<
From version < 37.1 >
edited by Xiaoling
on 2022/06/25 16:29
To version < 57.7 >
edited by Xiaoling
on 2022/07/08 11:54
>
Change comment: There is no comment for this version

Summary

Details

Page properties
Title
... ... @@ -1,1 +1,1 @@
1 -LSE01-LoRaWAN Soil Moisture & EC Sensor User Manual
1 +NSE01 - NB-IoT Soil Moisture & EC Sensor User Manual
Content
... ... @@ -13,73 +13,78 @@
13 13  
14 14  **Table of Contents:**
15 15  
16 -{{toc/}}
17 17  
18 18  
19 19  
20 20  
21 21  
21 += 1.  Introduction =
22 22  
23 -= 1. Introduction =
23 +== 1.1 ​ What is LoRaWAN Soil Moisture & EC Sensor ==
24 24  
25 -== 1.1 ​What is LoRaWAN Soil Moisture & EC Sensor ==
26 -
27 27  (((
28 28  
29 29  
30 -The Dragino LSE01 is a (% style="color:#4f81bd" %)**LoRaWAN Soil Moisture & EC Sensor**(%%) for IoT of Agriculture. It is designed to measure the soil moisture of saline-alkali soil and loamy soil. The soil sensor uses FDR method to calculate the soil moisture with the compensation from soil temperature and conductivity. It also has been calibrated in factory for Mineral soil type.
31 -)))
28 +Dragino NSE01 is an (% style="color:blue" %)**NB-IOT soil moisture & EC sensor**(%%) for agricultural IoT. Used to measure the soil moisture of saline-alkali soil and loam. The soil sensor uses the FDR method to calculate soil moisture and compensates it with soil temperature and electrical conductivity. It has also been calibrated for mineral soil types at the factory.
32 32  
33 -(((
34 -It detects (% style="color:#4f81bd" %)**Soil Moisture**(%%), (% style="color:#4f81bd" %)**Soil Temperature**(%%) and (% style="color:#4f81bd" %)**Soil Conductivity**(%%), and uploads the value via wireless to LoRaWAN IoT Server.
35 -)))
30 +It can detect (% style="color:blue" %)**Soil Moisture, Soil Temperature and Soil Conductivity**(%%), and upload its value to the server wirelessly.
36 36  
37 -(((
38 -The LoRa wireless technology used in LES01 allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption.
39 -)))
32 +The wireless technology used in NSE01 allows the device to send data at a low data rate and reach ultra-long distances, providing ultra-long-distance spread spectrum Communication.
40 40  
41 -(((
42 -LES01 is powered by (% style="color:#4f81bd" %)**4000mA or 8500mAh Li-SOCI2 battery**(%%), It is designed for long term use up to 10 years.
43 -)))
34 +NSE01 are powered by (% style="color:blue" %)**8500mAh Li-SOCI2**(%%) batteries, which can be used for up to 5 years.  
44 44  
45 -(((
46 -Each LES01 is pre-load with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect after power on.
36 +
47 47  )))
48 48  
49 -
50 50  [[image:1654503236291-817.png]]
51 51  
52 52  
53 -[[image:1654503265560-120.png]]
42 +[[image:1657245163077-232.png]]
54 54  
55 55  
56 56  
57 57  == 1.2 ​Features ==
58 58  
59 -* LoRaWAN 1.0.3 Class A
60 -* Ultra low power consumption
48 +
49 +* NB-IoT Bands: B1/B3/B8/B5/B20/B28 @H-FDD
61 61  * Monitor Soil Moisture
62 62  * Monitor Soil Temperature
63 63  * Monitor Soil Conductivity
64 -* Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865
65 65  * AT Commands to change parameters
66 66  * Uplink on periodically
67 67  * Downlink to change configure
68 68  * IP66 Waterproof Enclosure
69 -* 4000mAh or 8500mAh Battery for long term use
57 +* Ultra-Low Power consumption
58 +* AT Commands to change parameters
59 +* Micro SIM card slot for NB-IoT SIM
60 +* 8500mAh Battery for long term use
70 70  
62 +== 1.3  Specification ==
71 71  
72 72  
65 +(% style="color:#037691" %)**Common DC Characteristics:**
73 73  
74 -== 1.3 Specification ==
67 +* Supply Voltage: 2.1v ~~ 3.6v
68 +* Operating Temperature: -40 ~~ 85°C
75 75  
70 +(% style="color:#037691" %)**NB-IoT Spec:**
71 +
72 +* - B1 @H-FDD: 2100MHz
73 +* - B3 @H-FDD: 1800MHz
74 +* - B8 @H-FDD: 900MHz
75 +* - B5 @H-FDD: 850MHz
76 +* - B20 @H-FDD: 800MHz
77 +* - B28 @H-FDD: 700MHz
78 +
79 +(% style="color:#037691" %)**Probe Specification:**
80 +
76 76  Measure Volume: Base on the centra pin of the probe, a cylinder with 7cm diameter and 10cm height.
77 77  
78 -[[image:image-20220606162220-5.png]]
83 +[[image:image-20220708101224-1.png]]
79 79  
80 80  
81 81  
82 -== ​1.4 Applications ==
87 +== ​1.4  Applications ==
83 83  
84 84  * Smart Agriculture
85 85  
... ... @@ -86,128 +86,256 @@
86 86  (% class="wikigeneratedid" id="H200B1.5FirmwareChangelog" %)
87 87  ​
88 88  
89 -== 1.5 Firmware Change log ==
94 +== 1.5  Pin Definitions ==
90 90  
91 91  
92 -**LSE01 v1.0 :**  Release
97 +[[image:1657246476176-652.png]]
93 93  
94 94  
95 95  
96 -= 2. Configure LSE01 to connect to LoRaWAN network =
101 += 2.  Use NSE01 to communicate with IoT Server =
97 97  
98 -== 2.1 How it works ==
103 +== 2.1  How it works ==
99 99  
105 +
100 100  (((
101 -The LSE01 is configured as LoRaWAN OTAA Class A mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and power on the LSE0150. It will automatically join the network via OTAA and start to send the sensor value
107 +The NSE01 is equipped with a NB-IoT module, the pre-loaded firmware in NSE01 will get environment data from sensors and send the value to local NB-IoT network via the NB-IoT module The NB-IoT network will forward this value to IoT server via the protocol defined by NSE01.
102 102  )))
103 103  
110 +
104 104  (((
105 -In case you can’t set the OTAA keys in the LoRaWAN OTAA server, and you have to use the keys from the server, you can [[use AT Commands >>||anchor="H3.200BUsingtheATCommands"]].
112 +The diagram below shows the working flow in default firmware of NSE01:
106 106  )))
107 107  
115 +[[image:image-20220708101605-2.png]]
108 108  
117 +(((
118 +
119 +)))
109 109  
110 -== 2.2 ​Quick guide to connect to LoRaWAN server (OTAA) ==
111 111  
112 -Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LG308>>url:http://www.dragino.com/products/lora/item/140-lg308.html]] as a LoRaWAN gateway in this example.
113 113  
123 +== 2.2 ​ Configure the NSE01 ==
114 114  
115 -[[image:1654503992078-669.png]]
116 116  
126 +=== 2.2.1 Test Requirement ===
117 117  
118 -The LG308 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
119 119  
129 +To use NSE01 in your city, make sure meet below requirements:
120 120  
121 -(% style="color:blue" %)**Step 1**(%%):  Create a device in TTN with the OTAA keys from LSE01.
131 +* Your local operator has already distributed a NB-IoT Network there.
132 +* The local NB-IoT network used the band that NSE01 supports.
133 +* Your operator is able to distribute the data received in their NB-IoT network to your IoT server.
122 122  
123 -Each LSE01 is shipped with a sticker with the default device EUI as below:
135 +(((
136 +Below figure shows our testing structure. Here we have NB-IoT network coverage by China Mobile, the band they use is B8.  The NSE01 will use CoAP((% style="color:red" %)120.24.4.116:5683)(%%) or raw UDP((% style="color:red" %)120.24.4.116:5601)(%%) or MQTT((% style="color:red" %)120.24.4.116:1883)(%%)or TCP((% style="color:red" %)120.24.4.116:5600)(%%)protocol to send data to the test server
137 +)))
124 124  
125 -[[image:image-20220606163732-6.jpeg]]
126 126  
127 -You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot:
140 +[[image:1657249419225-449.png]]
128 128  
129 -**Add APP EUI in the application**
130 130  
131 131  
132 -[[image:1654504596150-405.png]]
144 +=== 2.2.2 Insert SIM card ===
133 133  
146 +Insert the NB-IoT Card get from your provider.
134 134  
148 +User need to take out the NB-IoT module and insert the SIM card like below:
135 135  
136 -**Add APP KEY and DEV EUI**
137 137  
138 -[[image:1654504683289-357.png]]
151 +[[image:1657249468462-536.png]]
139 139  
140 140  
141 141  
142 -(% style="color:blue" %)**Step 2**(%%): Power on LSE01
155 +=== 2.2.3 Connect USB TTL to NSE01 to configure it ===
143 143  
157 +(((
158 +(((
159 +User need to configure NSE01 via serial port to set the (% style="color:blue" %)**Server Address** / **Uplink Topic** (%%)to define where and how-to uplink packets. NSE01 support AT Commands, user can use a USB to TTL adapter to connect to NSE01 and use AT Commands to configure it, as below.
160 +)))
161 +)))
144 144  
145 -Put a Jumper on JP2 to power on the device. ( The Jumper must be in FLASH position).
146 146  
147 -[[image:image-20220606163915-7.png]]
164 +**Connection:**
148 148  
166 + (% style="background-color:yellow" %)USB TTL GND <~-~-~-~-> GND
149 149  
150 -(% style="color:blue" %)**Step 3**(%%)**:** The LSE01 will auto join to the TTN network. After join success, it will start to upload messages to TTN and you can see the messages in the panel.
168 + (% style="background-color:yellow" %)USB TTL TXD <~-~-~-~-> UART_RXD
151 151  
152 -[[image:1654504778294-788.png]]
170 + (% style="background-color:yellow" %)USB TTL RXD <~-~-~-~-> UART_TXD
153 153  
154 154  
173 +In the PC, use below serial tool settings:
155 155  
156 -== 2.3 Uplink Payload ==
175 +* Baud:  (% style="color:green" %)**9600**
176 +* Data bits:** (% style="color:green" %)8(%%)**
177 +* Stop bits: (% style="color:green" %)**1**
178 +* Parity:  (% style="color:green" %)**None**
179 +* Flow Control: (% style="color:green" %)**None**
157 157  
181 +(((
182 +Make sure the switch is in FLASH position, then power on device by connecting the jumper on NSE01. NSE01 will output system info once power on as below, we can enter the (% style="color:green" %)**password: 12345678**(%%) to access AT Command input.
183 +)))
158 158  
159 -=== 2.3.1 MOD~=0(Default Mode) ===
185 +[[image:image-20220708110657-3.png]]
160 160  
161 -LSE01 will uplink payload via LoRaWAN with below payload format: 
187 +(% style="color:red" %)Note: the valid AT Commands can be found at: (%%)[[http:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/]]
162 162  
189 +
190 +
191 +=== 2.2.4 Use CoAP protocol to uplink data ===
192 +
193 +(% style="color:red" %)Note: if you don't have CoAP server, you can refer this link to set up one: (%%)[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/>>http://wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/]]
194 +
195 +
196 +**Use below commands:**
197 +
198 +* (% style="color:blue" %)**AT+PRO=1**  (%%) ~/~/ Set to use CoAP protocol to uplink
199 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5683   ** (%%)~/~/ to set CoAP server address and port
200 +* (% style="color:blue" %)**AT+URI=5,11,"mqtt",11,"coap",12,"0",15,"c=text1",23,"0" ** (%%) ~/~/Set COAP resource path
201 +
202 +For parameter description, please refer to AT command set
203 +
204 +[[image:1657249793983-486.png]]
205 +
206 +
207 +After configure the server address and (% style="color:green" %)**reset the device**(%%) (via AT+ATZ ), NSE01 will start to uplink sensor values to CoAP server.
208 +
209 +[[image:1657249831934-534.png]]
210 +
211 +
212 +
213 +=== 2.2.5 Use UDP protocol to uplink data(Default protocol) ===
214 +
215 +This feature is supported since firmware version v1.0.1
216 +
217 +
218 +* (% style="color:blue" %)**AT+PRO=2   ** (%%) ~/~/ Set to use UDP protocol to uplink
219 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5601   ** (%%) ~/~/ to set UDP server address and port
220 +* (% style="color:blue" %)**AT+CFM=1       ** (%%) ~/~/If the server does not respond, this command is unnecessary
221 +
222 +[[image:1657249864775-321.png]]
223 +
224 +
225 +[[image:1657249930215-289.png]]
226 +
227 +
228 +
229 +=== 2.2.6 Use MQTT protocol to uplink data ===
230 +
231 +This feature is supported since firmware version v110
232 +
233 +
234 +* (% style="color:blue" %)**AT+PRO=3   ** (%%) ~/~/Set to use MQTT protocol to uplink
235 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,1883   ** (%%) ~/~/Set MQTT server address and port
236 +* (% style="color:blue" %)**AT+CLIENT=CLIENT       ** (%%)~/~/Set up the CLIENT of MQTT
237 +* (% style="color:blue" %)**AT+UNAME=UNAME                               **(%%)~/~/Set the username of MQTT
238 +* (% style="color:blue" %)**AT+PWD=PWD                                        **(%%)~/~/Set the password of MQTT
239 +* (% style="color:blue" %)**AT+PUBTOPIC=NSE01_PUB                    **(%%)~/~/Set the sending topic of MQTT
240 +* (% style="color:blue" %)**AT+SUBTOPIC=NSE01_SUB          **(%%) ~/~/Set the subscription topic of MQTT
241 +
242 +[[image:1657249978444-674.png]]
243 +
244 +
245 +[[image:1657249990869-686.png]]
246 +
247 +
163 163  (((
164 -Uplink payload includes in total 11 bytes.
249 +MQTT protocol has a much higher power consumption compare vs UDP / CoAP protocol. Please check the power analyze document and adjust the uplink period to a suitable interval.
165 165  )))
166 166  
167 -(% border="1" cellspacing="10" style="background-color:#ffffcc; width:500px" %)
168 -|(((
169 -**Size**
170 170  
171 -**(bytes)**
172 -)))|**2**|**2**|**2**|**2**|**2**|**1**
173 -|**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(((
174 -Temperature
175 175  
176 -(Reserve, Ignore now)
177 -)))|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]]|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]]|(((
178 -MOD & Digital Interrupt
254 +=== 2.2.7 Use TCP protocol to uplink data ===
179 179  
180 -(Optional)
181 -)))
256 +This feature is supported since firmware version v110
182 182  
183 183  
259 +* (% style="color:blue" %)**AT+PRO=4   ** (%%) ~/~/ Set to use TCP protocol to uplink
260 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5600   **(%%) ~/~/ to set TCP server address and port
184 184  
262 +[[image:1657250217799-140.png]]
185 185  
186 -=== 2.3.2 MOD~=1(Original value) ===
187 187  
188 -This mode can get the original AD value of moisture and original conductivity (with temperature drift compensation).
265 +[[image:1657250255956-604.png]]
189 189  
190 -(% border="1" cellspacing="10" style="background-color:#ffffcc; width:500px" %)
191 -|(((
192 -**Size**
193 193  
194 -**(bytes)**
195 -)))|**2**|**2**|**2**|**2**|**2**|**1**
196 -|**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(((
197 -Temperature
198 198  
199 -(Reserve, Ignore now)
200 -)))|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]](raw)|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]](raw)|(((
201 -MOD & Digital Interrupt
269 +=== 2.2.8 Change Update Interval ===
202 202  
203 -(Optional)
271 +User can use below command to change the (% style="color:green" %)**uplink interval**.
272 +
273 +* (% style="color:blue" %)**AT+TDC=600      ** (%%)~/~/ Set Update Interval to 600s
274 +
275 +(((
276 +(% style="color:red" %)**NOTE:**
204 204  )))
205 205  
279 +(((
280 +(% style="color:red" %)1. By default, the device will send an uplink message every 1 hour.
281 +)))
206 206  
207 207  
208 208  
209 -=== 2.3.3 Battery Info ===
285 +== 2.3  Uplink Payload ==
210 210  
287 +In this mode, uplink payload includes in total 18 bytes
288 +
289 +(% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:510px" %)
290 +|=(% style="width: 50px;" %)(((
291 +**Size(bytes)**
292 +)))|=(% style="width: 50px;" %)**6**|=(% style="width: 25px;" %)2|=(% style="width: 25px;" %)**2**|=(% style="width: 80px;" %)**1**|=(% style="width: 80px;" %)**2**|=(% style="width: 80px;" %)**2**|=(% style="width: 80px;" %)**2**|=(% style="width: 40px;" %)**1**
293 +|(% style="width:97px" %)**Value**|(% style="width:83px" %)[[Device ID>>||anchor="H"]]|(% style="width:41px" %)[[Ver>>||anchor="H"]]|(% style="width:46px" %)[[BAT>>||anchor="H"]]|(% style="width:123px" %)[[Signal Strength>>||anchor="H"]]|(% style="width:108px" %)[[Soil Moisture>>||anchor="H"]]|(% style="width:133px" %)[[Soil Temperature>>||anchor="H"]]|(% style="width:159px" %)[[Soil Conductivity(EC)>>||anchor="H"]]|(% style="width:80px" %)[[Interrupt>>||anchor="H"]]
294 +
295 +If we use the MQTT client to subscribe to this MQTT topic, we can see the following information when the NSE01 uplink data.
296 +
297 +
298 +[[image:image-20220708111918-4.png]]
299 +
300 +
301 +The payload is ASCII string, representative same HEX:
302 +
303 +0x72403155615900640c7817075e0a8c02f900 where:
304 +
305 +* Device ID: 0x 724031556159 = 724031556159
306 +* Version: 0x0064=100=1.0.0
307 +
308 +* BAT: 0x0c78 = 3192 mV = 3.192V
309 +* Singal: 0x17 = 23
310 +* Soil Moisture: 0x075e= 1886 = 18.86  %
311 +* Soil Temperature:0x0a8c =2700=27 °C
312 +* Soil Conductivity(EC) = 0x02f9 =761 uS /cm
313 +* Interrupt: 0x00 = 0
314 +
315 +
316 +
317 +== 2.4  Payload Explanation and Sensor Interface ==
318 +
319 +
320 +=== 2.4.1  Device ID ===
321 +
322 +By default, the Device ID equal to the last 6 bytes of IMEI.
323 +
324 +User can use (% style="color:blue" %)**AT+DEUI**(%%) to set Device ID
325 +
326 +**Example:**
327 +
328 +AT+DEUI=A84041F15612
329 +
330 +The Device ID is stored in a none-erase area, Upgrade the firmware or run AT+FDR won't erase Device ID.
331 +
332 +
333 +
334 +=== 2.4.2  Version Info ===
335 +
336 +Specify the software version: 0x64=100, means firmware version 1.00.
337 +
338 +For example: 0x00 64 : this device is NSE01 with firmware version 1.0.0.
339 +
340 +
341 +
342 +=== 2.4.3  Battery Info ===
343 +
211 211  (((
212 212  Check the battery voltage for LSE01.
213 213  )))
... ... @@ -222,14 +222,32 @@
222 222  
223 223  
224 224  
225 -=== 2.3.4 Soil Moisture ===
358 +=== 2.4.4  Signal Strength ===
226 226  
360 +NB-IoT Network signal Strength.
361 +
362 +**Ex1: 0x1d = 29**
363 +
364 +(% style="color:blue" %)**0**(%%)  -113dBm or less
365 +
366 +(% style="color:blue" %)**1**(%%)  -111dBm
367 +
368 +(% style="color:blue" %)**2...30**(%%) -109dBm... -53dBm
369 +
370 +(% style="color:blue" %)**31**  (%%) -51dBm or greater
371 +
372 +(% style="color:blue" %)**99**   (%%) Not known or not detectable
373 +
374 +
375 +
376 +=== 2.4.5  Soil Moisture ===
377 +
227 227  (((
228 228  Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil.
229 229  )))
230 230  
231 231  (((
232 -For example, if the data you get from the register is __0x05 0xDC__, the moisture content in the soil is
383 +For example, if the data you get from the register is **__0x05 0xDC__**, the moisture content in the soil is
233 233  )))
234 234  
235 235  (((
... ... @@ -242,10 +242,10 @@
242 242  
243 243  
244 244  
245 -=== 2.3.5 Soil Temperature ===
396 +=== 2.4. Soil Temperature ===
246 246  
247 247  (((
248 - Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is 0x09 0xEC, the temperature content in the soil is
399 + Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is __**0x09 0xEC**__, the temperature content in the soil is
249 249  )))
250 250  
251 251  (((
... ... @@ -262,7 +262,7 @@
262 262  
263 263  
264 264  
265 -=== 2.3.6 Soil Conductivity (EC) ===
416 +=== 2.4. Soil Conductivity (EC) ===
266 266  
267 267  (((
268 268  Obtain (% style="color:#4f81bd" %)**__soluble salt concentration__**(%%) in soil or (% style="color:#4f81bd" %)**__soluble ion concentration in liquid fertilizer__**(%%) or (% style="color:#4f81bd" %)**__planting medium__**(%%). The value range of the register is 0 - 20000(Decimal)( Can be greater than 20000).
... ... @@ -269,7 +269,7 @@
269 269  )))
270 270  
271 271  (((
272 -For example, if the data you get from the register is 0x00 0xC8, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm.
423 +For example, if the data you get from the register is __**0x00 0xC8**__, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm.
273 273  )))
274 274  
275 275  (((
... ... @@ -284,39 +284,41 @@
284 284  
285 285  )))
286 286  
287 -=== 2.3.7 MOD ===
438 +=== 2.4. Digital Interrupt ===
288 288  
289 -Firmware version at least v2.1 supports changing mode.
440 +Digital Interrupt refers to pin **(% style="color:blue" %)GPIO_EXTI**(%%), and there are different trigger methods. When there is a trigger, the NSE01 will send a packet to the server.
290 290  
291 -For example, bytes[10]=90
442 +The command is:
292 292  
293 -mod=(bytes[10]>>7)&0x01=1.
444 +**(% style="color:blue" %)AT+INTMOD=3 **(%%)   ~/~/(more info about INMOD please refer [[**AT Command Manual**>>url:https://www.dragino.com/downloads/downloads/NB-IoT/NBSN95/DRAGINO_NBSN95-NB_AT%20Commands_v1.1.0.pdf]]**).**
294 294  
295 295  
296 -**Downlink Command:**
447 +The lower four bits of this data field shows if this packet is generated by interrupt or not. [[Click here>>||anchor="H"]] for the hardware and software set up.
297 297  
298 -If payload = 0x0A00, workmode=0
299 299  
300 -If** **payload =** **0x0A01, workmode=1
450 +Example:
301 301  
452 +0x(00): Normal uplink packet.
302 302  
454 +0x(01): Interrupt Uplink Packet.
303 303  
304 -=== 2.3.8 ​Decode payload in The Things Network ===
305 305  
306 -While using TTN network, you can add the payload format to decode the payload.
307 307  
308 308  
309 -[[image:1654505570700-128.png]]
459 +=== 2.4.9  ​+5V Output ===
310 310  
311 -(((
312 -The payload decoder function for TTN is here:
313 -)))
314 314  
315 -(((
316 -LSE01 TTN Payload Decoder: [[https:~~/~~/www.dropbox.com/sh/si8icbrjlamxqdb/AAACYwjsxxr5fj_vpqRtrETAa?dl=0>>https://www.dropbox.com/sh/si8icbrjlamxqdb/AAACYwjsxxr5fj_vpqRtrETAa?dl=0]]
317 -)))
462 +NSE01 will enable +5V output before all sampling and disable the +5v after all sampling. 
318 318  
319 319  
465 +The 5V output time can be controlled by AT Command.
466 +
467 +(% style="color:blue" %)**AT+5VT=1000**
468 +
469 +Means set 5V valid time to have 1000ms. So the real 5V output will actually have 1000ms + sampling time for other sensors.
470 +
471 +
472 +
320 320  == 2.4 Uplink Interval ==
321 321  
322 322  The LSE01 by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link: [[Change Uplink Interval>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H4.1ChangeUplinkInterval"]]
... ... @@ -331,7 +331,7 @@
331 331  
332 332  
333 333  (((
334 -**Examples:**
487 +(% style="color:blue" %)**Examples:**
335 335  )))
336 336  
337 337  (((
... ... @@ -339,7 +339,7 @@
339 339  )))
340 340  
341 341  * (((
342 -**Set TDC**
495 +(% style="color:blue" %)**Set TDC**
343 343  )))
344 344  
345 345  (((
... ... @@ -359,7 +359,7 @@
359 359  )))
360 360  
361 361  * (((
362 -**Reset**
515 +(% style="color:blue" %)**Reset**
363 363  )))
364 364  
365 365  (((
... ... @@ -367,7 +367,7 @@
367 367  )))
368 368  
369 369  
370 -* **CFM**
523 +* (% style="color:blue" %)**CFM**
371 371  
372 372  Downlink Payload: 05000001, Set AT+CFM=1 or 05000000 , set AT+CFM=0
373 373  
... ... @@ -774,13 +774,13 @@
774 774  )))
775 775  
776 776  * (((
777 -[[Battery Dimension>>url:http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/&file=LSN50-Battery-Dimension.pdf]],
930 +[[Battery Dimension>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/]],
778 778  )))
779 779  * (((
780 -[[Lithium-Thionyl Chloride Battery  datasheet>>url:https://www.dragino.com/downloads/downloads/datasheet/Battery/ER26500/ER26500_Datasheet-EN.pdf]],
933 +[[Lithium-Thionyl Chloride Battery  datasheet>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/]],
781 781  )))
782 782  * (((
783 -[[Lithium-ion Battery-Capacitor datasheet>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC_1520_datasheet.jpg]], [[Tech Spec>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC1520%20Technical%20Specification20171123.pdf]]
936 +[[Lithium-ion Battery-Capacitor datasheet>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/]], [[Tech Spec>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/]]
784 784  )))
785 785  
786 786   [[image:image-20220610172436-1.png]]
... ... @@ -1014,18 +1014,22 @@
1014 1014  [[image:image-20220606154825-4.png]]
1015 1015  
1016 1016  
1170 +== 4.2 ​Can I calibrate LSE01 to different soil types? ==
1017 1017  
1172 +LSE01 is calibrated for saline-alkali soil and loamy soil. If users want to use it for other soil, they can calibrate the value in the IoT platform base on the value measured by saline-alkali soil and loamy soil. The formula can be found at [[this link>>https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/&file=Calibrate_to_other_Soil_20220605.pdf]].
1173 +
1174 +
1018 1018  = 5. Trouble Shooting =
1019 1019  
1020 -== 5.1 ​Why I cant join TTN in US915 / AU915 bands? ==
1177 +== 5.1 ​Why I can't join TTN in US915 / AU915 bands? ==
1021 1021  
1022 -It is due to channel mapping. Please see the [[Eight Channel Mode>>doc:Main.LoRaWAN Communication Debug.WebHome||anchor="H2.NoticeofUS9152FCN4702FAU915Frequencyband"]] section above for details.
1179 +It is due to channel mapping. Please see the [[Eight Channel Mode>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H7.19EightChannelMode"]] section above for details.
1023 1023  
1024 1024  
1025 -== 5.2 AT Command input doesnt work ==
1182 +== 5.2 AT Command input doesn't work ==
1026 1026  
1027 1027  (((
1028 -In the case if user can see the console output but cant type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesnt send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.
1185 +In the case if user can see the console output but can't type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn't send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.
1029 1029  )))
1030 1030  
1031 1031  
1657245163077-232.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +81.0 KB
Content
1657246476176-652.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +492.6 KB
Content
1657249419225-449.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +81.0 KB
Content
1657249468462-536.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +483.6 KB
Content
1657249793983-486.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +85.8 KB
Content
1657249831934-534.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +72.5 KB
Content
1657249864775-321.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +87.0 KB
Content
1657249930215-289.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +77.3 KB
Content
1657249978444-674.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +139.5 KB
Content
1657249990869-686.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +96.9 KB
Content
1657250217799-140.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +98.7 KB
Content
1657250255956-604.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +99.0 KB
Content
image-20220708101224-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +22.2 KB
Content
image-20220708101605-2.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +87.5 KB
Content
image-20220708110657-3.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +251.7 KB
Content
image-20220708111918-4.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +38.8 KB
Content
Copyright ©2010-2024 Dragino Technology Co., LTD. All rights reserved
Dragino Wiki v2.0