<
From version < 36.1 >
edited by Xiaoling
on 2022/06/25 16:28
To version < 65.2 >
edited by Xiaoling
on 2022/07/08 15:03
>
Change comment: There is no comment for this version

Summary

Details

Page properties
Title
... ... @@ -1,1 +1,1 @@
1 -LSE01-LoRaWAN Soil Moisture & EC Sensor User Manual
1 +NSE01 - NB-IoT Soil Moisture & EC Sensor User Manual
Content
... ... @@ -13,1087 +13,802 @@
13 13  
14 14  **Table of Contents:**
15 15  
16 -{{toc/}}
17 17  
18 18  
19 19  
20 20  
21 21  
21 += 1.  Introduction =
22 22  
23 -= 1. Introduction =
23 +== 1.1 ​ What is LoRaWAN Soil Moisture & EC Sensor ==
24 24  
25 -== 1.1 ​What is LoRaWAN Soil Moisture & EC Sensor ==
26 -
27 27  (((
28 28  
29 29  
30 -The Dragino LSE01 is a (% style="color:#4f81bd" %)**LoRaWAN Soil Moisture & EC Sensor**(%%) for IoT of Agriculture. It is designed to measure the soil moisture of saline-alkali soil and loamy soil. The soil sensor uses FDR method to calculate the soil moisture with the compensation from soil temperature and conductivity. It also has been calibrated in factory for Mineral soil type.
31 -)))
28 +Dragino NSE01 is an (% style="color:blue" %)**NB-IOT soil moisture & EC sensor**(%%) for agricultural IoT. Used to measure the soil moisture of saline-alkali soil and loam. The soil sensor uses the FDR method to calculate soil moisture and compensates it with soil temperature and electrical conductivity. It has also been calibrated for mineral soil types at the factory.
32 32  
33 -(((
34 -It detects (% style="color:#4f81bd" %)**Soil Moisture**(%%), (% style="color:#4f81bd" %)**Soil Temperature**(%%) and (% style="color:#4f81bd" %)**Soil Conductivity**(%%), and uploads the value via wireless to LoRaWAN IoT Server.
35 -)))
30 +It can detect (% style="color:blue" %)**Soil Moisture, Soil Temperature and Soil Conductivity**(%%), and upload its value to the server wirelessly.
36 36  
37 -(((
38 -The LoRa wireless technology used in LES01 allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption.
39 -)))
32 +The wireless technology used in NSE01 allows the device to send data at a low data rate and reach ultra-long distances, providing ultra-long-distance spread spectrum Communication.
40 40  
41 -(((
42 -LES01 is powered by (% style="color:#4f81bd" %)**4000mA or 8500mAh Li-SOCI2 battery**(%%), It is designed for long term use up to 10 years.
43 -)))
34 +NSE01 are powered by (% style="color:blue" %)**8500mAh Li-SOCI2**(%%) batteries, which can be used for up to 5 years.  
44 44  
45 -(((
46 -Each LES01 is pre-load with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect after power on.
36 +
47 47  )))
48 48  
49 -
50 50  [[image:1654503236291-817.png]]
51 51  
52 52  
53 -[[image:1654503265560-120.png]]
42 +[[image:1657245163077-232.png]]
54 54  
55 55  
56 56  
57 57  == 1.2 ​Features ==
58 58  
59 -* LoRaWAN 1.0.3 Class A
60 -* Ultra low power consumption
48 +* NB-IoT Bands: B1/B3/B8/B5/B20/B28 @H-FDD
61 61  * Monitor Soil Moisture
62 62  * Monitor Soil Temperature
63 63  * Monitor Soil Conductivity
64 -* Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865
65 65  * AT Commands to change parameters
66 66  * Uplink on periodically
67 67  * Downlink to change configure
68 68  * IP66 Waterproof Enclosure
69 -* 4000mAh or 8500mAh Battery for long term use
56 +* Ultra-Low Power consumption
57 +* AT Commands to change parameters
58 +* Micro SIM card slot for NB-IoT SIM
59 +* 8500mAh Battery for long term use
70 70  
71 71  
72 72  
73 73  
64 +== 1.3  Specification ==
74 74  
75 -== 1.3 Specification ==
76 76  
77 -Measure Volume: Base on the centra pin of the probe, a cylinder with 7cm diameter and 10cm height.
67 +(% style="color:#037691" %)**Common DC Characteristics:**
78 78  
79 -[[image:image-20220606162220-5.png]]
69 +* Supply Voltage: 2.1v ~~ 3.6v
70 +* Operating Temperature: -40 ~~ 85°C
80 80  
81 81  
82 82  
83 -== ​1.4 Applications ==
74 +(% style="color:#037691" %)**NB-IoT Spec:**
84 84  
85 -* Smart Agriculture
76 +* - B1 @H-FDD: 2100MHz
77 +* - B3 @H-FDD: 1800MHz
78 +* - B8 @H-FDD: 900MHz
79 +* - B5 @H-FDD: 850MHz
80 +* - B20 @H-FDD: 800MHz
81 +* - B28 @H-FDD: 700MHz
86 86  
87 -(% class="wikigeneratedid" id="H200B1.5FirmwareChangelog" %)
88 -​
89 89  
90 -== 1.5 Firmware Change log ==
91 91  
85 +Probe(% style="color:#037691" %)** Specification:**
92 92  
93 -**LSE01 v1.0 :**  Release
87 +Measure Volume: Base on the centra pin of the probe, a cylinder with 7cm diameter and 10cm height.
94 94  
89 +[[image:image-20220708101224-1.png]]
95 95  
96 96  
97 -= 2. Configure LSE01 to connect to LoRaWAN network =
98 98  
99 -== 2.1 How it works ==
93 +== 1.4  Applications ==
100 100  
101 -(((
102 -The LSE01 is configured as LoRaWAN OTAA Class A mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and power on the LSE0150. It will automatically join the network via OTAA and start to send the sensor value
103 -)))
95 +* Smart Agriculture
104 104  
105 -(((
106 -In case you can’t set the OTAA keys in the LoRaWAN OTAA server, and you have to use the keys from the server, you can [[use AT Commands >>||anchor="H3.200BUsingtheATCommands"]].
107 -)))
97 +(% class="wikigeneratedid" id="H200B1.5FirmwareChangelog" %)
98 +​
108 108  
100 +== 1.5  Pin Definitions ==
109 109  
110 110  
111 -== 2.2 ​Quick guide to connect to LoRaWAN server (OTAA) ==
103 +[[image:1657246476176-652.png]]
112 112  
113 -Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LG308>>url:http://www.dragino.com/products/lora/item/140-lg308.html]] as a LoRaWAN gateway in this example.
114 114  
115 115  
116 -[[image:1654503992078-669.png]]
107 += 2.  Use NSE01 to communicate with IoT Server =
117 117  
109 +== 2.1  How it works ==
118 118  
119 -The LG308 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
120 120  
112 +(((
113 +The NSE01 is equipped with a NB-IoT module, the pre-loaded firmware in NSE01 will get environment data from sensors and send the value to local NB-IoT network via the NB-IoT module.  The NB-IoT network will forward this value to IoT server via the protocol defined by NSE01.
114 +)))
121 121  
122 -(% style="color:blue" %)**Step 1**(%%):  Create a device in TTN with the OTAA keys from LSE01.
123 123  
124 -Each LSE01 is shipped with a sticker with the default device EUI as below:
125 -
126 -[[image:image-20220606163732-6.jpeg]]
127 -
128 -You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot:
129 -
130 -**Add APP EUI in the application**
131 -
132 -
133 -[[image:1654504596150-405.png]]
134 -
135 -
136 -
137 -**Add APP KEY and DEV EUI**
138 -
139 -[[image:1654504683289-357.png]]
140 -
141 -
142 -
143 -(% style="color:blue" %)**Step 2**(%%): Power on LSE01
144 -
145 -
146 -Put a Jumper on JP2 to power on the device. ( The Jumper must be in FLASH position).
147 -
148 -[[image:image-20220606163915-7.png]]
149 -
150 -
151 -(% style="color:blue" %)**Step 3**(%%)**:** The LSE01 will auto join to the TTN network. After join success, it will start to upload messages to TTN and you can see the messages in the panel.
152 -
153 -[[image:1654504778294-788.png]]
154 -
155 -
156 -
157 -== 2.3 Uplink Payload ==
158 -
159 -
160 -=== 2.3.1 MOD~=0(Default Mode) ===
161 -
162 -LSE01 will uplink payload via LoRaWAN with below payload format: 
163 -
164 164  (((
165 -Uplink payload includes in total 11 bytes.
118 +The diagram below shows the working flow in default firmware of NSE01:
166 166  )))
167 167  
168 -(% border="1" cellspacing="10" style="background-color:#ffffcc; width:500px" %)
169 -|(((
170 -**Size**
121 +[[image:image-20220708101605-2.png]]
171 171  
172 -**(bytes)**
173 -)))|**2**|**2**|**2**|**2**|**2**|**1**
174 -|**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(((
175 -Temperature
176 -
177 -(Reserve, Ignore now)
178 -)))|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]]|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]]|(((
179 -MOD & Digital Interrupt
180 -
181 -(Optional)
123 +(((
124 +
182 182  )))
183 183  
184 184  
185 185  
129 +== 2.2 ​ Configure the NSE01 ==
186 186  
187 187  
132 +=== 2.2.1 Test Requirement ===
188 188  
189 189  
190 -=== 2.3.2 MOD~=1(Original value) ===
135 +To use NSE01 in your city, make sure meet below requirements:
191 191  
192 -This mode can get the original AD value of moisture and original conductivity (with temperature drift compensation).
137 +* Your local operator has already distributed a NB-IoT Network there.
138 +* The local NB-IoT network used the band that NSE01 supports.
139 +* Your operator is able to distribute the data received in their NB-IoT network to your IoT server.
193 193  
194 -(% border="1" cellspacing="10" style="background-color:#ffffcc; width:500px" %)
195 -|(((
196 -**Size**
197 -
198 -**(bytes)**
199 -)))|**2**|**2**|**2**|**2**|**2**|**1**
200 -|**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(((
201 -Temperature
202 -
203 -(Reserve, Ignore now)
204 -)))|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]](raw)|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]](raw)|(((
205 -MOD & Digital Interrupt
206 -
207 -(Optional)
141 +(((
142 +Below figure shows our testing structure. Here we have NB-IoT network coverage by China Mobile, the band they use is B8.  The NSE01 will use CoAP((% style="color:red" %)120.24.4.116:5683)(%%) or raw UDP((% style="color:red" %)120.24.4.116:5601)(%%) or MQTT((% style="color:red" %)120.24.4.116:1883)(%%)or TCP((% style="color:red" %)120.24.4.116:5600)(%%)protocol to send data to the test server
208 208  )))
209 209  
210 210  
146 +[[image:1657249419225-449.png]]
211 211  
212 212  
213 213  
150 +=== 2.2.2 Insert SIM card ===
214 214  
152 +Insert the NB-IoT Card get from your provider.
215 215  
216 -=== 2.3.3 Battery Info ===
154 +User need to take out the NB-IoT module and insert the SIM card like below:
217 217  
218 -(((
219 -Check the battery voltage for LSE01.
220 -)))
221 221  
222 -(((
223 -Ex1: 0x0B45 = 2885mV
224 -)))
157 +[[image:1657249468462-536.png]]
225 225  
226 -(((
227 -Ex2: 0x0B49 = 2889mV
228 -)))
229 229  
230 230  
161 +=== 2.2.3 Connect USB – TTL to NSE01 to configure it ===
231 231  
232 -=== 2.3.4 Soil Moisture ===
233 -
234 234  (((
235 -Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil.
236 -)))
237 -
238 238  (((
239 -For example, if the data you get from the register is __0x05 0xDC__, the moisture content in the soil is
165 +User need to configure NSE01 via serial port to set the (% style="color:blue" %)**Server Address** / **Uplink Topic** (%%)to define where and how-to uplink packets. NSE01 support AT Commands, user can use a USB to TTL adapter to connect to NSE01 and use AT Commands to configure it, as below.
240 240  )))
241 -
242 -(((
243 -
244 244  )))
245 245  
246 -(((
247 -(% style="color:#4f81bd" %)**05DC(H) = 1500(D) /100 = 15%.**
248 -)))
249 249  
170 +**Connection:**
250 250  
172 + (% style="background-color:yellow" %)USB TTL GND <~-~-~-~-> GND
251 251  
252 -=== 2.3.5 Soil Temperature ===
174 + (% style="background-color:yellow" %)USB TTL TXD <~-~-~-~-> UART_RXD
253 253  
254 -(((
255 - Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is 0x09 0xEC, the temperature content in the soil is
256 -)))
176 + (% style="background-color:yellow" %)USB TTL RXD <~-~-~-~-> UART_TXD
257 257  
258 -(((
259 -**Example**:
260 -)))
261 261  
262 -(((
263 -If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/100 = 2.61 °C
264 -)))
179 +In the PC, use below serial tool settings:
265 265  
181 +* Baud:  (% style="color:green" %)**9600**
182 +* Data bits:** (% style="color:green" %)8(%%)**
183 +* Stop bits: (% style="color:green" %)**1**
184 +* Parity:  (% style="color:green" %)**None**
185 +* Flow Control: (% style="color:green" %)**None**
186 +
266 266  (((
267 -If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C
188 +Make sure the switch is in FLASH position, then power on device by connecting the jumper on NSE01. NSE01 will output system info once power on as below, we can enter the (% style="color:green" %)**password: 12345678**(%%) to access AT Command input.
268 268  )))
269 269  
191 +[[image:image-20220708110657-3.png]]
270 270  
193 +(% style="color:red" %)Note: the valid AT Commands can be found at: (%%)[[http:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/]]
271 271  
272 -=== 2.3.6 Soil Conductivity (EC) ===
273 273  
274 -(((
275 -Obtain (% style="color:#4f81bd" %)**__soluble salt concentration__**(%%) in soil or (% style="color:#4f81bd" %)**__soluble ion concentration in liquid fertilizer__**(%%) or (% style="color:#4f81bd" %)**__planting medium__**(%%). The value range of the register is 0 - 20000(Decimal)( Can be greater than 20000).
276 -)))
277 277  
278 -(((
279 -For example, if the data you get from the register is 0x00 0xC8, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm.
280 -)))
197 +=== 2.2.4 Use CoAP protocol to uplink data ===
281 281  
282 -(((
283 -Generally, the EC value of irrigation water is less than 800uS / cm.
284 -)))
199 +(% style="color:red" %)Note: if you don't have CoAP server, you can refer this link to set up one: (%%)[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/>>http://wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/]]
285 285  
286 -(((
287 -
288 -)))
289 289  
290 -(((
291 -
292 -)))
202 +**Use below commands:**
293 293  
294 -=== 2.3.7 MOD ===
204 +* (% style="color:blue" %)**AT+PRO=1**  (%%) ~/~/ Set to use CoAP protocol to uplink
205 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5683   ** (%%)~/~/ to set CoAP server address and port
206 +* (% style="color:blue" %)**AT+URI=5,11,"mqtt",11,"coap",12,"0",15,"c=text1",23,"0" ** (%%) ~/~/Set COAP resource path
295 295  
296 -Firmware version at least v2.1 supports changing mode.
208 +For parameter description, please refer to AT command set
297 297  
298 -For example, bytes[10]=90
210 +[[image:1657249793983-486.png]]
299 299  
300 -mod=(bytes[10]>>7)&0x01=1.
301 301  
213 +After configure the server address and (% style="color:green" %)**reset the device**(%%) (via AT+ATZ ), NSE01 will start to uplink sensor values to CoAP server.
302 302  
303 -**Downlink Command:**
215 +[[image:1657249831934-534.png]]
304 304  
305 -If payload = 0x0A00, workmode=0
306 306  
307 -If** **payload =** **0x0A01, workmode=1
308 308  
219 +=== 2.2.5 Use UDP protocol to uplink data(Default protocol) ===
309 309  
221 +This feature is supported since firmware version v1.0.1
310 310  
311 -=== 2.3.8 ​Decode payload in The Things Network ===
312 312  
313 -While using TTN network, you can add the payload format to decode the payload.
224 +* (% style="color:blue" %)**AT+PRO=2   ** (%%) ~/~/ Set to use UDP protocol to uplink
225 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5601   ** (%%) ~/~/ to set UDP server address and port
226 +* (% style="color:blue" %)**AT+CFM=1       ** (%%) ~/~/If the server does not respond, this command is unnecessary
314 314  
228 +[[image:1657249864775-321.png]]
315 315  
316 -[[image:1654505570700-128.png]]
317 317  
318 -(((
319 -The payload decoder function for TTN is here:
320 -)))
231 +[[image:1657249930215-289.png]]
321 321  
322 -(((
323 -LSE01 TTN Payload Decoder: [[https:~~/~~/www.dropbox.com/sh/si8icbrjlamxqdb/AAACYwjsxxr5fj_vpqRtrETAa?dl=0>>https://www.dropbox.com/sh/si8icbrjlamxqdb/AAACYwjsxxr5fj_vpqRtrETAa?dl=0]]
324 -)))
325 325  
326 326  
327 -== 2.4 Uplink Interval ==
235 +=== 2.2.6 Use MQTT protocol to uplink data ===
328 328  
329 -The LSE01 by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link: [[Change Uplink Interval>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H4.1ChangeUplinkInterval"]]
237 +This feature is supported since firmware version v110
330 330  
331 331  
240 +* (% style="color:blue" %)**AT+PRO=3   ** (%%) ~/~/Set to use MQTT protocol to uplink
241 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,1883   ** (%%) ~/~/Set MQTT server address and port
242 +* (% style="color:blue" %)**AT+CLIENT=CLIENT       ** (%%)~/~/Set up the CLIENT of MQTT
243 +* (% style="color:blue" %)**AT+UNAME=UNAME                               **(%%)~/~/Set the username of MQTT
244 +* (% style="color:blue" %)**AT+PWD=PWD                                        **(%%)~/~/Set the password of MQTT
245 +* (% style="color:blue" %)**AT+PUBTOPIC=NSE01_PUB                    **(%%)~/~/Set the sending topic of MQTT
246 +* (% style="color:blue" %)**AT+SUBTOPIC=NSE01_SUB          **(%%) ~/~/Set the subscription topic of MQTT
332 332  
333 -== 2.5 Downlink Payload ==
248 +[[image:1657249978444-674.png]]
334 334  
335 -By default, LSE50 prints the downlink payload to console port.
336 336  
337 -[[image:image-20220606165544-8.png]]
251 +[[image:1657249990869-686.png]]
338 338  
339 339  
340 340  (((
341 -**Examples:**
255 +MQTT protocol has a much higher power consumption compare vs UDP / CoAP protocol. Please check the power analyze document and adjust the uplink period to a suitable interval.
342 342  )))
343 343  
344 -(((
345 -
346 -)))
347 347  
348 -* (((
349 -**Set TDC**
350 -)))
351 351  
352 -(((
353 -If the payload=0100003C, it means set the END Node’s TDC to 0x00003C=60(S), while type code is 01.
354 -)))
260 +=== 2.2.7 Use TCP protocol to uplink data ===
355 355  
356 -(((
357 -Payload:    01 00 00 1E    TDC=30S
358 -)))
262 +This feature is supported since firmware version v110
359 359  
360 -(((
361 -Payload:    01 00 00 3C    TDC=60S
362 -)))
363 363  
364 -(((
365 -
366 -)))
265 +* (% style="color:blue" %)**AT+PRO=4   ** (%%) ~/~/ Set to use TCP protocol to uplink
266 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5600   **(%%) ~/~/ to set TCP server address and port
367 367  
368 -* (((
369 -**Reset**
370 -)))
268 +[[image:1657250217799-140.png]]
371 371  
372 -(((
373 -If payload = 0x04FF, it will reset the LSE01
374 -)))
375 375  
271 +[[image:1657250255956-604.png]]
376 376  
377 -* **CFM**
378 378  
379 -Downlink Payload: 05000001, Set AT+CFM=1 or 05000000 , set AT+CFM=0
380 380  
275 +=== 2.2.8 Change Update Interval ===
381 381  
277 +User can use below command to change the (% style="color:green" %)**uplink interval**.
382 382  
383 -== 2.6 ​Show Data in DataCake IoT Server ==
279 +* (% style="color:blue" %)**AT+TDC=600      ** (%%)~/~/ Set Update Interval to 600s
384 384  
385 385  (((
386 -[[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps:
282 +(% style="color:red" %)**NOTE:**
387 387  )))
388 388  
389 389  (((
390 -
286 +(% style="color:red" %)1. By default, the device will send an uplink message every 1 hour.
391 391  )))
392 392  
393 -(((
394 -(% style="color:blue" %)**Step 1**(%%):  Be sure that your device is programmed and properly connected to the network at this time.
395 -)))
396 396  
397 -(((
398 -(% style="color:blue" %)**Step 2**(%%):  To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps:
399 -)))
400 400  
291 +== 2.3  Uplink Payload ==
401 401  
402 -[[image:1654505857935-743.png]]
293 +In this mode, uplink payload includes in total 18 bytes
403 403  
295 +(% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:510px" %)
296 +|=(% style="width: 50px;" %)(((
297 +**Size(bytes)**
298 +)))|=(% style="width: 50px;" %)**6**|=(% style="width: 25px;" %)2|=(% style="width: 25px;" %)**2**|=(% style="width: 80px;" %)**1**|=(% style="width: 80px;" %)**2**|=(% style="width: 80px;" %)**2**|=(% style="width: 80px;" %)**2**|=(% style="width: 40px;" %)**1**
299 +|(% style="width:97px" %)**Value**|(% style="width:83px" %)[[Device ID>>||anchor="H"]]|(% style="width:41px" %)[[Ver>>||anchor="H"]]|(% style="width:46px" %)[[BAT>>||anchor="H"]]|(% style="width:123px" %)[[Signal Strength>>||anchor="H"]]|(% style="width:108px" %)[[Soil Moisture>>||anchor="H"]]|(% style="width:133px" %)[[Soil Temperature>>||anchor="H"]]|(% style="width:159px" %)[[Soil Conductivity(EC)>>||anchor="H"]]|(% style="width:80px" %)[[Interrupt>>||anchor="H"]]
404 404  
405 -[[image:1654505874829-548.png]]
301 +If we use the MQTT client to subscribe to this MQTT topic, we can see the following information when the NSE01 uplink data.
406 406  
407 407  
408 -(% style="color:blue" %)**Step 3**(%%)**:**  Create an account or log in Datacake.
304 +[[image:image-20220708111918-4.png]]
409 409  
410 -(% style="color:blue" %)**Step 4**(%%)**:**  Search the LSE01 and add DevEUI.
411 411  
307 +The payload is ASCII string, representative same HEX:
412 412  
413 -[[image:1654505905236-553.png]]
309 +0x72403155615900640c7817075e0a8c02f900 where:
414 414  
311 +* Device ID: 0x 724031556159 = 724031556159
312 +* Version: 0x0064=100=1.0.0
415 415  
416 -After added, the sensor data arrive TTN, it will also arrive and show in Mydevices.
314 +* BAT: 0x0c78 = 3192 mV = 3.192V
315 +* Singal: 0x17 = 23
316 +* Soil Moisture: 0x075e= 1886 = 18.86  %
317 +* Soil Temperature:0x0a8c =2700=27 °C
318 +* Soil Conductivity(EC) = 0x02f9 =761 uS /cm
319 +* Interrupt: 0x00 = 0
417 417  
418 -[[image:1654505925508-181.png]]
419 419  
420 420  
421 421  
422 -== 2.7 Frequency Plans ==
324 +== 2. Payload Explanation and Sensor Interface ==
423 423  
424 -The LSE01 uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.
425 425  
327 +=== 2.4.1  Device ID ===
426 426  
427 -=== 2.7.1 EU863-870 (EU868) ===
329 +By default, the Device ID equal to the last 6 bytes of IMEI.
428 428  
429 -(% style="color:#037691" %)** Uplink:**
331 +User can use (% style="color:blue" %)**AT+DEUI**(%%) to set Device ID
430 430  
431 -868.1 - SF7BW125 to SF12BW125
333 +**Example:**
432 432  
433 -868.3 - SF7BW125 to SF12BW125 and SF7BW250
335 +AT+DEUI=A84041F15612
434 434  
435 -868.5 - SF7BW125 to SF12BW125
337 +The Device ID is stored in a none-erase area, Upgrade the firmware or run AT+FDR won't erase Device ID.
436 436  
437 -867.1 - SF7BW125 to SF12BW125
438 438  
439 -867.3 - SF7BW125 to SF12BW125
440 440  
441 -867.5 - SF7BW125 to SF12BW125
341 +=== 2.4.2  Version Info ===
442 442  
443 -867.7 - SF7BW125 to SF12BW125
343 +Specify the software version: 0x64=100, means firmware version 1.00.
444 444  
445 -867.9 - SF7BW125 to SF12BW125
345 +For example: 0x00 64 : this device is NSE01 with firmware version 1.0.0.
446 446  
447 -868.8 - FSK
448 448  
449 449  
450 -(% style="color:#037691" %)** Downlink:**
349 +=== 2.4.3  Battery Info ===
451 451  
452 -Uplink channels 1-9 (RX1)
351 +(((
352 +Check the battery voltage for LSE01.
353 +)))
453 453  
454 -869.525 - SF9BW125 (RX2 downlink only)
355 +(((
356 +Ex1: 0x0B45 = 2885mV
357 +)))
455 455  
359 +(((
360 +Ex2: 0x0B49 = 2889mV
361 +)))
456 456  
457 457  
458 -=== 2.7.2 US902-928(US915) ===
459 459  
460 -Used in USA, Canada and South America. Default use CHE=2
365 +=== 2.4.4  Signal Strength ===
461 461  
462 -(% style="color:#037691" %)**Uplink:**
367 +NB-IoT Network signal Strength.
463 463  
464 -903.9 - SF7BW125 to SF10BW125
369 +**Ex1: 0x1d = 29**
465 465  
466 -904.1 - SF7BW125 to SF10BW125
371 +(% style="color:blue" %)**0**(%%)  -113dBm or less
467 467  
468 -904.3 - SF7BW125 to SF10BW125
373 +(% style="color:blue" %)**1**(%%)  -111dBm
469 469  
470 -904.5 - SF7BW125 to SF10BW125
375 +(% style="color:blue" %)**2...30**(%%) -109dBm... -53dBm
471 471  
472 -904.7 - SF7BW125 to SF10BW125
377 +(% style="color:blue" %)**31**  (%%) -51dBm or greater
473 473  
474 -904.9 - SF7BW125 to SF10BW125
379 +(% style="color:blue" %)**99**   (%%) Not known or not detectable
475 475  
476 -905.1 - SF7BW125 to SF10BW125
477 477  
478 -905.3 - SF7BW125 to SF10BW125
479 479  
383 +=== 2.4.5  Soil Moisture ===
480 480  
481 -(% style="color:#037691" %)**Downlink:**
385 +(((
386 +Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil.
387 +)))
482 482  
483 -923.3 - SF7BW500 to SF12BW500
389 +(((
390 +For example, if the data you get from the register is **__0x05 0xDC__**, the moisture content in the soil is
391 +)))
484 484  
485 -923.9 - SF7BW500 to SF12BW500
393 +(((
394 +
395 +)))
486 486  
487 -924.5 - SF7BW500 to SF12BW500
397 +(((
398 +(% style="color:#4f81bd" %)**05DC(H) = 1500(D) /100 = 15%.**
399 +)))
488 488  
489 -925.1 - SF7BW500 to SF12BW500
490 490  
491 -925.7 - SF7BW500 to SF12BW500
492 492  
493 -926.3 - SF7BW500 to SF12BW500
403 +=== 2.4.6  Soil Temperature ===
494 494  
495 -926.9 - SF7BW500 to SF12BW500
405 +(((
406 + Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is __**0x09 0xEC**__, the temperature content in the soil is
407 +)))
496 496  
497 -927.5 - SF7BW500 to SF12BW500
409 +(((
410 +**Example**:
411 +)))
498 498  
499 -923.3 - SF12BW500(RX2 downlink only)
413 +(((
414 +If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/100 = 2.61 °C
415 +)))
500 500  
417 +(((
418 +If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C
419 +)))
501 501  
502 502  
503 -=== 2.7.3 CN470-510 (CN470) ===
504 504  
505 -Used in China, Default use CHE=1
423 +=== 2.4.7  Soil Conductivity (EC) ===
506 506  
507 -(% style="color:#037691" %)**Uplink:**
425 +(((
426 +Obtain (% style="color:#4f81bd" %)**__soluble salt concentration__**(%%) in soil or (% style="color:#4f81bd" %)**__soluble ion concentration in liquid fertilizer__**(%%) or (% style="color:#4f81bd" %)**__planting medium__**(%%). The value range of the register is 0 - 20000(Decimal)( Can be greater than 20000).
427 +)))
508 508  
509 -486.3 - SF7BW125 to SF12BW125
429 +(((
430 +For example, if the data you get from the register is __**0x00 0xC8**__, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm.
431 +)))
510 510  
511 -486.5 - SF7BW125 to SF12BW125
433 +(((
434 +Generally, the EC value of irrigation water is less than 800uS / cm.
435 +)))
512 512  
513 -486.7 - SF7BW125 to SF12BW125
437 +(((
438 +
439 +)))
514 514  
515 -486.9 - SF7BW125 to SF12BW125
441 +(((
442 +
443 +)))
516 516  
517 -487.1 - SF7BW125 to SF12BW125
445 +=== 2.4. Digital Interrupt ===
518 518  
519 -487.3 - SF7BW125 to SF12BW125
447 +Digital Interrupt refers to pin (% style="color:blue" %)**GPIO_EXTI**(%%), and there are different trigger methods. When there is a trigger, the NSE01 will send a packet to the server.
520 520  
521 -487.5 - SF7BW125 to SF12BW125
449 +The command is:
522 522  
523 -487.7 - SF7BW125 to SF12BW125
451 +(% style="color:blue" %)**AT+INTMOD=3 **(%%) ~/~/(more info about INMOD please refer [[**AT Command Manual**>>url:https://www.dragino.com/downloads/downloads/NB-IoT/NBSN95/DRAGINO_NBSN95-NB_AT%20Commands_v1.1.0.pdf]])**.**
524 524  
525 525  
526 -(% style="color:#037691" %)**Downlink:**
454 +The lower four bits of this data field shows if this packet is generated by interrupt or not. [[Click here>>||anchor="H"]] for the hardware and software set up.
527 527  
528 -506.7 - SF7BW125 to SF12BW125
529 529  
530 -506.9 - SF7BW125 to SF12BW125
457 +Example:
531 531  
532 -507.1 - SF7BW125 to SF12BW125
459 +0x(00): Normal uplink packet.
533 533  
534 -507.3 - SF7BW125 to SF12BW125
461 +0x(01): Interrupt Uplink Packet.
535 535  
536 -507.5 - SF7BW125 to SF12BW125
537 537  
538 -507.7 - SF7BW125 to SF12BW125
539 539  
540 -507.9 - SF7BW125 to SF12BW125
465 +=== 2.4.9  ​+5V Output ===
541 541  
542 -508.1 - SF7BW125 to SF12BW125
467 +NSE01 will enable +5V output before all sampling and disable the +5v after all sampling. 
543 543  
544 -505.3 - SF12BW125 (RX2 downlink only)
545 545  
470 +The 5V output time can be controlled by AT Command.
546 546  
472 +(% style="color:blue" %)**AT+5VT=1000**
547 547  
548 -=== 2.7.4 AU915-928(AU915) ===
474 +Means set 5V valid time to have 1000ms. So the real 5V output will actually have 1000ms + sampling time for other sensors.
549 549  
550 -Default use CHE=2
551 551  
552 -(% style="color:#037691" %)**Uplink:**
553 553  
554 -916.8 - SF7BW125 to SF12BW125
478 +== 2.5  Downlink Payload ==
555 555  
556 -917.0 - SF7BW125 to SF12BW125
480 +By default, NSE01 prints the downlink payload to console port.
557 557  
558 -917.2 - SF7BW125 to SF12BW125
482 +[[image:image-20220708133731-5.png]]
559 559  
560 -917.4 - SF7BW125 to SF12BW125
561 561  
562 -917.6 - SF7BW125 to SF12BW125
485 +(((
486 +(% style="color:blue" %)**Examples:**
487 +)))
563 563  
564 -917.8 - SF7BW125 to SF12BW125
489 +(((
490 +
491 +)))
565 565  
566 -918.0 - SF7BW125 to SF12BW125
493 +* (((
494 +(% style="color:blue" %)**Set TDC**
495 +)))
567 567  
568 -918.2 - SF7BW125 to SF12BW125
497 +(((
498 +If the payload=0100003C, it means set the END Node's TDC to 0x00003C=60(S), while type code is 01.
499 +)))
569 569  
501 +(((
502 +Payload:    01 00 00 1E    TDC=30S
503 +)))
570 570  
571 -(% style="color:#037691" %)**Downlink:**
505 +(((
506 +Payload:    01 00 00 3C    TDC=60S
507 +)))
572 572  
573 -923.3 - SF7BW500 to SF12BW500
509 +(((
510 +
511 +)))
574 574  
575 -923.9 - SF7BW500 to SF12BW500
513 +* (((
514 +(% style="color:blue" %)**Reset**
515 +)))
576 576  
577 -924.5 - SF7BW500 to SF12BW500
517 +(((
518 +If payload = 0x04FF, it will reset the NSE01
519 +)))
578 578  
579 -925.1 - SF7BW500 to SF12BW500
580 580  
581 -925.7 - SF7BW500 to SF12BW500
522 +* (% style="color:blue" %)**INTMOD**
582 582  
583 -926.3 - SF7BW500 to SF12BW500
524 +Downlink Payload: 06000003, Set AT+INTMOD=3
584 584  
585 -926.9 - SF7BW500 to SF12BW500
586 586  
587 -927.5 - SF7BW500 to SF12BW500
588 588  
589 -923.3 - SF12BW500(RX2 downlink only)
528 +== 2. ​LED Indicator ==
590 590  
530 +(((
531 +The NSE01 has an internal LED which is to show the status of different state.
591 591  
592 592  
593 -=== 2.7.5 AS920-923 & AS923-925 (AS923) ===
534 +* When power on, NSE01 will detect if sensor probe is connected, if probe detected, LED will blink four times. (no blinks in this step is no probe)
535 +* Then the LED will be on for 1 second means device is boot normally.
536 +* After NSE01 join NB-IoT network. The LED will be ON for 3 seconds.
537 +* For each uplink probe, LED will be on for 500ms.
538 +)))
594 594  
595 -(% style="color:#037691" %)**Default Uplink channel:**
596 596  
597 -923.2 - SF7BW125 to SF10BW125
598 598  
599 -923.4 - SF7BW125 to SF10BW125
600 600  
543 +== 2.7  Installation in Soil ==
601 601  
602 -(% style="color:#037691" %)**Additional Uplink Channel**:
545 +__**Measurement the soil surface**__
603 603  
604 -(OTAA mode, channel added by JoinAccept message)
547 +Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting. [[https:~~/~~/img.alicdn.com/imgextra/i3/2005165265/O1CN010rj9Oh1olPsQxrdUK_!!2005165265.jpg>>url:https://img.alicdn.com/imgextra/i3/2005165265/O1CN010rj9Oh1olPsQxrdUK_!!2005165265.jpg]]
605 605  
606 -(% style="color:#037691" %)**AS920~~AS923 for Japan, Malaysia, Singapore**:
549 +[[image:1657259653666-883.png]] ​
607 607  
608 -922.2 - SF7BW125 to SF10BW125
609 609  
610 -922.4 - SF7BW125 to SF10BW125
552 +(((
553 +
611 611  
612 -922.6 - SF7BW125 to SF10BW125
555 +(((
556 +Dig a hole with diameter > 20CM.
557 +)))
613 613  
614 -922.8 - SF7BW125 to SF10BW125
559 +(((
560 +Horizontal insert the probe to the soil and fill the hole for long term measurement.
561 +)))
562 +)))
615 615  
616 -923.0 - SF7BW125 to SF10BW125
564 +[[image:1654506665940-119.png]]
617 617  
618 -922.0 - SF7BW125 to SF10BW125
566 +(((
567 +
568 +)))
619 619  
620 620  
621 -(% style="color:#037691" %)**AS923 ~~ AS925 for Brunei, Cambodia, Hong Kong, Indonesia, Laos, Taiwan, Thailand, Vietnam**:
571 +== 2.8  ​Firmware Change Log ==
622 622  
623 -923.6 - SF7BW125 to SF10BW125
624 624  
625 -923.8 - SF7BW125 to SF10BW125
574 +Download URL & Firmware Change log
626 626  
627 -924.0 - SF7BW125 to SF10BW125
576 +[[www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/Firmware/]]
628 628  
629 -924.2 - SF7BW125 to SF10BW125
630 630  
631 -924.4 - SF7BW125 to SF10BW125
579 +Upgrade Instruction: [[Upgrade_Firmware>>||anchor="H"]]
632 632  
633 -924.6 - SF7BW125 to SF10BW125
634 634  
635 635  
636 -(% style="color:#037691" %)** Downlink:**
583 +== 2.9  ​Battery Analysis ==
637 637  
638 -Uplink channels 1-8 (RX1)
585 +=== 2.9.1  ​Battery Type ===
639 639  
640 -923.2 - SF10BW125 (RX2)
641 641  
588 +The NSE01 battery is a combination of an 8500mAh Li/SOCI2 Battery and a Super Capacitor. The battery is none-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter.
642 642  
643 643  
644 -=== 2.7.6 KR920-923 (KR920) ===
591 +The battery is designed to last for several years depends on the actually use environment and update interval. 
645 645  
646 -Default channel:
647 647  
648 -922.1 - SF7BW125 to SF12BW125
594 +The battery related documents as below:
649 649  
650 -922.3 - SF7BW125 to SF12BW125
596 +* [[Battery Dimension>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]
597 +* [[Lithium-Thionyl Chloride Battery>>url:http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]][[ datasheet>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]
598 +* [[Lithium-ion Battery-Capacitor datasheet>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]
651 651  
652 -922.5 - SF7BW125 to SF12BW125
653 -
654 -
655 -(% style="color:#037691" %)**Uplink: (OTAA mode, channel added by JoinAccept message)**
656 -
657 -922.1 - SF7BW125 to SF12BW125
658 -
659 -922.3 - SF7BW125 to SF12BW125
660 -
661 -922.5 - SF7BW125 to SF12BW125
662 -
663 -922.7 - SF7BW125 to SF12BW125
664 -
665 -922.9 - SF7BW125 to SF12BW125
666 -
667 -923.1 - SF7BW125 to SF12BW125
668 -
669 -923.3 - SF7BW125 to SF12BW125
670 -
671 -
672 -(% style="color:#037691" %)**Downlink:**
673 -
674 -Uplink channels 1-7(RX1)
675 -
676 -921.9 - SF12BW125 (RX2 downlink only; SF12BW125 might be changed to SF9BW125)
677 -
678 -
679 -
680 -=== 2.7.7 IN865-867 (IN865) ===
681 -
682 -(% style="color:#037691" %)** Uplink:**
683 -
684 -865.0625 - SF7BW125 to SF12BW125
685 -
686 -865.4025 - SF7BW125 to SF12BW125
687 -
688 -865.9850 - SF7BW125 to SF12BW125
689 -
690 -
691 -(% style="color:#037691" %) **Downlink:**
692 -
693 -Uplink channels 1-3 (RX1)
694 -
695 -866.550 - SF10BW125 (RX2)
696 -
697 -
698 -
699 -
700 -== 2.8 LED Indicator ==
701 -
702 -The LSE01 has an internal LED which is to show the status of different state.
703 -
704 -* Blink once when device power on.
705 -* Solid ON for 5 seconds once device successful Join the network.
706 -* Blink once when device transmit a packet.
707 -
708 -== 2.9 Installation in Soil ==
709 -
710 -**Measurement the soil surface**
711 -
712 -
713 -[[image:1654506634463-199.png]] ​
714 -
715 715  (((
716 -(((
717 -Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting.
601 +[[image:image-20220708140453-6.png]]
718 718  )))
719 -)))
720 720  
721 721  
722 722  
723 -[[image:1654506665940-119.png]]
606 +=== 2.9.2  Power consumption Analyze ===
724 724  
725 725  (((
726 -Dig a hole with diameter > 20CM.
609 +Dragino battery powered product are all runs in Low Power mode. We have an update battery calculator which base on the measurement of the real device. User can use this calculator to check the battery life and calculate the battery life if want to use different transmit interval.
727 727  )))
728 728  
729 -(((
730 -Horizontal insert the probe to the soil and fill the hole for long term measurement.
731 -)))
732 732  
733 -
734 -== 2.10 ​Firmware Change Log ==
735 -
736 736  (((
737 -**Firmware download link:**
614 +Instruction to use as below:
738 738  )))
739 739  
740 740  (((
741 -[[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/]]
618 +(% style="color:blue" %)**Step 1:  **(%%)Downlink the up-to-date DRAGINO_Battery_Life_Prediction_Table.xlsx from: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/]]
742 742  )))
743 743  
744 -(((
745 -
746 -)))
747 747  
748 748  (((
749 -**Firmware Upgrade Method: **[[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome]]
623 +(% style="color:blue" %)**Step 2: **(%%) Open it and choose
750 750  )))
751 751  
752 -(((
753 -
626 +* (((
627 +Product Model
754 754  )))
755 -
756 -(((
757 -**V1.0.**
629 +* (((
630 +Uplink Interval
758 758  )))
632 +* (((
633 +Working Mode
634 +)))
759 759  
760 760  (((
761 -Release
637 +And the Life expectation in difference case will be shown on the right.
762 762  )))
763 763  
640 +[[image:image-20220708141352-7.jpeg]]
764 764  
765 -== 2.11 ​Battery Analysis ==
766 766  
767 -=== 2.11.1 ​Battery Type ===
768 768  
769 -(((
770 -The LSE01 battery is a combination of a 4000mAh Li/SOCI2 Battery and a Super Capacitor. The battery is non-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter.
771 -)))
644 +=== 2.9.3  ​Battery Note ===
772 772  
773 773  (((
774 -The battery is designed to last for more than 5 years for the LSN50.
647 +The Li-SICO battery is designed for small current / long period application. It is not good to use a high current, short period transmit method. The recommended minimum period for use of this battery is 5 minutes. If you use a shorter period time to transmit LoRa, then the battery life may be decreased.
775 775  )))
776 776  
777 -(((
778 -(((
779 -The battery-related documents are as below:
780 -)))
781 -)))
782 782  
783 -* (((
784 -[[Battery Dimension>>url:http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/&file=LSN50-Battery-Dimension.pdf]],
785 -)))
786 -* (((
787 -[[Lithium-Thionyl Chloride Battery  datasheet>>url:https://www.dragino.com/downloads/downloads/datasheet/Battery/ER26500/ER26500_Datasheet-EN.pdf]],
788 -)))
789 -* (((
790 -[[Lithium-ion Battery-Capacitor datasheet>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC_1520_datasheet.jpg]], [[Tech Spec>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC1520%20Technical%20Specification20171123.pdf]]
791 -)))
792 792  
793 - [[image:image-20220610172436-1.png]]
652 +=== 2.9.4  Replace the battery ===
794 794  
795 -
796 -
797 -=== 2.11.2 ​Battery Note ===
798 -
799 799  (((
800 -The Li-SICO battery is designed for small current / long period application. It is not good to use a high current, short period transmit method. The recommended minimum period for use of this battery is 5 minutes. If you use a shorter period time to transmit LoRa, then the battery life may be decreased.
655 +The default battery pack of NSE01 includes a ER26500 plus super capacitor. If user can't find this pack locally, they can find ER26500 or equivalence without the SPC1520 capacitor, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes).
801 801  )))
802 802  
803 803  
804 804  
805 -=== 2.11.3 Replace the battery ===
660 += 3. ​ Access NB-IoT Module =
806 806  
807 807  (((
808 -If Battery is lower than 2.7v, user should replace the battery of LSE01.
663 +Users can directly access the AT command set of the NB-IoT module.
809 809  )))
810 810  
811 811  (((
812 -You can change the battery in the LSE01.The type of battery is not limited as long as the output is between 3v to 3.6v. On the main board, there is a diode (D1) between the battery and the main circuit. If you need to use a battery with less than 3.3v, please remove the D1 and shortcut the two pads of it so there won’t be voltage drop between battery and main board.
667 +The AT Command set can refer the BC35-G NB-IoT Module AT Command: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=datasheet/other_vendors/BC35-G/>>url:https://www.dragino.com/downloads/index.php?dir=datasheet/other_vendors/BC35-G/]] 
813 813  )))
814 814  
815 -(((
816 -The default battery pack of LSE01 includes a ER18505 plus super capacitor. If user can’t find this pack locally, they can find ER18505 or equivalence, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes)
817 -)))
670 +[[image:1657261278785-153.png]]
818 818  
819 819  
820 820  
821 -= 3. Using the AT Commands =
674 += 4.  Using the AT Commands =
822 822  
823 -== 3.1 Access AT Commands ==
676 +== 4.1  Access AT Commands ==
824 824  
678 +See this link for detail: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/]]
825 825  
826 -LSE01 supports AT Command set in the stock firmware. You can use a USB to TTL adapter to connect to LSE01 for using AT command, as below.
827 827  
828 -[[image:1654501986557-872.png||height="391" width="800"]]
681 +AT+<CMD>?  : Help on <CMD>
829 829  
683 +AT+<CMD>         : Run <CMD>
830 830  
831 -Or if you have below board, use below connection:
685 +AT+<CMD>=<value> : Set the value
832 832  
687 +AT+<CMD>=?  : Get the value
833 833  
834 -[[image:1654502005655-729.png||height="503" width="801"]]
835 835  
836 -
837 -
838 -In the PC, you need to set the serial baud rate to (% style="color:green" %)**9600**(%%) to access the serial console for LSE01. LSE01 will output system info once power on as below:
839 -
840 -
841 - [[image:1654502050864-459.png||height="564" width="806"]]
842 -
843 -
844 -Below are the available commands, a more detailed AT Command manual can be found at [[AT Command Manual>>https://www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0]]: [[https:~~/~~/www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0>>https://www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0]]
845 -
846 -
847 -(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>? **(%%) : Help on <CMD>
848 -
849 -(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD> **(%%) : Run <CMD>
850 -
851 -(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>=<value>**(%%) : Set the value
852 -
853 -(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>=?**(%%)  : Get the value
854 -
855 -
856 856  (% style="color:#037691" %)**General Commands**(%%)      
857 857  
858 -(% style="background-color:#dcdcdc" %)**AT**(%%)  : Attention       
692 +AT  : Attention       
859 859  
860 -(% style="background-color:#dcdcdc" %)**AT?**(%%)  : Short Help     
694 +AT?  : Short Help     
861 861  
862 -(% style="background-color:#dcdcdc" %)**ATZ**(%%)  : MCU Reset    
696 +ATZ  : MCU Reset    
863 863  
864 -(% style="background-color:#dcdcdc" %)**AT+TDC**(%%)  : Application Data Transmission Interval 
698 +AT+TDC  : Application Data Transmission Interval
865 865  
700 +AT+CFG  : Print all configurations
866 866  
867 -(% style="color:#037691" %)**Keys, IDs and EUIs management**
702 +AT+CFGMOD           : Working mode selection
868 868  
869 -(% style="background-color:#dcdcdc" %)**AT+APPEUI**(%%)              : Application EUI      
704 +AT+INTMOD            : Set the trigger interrupt mode
870 870  
871 -(% style="background-color:#dcdcdc" %)**AT+APPKEY**(%%)              : Application Key     
706 +AT+5VT  : Set extend the time of 5V power  
872 872  
873 -(% style="background-color:#dcdcdc" %)**AT+APPSKEY**(%%)            : Application Session Key
708 +AT+PRO  : Choose agreement
874 874  
875 -(% style="background-color:#dcdcdc" %)**AT+DADDR**(%%)              : Device Address     
710 +AT+WEIGRE  : Get weight or set weight to 0
876 876  
877 -(% style="background-color:#dcdcdc" %)**AT+DEUI**(%%)                   : Device EUI     
712 +AT+WEIGAP  : Get or Set the GapValue of weight
878 878  
879 -(% style="background-color:#dcdcdc" %)**AT+NWKID**(%%)               : Network ID (You can enter this command change only after successful network connection
714 +AT+RXDL  : Extend the sending and receiving time
880 880  
881 -(% style="background-color:#dcdcdc" %)**AT+NWKSKEY**(%%)          : Network Session Key Joining and sending date on LoRa network  
716 +AT+CNTFAC  : Get or set counting parameters
882 882  
883 -(% style="background-color:#dcdcdc" %)**AT+CFM**(%%)  : Confirm Mode       
718 +AT+SERVADDR  : Server Address
884 884  
885 -(% style="background-color:#dcdcdc" %)**AT+CFS**(%%)                     : Confirm Status       
886 886  
887 -(% style="background-color:#dcdcdc" %)**AT+JOIN**(%%)  : Join LoRa? Network       
721 +(% style="color:#037691" %)**COAP Management**      
888 888  
889 -(% style="background-color:#dcdcdc" %)**AT+NJM**(%%)  : LoRa? Network Join Mode    
723 +AT+URI            : Resource parameters
890 890  
891 -(% style="background-color:#dcdcdc" %)**AT+NJS**(%%)                     : LoRa? Network Join Status    
892 892  
893 -(% style="background-color:#dcdcdc" %)**AT+RECV**(%%)                  : Print Last Received Data in Raw Format
726 +(% style="color:#037691" %)**UDP Management**
894 894  
895 -(% style="background-color:#dcdcdc" %)**AT+RECVB**(%%)                : Print Last Received Data in Binary Format      
728 +AT+CFM          : Upload confirmation mode (only valid for UDP)
896 896  
897 -(% style="background-color:#dcdcdc" %)**AT+SEND**(%%)                  : Send Text Data      
898 898  
899 -(% style="background-color:#dcdcdc" %)**AT+SENB**(%%)                  : Send Hexadecimal Data
731 +(% style="color:#037691" %)**MQTT Management**
900 900  
733 +AT+CLIENT               : Get or Set MQTT client
901 901  
902 -(% style="color:#037691" %)**LoRa Network Management**
735 +AT+UNAME  : Get or Set MQTT Username
903 903  
904 -(% style="background-color:#dcdcdc" %)**AT+ADR**(%%)          : Adaptive Rate
737 +AT+PWD                  : Get or Set MQTT password
905 905  
906 -(% style="background-color:#dcdcdc" %)**AT+CLASS**(%%)  : LoRa Class(Currently only support class A
739 +AT+PUBTOPI : Get or Set MQTT publish topic
907 907  
908 -(% style="background-color:#dcdcdc" %)**AT+DCS**(%%)  : Duty Cycle Settin
741 +AT+SUBTOPIC  : Get or Set MQTT subscription topic
909 909  
910 -(% style="background-color:#dcdcdc" %)**AT+DR**(%%)  : Data Rate (Can Only be Modified after ADR=0)     
911 911  
912 -(% style="background-color:#dcdcdc" %)**AT+FCD**(%%)  : Frame Counter Downlink       
744 +(% style="color:#037691" %)**Information**          
913 913  
914 -(% style="background-color:#dcdcdc" %)**AT+FCU**(%%)  : Frame Counter Uplink   
746 +AT+FDR  : Factory Data Reset
915 915  
916 -(% style="background-color:#dcdcdc" %)**AT+JN1DL**(%%)  : Join Accept Delay1
748 +AT+PWOR : Serial Access Password
917 917  
918 -(% style="background-color:#dcdcdc" %)**AT+JN2DL**(%%)  : Join Accept Delay2
919 919  
920 -(% style="background-color:#dcdcdc" %)**AT+PNM**(%%)  : Public Network Mode   
921 921  
922 -(% style="background-color:#dcdcdc" %)**AT+RX1DL**(%%)  : Receive Delay1      
752 += ​5.  FAQ =
923 923  
924 -(% style="background-color:#dcdcdc" %)**AT+RX2DL**(%%)  : Receive Delay2      
754 +== 5.1 How to Upgrade Firmware ==
925 925  
926 -(% style="background-color:#dcdcdc" %)**AT+RX2DR**(%%)  : Rx2 Window Data Rate 
927 927  
928 -(% style="background-color:#dcdcdc" %)**AT+RX2FQ**(%%)  : Rx2 Window Frequency
929 -
930 -(% style="background-color:#dcdcdc" %)**AT+TXP**(%%)  : Transmit Power
931 -
932 -(% style="background-color:#dcdcdc" %)**AT+ MOD**(%%)  : Set work mode
933 -
934 -
935 -(% style="color:#037691" %)**Information** 
936 -
937 -(% style="background-color:#dcdcdc" %)**AT+RSSI**(%%)           : RSSI of the Last Received Packet   
938 -
939 -(% style="background-color:#dcdcdc" %)**AT+SNR**(%%)           : SNR of the Last Received Packet   
940 -
941 -(% style="background-color:#dcdcdc" %)**AT+VER**(%%)           : Image Version and Frequency Band       
942 -
943 -(% style="background-color:#dcdcdc" %)**AT+FDR**(%%)           : Factory Data Reset
944 -
945 -(% style="background-color:#dcdcdc" %)**AT+PORT**(%%)  : Application Port    
946 -
947 -(% style="background-color:#dcdcdc" %)**AT+CHS**(%%)  : Get or Set Frequency (Unit: Hz) for Single Channel Mode
948 -
949 - (% style="background-color:#dcdcdc" %)**AT+CHE**(%%)  : Get or Set eight channels mode, Only for US915, AU915, CN470
950 -
951 -
952 -= ​4. FAQ =
953 -
954 -== 4.1 ​How to change the LoRa Frequency Bands/Region? ==
955 -
956 956  (((
957 -You can follow the instructions for [[how to upgrade image>>||anchor="H2.10200BFirmwareChangeLog"]].
958 -When downloading the images, choose the required image file for download. ​
758 +User can upgrade the firmware for 1) bug fix, 2) new feature release.
959 959  )))
960 960  
961 961  (((
962 -
762 +Please see this link for how to upgrade:  [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H2.HardwareUpgradeMethodSupportList>>http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H2.HardwareUpgradeMethodSupportList]]
963 963  )))
964 964  
965 965  (((
966 -How to set up LSE01 to work in 8 channel mode By default, the frequency bands US915, AU915, CN470 work in 72 frequencies. Many gateways are 8 channel gateways, and in this case, the OTAA join time and uplink schedule is long and unpredictable while the end node is hopping in 72 frequencies.
766 +(% style="color:red" %)Notice, NSE01 and LSE01 share the same mother board. They use the same connection and method to update.
967 967  )))
968 968  
969 -(((
970 -
971 -)))
972 972  
973 -(((
974 -You can configure the end node to work in 8 channel mode by using the AT+CHE command. The 500kHz channels are always included for OTAA.
975 -)))
976 976  
977 -(((
978 -
979 -)))
771 += 6.  Trouble Shooting =
980 980  
981 -(((
982 -For example, in **US915** band, the frequency table is as below. By default, the end node will use all channels (0~~71) for OTAA Join process. After the OTAA Join, the end node will use these all channels (0~~71) to send uplink packets.
983 -)))
773 +== 6.1  ​Connection problem when uploading firmware ==
984 984  
985 -[[image:image-20220606154726-3.png]]
986 986  
987 -
988 -When you use the TTN network, the US915 frequency bands use are:
989 -
990 -* 903.9 - SF7BW125 to SF10BW125
991 -* 904.1 - SF7BW125 to SF10BW125
992 -* 904.3 - SF7BW125 to SF10BW125
993 -* 904.5 - SF7BW125 to SF10BW125
994 -* 904.7 - SF7BW125 to SF10BW125
995 -* 904.9 - SF7BW125 to SF10BW125
996 -* 905.1 - SF7BW125 to SF10BW125
997 -* 905.3 - SF7BW125 to SF10BW125
998 -* 904.6 - SF8BW500
999 -
776 +(% class="wikigeneratedid" %)
1000 1000  (((
1001 -Because the end node is now hopping in 72 frequency, it makes it difficult for the devices to Join the TTN network and uplink data. To solve this issue, you can access the device via the AT commands and run:
1002 -
1003 -* (% style="color:#037691" %)**AT+CHE=2**
1004 -* (% style="color:#037691" %)**ATZ**
778 +(% style="font-size:14px" %)**Please see: **(%%)[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H3.3Troubleshooting>>http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H3.3Troubleshooting||style="background-color: rgb(255, 255, 255); font-size: 14px;"]]
1005 1005  )))
1006 1006  
1007 -(((
1008 -
1009 1009  
1010 -to set the end node to work in 8 channel mode. The device will work in Channel 8-15 & 64-71 for OTAA, and channel 8-15 for Uplink.
1011 -)))
1012 1012  
1013 -(((
1014 -
1015 -)))
783 +== 6.2  AT Command input doesn't work ==
1016 1016  
1017 1017  (((
1018 -The **AU915** band is similar. Below are the AU915 Uplink Channels.
786 +In the case if user can see the console output but can't type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn't send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.
1019 1019  )))
1020 1020  
1021 -[[image:image-20220606154825-4.png]]
1022 1022  
1023 1023  
791 += 7. ​ Order Info =
1024 1024  
1025 -= 5. Trouble Shooting =
1026 1026  
1027 -== 5.1 ​Why I can’t join TTN in US915 / AU915 bands? ==
794 +Part Number**:** (% style="color:#4f81bd" %)**NSE01**
1028 1028  
1029 -It is due to channel mapping. Please see the [[Eight Channel Mode>>doc:Main.LoRaWAN Communication Debug.WebHome||anchor="H2.NoticeofUS9152FCN4702FAU915Frequencyband"]] section above for details.
1030 1030  
1031 -
1032 -== 5.2 AT Command input doesn’t work ==
1033 -
1034 -(((
1035 -In the case if user can see the console output but can’t type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn’t send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.
1036 -)))
1037 -
1038 -
1039 -== 5.3 Device rejoin in at the second uplink packet ==
1040 -
1041 -(% style="color:#4f81bd" %)**Issue describe as below:**
1042 -
1043 -[[image:1654500909990-784.png]]
1044 -
1045 -
1046 -(% style="color:#4f81bd" %)**Cause for this issue:**
1047 -
1048 -(((
1049 -The fuse on LSE01 is not large enough, some of the soil probe require large current up to 5v 800mA, in a short pulse. When this happen, it cause the device reboot so user see rejoin.
1050 -)))
1051 -
1052 -
1053 -(% style="color:#4f81bd" %)**Solution: **
1054 -
1055 -All new shipped LSE01 after 2020-May-30 will have this to fix. For the customer who see this issue, please bypass the fuse as below:
1056 -
1057 -[[image:1654500929571-736.png||height="458" width="832"]]
1058 -
1059 -
1060 -= 6. ​Order Info =
1061 -
1062 -
1063 -Part Number**:** (% style="color:#4f81bd" %)**LSE01-XX-YY**
1064 -
1065 -
1066 -(% style="color:#4f81bd" %)**XX**(%%)**:** The default frequency band
1067 -
1068 -* (% style="color:red" %)**AS923**(%%): LoRaWAN AS923 band
1069 -* (% style="color:red" %)**AU915**(%%): LoRaWAN AU915 band
1070 -* (% style="color:red" %)**EU433**(%%): LoRaWAN EU433 band
1071 -* (% style="color:red" %)**EU868**(%%): LoRaWAN EU868 band
1072 -* (% style="color:red" %)**KR920**(%%): LoRaWAN KR920 band
1073 -* (% style="color:red" %)**US915**(%%): LoRaWAN US915 band
1074 -* (% style="color:red" %)**IN865**(%%):  LoRaWAN IN865 band
1075 -* (% style="color:red" %)**CN470**(%%): LoRaWAN CN470 band
1076 -
1077 -(% style="color:#4f81bd" %)**YY**(%%)**: **Battery Option
1078 -
1079 -* (% style="color:red" %)**4**(%%): 4000mAh battery
1080 -* (% style="color:red" %)**8**(%%): 8500mAh battery
1081 -
1082 1082  (% class="wikigeneratedid" %)
1083 1083  (((
1084 1084  
1085 1085  )))
1086 1086  
1087 -= 7. Packing Info =
802 += 8.  Packing Info =
1088 1088  
1089 1089  (((
1090 1090  
1091 1091  
1092 1092  (% style="color:#037691" %)**Package Includes**:
1093 -)))
1094 1094  
1095 -* (((
1096 -LSE01 LoRaWAN Soil Moisture & EC Sensor x 1
809 +
810 +* NSE01 NB-IoT Soil Moisture & EC Sensor x 1
811 +* External antenna x 1
1097 1097  )))
1098 1098  
1099 1099  (((
... ... @@ -1100,24 +1100,20 @@
1100 1100  
1101 1101  
1102 1102  (% style="color:#037691" %)**Dimension and weight**:
1103 -)))
1104 1104  
1105 -* (((
1106 -Device Size: cm
819 +
820 +* Size: 195 x 125 x 55 mm
821 +* Weight:   420g
1107 1107  )))
1108 -* (((
1109 -Device Weight: g
1110 -)))
1111 -* (((
1112 -Package Size / pcs : cm
1113 -)))
1114 -* (((
1115 -Weight / pcs : g
1116 1116  
824 +(((
1117 1117  
826 +
827 +
828 +
1118 1118  )))
1119 1119  
1120 -= 8. Support =
831 += 9.  Support =
1121 1121  
1122 1122  * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
1123 1123  * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.com]]
1657245163077-232.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +81.0 KB
Content
1657246476176-652.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +492.6 KB
Content
1657249419225-449.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +81.0 KB
Content
1657249468462-536.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +483.6 KB
Content
1657249793983-486.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +85.8 KB
Content
1657249831934-534.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +72.5 KB
Content
1657249864775-321.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +87.0 KB
Content
1657249930215-289.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +77.3 KB
Content
1657249978444-674.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +139.5 KB
Content
1657249990869-686.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +96.9 KB
Content
1657250217799-140.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +98.7 KB
Content
1657250255956-604.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +99.0 KB
Content
1657259653666-883.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +344.4 KB
Content
1657260785982-288.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +138.2 KB
Content
1657261119050-993.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +126.1 KB
Content
1657261278785-153.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +126.1 KB
Content
image-20220708101224-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +22.2 KB
Content
image-20220708101605-2.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +87.5 KB
Content
image-20220708110657-3.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +251.7 KB
Content
image-20220708111918-4.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +38.8 KB
Content
image-20220708133731-5.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +8.7 KB
Content
image-20220708140453-6.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +132.7 KB
Content
image-20220708141352-7.jpeg
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +102.7 KB
Content
Copyright ©2010-2022 Dragino Technology Co., LTD. All rights reserved
Dragino Wiki v2.0