<
From version < 37.1 >
edited by Xiaoling
on 2022/06/25 16:29
To version < 65.2 >
edited by Xiaoling
on 2022/07/08 15:03
>
Change comment: There is no comment for this version

Summary

Details

Page properties
Title
... ... @@ -1,1 +1,1 @@
1 -LSE01-LoRaWAN Soil Moisture & EC Sensor User Manual
1 +NSE01 - NB-IoT Soil Moisture & EC Sensor User Manual
Content
... ... @@ -13,1080 +13,802 @@
13 13  
14 14  **Table of Contents:**
15 15  
16 -{{toc/}}
17 17  
18 18  
19 19  
20 20  
21 21  
21 += 1.  Introduction =
22 22  
23 -= 1. Introduction =
23 +== 1.1 ​ What is LoRaWAN Soil Moisture & EC Sensor ==
24 24  
25 -== 1.1 ​What is LoRaWAN Soil Moisture & EC Sensor ==
26 -
27 27  (((
28 28  
29 29  
30 -The Dragino LSE01 is a (% style="color:#4f81bd" %)**LoRaWAN Soil Moisture & EC Sensor**(%%) for IoT of Agriculture. It is designed to measure the soil moisture of saline-alkali soil and loamy soil. The soil sensor uses FDR method to calculate the soil moisture with the compensation from soil temperature and conductivity. It also has been calibrated in factory for Mineral soil type.
31 -)))
28 +Dragino NSE01 is an (% style="color:blue" %)**NB-IOT soil moisture & EC sensor**(%%) for agricultural IoT. Used to measure the soil moisture of saline-alkali soil and loam. The soil sensor uses the FDR method to calculate soil moisture and compensates it with soil temperature and electrical conductivity. It has also been calibrated for mineral soil types at the factory.
32 32  
33 -(((
34 -It detects (% style="color:#4f81bd" %)**Soil Moisture**(%%), (% style="color:#4f81bd" %)**Soil Temperature**(%%) and (% style="color:#4f81bd" %)**Soil Conductivity**(%%), and uploads the value via wireless to LoRaWAN IoT Server.
35 -)))
30 +It can detect (% style="color:blue" %)**Soil Moisture, Soil Temperature and Soil Conductivity**(%%), and upload its value to the server wirelessly.
36 36  
37 -(((
38 -The LoRa wireless technology used in LES01 allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption.
39 -)))
32 +The wireless technology used in NSE01 allows the device to send data at a low data rate and reach ultra-long distances, providing ultra-long-distance spread spectrum Communication.
40 40  
41 -(((
42 -LES01 is powered by (% style="color:#4f81bd" %)**4000mA or 8500mAh Li-SOCI2 battery**(%%), It is designed for long term use up to 10 years.
43 -)))
34 +NSE01 are powered by (% style="color:blue" %)**8500mAh Li-SOCI2**(%%) batteries, which can be used for up to 5 years.  
44 44  
45 -(((
46 -Each LES01 is pre-load with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect after power on.
36 +
47 47  )))
48 48  
49 -
50 50  [[image:1654503236291-817.png]]
51 51  
52 52  
53 -[[image:1654503265560-120.png]]
42 +[[image:1657245163077-232.png]]
54 54  
55 55  
56 56  
57 57  == 1.2 ​Features ==
58 58  
59 -* LoRaWAN 1.0.3 Class A
60 -* Ultra low power consumption
48 +* NB-IoT Bands: B1/B3/B8/B5/B20/B28 @H-FDD
61 61  * Monitor Soil Moisture
62 62  * Monitor Soil Temperature
63 63  * Monitor Soil Conductivity
64 -* Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865
65 65  * AT Commands to change parameters
66 66  * Uplink on periodically
67 67  * Downlink to change configure
68 68  * IP66 Waterproof Enclosure
69 -* 4000mAh or 8500mAh Battery for long term use
56 +* Ultra-Low Power consumption
57 +* AT Commands to change parameters
58 +* Micro SIM card slot for NB-IoT SIM
59 +* 8500mAh Battery for long term use
70 70  
71 71  
72 72  
73 73  
74 -== 1.3 Specification ==
64 +== 1.3  Specification ==
75 75  
76 -Measure Volume: Base on the centra pin of the probe, a cylinder with 7cm diameter and 10cm height.
77 77  
78 -[[image:image-20220606162220-5.png]]
67 +(% style="color:#037691" %)**Common DC Characteristics:**
79 79  
69 +* Supply Voltage: 2.1v ~~ 3.6v
70 +* Operating Temperature: -40 ~~ 85°C
80 80  
81 81  
82 -== ​1.4 Applications ==
83 83  
84 -* Smart Agriculture
74 +(% style="color:#037691" %)**NB-IoT Spec:**
85 85  
86 -(% class="wikigeneratedid" id="H200B1.5FirmwareChangelog" %)
87 -​
76 +* - B1 @H-FDD: 2100MHz
77 +* - B3 @H-FDD: 1800MHz
78 +* - B8 @H-FDD: 900MHz
79 +* - B5 @H-FDD: 850MHz
80 +* - B20 @H-FDD: 800MHz
81 +* - B28 @H-FDD: 700MHz
88 88  
89 -== 1.5 Firmware Change log ==
90 90  
91 91  
92 -**LSE01 v1.0 :**  Release
85 +Probe(% style="color:#037691" %)** Specification:**
93 93  
87 +Measure Volume: Base on the centra pin of the probe, a cylinder with 7cm diameter and 10cm height.
94 94  
89 +[[image:image-20220708101224-1.png]]
95 95  
96 -= 2. Configure LSE01 to connect to LoRaWAN network =
97 97  
98 -== 2.1 How it works ==
99 99  
100 -(((
101 -The LSE01 is configured as LoRaWAN OTAA Class A mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and power on the LSE0150. It will automatically join the network via OTAA and start to send the sensor value
102 -)))
93 +== ​1.4  Applications ==
103 103  
104 -(((
105 -In case you can’t set the OTAA keys in the LoRaWAN OTAA server, and you have to use the keys from the server, you can [[use AT Commands >>||anchor="H3.200BUsingtheATCommands"]].
106 -)))
95 +* Smart Agriculture
107 107  
97 +(% class="wikigeneratedid" id="H200B1.5FirmwareChangelog" %)
98 +​
108 108  
100 +== 1.5  Pin Definitions ==
109 109  
110 -== 2.2 ​Quick guide to connect to LoRaWAN server (OTAA) ==
111 111  
112 -Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LG308>>url:http://www.dragino.com/products/lora/item/140-lg308.html]] as a LoRaWAN gateway in this example.
103 +[[image:1657246476176-652.png]]
113 113  
114 114  
115 -[[image:1654503992078-669.png]]
116 116  
107 += 2.  Use NSE01 to communicate with IoT Server =
117 117  
118 -The LG308 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
109 +== 2.1  How it works ==
119 119  
120 120  
121 -(% style="color:blue" %)**Step 1**(%%):  Create a device in TTN with the OTAA keys from LSE01.
112 +(((
113 +The NSE01 is equipped with a NB-IoT module, the pre-loaded firmware in NSE01 will get environment data from sensors and send the value to local NB-IoT network via the NB-IoT module.  The NB-IoT network will forward this value to IoT server via the protocol defined by NSE01.
114 +)))
122 122  
123 -Each LSE01 is shipped with a sticker with the default device EUI as below:
124 124  
125 -[[image:image-20220606163732-6.jpeg]]
117 +(((
118 +The diagram below shows the working flow in default firmware of NSE01:
119 +)))
126 126  
127 -You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot:
121 +[[image:image-20220708101605-2.png]]
128 128  
129 -**Add APP EUI in the application**
123 +(((
124 +
125 +)))
130 130  
131 131  
132 -[[image:1654504596150-405.png]]
133 133  
129 +== 2.2 ​ Configure the NSE01 ==
134 134  
135 135  
136 -**Add APP KEY and DEV EUI**
132 +=== 2.2.1 Test Requirement ===
137 137  
138 -[[image:1654504683289-357.png]]
139 139  
135 +To use NSE01 in your city, make sure meet below requirements:
140 140  
137 +* Your local operator has already distributed a NB-IoT Network there.
138 +* The local NB-IoT network used the band that NSE01 supports.
139 +* Your operator is able to distribute the data received in their NB-IoT network to your IoT server.
141 141  
142 -(% style="color:blue" %)**Step 2**(%%): Power on LSE01
143 -
144 -
145 -Put a Jumper on JP2 to power on the device. ( The Jumper must be in FLASH position).
146 -
147 -[[image:image-20220606163915-7.png]]
148 -
149 -
150 -(% style="color:blue" %)**Step 3**(%%)**:** The LSE01 will auto join to the TTN network. After join success, it will start to upload messages to TTN and you can see the messages in the panel.
151 -
152 -[[image:1654504778294-788.png]]
153 -
154 -
155 -
156 -== 2.3 Uplink Payload ==
157 -
158 -
159 -=== 2.3.1 MOD~=0(Default Mode) ===
160 -
161 -LSE01 will uplink payload via LoRaWAN with below payload format: 
162 -
163 163  (((
164 -Uplink payload includes in total 11 bytes.
142 +Below figure shows our testing structure. Here we have NB-IoT network coverage by China Mobile, the band they use is B8.  The NSE01 will use CoAP((% style="color:red" %)120.24.4.116:5683)(%%) or raw UDP((% style="color:red" %)120.24.4.116:5601)(%%) or MQTT((% style="color:red" %)120.24.4.116:1883)(%%)or TCP((% style="color:red" %)120.24.4.116:5600)(%%)protocol to send data to the test server
165 165  )))
166 166  
167 -(% border="1" cellspacing="10" style="background-color:#ffffcc; width:500px" %)
168 -|(((
169 -**Size**
170 170  
171 -**(bytes)**
172 -)))|**2**|**2**|**2**|**2**|**2**|**1**
173 -|**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(((
174 -Temperature
146 +[[image:1657249419225-449.png]]
175 175  
176 -(Reserve, Ignore now)
177 -)))|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]]|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]]|(((
178 -MOD & Digital Interrupt
179 179  
180 -(Optional)
181 -)))
182 182  
150 +=== 2.2.2 Insert SIM card ===
183 183  
152 +Insert the NB-IoT Card get from your provider.
184 184  
154 +User need to take out the NB-IoT module and insert the SIM card like below:
185 185  
186 -=== 2.3.2 MOD~=1(Original value) ===
187 187  
188 -This mode can get the original AD value of moisture and original conductivity (with temperature drift compensation).
157 +[[image:1657249468462-536.png]]
189 189  
190 -(% border="1" cellspacing="10" style="background-color:#ffffcc; width:500px" %)
191 -|(((
192 -**Size**
193 193  
194 -**(bytes)**
195 -)))|**2**|**2**|**2**|**2**|**2**|**1**
196 -|**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(((
197 -Temperature
198 198  
199 -(Reserve, Ignore now)
200 -)))|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]](raw)|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]](raw)|(((
201 -MOD & Digital Interrupt
161 +=== 2.2.3 Connect USB – TTL to NSE01 to configure it ===
202 202  
203 -(Optional)
204 -)))
205 -
206 -
207 -
208 -
209 -=== 2.3.3 Battery Info ===
210 -
211 211  (((
212 -Check the battery voltage for LSE01.
213 -)))
214 -
215 215  (((
216 -Ex1: 0x0B45 = 2885mV
165 +User need to configure NSE01 via serial port to set the (% style="color:blue" %)**Server Address** / **Uplink Topic** (%%)to define where and how-to uplink packets. NSE01 support AT Commands, user can use a USB to TTL adapter to connect to NSE01 and use AT Commands to configure it, as below.
217 217  )))
218 -
219 -(((
220 -Ex2: 0x0B49 = 2889mV
221 221  )))
222 222  
223 223  
170 +**Connection:**
224 224  
225 -=== 2.3.4 Soil Moisture ===
172 + (% style="background-color:yellow" %)USB TTL GND <~-~-~-~-> GND
226 226  
227 -(((
228 -Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil.
229 -)))
174 + (% style="background-color:yellow" %)USB TTL TXD <~-~-~-~-> UART_RXD
230 230  
231 -(((
232 -For example, if the data you get from the register is __0x05 0xDC__, the moisture content in the soil is
233 -)))
176 + (% style="background-color:yellow" %)USB TTL RXD <~-~-~-~-> UART_TXD
234 234  
235 -(((
236 -
237 -)))
238 238  
239 -(((
240 -(% style="color:#4f81bd" %)**05DC(H) = 1500(D) /100 = 15%.**
241 -)))
179 +In the PC, use below serial tool settings:
242 242  
181 +* Baud:  (% style="color:green" %)**9600**
182 +* Data bits:** (% style="color:green" %)8(%%)**
183 +* Stop bits: (% style="color:green" %)**1**
184 +* Parity:  (% style="color:green" %)**None**
185 +* Flow Control: (% style="color:green" %)**None**
243 243  
244 -
245 -=== 2.3.5 Soil Temperature ===
246 -
247 247  (((
248 - Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is 0x09 0xEC, the temperature content in the soil is
188 +Make sure the switch is in FLASH position, then power on device by connecting the jumper on NSE01. NSE01 will output system info once power on as below, we can enter the (% style="color:green" %)**password: 12345678**(%%) to access AT Command input.
249 249  )))
250 250  
251 -(((
252 -**Example**:
253 -)))
191 +[[image:image-20220708110657-3.png]]
254 254  
255 -(((
256 -If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/100 = 2.61 °C
257 -)))
193 +(% style="color:red" %)Note: the valid AT Commands can be found at: (%%)[[http:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/]]
258 258  
259 -(((
260 -If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C
261 -)))
262 262  
263 263  
197 +=== 2.2.4 Use CoAP protocol to uplink data ===
264 264  
265 -=== 2.3.6 Soil Conductivity (EC) ===
199 +(% style="color:red" %)Note: if you don't have CoAP server, you can refer this link to set up one: (%%)[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/>>http://wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/]]
266 266  
267 -(((
268 -Obtain (% style="color:#4f81bd" %)**__soluble salt concentration__**(%%) in soil or (% style="color:#4f81bd" %)**__soluble ion concentration in liquid fertilizer__**(%%) or (% style="color:#4f81bd" %)**__planting medium__**(%%). The value range of the register is 0 - 20000(Decimal)( Can be greater than 20000).
269 -)))
270 270  
271 -(((
272 -For example, if the data you get from the register is 0x00 0xC8, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm.
273 -)))
202 +**Use below commands:**
274 274  
275 -(((
276 -Generally, the EC value of irrigation water is less than 800uS / cm.
277 -)))
204 +* (% style="color:blue" %)**AT+PRO=1**  (%%) ~/~/ Set to use CoAP protocol to uplink
205 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5683   ** (%%)~/~/ to set CoAP server address and port
206 +* (% style="color:blue" %)**AT+URI=5,11,"mqtt",11,"coap",12,"0",15,"c=text1",23,"0" ** (%%) ~/~/Set COAP resource path
278 278  
279 -(((
280 -
281 -)))
208 +For parameter description, please refer to AT command set
282 282  
283 -(((
284 -
285 -)))
210 +[[image:1657249793983-486.png]]
286 286  
287 -=== 2.3.7 MOD ===
288 288  
289 -Firmware version at least v2.1 supports changing mode.
213 +After configure the server address and (% style="color:green" %)**reset the device**(%%) (via AT+ATZ ), NSE01 will start to uplink sensor values to CoAP server.
290 290  
291 -For example, bytes[10]=90
215 +[[image:1657249831934-534.png]]
292 292  
293 -mod=(bytes[10]>>7)&0x01=1.
294 294  
295 295  
296 -**Downlink Command:**
219 +=== 2.2.5 Use UDP protocol to uplink data(Default protocol) ===
297 297  
298 -If payload = 0x0A00, workmode=0
221 +This feature is supported since firmware version v1.0.1
299 299  
300 -If** **payload =** **0x0A01, workmode=1
301 301  
224 +* (% style="color:blue" %)**AT+PRO=2   ** (%%) ~/~/ Set to use UDP protocol to uplink
225 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5601   ** (%%) ~/~/ to set UDP server address and port
226 +* (% style="color:blue" %)**AT+CFM=1       ** (%%) ~/~/If the server does not respond, this command is unnecessary
302 302  
228 +[[image:1657249864775-321.png]]
303 303  
304 -=== 2.3.8 ​Decode payload in The Things Network ===
305 305  
306 -While using TTN network, you can add the payload format to decode the payload.
231 +[[image:1657249930215-289.png]]
307 307  
308 308  
309 -[[image:1654505570700-128.png]]
310 310  
311 -(((
312 -The payload decoder function for TTN is here:
313 -)))
235 +=== 2.2.6 Use MQTT protocol to uplink data ===
314 314  
315 -(((
316 -LSE01 TTN Payload Decoder: [[https:~~/~~/www.dropbox.com/sh/si8icbrjlamxqdb/AAACYwjsxxr5fj_vpqRtrETAa?dl=0>>https://www.dropbox.com/sh/si8icbrjlamxqdb/AAACYwjsxxr5fj_vpqRtrETAa?dl=0]]
317 -)))
237 +This feature is supported since firmware version v110
318 318  
319 319  
320 -== 2.4 Uplink Interval ==
240 +* (% style="color:blue" %)**AT+PRO=3   ** (%%) ~/~/Set to use MQTT protocol to uplink
241 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,1883   ** (%%) ~/~/Set MQTT server address and port
242 +* (% style="color:blue" %)**AT+CLIENT=CLIENT       ** (%%)~/~/Set up the CLIENT of MQTT
243 +* (% style="color:blue" %)**AT+UNAME=UNAME                               **(%%)~/~/Set the username of MQTT
244 +* (% style="color:blue" %)**AT+PWD=PWD                                        **(%%)~/~/Set the password of MQTT
245 +* (% style="color:blue" %)**AT+PUBTOPIC=NSE01_PUB                    **(%%)~/~/Set the sending topic of MQTT
246 +* (% style="color:blue" %)**AT+SUBTOPIC=NSE01_SUB          **(%%) ~/~/Set the subscription topic of MQTT
321 321  
322 -The LSE01 by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link: [[Change Uplink Interval>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H4.1ChangeUplinkInterval"]]
248 +[[image:1657249978444-674.png]]
323 323  
324 324  
251 +[[image:1657249990869-686.png]]
325 325  
326 -== 2.5 Downlink Payload ==
327 327  
328 -By default, LSE50 prints the downlink payload to console port.
329 -
330 -[[image:image-20220606165544-8.png]]
331 -
332 -
333 333  (((
334 -**Examples:**
255 +MQTT protocol has a much higher power consumption compare vs UDP / CoAP protocol. Please check the power analyze document and adjust the uplink period to a suitable interval.
335 335  )))
336 336  
337 -(((
338 -
339 -)))
340 340  
341 -* (((
342 -**Set TDC**
343 -)))
344 344  
345 -(((
346 -If the payload=0100003C, it means set the END Node’s TDC to 0x00003C=60(S), while type code is 01.
347 -)))
260 +=== 2.2.7 Use TCP protocol to uplink data ===
348 348  
349 -(((
350 -Payload:    01 00 00 1E    TDC=30S
351 -)))
262 +This feature is supported since firmware version v110
352 352  
353 -(((
354 -Payload:    01 00 00 3C    TDC=60S
355 -)))
356 356  
357 -(((
358 -
359 -)))
265 +* (% style="color:blue" %)**AT+PRO=4   ** (%%) ~/~/ Set to use TCP protocol to uplink
266 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5600   **(%%) ~/~/ to set TCP server address and port
360 360  
361 -* (((
362 -**Reset**
363 -)))
268 +[[image:1657250217799-140.png]]
364 364  
365 -(((
366 -If payload = 0x04FF, it will reset the LSE01
367 -)))
368 368  
271 +[[image:1657250255956-604.png]]
369 369  
370 -* **CFM**
371 371  
372 -Downlink Payload: 05000001, Set AT+CFM=1 or 05000000 , set AT+CFM=0
373 373  
275 +=== 2.2.8 Change Update Interval ===
374 374  
277 +User can use below command to change the (% style="color:green" %)**uplink interval**.
375 375  
376 -== 2.6 ​Show Data in DataCake IoT Server ==
279 +* (% style="color:blue" %)**AT+TDC=600      ** (%%)~/~/ Set Update Interval to 600s
377 377  
378 378  (((
379 -[[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps:
282 +(% style="color:red" %)**NOTE:**
380 380  )))
381 381  
382 382  (((
383 -
286 +(% style="color:red" %)1. By default, the device will send an uplink message every 1 hour.
384 384  )))
385 385  
386 -(((
387 -(% style="color:blue" %)**Step 1**(%%):  Be sure that your device is programmed and properly connected to the network at this time.
388 -)))
389 389  
390 -(((
391 -(% style="color:blue" %)**Step 2**(%%):  To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps:
392 -)))
393 393  
291 +== 2.3  Uplink Payload ==
394 394  
395 -[[image:1654505857935-743.png]]
293 +In this mode, uplink payload includes in total 18 bytes
396 396  
295 +(% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:510px" %)
296 +|=(% style="width: 50px;" %)(((
297 +**Size(bytes)**
298 +)))|=(% style="width: 50px;" %)**6**|=(% style="width: 25px;" %)2|=(% style="width: 25px;" %)**2**|=(% style="width: 80px;" %)**1**|=(% style="width: 80px;" %)**2**|=(% style="width: 80px;" %)**2**|=(% style="width: 80px;" %)**2**|=(% style="width: 40px;" %)**1**
299 +|(% style="width:97px" %)**Value**|(% style="width:83px" %)[[Device ID>>||anchor="H"]]|(% style="width:41px" %)[[Ver>>||anchor="H"]]|(% style="width:46px" %)[[BAT>>||anchor="H"]]|(% style="width:123px" %)[[Signal Strength>>||anchor="H"]]|(% style="width:108px" %)[[Soil Moisture>>||anchor="H"]]|(% style="width:133px" %)[[Soil Temperature>>||anchor="H"]]|(% style="width:159px" %)[[Soil Conductivity(EC)>>||anchor="H"]]|(% style="width:80px" %)[[Interrupt>>||anchor="H"]]
397 397  
398 -[[image:1654505874829-548.png]]
301 +If we use the MQTT client to subscribe to this MQTT topic, we can see the following information when the NSE01 uplink data.
399 399  
400 400  
401 -(% style="color:blue" %)**Step 3**(%%)**:**  Create an account or log in Datacake.
304 +[[image:image-20220708111918-4.png]]
402 402  
403 -(% style="color:blue" %)**Step 4**(%%)**:**  Search the LSE01 and add DevEUI.
404 404  
307 +The payload is ASCII string, representative same HEX:
405 405  
406 -[[image:1654505905236-553.png]]
309 +0x72403155615900640c7817075e0a8c02f900 where:
407 407  
311 +* Device ID: 0x 724031556159 = 724031556159
312 +* Version: 0x0064=100=1.0.0
408 408  
409 -After added, the sensor data arrive TTN, it will also arrive and show in Mydevices.
314 +* BAT: 0x0c78 = 3192 mV = 3.192V
315 +* Singal: 0x17 = 23
316 +* Soil Moisture: 0x075e= 1886 = 18.86  %
317 +* Soil Temperature:0x0a8c =2700=27 °C
318 +* Soil Conductivity(EC) = 0x02f9 =761 uS /cm
319 +* Interrupt: 0x00 = 0
410 410  
411 -[[image:1654505925508-181.png]]
412 412  
413 413  
414 414  
415 -== 2.7 Frequency Plans ==
324 +== 2. Payload Explanation and Sensor Interface ==
416 416  
417 -The LSE01 uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.
418 418  
327 +=== 2.4.1  Device ID ===
419 419  
420 -=== 2.7.1 EU863-870 (EU868) ===
329 +By default, the Device ID equal to the last 6 bytes of IMEI.
421 421  
422 -(% style="color:#037691" %)** Uplink:**
331 +User can use (% style="color:blue" %)**AT+DEUI**(%%) to set Device ID
423 423  
424 -868.1 - SF7BW125 to SF12BW125
333 +**Example:**
425 425  
426 -868.3 - SF7BW125 to SF12BW125 and SF7BW250
335 +AT+DEUI=A84041F15612
427 427  
428 -868.5 - SF7BW125 to SF12BW125
337 +The Device ID is stored in a none-erase area, Upgrade the firmware or run AT+FDR won't erase Device ID.
429 429  
430 -867.1 - SF7BW125 to SF12BW125
431 431  
432 -867.3 - SF7BW125 to SF12BW125
433 433  
434 -867.5 - SF7BW125 to SF12BW125
341 +=== 2.4.2  Version Info ===
435 435  
436 -867.7 - SF7BW125 to SF12BW125
343 +Specify the software version: 0x64=100, means firmware version 1.00.
437 437  
438 -867.9 - SF7BW125 to SF12BW125
345 +For example: 0x00 64 : this device is NSE01 with firmware version 1.0.0.
439 439  
440 -868.8 - FSK
441 441  
442 442  
443 -(% style="color:#037691" %)** Downlink:**
349 +=== 2.4.3  Battery Info ===
444 444  
445 -Uplink channels 1-9 (RX1)
351 +(((
352 +Check the battery voltage for LSE01.
353 +)))
446 446  
447 -869.525 - SF9BW125 (RX2 downlink only)
355 +(((
356 +Ex1: 0x0B45 = 2885mV
357 +)))
448 448  
359 +(((
360 +Ex2: 0x0B49 = 2889mV
361 +)))
449 449  
450 450  
451 -=== 2.7.2 US902-928(US915) ===
452 452  
453 -Used in USA, Canada and South America. Default use CHE=2
365 +=== 2.4.4  Signal Strength ===
454 454  
455 -(% style="color:#037691" %)**Uplink:**
367 +NB-IoT Network signal Strength.
456 456  
457 -903.9 - SF7BW125 to SF10BW125
369 +**Ex1: 0x1d = 29**
458 458  
459 -904.1 - SF7BW125 to SF10BW125
371 +(% style="color:blue" %)**0**(%%)  -113dBm or less
460 460  
461 -904.3 - SF7BW125 to SF10BW125
373 +(% style="color:blue" %)**1**(%%)  -111dBm
462 462  
463 -904.5 - SF7BW125 to SF10BW125
375 +(% style="color:blue" %)**2...30**(%%) -109dBm... -53dBm
464 464  
465 -904.7 - SF7BW125 to SF10BW125
377 +(% style="color:blue" %)**31**  (%%) -51dBm or greater
466 466  
467 -904.9 - SF7BW125 to SF10BW125
379 +(% style="color:blue" %)**99**   (%%) Not known or not detectable
468 468  
469 -905.1 - SF7BW125 to SF10BW125
470 470  
471 -905.3 - SF7BW125 to SF10BW125
472 472  
383 +=== 2.4.5  Soil Moisture ===
473 473  
474 -(% style="color:#037691" %)**Downlink:**
385 +(((
386 +Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil.
387 +)))
475 475  
476 -923.3 - SF7BW500 to SF12BW500
389 +(((
390 +For example, if the data you get from the register is **__0x05 0xDC__**, the moisture content in the soil is
391 +)))
477 477  
478 -923.9 - SF7BW500 to SF12BW500
393 +(((
394 +
395 +)))
479 479  
480 -924.5 - SF7BW500 to SF12BW500
397 +(((
398 +(% style="color:#4f81bd" %)**05DC(H) = 1500(D) /100 = 15%.**
399 +)))
481 481  
482 -925.1 - SF7BW500 to SF12BW500
483 483  
484 -925.7 - SF7BW500 to SF12BW500
485 485  
486 -926.3 - SF7BW500 to SF12BW500
403 +=== 2.4.6  Soil Temperature ===
487 487  
488 -926.9 - SF7BW500 to SF12BW500
405 +(((
406 + Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is __**0x09 0xEC**__, the temperature content in the soil is
407 +)))
489 489  
490 -927.5 - SF7BW500 to SF12BW500
409 +(((
410 +**Example**:
411 +)))
491 491  
492 -923.3 - SF12BW500(RX2 downlink only)
413 +(((
414 +If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/100 = 2.61 °C
415 +)))
493 493  
417 +(((
418 +If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C
419 +)))
494 494  
495 495  
496 -=== 2.7.3 CN470-510 (CN470) ===
497 497  
498 -Used in China, Default use CHE=1
423 +=== 2.4.7  Soil Conductivity (EC) ===
499 499  
500 -(% style="color:#037691" %)**Uplink:**
425 +(((
426 +Obtain (% style="color:#4f81bd" %)**__soluble salt concentration__**(%%) in soil or (% style="color:#4f81bd" %)**__soluble ion concentration in liquid fertilizer__**(%%) or (% style="color:#4f81bd" %)**__planting medium__**(%%). The value range of the register is 0 - 20000(Decimal)( Can be greater than 20000).
427 +)))
501 501  
502 -486.3 - SF7BW125 to SF12BW125
429 +(((
430 +For example, if the data you get from the register is __**0x00 0xC8**__, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm.
431 +)))
503 503  
504 -486.5 - SF7BW125 to SF12BW125
433 +(((
434 +Generally, the EC value of irrigation water is less than 800uS / cm.
435 +)))
505 505  
506 -486.7 - SF7BW125 to SF12BW125
437 +(((
438 +
439 +)))
507 507  
508 -486.9 - SF7BW125 to SF12BW125
441 +(((
442 +
443 +)))
509 509  
510 -487.1 - SF7BW125 to SF12BW125
445 +=== 2.4. Digital Interrupt ===
511 511  
512 -487.3 - SF7BW125 to SF12BW125
447 +Digital Interrupt refers to pin (% style="color:blue" %)**GPIO_EXTI**(%%), and there are different trigger methods. When there is a trigger, the NSE01 will send a packet to the server.
513 513  
514 -487.5 - SF7BW125 to SF12BW125
449 +The command is:
515 515  
516 -487.7 - SF7BW125 to SF12BW125
451 +(% style="color:blue" %)**AT+INTMOD=3 **(%%) ~/~/(more info about INMOD please refer [[**AT Command Manual**>>url:https://www.dragino.com/downloads/downloads/NB-IoT/NBSN95/DRAGINO_NBSN95-NB_AT%20Commands_v1.1.0.pdf]])**.**
517 517  
518 518  
519 -(% style="color:#037691" %)**Downlink:**
454 +The lower four bits of this data field shows if this packet is generated by interrupt or not. [[Click here>>||anchor="H"]] for the hardware and software set up.
520 520  
521 -506.7 - SF7BW125 to SF12BW125
522 522  
523 -506.9 - SF7BW125 to SF12BW125
457 +Example:
524 524  
525 -507.1 - SF7BW125 to SF12BW125
459 +0x(00): Normal uplink packet.
526 526  
527 -507.3 - SF7BW125 to SF12BW125
461 +0x(01): Interrupt Uplink Packet.
528 528  
529 -507.5 - SF7BW125 to SF12BW125
530 530  
531 -507.7 - SF7BW125 to SF12BW125
532 532  
533 -507.9 - SF7BW125 to SF12BW125
465 +=== 2.4.9  ​+5V Output ===
534 534  
535 -508.1 - SF7BW125 to SF12BW125
467 +NSE01 will enable +5V output before all sampling and disable the +5v after all sampling. 
536 536  
537 -505.3 - SF12BW125 (RX2 downlink only)
538 538  
470 +The 5V output time can be controlled by AT Command.
539 539  
472 +(% style="color:blue" %)**AT+5VT=1000**
540 540  
541 -=== 2.7.4 AU915-928(AU915) ===
474 +Means set 5V valid time to have 1000ms. So the real 5V output will actually have 1000ms + sampling time for other sensors.
542 542  
543 -Default use CHE=2
544 544  
545 -(% style="color:#037691" %)**Uplink:**
546 546  
547 -916.8 - SF7BW125 to SF12BW125
478 +== 2.5  Downlink Payload ==
548 548  
549 -917.0 - SF7BW125 to SF12BW125
480 +By default, NSE01 prints the downlink payload to console port.
550 550  
551 -917.2 - SF7BW125 to SF12BW125
482 +[[image:image-20220708133731-5.png]]
552 552  
553 -917.4 - SF7BW125 to SF12BW125
554 554  
555 -917.6 - SF7BW125 to SF12BW125
485 +(((
486 +(% style="color:blue" %)**Examples:**
487 +)))
556 556  
557 -917.8 - SF7BW125 to SF12BW125
489 +(((
490 +
491 +)))
558 558  
559 -918.0 - SF7BW125 to SF12BW125
493 +* (((
494 +(% style="color:blue" %)**Set TDC**
495 +)))
560 560  
561 -918.2 - SF7BW125 to SF12BW125
497 +(((
498 +If the payload=0100003C, it means set the END Node's TDC to 0x00003C=60(S), while type code is 01.
499 +)))
562 562  
501 +(((
502 +Payload:    01 00 00 1E    TDC=30S
503 +)))
563 563  
564 -(% style="color:#037691" %)**Downlink:**
505 +(((
506 +Payload:    01 00 00 3C    TDC=60S
507 +)))
565 565  
566 -923.3 - SF7BW500 to SF12BW500
509 +(((
510 +
511 +)))
567 567  
568 -923.9 - SF7BW500 to SF12BW500
513 +* (((
514 +(% style="color:blue" %)**Reset**
515 +)))
569 569  
570 -924.5 - SF7BW500 to SF12BW500
517 +(((
518 +If payload = 0x04FF, it will reset the NSE01
519 +)))
571 571  
572 -925.1 - SF7BW500 to SF12BW500
573 573  
574 -925.7 - SF7BW500 to SF12BW500
522 +* (% style="color:blue" %)**INTMOD**
575 575  
576 -926.3 - SF7BW500 to SF12BW500
524 +Downlink Payload: 06000003, Set AT+INTMOD=3
577 577  
578 -926.9 - SF7BW500 to SF12BW500
579 579  
580 -927.5 - SF7BW500 to SF12BW500
581 581  
582 -923.3 - SF12BW500(RX2 downlink only)
528 +== 2. ​LED Indicator ==
583 583  
530 +(((
531 +The NSE01 has an internal LED which is to show the status of different state.
584 584  
585 585  
586 -=== 2.7.5 AS920-923 & AS923-925 (AS923) ===
534 +* When power on, NSE01 will detect if sensor probe is connected, if probe detected, LED will blink four times. (no blinks in this step is no probe)
535 +* Then the LED will be on for 1 second means device is boot normally.
536 +* After NSE01 join NB-IoT network. The LED will be ON for 3 seconds.
537 +* For each uplink probe, LED will be on for 500ms.
538 +)))
587 587  
588 -(% style="color:#037691" %)**Default Uplink channel:**
589 589  
590 -923.2 - SF7BW125 to SF10BW125
591 591  
592 -923.4 - SF7BW125 to SF10BW125
593 593  
543 +== 2.7  Installation in Soil ==
594 594  
595 -(% style="color:#037691" %)**Additional Uplink Channel**:
545 +__**Measurement the soil surface**__
596 596  
597 -(OTAA mode, channel added by JoinAccept message)
547 +Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting. [[https:~~/~~/img.alicdn.com/imgextra/i3/2005165265/O1CN010rj9Oh1olPsQxrdUK_!!2005165265.jpg>>url:https://img.alicdn.com/imgextra/i3/2005165265/O1CN010rj9Oh1olPsQxrdUK_!!2005165265.jpg]]
598 598  
599 -(% style="color:#037691" %)**AS920~~AS923 for Japan, Malaysia, Singapore**:
549 +[[image:1657259653666-883.png]] ​
600 600  
601 -922.2 - SF7BW125 to SF10BW125
602 602  
603 -922.4 - SF7BW125 to SF10BW125
552 +(((
553 +
604 604  
605 -922.6 - SF7BW125 to SF10BW125
555 +(((
556 +Dig a hole with diameter > 20CM.
557 +)))
606 606  
607 -922.8 - SF7BW125 to SF10BW125
559 +(((
560 +Horizontal insert the probe to the soil and fill the hole for long term measurement.
561 +)))
562 +)))
608 608  
609 -923.0 - SF7BW125 to SF10BW125
564 +[[image:1654506665940-119.png]]
610 610  
611 -922.0 - SF7BW125 to SF10BW125
566 +(((
567 +
568 +)))
612 612  
613 613  
614 -(% style="color:#037691" %)**AS923 ~~ AS925 for Brunei, Cambodia, Hong Kong, Indonesia, Laos, Taiwan, Thailand, Vietnam**:
571 +== 2.8  ​Firmware Change Log ==
615 615  
616 -923.6 - SF7BW125 to SF10BW125
617 617  
618 -923.8 - SF7BW125 to SF10BW125
574 +Download URL & Firmware Change log
619 619  
620 -924.0 - SF7BW125 to SF10BW125
576 +[[www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/Firmware/]]
621 621  
622 -924.2 - SF7BW125 to SF10BW125
623 623  
624 -924.4 - SF7BW125 to SF10BW125
579 +Upgrade Instruction: [[Upgrade_Firmware>>||anchor="H"]]
625 625  
626 -924.6 - SF7BW125 to SF10BW125
627 627  
628 628  
629 -(% style="color:#037691" %)** Downlink:**
583 +== 2.9  ​Battery Analysis ==
630 630  
631 -Uplink channels 1-8 (RX1)
585 +=== 2.9.1  ​Battery Type ===
632 632  
633 -923.2 - SF10BW125 (RX2)
634 634  
588 +The NSE01 battery is a combination of an 8500mAh Li/SOCI2 Battery and a Super Capacitor. The battery is none-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter.
635 635  
636 636  
637 -=== 2.7.6 KR920-923 (KR920) ===
591 +The battery is designed to last for several years depends on the actually use environment and update interval. 
638 638  
639 -Default channel:
640 640  
641 -922.1 - SF7BW125 to SF12BW125
594 +The battery related documents as below:
642 642  
643 -922.3 - SF7BW125 to SF12BW125
596 +* [[Battery Dimension>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]
597 +* [[Lithium-Thionyl Chloride Battery>>url:http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]][[ datasheet>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]
598 +* [[Lithium-ion Battery-Capacitor datasheet>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]
644 644  
645 -922.5 - SF7BW125 to SF12BW125
646 -
647 -
648 -(% style="color:#037691" %)**Uplink: (OTAA mode, channel added by JoinAccept message)**
649 -
650 -922.1 - SF7BW125 to SF12BW125
651 -
652 -922.3 - SF7BW125 to SF12BW125
653 -
654 -922.5 - SF7BW125 to SF12BW125
655 -
656 -922.7 - SF7BW125 to SF12BW125
657 -
658 -922.9 - SF7BW125 to SF12BW125
659 -
660 -923.1 - SF7BW125 to SF12BW125
661 -
662 -923.3 - SF7BW125 to SF12BW125
663 -
664 -
665 -(% style="color:#037691" %)**Downlink:**
666 -
667 -Uplink channels 1-7(RX1)
668 -
669 -921.9 - SF12BW125 (RX2 downlink only; SF12BW125 might be changed to SF9BW125)
670 -
671 -
672 -
673 -=== 2.7.7 IN865-867 (IN865) ===
674 -
675 -(% style="color:#037691" %)** Uplink:**
676 -
677 -865.0625 - SF7BW125 to SF12BW125
678 -
679 -865.4025 - SF7BW125 to SF12BW125
680 -
681 -865.9850 - SF7BW125 to SF12BW125
682 -
683 -
684 -(% style="color:#037691" %) **Downlink:**
685 -
686 -Uplink channels 1-3 (RX1)
687 -
688 -866.550 - SF10BW125 (RX2)
689 -
690 -
691 -
692 -
693 -== 2.8 LED Indicator ==
694 -
695 -The LSE01 has an internal LED which is to show the status of different state.
696 -
697 -* Blink once when device power on.
698 -* Solid ON for 5 seconds once device successful Join the network.
699 -* Blink once when device transmit a packet.
700 -
701 -== 2.9 Installation in Soil ==
702 -
703 -**Measurement the soil surface**
704 -
705 -
706 -[[image:1654506634463-199.png]] ​
707 -
708 708  (((
709 -(((
710 -Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting.
601 +[[image:image-20220708140453-6.png]]
711 711  )))
712 -)))
713 713  
714 714  
715 715  
716 -[[image:1654506665940-119.png]]
606 +=== 2.9.2  Power consumption Analyze ===
717 717  
718 718  (((
719 -Dig a hole with diameter > 20CM.
609 +Dragino battery powered product are all runs in Low Power mode. We have an update battery calculator which base on the measurement of the real device. User can use this calculator to check the battery life and calculate the battery life if want to use different transmit interval.
720 720  )))
721 721  
722 -(((
723 -Horizontal insert the probe to the soil and fill the hole for long term measurement.
724 -)))
725 725  
726 -
727 -== 2.10 ​Firmware Change Log ==
728 -
729 729  (((
730 -**Firmware download link:**
614 +Instruction to use as below:
731 731  )))
732 732  
733 733  (((
734 -[[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/]]
618 +(% style="color:blue" %)**Step 1:  **(%%)Downlink the up-to-date DRAGINO_Battery_Life_Prediction_Table.xlsx from: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/]]
735 735  )))
736 736  
737 -(((
738 -
739 -)))
740 740  
741 741  (((
742 -**Firmware Upgrade Method: **[[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome]]
623 +(% style="color:blue" %)**Step 2: **(%%) Open it and choose
743 743  )))
744 744  
745 -(((
746 -
626 +* (((
627 +Product Model
747 747  )))
748 -
749 -(((
750 -**V1.0.**
629 +* (((
630 +Uplink Interval
751 751  )))
632 +* (((
633 +Working Mode
634 +)))
752 752  
753 753  (((
754 -Release
637 +And the Life expectation in difference case will be shown on the right.
755 755  )))
756 756  
640 +[[image:image-20220708141352-7.jpeg]]
757 757  
758 -== 2.11 ​Battery Analysis ==
759 759  
760 -=== 2.11.1 ​Battery Type ===
761 761  
762 -(((
763 -The LSE01 battery is a combination of a 4000mAh Li/SOCI2 Battery and a Super Capacitor. The battery is non-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter.
764 -)))
644 +=== 2.9.3  ​Battery Note ===
765 765  
766 766  (((
767 -The battery is designed to last for more than 5 years for the LSN50.
647 +The Li-SICO battery is designed for small current / long period application. It is not good to use a high current, short period transmit method. The recommended minimum period for use of this battery is 5 minutes. If you use a shorter period time to transmit LoRa, then the battery life may be decreased.
768 768  )))
769 769  
770 -(((
771 -(((
772 -The battery-related documents are as below:
773 -)))
774 -)))
775 775  
776 -* (((
777 -[[Battery Dimension>>url:http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/&file=LSN50-Battery-Dimension.pdf]],
778 -)))
779 -* (((
780 -[[Lithium-Thionyl Chloride Battery  datasheet>>url:https://www.dragino.com/downloads/downloads/datasheet/Battery/ER26500/ER26500_Datasheet-EN.pdf]],
781 -)))
782 -* (((
783 -[[Lithium-ion Battery-Capacitor datasheet>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC_1520_datasheet.jpg]], [[Tech Spec>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC1520%20Technical%20Specification20171123.pdf]]
784 -)))
785 785  
786 - [[image:image-20220610172436-1.png]]
652 +=== 2.9.4  Replace the battery ===
787 787  
788 -
789 -
790 -=== 2.11.2 ​Battery Note ===
791 -
792 792  (((
793 -The Li-SICO battery is designed for small current / long period application. It is not good to use a high current, short period transmit method. The recommended minimum period for use of this battery is 5 minutes. If you use a shorter period time to transmit LoRa, then the battery life may be decreased.
655 +The default battery pack of NSE01 includes a ER26500 plus super capacitor. If user can't find this pack locally, they can find ER26500 or equivalence without the SPC1520 capacitor, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes).
794 794  )))
795 795  
796 796  
797 797  
798 -=== 2.11.3 Replace the battery ===
660 += 3. ​ Access NB-IoT Module =
799 799  
800 800  (((
801 -If Battery is lower than 2.7v, user should replace the battery of LSE01.
663 +Users can directly access the AT command set of the NB-IoT module.
802 802  )))
803 803  
804 804  (((
805 -You can change the battery in the LSE01.The type of battery is not limited as long as the output is between 3v to 3.6v. On the main board, there is a diode (D1) between the battery and the main circuit. If you need to use a battery with less than 3.3v, please remove the D1 and shortcut the two pads of it so there won’t be voltage drop between battery and main board.
667 +The AT Command set can refer the BC35-G NB-IoT Module AT Command: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=datasheet/other_vendors/BC35-G/>>url:https://www.dragino.com/downloads/index.php?dir=datasheet/other_vendors/BC35-G/]] 
806 806  )))
807 807  
808 -(((
809 -The default battery pack of LSE01 includes a ER18505 plus super capacitor. If user can’t find this pack locally, they can find ER18505 or equivalence, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes)
810 -)))
670 +[[image:1657261278785-153.png]]
811 811  
812 812  
813 813  
814 -= 3. Using the AT Commands =
674 += 4.  Using the AT Commands =
815 815  
816 -== 3.1 Access AT Commands ==
676 +== 4.1  Access AT Commands ==
817 817  
678 +See this link for detail: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/]]
818 818  
819 -LSE01 supports AT Command set in the stock firmware. You can use a USB to TTL adapter to connect to LSE01 for using AT command, as below.
820 820  
821 -[[image:1654501986557-872.png||height="391" width="800"]]
681 +AT+<CMD>?  : Help on <CMD>
822 822  
683 +AT+<CMD>         : Run <CMD>
823 823  
824 -Or if you have below board, use below connection:
685 +AT+<CMD>=<value> : Set the value
825 825  
687 +AT+<CMD>=?  : Get the value
826 826  
827 -[[image:1654502005655-729.png||height="503" width="801"]]
828 828  
829 -
830 -
831 -In the PC, you need to set the serial baud rate to (% style="color:green" %)**9600**(%%) to access the serial console for LSE01. LSE01 will output system info once power on as below:
832 -
833 -
834 - [[image:1654502050864-459.png||height="564" width="806"]]
835 -
836 -
837 -Below are the available commands, a more detailed AT Command manual can be found at [[AT Command Manual>>https://www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0]]: [[https:~~/~~/www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0>>https://www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0]]
838 -
839 -
840 -(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>? **(%%) : Help on <CMD>
841 -
842 -(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD> **(%%) : Run <CMD>
843 -
844 -(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>=<value>**(%%) : Set the value
845 -
846 -(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>=?**(%%)  : Get the value
847 -
848 -
849 849  (% style="color:#037691" %)**General Commands**(%%)      
850 850  
851 -(% style="background-color:#dcdcdc" %)**AT**(%%)  : Attention       
692 +AT  : Attention       
852 852  
853 -(% style="background-color:#dcdcdc" %)**AT?**(%%)  : Short Help     
694 +AT?  : Short Help     
854 854  
855 -(% style="background-color:#dcdcdc" %)**ATZ**(%%)  : MCU Reset    
696 +ATZ  : MCU Reset    
856 856  
857 -(% style="background-color:#dcdcdc" %)**AT+TDC**(%%)  : Application Data Transmission Interval 
698 +AT+TDC  : Application Data Transmission Interval
858 858  
700 +AT+CFG  : Print all configurations
859 859  
860 -(% style="color:#037691" %)**Keys, IDs and EUIs management**
702 +AT+CFGMOD           : Working mode selection
861 861  
862 -(% style="background-color:#dcdcdc" %)**AT+APPEUI**(%%)              : Application EUI      
704 +AT+INTMOD            : Set the trigger interrupt mode
863 863  
864 -(% style="background-color:#dcdcdc" %)**AT+APPKEY**(%%)              : Application Key     
706 +AT+5VT  : Set extend the time of 5V power  
865 865  
866 -(% style="background-color:#dcdcdc" %)**AT+APPSKEY**(%%)            : Application Session Key
708 +AT+PRO  : Choose agreement
867 867  
868 -(% style="background-color:#dcdcdc" %)**AT+DADDR**(%%)              : Device Address     
710 +AT+WEIGRE  : Get weight or set weight to 0
869 869  
870 -(% style="background-color:#dcdcdc" %)**AT+DEUI**(%%)                   : Device EUI     
712 +AT+WEIGAP  : Get or Set the GapValue of weight
871 871  
872 -(% style="background-color:#dcdcdc" %)**AT+NWKID**(%%)               : Network ID (You can enter this command change only after successful network connection
714 +AT+RXDL  : Extend the sending and receiving time
873 873  
874 -(% style="background-color:#dcdcdc" %)**AT+NWKSKEY**(%%)          : Network Session Key Joining and sending date on LoRa network  
716 +AT+CNTFAC  : Get or set counting parameters
875 875  
876 -(% style="background-color:#dcdcdc" %)**AT+CFM**(%%)  : Confirm Mode       
718 +AT+SERVADDR  : Server Address
877 877  
878 -(% style="background-color:#dcdcdc" %)**AT+CFS**(%%)                     : Confirm Status       
879 879  
880 -(% style="background-color:#dcdcdc" %)**AT+JOIN**(%%)  : Join LoRa? Network       
721 +(% style="color:#037691" %)**COAP Management**      
881 881  
882 -(% style="background-color:#dcdcdc" %)**AT+NJM**(%%)  : LoRa? Network Join Mode    
723 +AT+URI            : Resource parameters
883 883  
884 -(% style="background-color:#dcdcdc" %)**AT+NJS**(%%)                     : LoRa? Network Join Status    
885 885  
886 -(% style="background-color:#dcdcdc" %)**AT+RECV**(%%)                  : Print Last Received Data in Raw Format
726 +(% style="color:#037691" %)**UDP Management**
887 887  
888 -(% style="background-color:#dcdcdc" %)**AT+RECVB**(%%)                : Print Last Received Data in Binary Format      
728 +AT+CFM          : Upload confirmation mode (only valid for UDP)
889 889  
890 -(% style="background-color:#dcdcdc" %)**AT+SEND**(%%)                  : Send Text Data      
891 891  
892 -(% style="background-color:#dcdcdc" %)**AT+SENB**(%%)                  : Send Hexadecimal Data
731 +(% style="color:#037691" %)**MQTT Management**
893 893  
733 +AT+CLIENT               : Get or Set MQTT client
894 894  
895 -(% style="color:#037691" %)**LoRa Network Management**
735 +AT+UNAME  : Get or Set MQTT Username
896 896  
897 -(% style="background-color:#dcdcdc" %)**AT+ADR**(%%)          : Adaptive Rate
737 +AT+PWD                  : Get or Set MQTT password
898 898  
899 -(% style="background-color:#dcdcdc" %)**AT+CLASS**(%%)  : LoRa Class(Currently only support class A
739 +AT+PUBTOPI : Get or Set MQTT publish topic
900 900  
901 -(% style="background-color:#dcdcdc" %)**AT+DCS**(%%)  : Duty Cycle Settin
741 +AT+SUBTOPIC  : Get or Set MQTT subscription topic
902 902  
903 -(% style="background-color:#dcdcdc" %)**AT+DR**(%%)  : Data Rate (Can Only be Modified after ADR=0)     
904 904  
905 -(% style="background-color:#dcdcdc" %)**AT+FCD**(%%)  : Frame Counter Downlink       
744 +(% style="color:#037691" %)**Information**          
906 906  
907 -(% style="background-color:#dcdcdc" %)**AT+FCU**(%%)  : Frame Counter Uplink   
746 +AT+FDR  : Factory Data Reset
908 908  
909 -(% style="background-color:#dcdcdc" %)**AT+JN1DL**(%%)  : Join Accept Delay1
748 +AT+PWOR : Serial Access Password
910 910  
911 -(% style="background-color:#dcdcdc" %)**AT+JN2DL**(%%)  : Join Accept Delay2
912 912  
913 -(% style="background-color:#dcdcdc" %)**AT+PNM**(%%)  : Public Network Mode   
914 914  
915 -(% style="background-color:#dcdcdc" %)**AT+RX1DL**(%%)  : Receive Delay1      
752 += ​5.  FAQ =
916 916  
917 -(% style="background-color:#dcdcdc" %)**AT+RX2DL**(%%)  : Receive Delay2      
754 +== 5.1 How to Upgrade Firmware ==
918 918  
919 -(% style="background-color:#dcdcdc" %)**AT+RX2DR**(%%)  : Rx2 Window Data Rate 
920 920  
921 -(% style="background-color:#dcdcdc" %)**AT+RX2FQ**(%%)  : Rx2 Window Frequency
922 -
923 -(% style="background-color:#dcdcdc" %)**AT+TXP**(%%)  : Transmit Power
924 -
925 -(% style="background-color:#dcdcdc" %)**AT+ MOD**(%%)  : Set work mode
926 -
927 -
928 -(% style="color:#037691" %)**Information** 
929 -
930 -(% style="background-color:#dcdcdc" %)**AT+RSSI**(%%)           : RSSI of the Last Received Packet   
931 -
932 -(% style="background-color:#dcdcdc" %)**AT+SNR**(%%)           : SNR of the Last Received Packet   
933 -
934 -(% style="background-color:#dcdcdc" %)**AT+VER**(%%)           : Image Version and Frequency Band       
935 -
936 -(% style="background-color:#dcdcdc" %)**AT+FDR**(%%)           : Factory Data Reset
937 -
938 -(% style="background-color:#dcdcdc" %)**AT+PORT**(%%)  : Application Port    
939 -
940 -(% style="background-color:#dcdcdc" %)**AT+CHS**(%%)  : Get or Set Frequency (Unit: Hz) for Single Channel Mode
941 -
942 - (% style="background-color:#dcdcdc" %)**AT+CHE**(%%)  : Get or Set eight channels mode, Only for US915, AU915, CN470
943 -
944 -
945 -= ​4. FAQ =
946 -
947 -== 4.1 ​How to change the LoRa Frequency Bands/Region? ==
948 -
949 949  (((
950 -You can follow the instructions for [[how to upgrade image>>||anchor="H2.10200BFirmwareChangeLog"]].
951 -When downloading the images, choose the required image file for download. ​
758 +User can upgrade the firmware for 1) bug fix, 2) new feature release.
952 952  )))
953 953  
954 954  (((
955 -
762 +Please see this link for how to upgrade:  [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H2.HardwareUpgradeMethodSupportList>>http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H2.HardwareUpgradeMethodSupportList]]
956 956  )))
957 957  
958 958  (((
959 -How to set up LSE01 to work in 8 channel mode By default, the frequency bands US915, AU915, CN470 work in 72 frequencies. Many gateways are 8 channel gateways, and in this case, the OTAA join time and uplink schedule is long and unpredictable while the end node is hopping in 72 frequencies.
766 +(% style="color:red" %)Notice, NSE01 and LSE01 share the same mother board. They use the same connection and method to update.
960 960  )))
961 961  
962 -(((
963 -
964 -)))
965 965  
966 -(((
967 -You can configure the end node to work in 8 channel mode by using the AT+CHE command. The 500kHz channels are always included for OTAA.
968 -)))
969 969  
970 -(((
971 -
972 -)))
771 += 6.  Trouble Shooting =
973 973  
974 -(((
975 -For example, in **US915** band, the frequency table is as below. By default, the end node will use all channels (0~~71) for OTAA Join process. After the OTAA Join, the end node will use these all channels (0~~71) to send uplink packets.
976 -)))
773 +== 6.1  ​Connection problem when uploading firmware ==
977 977  
978 -[[image:image-20220606154726-3.png]]
979 979  
980 -
981 -When you use the TTN network, the US915 frequency bands use are:
982 -
983 -* 903.9 - SF7BW125 to SF10BW125
984 -* 904.1 - SF7BW125 to SF10BW125
985 -* 904.3 - SF7BW125 to SF10BW125
986 -* 904.5 - SF7BW125 to SF10BW125
987 -* 904.7 - SF7BW125 to SF10BW125
988 -* 904.9 - SF7BW125 to SF10BW125
989 -* 905.1 - SF7BW125 to SF10BW125
990 -* 905.3 - SF7BW125 to SF10BW125
991 -* 904.6 - SF8BW500
992 -
776 +(% class="wikigeneratedid" %)
993 993  (((
994 -Because the end node is now hopping in 72 frequency, it makes it difficult for the devices to Join the TTN network and uplink data. To solve this issue, you can access the device via the AT commands and run:
995 -
996 -* (% style="color:#037691" %)**AT+CHE=2**
997 -* (% style="color:#037691" %)**ATZ**
778 +(% style="font-size:14px" %)**Please see: **(%%)[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H3.3Troubleshooting>>http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H3.3Troubleshooting||style="background-color: rgb(255, 255, 255); font-size: 14px;"]]
998 998  )))
999 999  
1000 -(((
1001 -
1002 1002  
1003 -to set the end node to work in 8 channel mode. The device will work in Channel 8-15 & 64-71 for OTAA, and channel 8-15 for Uplink.
1004 -)))
1005 1005  
1006 -(((
1007 -
1008 -)))
783 +== 6.2  AT Command input doesn't work ==
1009 1009  
1010 1010  (((
1011 -The **AU915** band is similar. Below are the AU915 Uplink Channels.
786 +In the case if user can see the console output but can't type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn't send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.
1012 1012  )))
1013 1013  
1014 -[[image:image-20220606154825-4.png]]
1015 1015  
1016 1016  
791 += 7. ​ Order Info =
1017 1017  
1018 -= 5. Trouble Shooting =
1019 1019  
1020 -== 5.1 ​Why I can’t join TTN in US915 / AU915 bands? ==
794 +Part Number**:** (% style="color:#4f81bd" %)**NSE01**
1021 1021  
1022 -It is due to channel mapping. Please see the [[Eight Channel Mode>>doc:Main.LoRaWAN Communication Debug.WebHome||anchor="H2.NoticeofUS9152FCN4702FAU915Frequencyband"]] section above for details.
1023 1023  
1024 -
1025 -== 5.2 AT Command input doesn’t work ==
1026 -
1027 -(((
1028 -In the case if user can see the console output but can’t type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn’t send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.
1029 -)))
1030 -
1031 -
1032 -== 5.3 Device rejoin in at the second uplink packet ==
1033 -
1034 -(% style="color:#4f81bd" %)**Issue describe as below:**
1035 -
1036 -[[image:1654500909990-784.png]]
1037 -
1038 -
1039 -(% style="color:#4f81bd" %)**Cause for this issue:**
1040 -
1041 -(((
1042 -The fuse on LSE01 is not large enough, some of the soil probe require large current up to 5v 800mA, in a short pulse. When this happen, it cause the device reboot so user see rejoin.
1043 -)))
1044 -
1045 -
1046 -(% style="color:#4f81bd" %)**Solution: **
1047 -
1048 -All new shipped LSE01 after 2020-May-30 will have this to fix. For the customer who see this issue, please bypass the fuse as below:
1049 -
1050 -[[image:1654500929571-736.png||height="458" width="832"]]
1051 -
1052 -
1053 -= 6. ​Order Info =
1054 -
1055 -
1056 -Part Number**:** (% style="color:#4f81bd" %)**LSE01-XX-YY**
1057 -
1058 -
1059 -(% style="color:#4f81bd" %)**XX**(%%)**:** The default frequency band
1060 -
1061 -* (% style="color:red" %)**AS923**(%%): LoRaWAN AS923 band
1062 -* (% style="color:red" %)**AU915**(%%): LoRaWAN AU915 band
1063 -* (% style="color:red" %)**EU433**(%%): LoRaWAN EU433 band
1064 -* (% style="color:red" %)**EU868**(%%): LoRaWAN EU868 band
1065 -* (% style="color:red" %)**KR920**(%%): LoRaWAN KR920 band
1066 -* (% style="color:red" %)**US915**(%%): LoRaWAN US915 band
1067 -* (% style="color:red" %)**IN865**(%%):  LoRaWAN IN865 band
1068 -* (% style="color:red" %)**CN470**(%%): LoRaWAN CN470 band
1069 -
1070 -(% style="color:#4f81bd" %)**YY**(%%)**: **Battery Option
1071 -
1072 -* (% style="color:red" %)**4**(%%): 4000mAh battery
1073 -* (% style="color:red" %)**8**(%%): 8500mAh battery
1074 -
1075 1075  (% class="wikigeneratedid" %)
1076 1076  (((
1077 1077  
1078 1078  )))
1079 1079  
1080 -= 7. Packing Info =
802 += 8.  Packing Info =
1081 1081  
1082 1082  (((
1083 1083  
1084 1084  
1085 1085  (% style="color:#037691" %)**Package Includes**:
1086 -)))
1087 1087  
1088 -* (((
1089 -LSE01 LoRaWAN Soil Moisture & EC Sensor x 1
809 +
810 +* NSE01 NB-IoT Soil Moisture & EC Sensor x 1
811 +* External antenna x 1
1090 1090  )))
1091 1091  
1092 1092  (((
... ... @@ -1093,24 +1093,20 @@
1093 1093  
1094 1094  
1095 1095  (% style="color:#037691" %)**Dimension and weight**:
1096 -)))
1097 1097  
1098 -* (((
1099 -Device Size: cm
819 +
820 +* Size: 195 x 125 x 55 mm
821 +* Weight:   420g
1100 1100  )))
1101 -* (((
1102 -Device Weight: g
1103 -)))
1104 -* (((
1105 -Package Size / pcs : cm
1106 -)))
1107 -* (((
1108 -Weight / pcs : g
1109 1109  
824 +(((
1110 1110  
826 +
827 +
828 +
1111 1111  )))
1112 1112  
1113 -= 8. Support =
831 += 9.  Support =
1114 1114  
1115 1115  * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
1116 1116  * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.com]]
1657245163077-232.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +81.0 KB
Content
1657246476176-652.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +492.6 KB
Content
1657249419225-449.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +81.0 KB
Content
1657249468462-536.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +483.6 KB
Content
1657249793983-486.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +85.8 KB
Content
1657249831934-534.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +72.5 KB
Content
1657249864775-321.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +87.0 KB
Content
1657249930215-289.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +77.3 KB
Content
1657249978444-674.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +139.5 KB
Content
1657249990869-686.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +96.9 KB
Content
1657250217799-140.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +98.7 KB
Content
1657250255956-604.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +99.0 KB
Content
1657259653666-883.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +344.4 KB
Content
1657260785982-288.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +138.2 KB
Content
1657261119050-993.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +126.1 KB
Content
1657261278785-153.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +126.1 KB
Content
image-20220708101224-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +22.2 KB
Content
image-20220708101605-2.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +87.5 KB
Content
image-20220708110657-3.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +251.7 KB
Content
image-20220708111918-4.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +38.8 KB
Content
image-20220708133731-5.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +8.7 KB
Content
image-20220708140453-6.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +132.7 KB
Content
image-20220708141352-7.jpeg
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +102.7 KB
Content
Copyright ©2010-2022 Dragino Technology Co., LTD. All rights reserved
Dragino Wiki v2.0