products/lora/item/140-lg308.html]] as a LoRaWAN gateway in this example. 113 113 114 114 115 - [[image:1654503992078-669.png]]109 += 2. Use NSE01 to communicate with IoT Server = 116 116 111 +== 2.1 How it works == 117 117 118 -The LG308 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server. 119 119 120 - 121 -(% style="color:blue" %)**Step 1**(%%): Create a device in TTN with the OTAA keys from LSE01. 122 - 123 -Each LSE01 is shipped with a sticker with the default device EUI as below: 124 - 125 -[[image:image-20220606163732-6.jpeg]] 126 - 127 -You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot: 128 - 129 -**Add APP EUI in the application** 130 - 131 - 132 -[[image:1654504596150-405.png]] 133 - 134 - 135 - 136 -**Add APP KEY and DEV EUI** 137 - 138 -[[image:1654504683289-357.png]] 139 - 140 - 141 - 142 -(% style="color:blue" %)**Step 2**(%%): Power on LSE01 143 - 144 - 145 -Put a Jumper on JP2 to power on the device. ( The Jumper must be in FLASH position). 146 - 147 -[[image:image-20220606163915-7.png]] 148 - 149 - 150 -(% style="color:blue" %)**Step 3**(%%)**:** The LSE01 will auto join to the TTN network. After join success, it will start to upload messages to TTN and you can see the messages in the panel. 151 - 152 -[[image:1654504778294-788.png]] 153 - 154 - 155 - 156 -== 2.3 Uplink Payload == 157 - 158 - 159 -=== 2.3.1 MOD~=0(Default Mode) === 160 - 161 -LSE01 will uplink payload via LoRaWAN with below payload format: 162 - 163 163 ((( 164 - Uplinkpayload includesin total11bytes.115 +The NSE01 is equipped with a NB-IoT module, the pre-loaded firmware in NSE01 will get environment data from sensors and send the value to local NB-IoT network via the NB-IoT module. The NB-IoT network will forward this value to IoT server via the protocol defined by NSE01. 165 165 ))) 166 166 167 -(% border="1" cellspacing="10" style="background-color:#ffffcc; width:500px" %) 168 -|((( 169 -**Size** 170 170 171 -**(bytes)** 172 -)))|**2**|**2**|**2**|**2**|**2**|**1** 173 -|**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|((( 174 -Temperature 175 - 176 -(Reserve, Ignore now) 177 -)))|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]]|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]]|((( 178 -MOD & Digital Interrupt 179 - 180 -(Optional) 181 -))) 182 - 183 - 184 - 185 - 186 -=== 2.3.2 MOD~=1(Original value) === 187 - 188 -This mode can get the original AD value of moisture and original conductivity (with temperature drift compensation). 189 - 190 -(% border="1" cellspacing="10" style="background-color:#ffffcc; width:500px" %) 191 -|((( 192 -**Size** 193 - 194 -**(bytes)** 195 -)))|**2**|**2**|**2**|**2**|**2**|**1** 196 -|**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|((( 197 -Temperature 198 - 199 -(Reserve, Ignore now) 200 -)))|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]](raw)|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]](raw)|((( 201 -MOD & Digital Interrupt 202 - 203 -(Optional) 204 -))) 205 - 206 - 207 - 208 - 209 -=== 2.3.3 Battery Info === 210 - 211 211 ((( 212 - CheckthebatteryvoltageforLSE01.120 +The diagram below shows the working flow in default firmware of NSE01: 213 213 ))) 214 214 215 -((( 216 -Ex1: 0x0B45 = 2885mV 217 -))) 123 +[[image:image-20220708101605-2.png]] 218 218 219 219 ((( 220 -Ex2: 0x0B49 = 2889mV 221 -))) 222 - 223 - 224 - 225 -=== 2.3.4 Soil Moisture === 226 - 227 -((( 228 -Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil. 229 -))) 230 - 231 -((( 232 -For example, if the data you get from the register is __0x05 0xDC__, the moisture content in the soil is 233 -))) 234 - 235 -((( 236 236 237 237 ))) 238 238 239 -((( 240 -(% style="color:#4f81bd" %)**05DC(H) = 1500(D) /100 = 15%.** 241 -))) 242 242 243 243 131 +== 2.2 Configure the NSE01 == 244 244 245 -=== 2.3.5 Soil Temperature === 246 246 247 -((( 248 - Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is 0x09 0xEC, the temperature content in the soil is 249 -))) 134 +=== 2.2.1 Test Requirement === 250 250 251 -((( 252 -**Example**: 253 -))) 254 254 255 255 ((( 256 - If payloadis 0105H:((0x0105&0x8000)>>15===0),temp=0105(H)/100 = 2.61 °C138 +To use NSE01 in your city, make sure meet below requirements: 257 257 ))) 258 258 259 - (((260 - IfpayloadisFF7EH:((FF7E& 0x8000)>>15 ===1),temp=(FF7E(H)-FFFF(H))/100 = -1.29°C261 - )))141 +* Your local operator has already distributed a NB-IoT Network there. 142 +* The local NB-IoT network used the band that NSE01 supports. 143 +* Your operator is able to distribute the data received in their NB-IoT network to your IoT server. 262 262 263 - 264 - 265 -=== 2.3.6 Soil Conductivity (EC) === 266 - 267 267 ((( 268 - Obtain (% style="color:#4f81bd"%)**__solublesalt concentration__**(%%)in soilor(% style="color:#4f81bd" %)**__solubleionconcentrationinliquid fertilizer__**(%%) or (% style="color:#4f81bd" %)**__planting medium__**(%%).Thevaluerangeof theregisteris0-20000(Decimal)(Canbegreaterthan20000).146 +Below figure shows our testing structure. Here we have NB-IoT network coverage by China Mobile, the band they use is B8. The NSE01 will use CoAP((% style="color:red" %)120.24.4.116:5683)(%%) or raw UDP((% style="color:red" %)120.24.4.116:5601)(%%) or MQTT((% style="color:red" %)120.24.4.116:1883)(%%)or TCP((% style="color:red" %)120.24.4.116:5600)(%%)protocol to send data to the test server 269 269 ))) 270 270 271 -((( 272 -For example, if the data you get from the register is 0x00 0xC8, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm. 273 -))) 274 274 275 -((( 276 -Generally, the EC value of irrigation water is less than 800uS / cm. 277 -))) 150 +[[image:1657249419225-449.png]] 278 278 279 -((( 280 - 281 -))) 282 282 283 -((( 284 - 285 -))) 286 286 287 -=== 2. 3.7MOD===154 +=== 2.2.2 Insert SIM card === 288 288 289 -Firmware version at least v2.1 supports changing mode. 290 - 291 -For example, bytes[10]=90 292 - 293 -mod=(bytes[10]>>7)&0x01=1. 294 - 295 - 296 -**Downlink Command:** 297 - 298 -If payload = 0x0A00, workmode=0 299 - 300 -If** **payload =** **0x0A01, workmode=1 301 - 302 - 303 - 304 -=== 2.3.8 Decode payload in The Things Network === 305 - 306 -While using TTN network, you can add the payload format to decode the payload. 307 - 308 - 309 -[[image:1654505570700-128.png]] 310 - 311 311 ((( 312 - ThepayloaddecoderfunctionforTTNis here:157 +Insert the NB-IoT Card get from your provider. 313 313 ))) 314 314 315 315 ((( 316 - LSE01TTNPayloadDecoder:[[https:~~/~~/www.dropbox.com/sh/si8icbrjlamxqdb/AAACYwjsxxr5fj_vpqRtrETAa?dl=0>>https://www.dropbox.com/sh/si8icbrjlamxqdb/AAACYwjsxxr5fj_vpqRtrETAa?dl=0]]161 +User need to take out the NB-IoT module and insert the SIM card like below: 317 317 ))) 318 318 319 319 320 - ==2.4Uplink Interval ==165 +[[image:1657249468462-536.png]] 321 321 322 -The LSE01 by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link: [[Change Uplink Interval>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H4.1ChangeUplinkInterval"]] 323 323 324 324 169 +=== 2.2.3 Connect USB – TTL to NSE01 to configure it === 325 325 326 -== 2.5 Downlink Payload == 327 - 328 -By default, LSE50 prints the downlink payload to console port. 329 - 330 -[[image:image-20220606165544-8.png]] 331 - 332 - 333 333 ((( 334 -**Examples:** 335 -))) 336 - 337 337 ((( 338 - 173 +User need to configure NSE01 via serial port to set the (% style="color:blue" %)**Server Address** / **Uplink Topic** (%%)to define where and how-to uplink packets. NSE01 support AT Commands, user can use a USB to TTL adapter to connect to NSE01 and use AT Commands to configure it, as below. 339 339 ))) 340 - 341 -* ((( 342 -**Set TDC** 343 343 ))) 344 344 345 -((( 346 -If the payload=0100003C, it means set the END Node’s TDC to 0x00003C=60(S), while type code is 01. 347 -))) 348 348 349 -((( 350 -Payload: 01 00 00 1E TDC=30S 351 -))) 178 +**Connection:** 352 352 353 -((( 354 -Payload: 01 00 00 3C TDC=60S 355 -))) 180 + (% style="background-color:yellow" %)USB TTL GND <~-~-~-~-> GND 356 356 357 -((( 358 - 359 -))) 182 + (% style="background-color:yellow" %)USB TTL TXD <~-~-~-~-> UART_RXD 360 360 361 -* ((( 362 -**Reset** 363 -))) 184 + (% style="background-color:yellow" %)USB TTL RXD <~-~-~-~-> UART_TXD 364 364 365 -((( 366 -If payload = 0x04FF, it will reset the LSE01 367 -))) 368 368 187 +In the PC, use below serial tool settings: 369 369 370 -* **CFM** 189 +* Baud: (% style="color:green" %)**9600** 190 +* Data bits:** (% style="color:green" %)8(%%)** 191 +* Stop bits: (% style="color:green" %)**1** 192 +* Parity: (% style="color:green" %)**None** 193 +* Flow Control: (% style="color:green" %)**None** 371 371 372 -Downlink Payload: 05000001, Set AT+CFM=1 or 05000000 , set AT+CFM=0 373 - 374 - 375 - 376 -== 2.6 Show Data in DataCake IoT Server == 377 - 378 378 ((( 379 - [[DATACAKE>>url:https://datacake.co/]]providesahumanfriendly interfacetoshow thesensordata,once wehavedatain TTN, we canuse[[DATACAKE>>url:https://datacake.co/]] toconnectto TTNandseethedatain DATACAKE.Belowarethesteps:196 +Make sure the switch is in FLASH position, then power on device by connecting the jumper on NSE01. NSE01 will output system info once power on as below, we can enter the (% style="color:green" %)**password: 12345678**(%%) to access AT Command input. 380 380 ))) 381 381 382 -((( 383 - 384 -))) 199 +[[image:image-20220708110657-3.png]] 385 385 386 386 ((( 387 -(% style="color: blue" %)**Step 1**(%%):Be surethat your deviceisprogrammed and properlyconnectedtothe networkat thistime.202 +(% style="color:red" %)Note: the valid AT Commands can be found at: (%%)[[http:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/]] 388 388 ))) 389 389 390 -((( 391 -(% style="color:blue" %)**Step 2**(%%): To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps: 392 -))) 393 393 394 394 395 - [[image:1654505857935-743.png]]207 +=== 2.2.4 Use CoAP protocol to uplink data === 396 396 209 +(% style="color:red" %)Note: if you don't have CoAP server, you can refer this link to set up one: (%%)[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/>>http://wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/]] 397 397 398 -[[image:1654505874829-548.png]] 399 399 212 +**Use below commands:** 400 400 401 -(% style="color:blue" %)**Step 3**(%%)**:** Create an account or log in Datacake. 214 +* (% style="color:blue" %)**AT+PRO=1** (%%) ~/~/ Set to use CoAP protocol to uplink 215 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5683 ** (%%)~/~/ to set CoAP server address and port 216 +* (% style="color:blue" %)**AT+URI=5,11,"mqtt",11,"coap",12,"0",15,"c=text1",23,"0" ** (%%) ~/~/Set COAP resource path 402 402 403 - (%style="color:blue"%)**Step4**(%%)**:** SearchtheLSE01andadd DevEUI.218 +For parameter description, please refer to AT command set 404 404 220 +[[image:1657249793983-486.png]] 405 405 406 -[[image:1654505905236-553.png]] 407 407 223 +After configure the server address and (% style="color:green" %)**reset the device**(%%) (via AT+ATZ ), NSE01 will start to uplink sensor values to CoAP server. 408 408 409 - After added, the sensor data arrive TTN, it willalso arriveand show in Mydevices.225 +[[image:1657249831934-534.png]] 410 410 411 -[[image:1654505925508-181.png]] 412 412 413 413 229 +=== 2.2.5 Use UDP protocol to uplink data(Default protocol) === 414 414 415 - ==2.7 FrequencyPlans==231 +This feature is supported since firmware version v1.0.1 416 416 417 -The LSE01 uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets. 418 418 234 +* (% style="color:blue" %)**AT+PRO=2 ** (%%) ~/~/ Set to use UDP protocol to uplink 235 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5601 ** (%%) ~/~/ to set UDP server address and port 236 +* (% style="color:blue" %)**AT+CFM=1 ** (%%) ~/~/If the server does not respond, this command is unnecessary 419 419 420 - === 2.7.1EU863-870 (EU868) ===238 +[[image:1657249864775-321.png]] 421 421 422 -(% style="color:#037691" %)** Uplink:** 423 423 424 - 868.1- SF7BW125 to SF12BW125241 +[[image:1657249930215-289.png]] 425 425 426 -868.3 - SF7BW125 to SF12BW125 and SF7BW250 427 427 428 -868.5 - SF7BW125 to SF12BW125 429 429 430 - 867.1-SF7BW125toSF12BW125245 +=== 2.2.6 Use MQTT protocol to uplink data === 431 431 432 - 867.3-SF7BW125toSF12BW125247 +This feature is supported since firmware version v110 433 433 434 -867.5 - SF7BW125 to SF12BW125 435 435 436 -867.7 - SF7BW125 to SF12BW125 250 +* (% style="color:blue" %)**AT+PRO=3 ** (%%) ~/~/Set to use MQTT protocol to uplink 251 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,1883 ** (%%) ~/~/Set MQTT server address and port 252 +* (% style="color:blue" %)**AT+CLIENT=CLIENT ** (%%)~/~/Set up the CLIENT of MQTT 253 +* (% style="color:blue" %)**AT+UNAME=UNAME **(%%)~/~/Set the username of MQTT 254 +* (% style="color:blue" %)**AT+PWD=PWD **(%%)~/~/Set the password of MQTT 255 +* (% style="color:blue" %)**AT+PUBTOPIC=NSE01_PUB **(%%)~/~/Set the sending topic of MQTT 256 +* (% style="color:blue" %)**AT+SUBTOPIC=NSE01_SUB **(%%) ~/~/Set the subscription topic of MQTT 437 437 438 - 867.9SF7BW125 to SF12BW125258 +[[image:1657249978444-674.png]] 439 439 440 -868.8 - FSK 441 441 261 +[[image:1657249990869-686.png]] 442 442 443 -(% style="color:#037691" %)** Downlink:** 444 444 445 -Uplink channels 1-9 (RX1) 264 +((( 265 +MQTT protocol has a much higher power consumption compare vs UDP / CoAP protocol. Please check the power analyze document and adjust the uplink period to a suitable interval. 266 +))) 446 446 447 -869.525 - SF9BW125 (RX2 downlink only) 448 448 449 449 270 +=== 2.2.7 Use TCP protocol to uplink data === 450 450 451 - ===2.7.2US902-928(US915)===272 +This feature is supported since firmware version v110 452 452 453 -Used in USA, Canada and South America. Default use CHE=2 454 454 455 -(% style="color:#037691" %)**Uplink:** 275 +* (% style="color:blue" %)**AT+PRO=4 ** (%%) ~/~/ Set to use TCP protocol to uplink 276 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5600 **(%%) ~/~/ to set TCP server address and port 456 456 457 - 903.9 - SF7BW125to SF10BW125278 +[[image:1657250217799-140.png]] 458 458 459 -904.1 - SF7BW125 to SF10BW125 460 460 461 - 904.3 - SF7BW125to SF10BW125281 +[[image:1657250255956-604.png]] 462 462 463 -904.5 - SF7BW125 to SF10BW125 464 464 465 -904.7 - SF7BW125 to SF10BW125 466 466 467 - 904.9-SF7BW125toSF10BW125285 +=== 2.2.8 Change Update Interval === 468 468 469 - 905.1-SF7BW125toSF10BW125287 +User can use below command to change the (% style="color:green" %)**uplink interval**. 470 470 471 - 905.3-SF7BW125toSF10BW125289 +* (% style="color:blue" %)**AT+TDC=600 ** (%%)~/~/ Set Update Interval to 600s 472 472 291 +((( 292 +(% style="color:red" %)**NOTE:** 293 +))) 473 473 474 -(% style="color:#037691" %)**Downlink:** 295 +((( 296 +(% style="color:red" %)1. By default, the device will send an uplink message every 1 hour. 297 +))) 475 475 476 -923.3 - SF7BW500 to SF12BW500 477 477 478 -923.9 - SF7BW500 to SF12BW500 479 479 480 - 924.5-SF7BW500 toSF12BW500301 +== 2.3 Uplink Payload == 481 481 482 - 925.1-SF7BW500toSF12BW500303 +In this mode, uplink payload includes in total 18 bytes 483 483 484 -925.7 - SF7BW500 to SF12BW500 305 +(% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:510px" %) 306 +|=(% style="width: 60px;" %)((( 307 +**Size(bytes)** 308 +)))|=(% style="width: 50px;" %)**6**|=(% style="width: 25px;" %)2|=(% style="width: 25px;" %)**2**|=(% style="width: 70px;" %)**1**|=(% style="width: 60px;" %)**2**|=(% style="width: 80px;" %)**2**|=(% style="width: 90px;" %)**2**|=(% style="width: 50px;" %)**1** 309 +|(% style="width:97px" %)**Value**|(% style="width:83px" %)[[Device ID>>||anchor="H2.4.1A0A0DeviceID"]]|(% style="width:41px" %)[[Ver>>||anchor="H2.4.2A0VersionInfo"]]|(% style="width:46px" %)[[BAT>>||anchor="H2.4.3A0BatteryInfo"]]|(% style="width:123px" %)[[Signal Strength>>||anchor="H2.4.4A0SignalStrength"]]|(% style="width:108px" %)[[Soil Moisture>>||anchor="H2.4.5A0SoilMoisture"]]|(% style="width:133px" %)[[Soil Temperature>>||anchor="H2.4.6A0SoilTemperature"]]|(% style="width:159px" %)[[Soil Conductivity(EC)>>||anchor="H2.4.7A0SoilConductivity28EC29"]]|(% style="width:80px" %)[[Interrupt>>||anchor="H2.4.8A0DigitalInterrupt"]] 485 485 486 -926.3 - SF7BW500 to SF12BW500 311 +((( 312 +If we use the MQTT client to subscribe to this MQTT topic, we can see the following information when the NSE01 uplink data. 313 +))) 487 487 488 -926.9 - SF7BW500 to SF12BW500 489 489 490 - 927.5-SF7BW500 to SF12BW500316 +[[image:image-20220708111918-4.png]] 491 491 492 -923.3 - SF12BW500(RX2 downlink only) 493 493 319 +The payload is ASCII string, representative same HEX: 494 494 321 +0x72403155615900640c7817075e0a8c02f900 where: 495 495 496 -=== 2.7.3 CN470-510 (CN470) === 323 +* Device ID: 0x 724031556159 = 724031556159 324 +* Version: 0x0064=100=1.0.0 497 497 498 -Used in China, Default use CHE=1 326 +* BAT: 0x0c78 = 3192 mV = 3.192V 327 +* Singal: 0x17 = 23 328 +* Soil Moisture: 0x075e= 1886 = 18.86 % 329 +* Soil Temperature:0x0a8c =2700=27 °C 330 +* Soil Conductivity(EC) = 0x02f9 =761 uS /cm 331 +* Interrupt: 0x00 = 0 499 499 500 - (%style="color:#037691"%)**Uplink:**333 +== 2.4 Payload Explanation and Sensor Interface == 501 501 502 -486.3 - SF7BW125 to SF12BW125 503 503 504 -4 86.5 - SF7BW125toSF12BW125336 +=== 2.4.1 Device ID === 505 505 506 -486.7 - SF7BW125 to SF12BW125 338 +((( 339 +By default, the Device ID equal to the last 6 bytes of IMEI. 340 +))) 507 507 508 -486.9 - SF7BW125 to SF12BW125 342 +((( 343 +User can use (% style="color:blue" %)**AT+DEUI**(%%) to set Device ID 344 +))) 509 509 510 -487.1 - SF7BW125 to SF12BW125 346 +((( 347 +**Example:** 348 +))) 511 511 512 -487.3 - SF7BW125 to SF12BW125 350 +((( 351 +AT+DEUI=A84041F15612 352 +))) 513 513 514 -487.5 - SF7BW125 to SF12BW125 354 +((( 355 +The Device ID is stored in a none-erase area, Upgrade the firmware or run AT+FDR won't erase Device ID. 356 +))) 515 515 516 -487.7 - SF7BW125 to SF12BW125 517 517 518 518 519 - (%style="color:#037691" %)**Downlink:**360 +=== 2.4.2 Version Info === 520 520 521 -506.7 - SF7BW125 to SF12BW125 362 +((( 363 +Specify the software version: 0x64=100, means firmware version 1.00. 364 +))) 522 522 523 -506.9 - SF7BW125 to SF12BW125 366 +((( 367 +For example: 0x00 64 : this device is NSE01 with firmware version 1.0.0. 368 +))) 524 524 525 -507.1 - SF7BW125 to SF12BW125 526 526 527 -507.3 - SF7BW125 to SF12BW125 528 528 529 - 507.5- SF7BW125toSF12BW125372 +=== 2.4.3 Battery Info === 530 530 531 -507.7 - SF7BW125 to SF12BW125 374 +((( 375 +Check the battery voltage for LSE01. 376 +))) 532 532 533 -507.9 - SF7BW125 to SF12BW125 378 +((( 379 +Ex1: 0x0B45 = 2885mV 380 +))) 534 534 535 -508.1 - SF7BW125 to SF12BW125 382 +((( 383 +Ex2: 0x0B49 = 2889mV 384 +))) 536 536 537 -505.3 - SF12BW125 (RX2 downlink only) 538 538 539 539 388 +=== 2.4.4 Signal Strength === 540 540 541 -=== 2.7.4 AU915-928(AU915) === 390 +((( 391 +NB-IoT Network signal Strength. 392 +))) 542 542 543 -Default use CHE=2 394 +((( 395 +**Ex1: 0x1d = 29** 396 +))) 544 544 545 -(% style="color:#037691" %)**Uplink:** 398 +((( 399 +(% style="color:blue" %)**0**(%%) -113dBm or less 400 +))) 546 546 547 -916.8 - SF7BW125 to SF12BW125 402 +((( 403 +(% style="color:blue" %)**1**(%%) -111dBm 404 +))) 548 548 549 -917.0 - SF7BW125 to SF12BW125 406 +((( 407 +(% style="color:blue" %)**2...30**(%%) -109dBm... -53dBm 408 +))) 550 550 551 -917.2 - SF7BW125 to SF12BW125 410 +((( 411 +(% style="color:blue" %)**31** (%%) -51dBm or greater 412 +))) 552 552 553 -917.4 - SF7BW125 to SF12BW125 414 +((( 415 +(% style="color:blue" %)**99** (%%) Not known or not detectable 416 +))) 554 554 555 -917.6 - SF7BW125 to SF12BW125 556 556 557 -917.8 - SF7BW125 to SF12BW125 558 558 559 - 918.0- SF7BW125toSF12BW125420 +=== 2.4.5 Soil Moisture === 560 560 561 -918.2 - SF7BW125 to SF12BW125 422 +((( 423 +((( 424 +Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil. 425 +))) 426 +))) 562 562 428 +((( 429 +((( 430 +For example, if the data you get from the register is **__0x05 0xDC__**, the moisture content in the soil is 431 +))) 432 +))) 563 563 564 -(% style="color:#037691" %)**Downlink:** 434 +((( 435 + 436 +))) 565 565 566 -923.3 - SF7BW500 to SF12BW500 438 +((( 439 +(% style="color:#4f81bd" %)**05DC(H) = 1500(D) /100 = 15%.** 440 +))) 567 567 568 -923.9 - SF7BW500 to SF12BW500 569 569 570 -924.5 - SF7BW500 to SF12BW500 571 571 572 - 925.1-SF7BW500toSF12BW500444 +=== 2.4.6 Soil Temperature === 573 573 574 -925.7 - SF7BW500 to SF12BW500 446 +((( 447 +Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is __**0x09 0xEC**__, the temperature content in the soil is 448 +))) 575 575 576 -926.3 - SF7BW500 to SF12BW500 450 +((( 451 +**Example**: 452 +))) 577 577 578 -926.9 - SF7BW500 to SF12BW500 454 +((( 455 +If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/100 = 2.61 °C 456 +))) 579 579 580 -927.5 - SF7BW500 to SF12BW500 458 +((( 459 +If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C 460 +))) 581 581 582 -923.3 - SF12BW500(RX2 downlink only) 583 583 584 584 464 +=== 2.4.7 Soil Conductivity (EC) === 585 585 586 -=== 2.7.5 AS920-923 & AS923-925 (AS923) === 466 +((( 467 +Obtain (% style="color:#4f81bd" %)**__soluble salt concentration__**(%%) in soil or (% style="color:#4f81bd" %)**__soluble ion concentration in liquid fertilizer__**(%%) or (% style="color:#4f81bd" %)**__planting medium__**(%%). The value range of the register is 0 - 20000(Decimal)( Can be greater than 20000). 468 +))) 587 587 588 -(% style="color:#037691" %)**Default Uplink channel:** 470 +((( 471 +For example, if the data you get from the register is __**0x00 0xC8**__, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm. 472 +))) 589 589 590 -923.2 - SF7BW125 to SF10BW125 474 +((( 475 +Generally, the EC value of irrigation water is less than 800uS / cm. 476 +))) 591 591 592 -923.4 - SF7BW125 to SF10BW125 478 +((( 479 + 480 +))) 593 593 482 +((( 483 + 484 +))) 594 594 595 - (% style="color:#037691"%)**AdditionalUplink Channel**:486 +=== 2.4.8 Digital Interrupt === 596 596 597 -(OTAA mode, channel added by JoinAccept message) 488 +((( 489 +Digital Interrupt refers to pin (% style="color:blue" %)**GPIO_EXTI**(%%), and there are different trigger methods. When there is a trigger, the NSE01 will send a packet to the server. 490 +))) 598 598 599 -(% style="color:#037691" %)**AS920~~AS923 for Japan, Malaysia, Singapore**: 492 +((( 493 +The command is: 494 +))) 600 600 601 -922.2 - SF7BW125 to SF10BW125 496 +((( 497 +(% style="color:blue" %)**AT+INTMOD=3 **(%%) ~/~/(more info about INMOD please refer [[**AT Command Manual**>>url:https://www.dragino.com/downloads/downloads/NB-IoT/NBSN95/DRAGINO_NBSN95-NB_AT%20Commands_v1.1.0.pdf]])**.** 498 +))) 602 602 603 -922.4 - SF7BW125 to SF10BW125 604 604 605 -922.6 - SF7BW125 to SF10BW125 501 +((( 502 +The lower four bits of this data field shows if this packet is generated by interrupt or not. Click here for the hardware and software set up. 503 +))) 606 606 607 -922.8 - SF7BW125 to SF10BW125 608 608 609 -923.0 - SF7BW125 to SF10BW125 506 +((( 507 +Example: 508 +))) 610 610 611 -922.0 - SF7BW125 to SF10BW125 510 +((( 511 +0x(00): Normal uplink packet. 512 +))) 612 612 514 +((( 515 +0x(01): Interrupt Uplink Packet. 516 +))) 613 613 614 -(% style="color:#037691" %)**AS923 ~~ AS925 for Brunei, Cambodia, Hong Kong, Indonesia, Laos, Taiwan, Thailand, Vietnam**: 615 615 616 -923.6 - SF7BW125 to SF10BW125 617 617 618 - 923.8- SF7BW125 toSF10BW125520 +=== 2.4.9 +5V Output === 619 619 620 -924.0 - SF7BW125 to SF10BW125 522 +((( 523 +NSE01 will enable +5V output before all sampling and disable the +5v after all sampling. 524 +))) 621 621 622 -924.2 - SF7BW125 to SF10BW125 623 623 624 -924.4 - SF7BW125 to SF10BW125 527 +((( 528 +The 5V output time can be controlled by AT Command. 529 +))) 625 625 626 -924.6 - SF7BW125 to SF10BW125 531 +((( 532 +(% style="color:blue" %)**AT+5VT=1000** 533 +))) 627 627 535 +((( 536 +Means set 5V valid time to have 1000ms. So the real 5V output will actually have 1000ms + sampling time for other sensors. 537 +))) 628 628 629 -(% style="color:#037691" %)** Downlink:** 630 630 631 -Uplink channels 1-8 (RX1) 632 632 633 - 923.2-SF10BW125(RX2)541 +== 2.5 Downlink Payload == 634 634 543 +By default, NSE01 prints the downlink payload to console port. 635 635 545 +[[image:image-20220708133731-5.png]] 636 636 637 -=== 2.7.6 KR920-923 (KR920) === 638 638 639 -Default channel: 548 +((( 549 +(% style="color:blue" %)**Examples:** 550 +))) 640 640 641 -922.1 - SF7BW125 to SF12BW125 552 +((( 553 + 554 +))) 642 642 643 -922.3 - SF7BW125 to SF12BW125 556 +* ((( 557 +(% style="color:blue" %)**Set TDC** 558 +))) 644 644 645 -922.5 - SF7BW125 to SF12BW125 560 +((( 561 +If the payload=0100003C, it means set the END Node's TDC to 0x00003C=60(S), while type code is 01. 562 +))) 646 646 564 +((( 565 +Payload: 01 00 00 1E TDC=30S 566 +))) 647 647 648 -(% style="color:#037691" %)**Uplink: (OTAA mode, channel added by JoinAccept message)** 568 +((( 569 +Payload: 01 00 00 3C TDC=60S 570 +))) 649 649 650 -922.1 - SF7BW125 to SF12BW125 572 +((( 573 + 574 +))) 651 651 652 -922.3 - SF7BW125 to SF12BW125 576 +* ((( 577 +(% style="color:blue" %)**Reset** 578 +))) 653 653 654 -922.5 - SF7BW125 to SF12BW125 580 +((( 581 +If payload = 0x04FF, it will reset the NSE01 582 +))) 655 655 656 -922.7 - SF7BW125 to SF12BW125 657 657 658 - 922.9-SF7BW125toSF12BW125585 +* (% style="color:blue" %)**INTMOD** 659 659 660 -923.1 - SF7BW125 to SF12BW125 587 +((( 588 +Downlink Payload: 06000003, Set AT+INTMOD=3 589 +))) 661 661 662 -923.3 - SF7BW125 to SF12BW125 663 663 664 664 665 - (% style="color:#037691"%)**Downlink:**593 +== 2.6 LED Indicator == 666 666 667 -Uplink channels 1-7(RX1) 595 +((( 596 +The NSE01 has an internal LED which is to show the status of different state. 668 668 669 -921.9 - SF12BW125 (RX2 downlink only; SF12BW125 might be changed to SF9BW125) 670 670 599 +* When power on, NSE01 will detect if sensor probe is connected, if probe detected, LED will blink four times. (no blinks in this step is no probe) 600 +* Then the LED will be on for 1 second means device is boot normally. 601 +* After NSE01 join NB-IoT network. The LED will be ON for 3 seconds. 602 +* For each uplink probe, LED will be on for 500ms. 603 +))) 671 671 672 672 673 -=== 2.7.7 IN865-867 (IN865) === 674 674 675 -(% style="color:#037691" %)** Uplink:** 676 676 677 - 865.0625- SF7BW125to SF12BW125608 +== 2.7 Installation in Soil == 678 678 679 - 865.4025- SF7BW125toSF12BW125610 +__**Measurement the soil surface**__ 680 680 681 -865.9850 - SF7BW125 to SF12BW125 612 +((( 613 +Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting. [[https:~~/~~/img.alicdn.com/imgextra/i3/2005165265/O1CN010rj9Oh1olPsQxrdUK_!!2005165265.jpg>>url:https://img.alicdn.com/imgextra/i3/2005165265/O1CN010rj9Oh1olPsQxrdUK_!!2005165265.jpg]] 614 +))) 682 682 616 +[[image:1657259653666-883.png]] 683 683 684 -(% style="color:#037691" %) **Downlink:** 685 685 686 -Uplink channels 1-3 (RX1) 619 +((( 620 + 687 687 688 -866.550 - SF10BW125 (RX2) 622 +((( 623 +Dig a hole with diameter > 20CM. 624 +))) 689 689 626 +((( 627 +Horizontal insert the probe to the soil and fill the hole for long term measurement. 628 +))) 629 +))) 690 690 631 +[[image:1654506665940-119.png]] 691 691 633 +((( 634 + 635 +))) 692 692 693 -== 2.8 LED Indicator == 694 694 695 - TheLSE01has aninternal LEDwhich is to show the status of differentstate.638 +== 2.8 Firmware Change Log == 696 696 697 -* Blink once when device power on. 698 -* Solid ON for 5 seconds once device successful Join the network. 699 -* Blink once when device transmit a packet. 700 700 701 - == 2.9 InstallationinSoil==641 +Download URL & Firmware Change log 702 702 703 - **Measurementhe soilurface**643 +[[www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/Firmware/]] 704 704 705 705 706 -[[ima ge:1654506634463-199.png]]646 +Upgrade Instruction: [[Upgrade_Firmware>>||anchor="H5.1200BHowtoUpgradeFirmware"]] 707 707 708 -((( 709 -((( 710 -Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting. 711 -))) 712 -))) 713 713 714 714 650 +== 2.9 Battery Analysis == 715 715 716 - [[image:1654506665940-119.png]]652 +=== 2.9.1 Battery Type === 717 717 718 -((( 719 -Dig a hole with diameter > 20CM. 720 -))) 721 721 722 722 ((( 723 - Horizontalinserttheprobe tothesoilandfilltheholeforlongtermmeasurement.656 +The NSE01 battery is a combination of an 8500mAh Li/SOCI2 Battery and a Super Capacitor. The battery is none-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter. 724 724 ))) 725 725 726 726 727 -== 2.10 Firmware Change Log == 728 - 729 729 ((( 730 - **Firmware downloadlink:**661 +The battery is designed to last for several years depends on the actually use environment and update interval. 731 731 ))) 732 732 733 -((( 734 -[[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/]] 735 -))) 736 736 737 737 ((( 738 - 666 +The battery related documents as below: 739 739 ))) 740 740 741 - (((742 -* *FirmwareUpgrade Method: **[[FirmwareUpgradeInstruction>>doc:Main.Firmware Upgrade Instructionfor STM32 baseoducts.WebHome]]743 - )))669 +* [[Battery Dimension>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]] 670 +* [[Lithium-Thionyl Chloride Battery datasheet>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]] 671 +* [[Lithium-ion Battery-Capacitor datasheet>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]] 744 744 745 745 ((( 746 - 674 +[[image:image-20220708140453-6.png]] 747 747 ))) 748 748 749 -((( 750 -**V1.0.** 751 -))) 752 752 678 + 679 +=== 2.9.2 Power consumption Analyze === 680 + 753 753 ((( 754 - Release682 +Dragino battery powered product are all runs in Low Power mode. We have an update battery calculator which base on the measurement of the real device. User can use this calculator to check the battery life and calculate the battery life if want to use different transmit interval. 755 755 ))) 756 756 757 757 758 -== 2.11 Battery Analysis == 759 - 760 -=== 2.11.1 Battery Type === 761 - 762 762 ((( 763 - The LSE01 battery is a combination of a 4000mAh Li/SOCI2 Battery and a Super Capacitor. The batteryis non-rechargeablebattery type with a lowdischargerate (<2% per year). Thistype ofbattery is commonly used in IoT devices such aswater meter.687 +Instruction to use as below: 764 764 ))) 765 765 766 766 ((( 767 - Thebatterys designedlastforrethan5 years fortheSN50.691 +(% style="color:blue" %)**Step 1: **(%%)Downlink the up-to-date DRAGINO_Battery_Life_Prediction_Table.xlsx from: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/]] 768 768 ))) 769 769 694 + 770 770 ((( 771 -((( 772 -The battery-related documents are as below: 696 +(% style="color:blue" %)**Step 2: **(%%) Open it and choose 773 773 ))) 774 -))) 775 775 776 776 * ((( 777 - [[Battery Dimension>>url:http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/&file=LSN50-Battery-Dimension.pdf]],700 +Product Model 778 778 ))) 779 779 * ((( 780 - [[Lithium-ThionylChloride Battery datasheet>>url:https://www.dragino.com/downloads/downloads/datasheet/Battery/ER26500/ER26500_Datasheet-EN.pdf]],703 +Uplink Interval 781 781 ))) 782 782 * ((( 783 - [[Lithium-ion Battery-Capacitor datasheet>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC_1520_datasheet.jpg]],[[Tech Spec>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC1520%20Technical%20Specification20171123.pdf]]706 +Working Mode 784 784 ))) 785 785 786 - [[image:image-20220610172436-1.png]] 709 +((( 710 +And the Life expectation in difference case will be shown on the right. 711 +))) 787 787 713 +[[image:image-20220708141352-7.jpeg]] 788 788 789 789 790 -=== 2.11.2 Battery Note === 791 791 717 +=== 2.9.3 Battery Note === 718 + 792 792 ((( 793 793 The Li-SICO battery is designed for small current / long period application. It is not good to use a high current, short period transmit method. The recommended minimum period for use of this battery is 5 minutes. If you use a shorter period time to transmit LoRa, then the battery life may be decreased. 794 794 ))) ... ... @@ -795,298 +795,176 @@ 795 795 796 796 797 797 798 -=== 2. 11.3Replace the battery ===725 +=== 2.9.4 Replace the battery === 799 799 800 800 ((( 801 - IfBattery is lower than 2.7v,usershouldreplace the battery ofLSE01.728 +The default battery pack of NSE01 includes a ER26500 plus super capacitor. If user can't find this pack locally, they can find ER26500 or equivalence without the SPC1520 capacitor, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes). 802 802 ))) 803 803 731 + 732 + 733 += 3. Access NB-IoT Module = 734 + 804 804 ((( 805 - You can changethe battery in the LSE01.The type of battery isnot limitedas longas the outputis between 3v to 3.6v. On the main board, there is a diode (D1) between the battery and the maincircuit. If you need to use a battery with lessthan 3.3v, pleaseremovethe D1and shortcut thewopadsofitso therewon’tbe voltage drop between battery andmain board.736 +Users can directly access the AT command set of the NB-IoT module. 806 806 ))) 807 807 808 808 ((( 809 -The defaultbattery packof LSE01 includesa ER18505 plussupercapacitor.Ifusercan’tfind this pack locally, theycan find ER18505orequivalence,whichwillalsoworkinmostcase.The SPC can enlargethebattery lifeforigh frequency use(updateperiod below5minutes)740 +The AT Command set can refer the BC35-G NB-IoT Module AT Command: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=datasheet/other_vendors/BC35-G/>>url:https://www.dragino.com/downloads/index.php?dir=datasheet/other_vendors/BC35-G/]] 810 810 ))) 811 811 743 +[[image:1657261278785-153.png]] 812 812 813 813 814 -= 3. Using the AT Commands = 815 815 816 -= =3.1AccessAT Commands ==747 += 4. Using the AT Commands = 817 817 749 +== 4.1 Access AT Commands == 818 818 819 - LSE01supportsATCommandsetn the stock firmware.Youcanuse a USB toTTLadaptertoconnect to LSE01forusing ATcommand,asbelow.751 +See this link for detail: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/]] 820 820 821 -[[image:1654501986557-872.png||height="391" width="800"]] 822 822 754 +AT+<CMD>? : Help on <CMD> 823 823 824 - Orifyouhavebelowboard,usebelowconnection:756 +AT+<CMD> : Run <CMD> 825 825 758 +AT+<CMD>=<value> : Set the value 826 826 827 - [[image:1654502005655-729.png||height="503"width="801"]]760 +AT+<CMD>=? : Get the value 828 828 829 829 830 - 831 -In the PC, you need to set the serial baud rate to (% style="color:green" %)**9600**(%%) to access the serial console for LSE01. LSE01 will output system info once power on as below: 832 - 833 - 834 - [[image:1654502050864-459.png||height="564" width="806"]] 835 - 836 - 837 -Below are the available commands, a more detailed AT Command manual can be found at [[AT Command Manual>>https://www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0]]: [[https:~~/~~/www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0>>https://www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0]] 838 - 839 - 840 -(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>? **(%%) : Help on <CMD> 841 - 842 -(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD> **(%%) : Run <CMD> 843 - 844 -(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>=<value>**(%%) : Set the value 845 - 846 -(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>=?**(%%) : Get the value 847 - 848 - 849 849 (% style="color:#037691" %)**General Commands**(%%) 850 850 851 - (% style="background-color:#dcdcdc" %)**AT**(%%): Attention765 +AT : Attention 852 852 853 - (% style="background-color:#dcdcdc" %)**AT?**(%%): Short Help767 +AT? : Short Help 854 854 855 - (% style="background-color:#dcdcdc" %)**ATZ**(%%): MCU Reset769 +ATZ : MCU Reset 856 856 857 - (% style="background-color:#dcdcdc" %)**AT+TDC**(%%): Application Data Transmission Interval771 +AT+TDC : Application Data Transmission Interval 858 858 773 +AT+CFG : Print all configurations 859 859 860 - (%style="color:#037691"%)**Keys,IDsand EUIs management**775 +AT+CFGMOD : Working mode selection 861 861 862 - (% style="background-color:#dcdcdc" %)**AT+APPEUI**(%%)ApplicationEUI777 +AT+INTMOD : Set the trigger interrupt mode 863 863 864 - (% style="background-color:#dcdcdc" %)**AT+APPKEY**(%%)ApplicationKey779 +AT+5VT : Set extend the time of 5V power 865 865 866 - (% style="background-color:#dcdcdc" %)**AT+APPSKEY**(%%)Application Session Key781 +AT+PRO : Choose agreement 867 867 868 - (% style="background-color:#dcdcdc" %)**AT+DADDR**(%%)DeviceAddress783 +AT+WEIGRE : Get weight or set weight to 0 869 869 870 - (% style="background-color:#dcdcdc" %)**AT+DEUI**(%%)DeviceEUI785 +AT+WEIGAP : Get or Set the GapValue of weight 871 871 872 - (% style="background-color:#dcdcdc" %)**AT+NWKID**(%%):NetworkID(Youcanenterthiscommandchangeonlyaftersuccessful networkconnection)787 +AT+RXDL : Extend the sending and receiving time 873 873 874 - (% style="background-color:#dcdcdc" %)**AT+NWKSKEY**(%%)NetworkSession KeyJoining and sending dateon LoRa network789 +AT+CNTFAC : Get or set counting parameters 875 875 876 - (% style="background-color:#dcdcdc" %)**AT+CFM**(%%)ConfirmMode791 +AT+SERVADDR : Server Address 877 877 878 -(% style="background-color:#dcdcdc" %)**AT+CFS**(%%) : Confirm Status 879 879 880 -(% style=" background-color:#dcdcdc" %)**AT+JOIN**(%%): JoinLoRa? Network794 +(% style="color:#037691" %)**COAP Management** 881 881 882 - (% style="background-color:#dcdcdc" %)**AT+NJM**(%%)LoRa? Network Join Mode796 +AT+URI : Resource parameters 883 883 884 -(% style="background-color:#dcdcdc" %)**AT+NJS**(%%) : LoRa? Network Join Status 885 885 886 -(% style=" background-color:#dcdcdc" %)**AT+RECV**(%%) :PrintLast Received Data inRaw Format799 +(% style="color:#037691" %)**UDP Management** 887 887 888 - (% style="background-color:#dcdcdc" %)**AT+RECVB**(%%)Print LastReceived DatainBinaryFormat801 +AT+CFM : Upload confirmation mode (only valid for UDP) 889 889 890 -(% style="background-color:#dcdcdc" %)**AT+SEND**(%%) : Send Text Data 891 891 892 -(% style=" background-color:#dcdcdc" %)**AT+SENB**(%%): Send Hexadecimal Data804 +(% style="color:#037691" %)**MQTT Management** 893 893 806 +AT+CLIENT : Get or Set MQTT client 894 894 895 - (%style="color:#037691"%)**LoRaNetworkManagement**808 +AT+UNAME : Get or Set MQTT Username 896 896 897 - (% style="background-color:#dcdcdc" %)**AT+ADR**(%%):AdaptiveRate810 +AT+PWD : Get or Set MQTT password 898 898 899 - (% style="background-color:#dcdcdc" %)**AT+CLASS**(%%):LoRaClass(Currentlyonly supportclassA812 +AT+PUBTOPIC : Get or Set MQTT publish topic 900 900 901 - (% style="background-color:#dcdcdc" %)**AT+DCS**(%%):DutyCycleSetting814 +AT+SUBTOPIC : Get or Set MQTT subscription topic 902 902 903 -(% style="background-color:#dcdcdc" %)**AT+DR**(%%) : Data Rate (Can Only be Modified after ADR=0) 904 904 905 -(% style=" background-color:#dcdcdc" %)**AT+FCD**(%%) : Frame Counter Downlink817 +(% style="color:#037691" %)**Information** 906 906 907 - (% style="background-color:#dcdcdc" %)**AT+FCU**(%%): Frame CounterUplink819 +AT+FDR : Factory Data Reset 908 908 909 - (% style="background-color:#dcdcdc" %)**AT+JN1DL**(%%):JoinAcceptDelay1821 +AT+PWORD : Serial Access Password 910 910 911 -(% style="background-color:#dcdcdc" %)**AT+JN2DL**(%%) : Join Accept Delay2 912 912 913 -(% style="background-color:#dcdcdc" %)**AT+PNM**(%%) : Public Network Mode 914 914 915 - (% style="background-color:#dcdcdc"%)**AT+RX1DL**(%%): Receive Delay1825 += 5. FAQ = 916 916 917 - (% style="background-color:#dcdcdc"%)**AT+RX2DL**(%%): ReceiveDelay2827 +== 5.1 How to Upgrade Firmware == 918 918 919 -(% style="background-color:#dcdcdc" %)**AT+RX2DR**(%%) : Rx2 Window Data Rate 920 920 921 -(% style="background-color:#dcdcdc" %)**AT+RX2FQ**(%%) : Rx2 Window Frequency 922 - 923 -(% style="background-color:#dcdcdc" %)**AT+TXP**(%%) : Transmit Power 924 - 925 -(% style="background-color:#dcdcdc" %)**AT+ MOD**(%%) : Set work mode 926 - 927 - 928 -(% style="color:#037691" %)**Information** 929 - 930 -(% style="background-color:#dcdcdc" %)**AT+RSSI**(%%) : RSSI of the Last Received Packet 931 - 932 -(% style="background-color:#dcdcdc" %)**AT+SNR**(%%) : SNR of the Last Received Packet 933 - 934 -(% style="background-color:#dcdcdc" %)**AT+VER**(%%) : Image Version and Frequency Band 935 - 936 -(% style="background-color:#dcdcdc" %)**AT+FDR**(%%) : Factory Data Reset 937 - 938 -(% style="background-color:#dcdcdc" %)**AT+PORT**(%%) : Application Port 939 - 940 -(% style="background-color:#dcdcdc" %)**AT+CHS**(%%) : Get or Set Frequency (Unit: Hz) for Single Channel Mode 941 - 942 - (% style="background-color:#dcdcdc" %)**AT+CHE**(%%) : Get or Set eight channels mode, Only for US915, AU915, CN470 943 - 944 - 945 -= 4. FAQ = 946 - 947 -== 4.1 How to change the LoRa Frequency Bands/Region? == 948 - 949 949 ((( 950 -You can follow the instructions for [[how to upgrade image>>||anchor="H2.10200BFirmwareChangeLog"]]. 951 -When downloading the images, choose the required image file for download. 831 +User can upgrade the firmware for 1) bug fix, 2) new feature release. 952 952 ))) 953 953 954 954 ((( 955 - 835 +Please see this link for how to upgrade: [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H2.HardwareUpgradeMethodSupportList>>http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H2.HardwareUpgradeMethodSupportList]] 956 956 ))) 957 957 958 958 ((( 959 - Howtosetup LSE01 towork in 8 channel modeBy default,thefrequency bandsUS915,AU915, CN470 work in 72 frequencies.Many gatewaysare8 channelgateways, andin thiscase,theOTAA join timeand uplink scheduleis longandunpredictable while the end nodeis hoppingin 72 frequencies.839 +(% style="color:red" %)Notice, NSE01 and LSE01 share the same mother board. They use the same connection and method to update. 960 960 ))) 961 961 962 -((( 963 - 964 -))) 965 965 966 -((( 967 -You can configure the end node to work in 8 channel mode by using the AT+CHE command. The 500kHz channels are always included for OTAA. 968 -))) 969 969 970 -((( 971 - 972 -))) 844 +== 5.2 Can I calibrate NSE01 to different soil types? == 973 973 974 974 ((( 975 - Forexample,in **US915**band,the frequencytablesasbelow. By default,the endnodewilluse all channels(0~~71)forOTAAJoinprocess.AftertheOTAAJoin,theend nodewilluse these allchannels(0~~71)tosenduplinkkets.847 +NSE01 is calibrated for saline-alkali soil and loamy soil. If users want to use it for other soil, they can calibrate the value in the IoT platform base on the value measured by saline-alkali soil and loamy soil. The formula can be found at [[this link>>https://www.dragino.com/downloads/downloads/LoRa_End_Node/LSE01/Calibrate_to_other_Soil_20220605.pdf]]. 976 976 ))) 977 977 978 -[[image:image-20220606154726-3.png]] 979 979 851 += 6. Trouble Shooting = 980 980 981 - Whenyouuse the TTNnetwork,theUS915 frequencybandsuseare:853 +== 6.1 Connection problem when uploading firmware == 982 982 983 -* 903.9 - SF7BW125 to SF10BW125 984 -* 904.1 - SF7BW125 to SF10BW125 985 -* 904.3 - SF7BW125 to SF10BW125 986 -* 904.5 - SF7BW125 to SF10BW125 987 -* 904.7 - SF7BW125 to SF10BW125 988 -* 904.9 - SF7BW125 to SF10BW125 989 -* 905.1 - SF7BW125 to SF10BW125 990 -* 905.3 - SF7BW125 to SF10BW125 991 -* 904.6 - SF8BW500 992 992 993 993 ((( 994 -Because the end node is now hopping in 72 frequency, it makes it difficult for the devices to Join the TTN network and uplink data. To solve this issue, you can access the device via the AT commands and run: 995 - 996 -* (% style="color:#037691" %)**AT+CHE=2** 997 -* (% style="color:#037691" %)**ATZ** 857 +**Please see: **[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H3.3Troubleshooting>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H3.3Troubleshooting]] 998 998 ))) 999 999 860 +(% class="wikigeneratedid" %) 1000 1000 ((( 1001 1001 1002 - 1003 -to set the end node to work in 8 channel mode. The device will work in Channel 8-15 & 64-71 for OTAA, and channel 8-15 for Uplink. 1004 1004 ))) 1005 1005 1006 -((( 1007 - 1008 -))) 1009 1009 1010 -((( 1011 -The **AU915** band is similar. Below are the AU915 Uplink Channels. 1012 -))) 866 +== 6.2 AT Command input doesn't work == 1013 1013 1014 -[[image:image-20220606154825-4.png]] 1015 - 1016 - 1017 - 1018 -= 5. Trouble Shooting = 1019 - 1020 -== 5.1 Why I can’t join TTN in US915 / AU915 bands? == 1021 - 1022 -It is due to channel mapping. Please see the [[Eight Channel Mode>>doc:Main.LoRaWAN Communication Debug.WebHome||anchor="H2.NoticeofUS9152FCN4702FAU915Frequencyband"]] section above for details. 1023 - 1024 - 1025 -== 5.2 AT Command input doesn’t work == 1026 - 1027 1027 ((( 1028 -In the case if user can see the console output but can’t type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn’t send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string. 1029 -))) 869 +In the case if user can see the console output but can't type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn't send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string. 1030 1030 1031 - 1032 -== 5.3 Device rejoin in at the second uplink packet == 1033 - 1034 -(% style="color:#4f81bd" %)**Issue describe as below:** 1035 - 1036 -[[image:1654500909990-784.png]] 1037 - 1038 - 1039 -(% style="color:#4f81bd" %)**Cause for this issue:** 1040 - 1041 -((( 1042 -The fuse on LSE01 is not large enough, some of the soil probe require large current up to 5v 800mA, in a short pulse. When this happen, it cause the device reboot so user see rejoin. 871 + 1043 1043 ))) 1044 1044 1045 1045 1046 - (% style="color:#4f81bd"%)**Solution:**875 += 7. Order Info = 1047 1047 1048 -All new shipped LSE01 after 2020-May-30 will have this to fix. For the customer who see this issue, please bypass the fuse as below: 1049 1049 1050 - [[image:1654500929571-736.png||height="458" width="832"]]878 +Part Number**:** (% style="color:#4f81bd" %)**NSE01** 1051 1051 1052 1052 1053 -= 6. Order Info = 1054 - 1055 - 1056 -Part Number**:** (% style="color:#4f81bd" %)**LSE01-XX-YY** 1057 - 1058 - 1059 -(% style="color:#4f81bd" %)**XX**(%%)**:** The default frequency band 1060 - 1061 -* (% style="color:red" %)**AS923**(%%): LoRaWAN AS923 band 1062 -* (% style="color:red" %)**AU915**(%%): LoRaWAN AU915 band 1063 -* (% style="color:red" %)**EU433**(%%): LoRaWAN EU433 band 1064 -* (% style="color:red" %)**EU868**(%%): LoRaWAN EU868 band 1065 -* (% style="color:red" %)**KR920**(%%): LoRaWAN KR920 band 1066 -* (% style="color:red" %)**US915**(%%): LoRaWAN US915 band 1067 -* (% style="color:red" %)**IN865**(%%): LoRaWAN IN865 band 1068 -* (% style="color:red" %)**CN470**(%%): LoRaWAN CN470 band 1069 - 1070 -(% style="color:#4f81bd" %)**YY**(%%)**: **Battery Option 1071 - 1072 -* (% style="color:red" %)**4**(%%): 4000mAh battery 1073 -* (% style="color:red" %)**8**(%%): 8500mAh battery 1074 - 1075 1075 (% class="wikigeneratedid" %) 1076 1076 ((( 1077 1077 1078 1078 ))) 1079 1079 1080 -= 7. Packing Info =886 += 8. Packing Info = 1081 1081 1082 1082 ((( 1083 1083 1084 1084 1085 1085 (% style="color:#037691" %)**Package Includes**: 1086 -))) 1087 1087 1088 -* (((1089 - LSE01LoRaWAN SoilMoisture& EC Sensorx 1893 +* NSE01 NB-IoT Soil Moisture & EC Sensor x 1 894 +* External antenna x 1 1090 1090 ))) 1091 1091 1092 1092 ((( ... ... @@ -1093,24 +1093,19 @@ 1093 1093 1094 1094 1095 1095 (% style="color:#037691" %)**Dimension and weight**: 1096 -))) 1097 1097 1098 -* (((1099 - DeviceSize:cm902 +* Size: 195 x 125 x 55 mm 903 +* Weight: 420g 1100 1100 ))) 1101 -* ((( 1102 -Device Weight: g 1103 -))) 1104 -* ((( 1105 -Package Size / pcs : cm 1106 -))) 1107 -* ((( 1108 -Weight / pcs : g 1109 1109 906 +((( 1110 1110 908 + 909 + 910 + 1111 1111 ))) 1112 1112 1113 -= 8. Support =913 += 9. Support = 1114 1114 1115 1115 * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule. 1116 1116 * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.com]]
- 1657245163077-232.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +81.0 KB - Content
- 1657246476176-652.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +492.6 KB - Content
- 1657249419225-449.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +81.0 KB - Content
- 1657249468462-536.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +483.6 KB - Content
- 1657249793983-486.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +85.8 KB - Content
- 1657249831934-534.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +72.5 KB - Content
- 1657249864775-321.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +87.0 KB - Content
- 1657249930215-289.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +77.3 KB - Content
- 1657249978444-674.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +139.5 KB - Content
- 1657249990869-686.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +96.9 KB - Content
- 1657250217799-140.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +98.7 KB - Content
- 1657250255956-604.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +99.0 KB - Content
- 1657259653666-883.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +344.4 KB - Content
- 1657260785982-288.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +138.2 KB - Content
- 1657261119050-993.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +126.1 KB - Content
- 1657261278785-153.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +126.1 KB - Content
- 1657271519014-786.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +71.5 KB - Content
- 1657327959271-447.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +78.3 KB - Content
- image-20220708101224-1.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +22.2 KB - Content
- image-20220708101605-2.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +87.5 KB - Content
- image-20220708110657-3.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +251.7 KB - Content
- image-20220708111918-4.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +38.8 KB - Content
- image-20220708133731-5.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +8.7 KB - Content
- image-20220708140453-6.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +132.7 KB - Content
- image-20220708141352-7.jpeg
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +102.7 KB - Content
- image-20220709084038-1.jpeg
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +72.0 KB - Content
- image-20220709084137-2.jpeg
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +72.0 KB - Content
- image-20220709084207-3.jpeg
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +72.0 KB - Content
- image-20220709084458-4.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +199.5 KB - Content
- image-20220709085040-1.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +200.4 KB - Content