<
From version < 36.1 >
edited by Xiaoling
on 2022/06/25 16:28
To version < 62.2 >
edited by Xiaoling
on 2022/07/08 14:14
>
Change comment: There is no comment for this version

Summary

Details

Page properties
Title
... ... @@ -1,1 +1,1 @@
1 -LSE01-LoRaWAN Soil Moisture & EC Sensor User Manual
1 +NSE01 - NB-IoT Soil Moisture & EC Sensor User Manual
Content
... ... @@ -13,74 +13,78 @@
13 13  
14 14  **Table of Contents:**
15 15  
16 -{{toc/}}
17 17  
18 18  
19 19  
20 20  
21 21  
21 += 1.  Introduction =
22 22  
23 -= 1. Introduction =
23 +== 1.1 ​ What is LoRaWAN Soil Moisture & EC Sensor ==
24 24  
25 -== 1.1 ​What is LoRaWAN Soil Moisture & EC Sensor ==
26 -
27 27  (((
28 28  
29 29  
30 -The Dragino LSE01 is a (% style="color:#4f81bd" %)**LoRaWAN Soil Moisture & EC Sensor**(%%) for IoT of Agriculture. It is designed to measure the soil moisture of saline-alkali soil and loamy soil. The soil sensor uses FDR method to calculate the soil moisture with the compensation from soil temperature and conductivity. It also has been calibrated in factory for Mineral soil type.
31 -)))
28 +Dragino NSE01 is an (% style="color:blue" %)**NB-IOT soil moisture & EC sensor**(%%) for agricultural IoT. Used to measure the soil moisture of saline-alkali soil and loam. The soil sensor uses the FDR method to calculate soil moisture and compensates it with soil temperature and electrical conductivity. It has also been calibrated for mineral soil types at the factory.
32 32  
33 -(((
34 -It detects (% style="color:#4f81bd" %)**Soil Moisture**(%%), (% style="color:#4f81bd" %)**Soil Temperature**(%%) and (% style="color:#4f81bd" %)**Soil Conductivity**(%%), and uploads the value via wireless to LoRaWAN IoT Server.
35 -)))
30 +It can detect (% style="color:blue" %)**Soil Moisture, Soil Temperature and Soil Conductivity**(%%), and upload its value to the server wirelessly.
36 36  
37 -(((
38 -The LoRa wireless technology used in LES01 allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption.
39 -)))
32 +The wireless technology used in NSE01 allows the device to send data at a low data rate and reach ultra-long distances, providing ultra-long-distance spread spectrum Communication.
40 40  
41 -(((
42 -LES01 is powered by (% style="color:#4f81bd" %)**4000mA or 8500mAh Li-SOCI2 battery**(%%), It is designed for long term use up to 10 years.
43 -)))
34 +NSE01 are powered by (% style="color:blue" %)**8500mAh Li-SOCI2**(%%) batteries, which can be used for up to 5 years.  
44 44  
45 -(((
46 -Each LES01 is pre-load with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect after power on.
36 +
47 47  )))
48 48  
49 -
50 50  [[image:1654503236291-817.png]]
51 51  
52 52  
53 -[[image:1654503265560-120.png]]
42 +[[image:1657245163077-232.png]]
54 54  
55 55  
56 56  
57 57  == 1.2 ​Features ==
58 58  
59 -* LoRaWAN 1.0.3 Class A
60 -* Ultra low power consumption
48 +
49 +* NB-IoT Bands: B1/B3/B8/B5/B20/B28 @H-FDD
61 61  * Monitor Soil Moisture
62 62  * Monitor Soil Temperature
63 63  * Monitor Soil Conductivity
64 -* Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865
65 65  * AT Commands to change parameters
66 66  * Uplink on periodically
67 67  * Downlink to change configure
68 68  * IP66 Waterproof Enclosure
69 -* 4000mAh or 8500mAh Battery for long term use
57 +* Ultra-Low Power consumption
58 +* AT Commands to change parameters
59 +* Micro SIM card slot for NB-IoT SIM
60 +* 8500mAh Battery for long term use
70 70  
62 +== 1.3  Specification ==
71 71  
72 72  
65 +(% style="color:#037691" %)**Common DC Characteristics:**
73 73  
67 +* Supply Voltage: 2.1v ~~ 3.6v
68 +* Operating Temperature: -40 ~~ 85°C
74 74  
75 -== 1.3 Specification ==
70 +(% style="color:#037691" %)**NB-IoT Spec:**
76 76  
72 +* - B1 @H-FDD: 2100MHz
73 +* - B3 @H-FDD: 1800MHz
74 +* - B8 @H-FDD: 900MHz
75 +* - B5 @H-FDD: 850MHz
76 +* - B20 @H-FDD: 800MHz
77 +* - B28 @H-FDD: 700MHz
78 +
79 +(% style="color:#037691" %)**Probe Specification:**
80 +
77 77  Measure Volume: Base on the centra pin of the probe, a cylinder with 7cm diameter and 10cm height.
78 78  
79 -[[image:image-20220606162220-5.png]]
83 +[[image:image-20220708101224-1.png]]
80 80  
81 81  
82 82  
83 -== ​1.4 Applications ==
87 +== ​1.4  Applications ==
84 84  
85 85  * Smart Agriculture
86 86  
... ... @@ -87,737 +87,551 @@
87 87  (% class="wikigeneratedid" id="H200B1.5FirmwareChangelog" %)
88 88  ​
89 89  
90 -== 1.5 Firmware Change log ==
94 +== 1.5  Pin Definitions ==
91 91  
92 92  
93 -**LSE01 v1.0 :**  Release
97 +[[image:1657246476176-652.png]]
94 94  
95 95  
96 96  
97 -= 2. Configure LSE01 to connect to LoRaWAN network =
101 += 2.  Use NSE01 to communicate with IoT Server =
98 98  
99 -== 2.1 How it works ==
103 +== 2.1  How it works ==
100 100  
105 +
101 101  (((
102 -The LSE01 is configured as LoRaWAN OTAA Class A mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and power on the LSE0150. It will automatically join the network via OTAA and start to send the sensor value
107 +The NSE01 is equipped with a NB-IoT module, the pre-loaded firmware in NSE01 will get environment data from sensors and send the value to local NB-IoT network via the NB-IoT module The NB-IoT network will forward this value to IoT server via the protocol defined by NSE01.
103 103  )))
104 104  
110 +
105 105  (((
106 -In case you can’t set the OTAA keys in the LoRaWAN OTAA server, and you have to use the keys from the server, you can [[use AT Commands >>||anchor="H3.200BUsingtheATCommands"]].
112 +The diagram below shows the working flow in default firmware of NSE01:
107 107  )))
108 108  
115 +[[image:image-20220708101605-2.png]]
109 109  
117 +(((
118 +
119 +)))
110 110  
111 -== 2.2 ​Quick guide to connect to LoRaWAN server (OTAA) ==
112 112  
113 -Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LG308>>url:http://www.dragino.com/products/lora/item/140-lg308.html]] as a LoRaWAN gateway in this example.
114 114  
123 +== 2.2 ​ Configure the NSE01 ==
115 115  
116 -[[image:1654503992078-669.png]]
117 117  
126 +=== 2.2.1 Test Requirement ===
118 118  
119 -The LG308 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
120 120  
129 +To use NSE01 in your city, make sure meet below requirements:
121 121  
122 -(% style="color:blue" %)**Step 1**(%%):  Create a device in TTN with the OTAA keys from LSE01.
131 +* Your local operator has already distributed a NB-IoT Network there.
132 +* The local NB-IoT network used the band that NSE01 supports.
133 +* Your operator is able to distribute the data received in their NB-IoT network to your IoT server.
123 123  
124 -Each LSE01 is shipped with a sticker with the default device EUI as below:
135 +(((
136 +Below figure shows our testing structure. Here we have NB-IoT network coverage by China Mobile, the band they use is B8.  The NSE01 will use CoAP((% style="color:red" %)120.24.4.116:5683)(%%) or raw UDP((% style="color:red" %)120.24.4.116:5601)(%%) or MQTT((% style="color:red" %)120.24.4.116:1883)(%%)or TCP((% style="color:red" %)120.24.4.116:5600)(%%)protocol to send data to the test server
137 +)))
125 125  
126 -[[image:image-20220606163732-6.jpeg]]
127 127  
128 -You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot:
140 +[[image:1657249419225-449.png]]
129 129  
130 -**Add APP EUI in the application**
131 131  
132 132  
133 -[[image:1654504596150-405.png]]
144 +=== 2.2.2 Insert SIM card ===
134 134  
146 +Insert the NB-IoT Card get from your provider.
135 135  
148 +User need to take out the NB-IoT module and insert the SIM card like below:
136 136  
137 -**Add APP KEY and DEV EUI**
138 138  
139 -[[image:1654504683289-357.png]]
151 +[[image:1657249468462-536.png]]
140 140  
141 141  
142 142  
143 -(% style="color:blue" %)**Step 2**(%%): Power on LSE01
155 +=== 2.2.3 Connect USB TTL to NSE01 to configure it ===
144 144  
157 +(((
158 +(((
159 +User need to configure NSE01 via serial port to set the (% style="color:blue" %)**Server Address** / **Uplink Topic** (%%)to define where and how-to uplink packets. NSE01 support AT Commands, user can use a USB to TTL adapter to connect to NSE01 and use AT Commands to configure it, as below.
160 +)))
161 +)))
145 145  
146 -Put a Jumper on JP2 to power on the device. ( The Jumper must be in FLASH position).
147 147  
148 -[[image:image-20220606163915-7.png]]
164 +**Connection:**
149 149  
166 + (% style="background-color:yellow" %)USB TTL GND <~-~-~-~-> GND
150 150  
151 -(% style="color:blue" %)**Step 3**(%%)**:** The LSE01 will auto join to the TTN network. After join success, it will start to upload messages to TTN and you can see the messages in the panel.
168 + (% style="background-color:yellow" %)USB TTL TXD <~-~-~-~-> UART_RXD
152 152  
153 -[[image:1654504778294-788.png]]
170 + (% style="background-color:yellow" %)USB TTL RXD <~-~-~-~-> UART_TXD
154 154  
155 155  
173 +In the PC, use below serial tool settings:
156 156  
157 -== 2.3 Uplink Payload ==
175 +* Baud:  (% style="color:green" %)**9600**
176 +* Data bits:** (% style="color:green" %)8(%%)**
177 +* Stop bits: (% style="color:green" %)**1**
178 +* Parity:  (% style="color:green" %)**None**
179 +* Flow Control: (% style="color:green" %)**None**
158 158  
181 +(((
182 +Make sure the switch is in FLASH position, then power on device by connecting the jumper on NSE01. NSE01 will output system info once power on as below, we can enter the (% style="color:green" %)**password: 12345678**(%%) to access AT Command input.
183 +)))
159 159  
160 -=== 2.3.1 MOD~=0(Default Mode) ===
185 +[[image:image-20220708110657-3.png]]
161 161  
162 -LSE01 will uplink payload via LoRaWAN with below payload format: 
187 +(% style="color:red" %)Note: the valid AT Commands can be found at: (%%)[[http:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/]]
163 163  
164 -(((
165 -Uplink payload includes in total 11 bytes.
166 -)))
167 167  
168 -(% border="1" cellspacing="10" style="background-color:#ffffcc; width:500px" %)
169 -|(((
170 -**Size**
171 171  
172 -**(bytes)**
173 -)))|**2**|**2**|**2**|**2**|**2**|**1**
174 -|**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(((
175 -Temperature
191 +=== 2.2.4 Use CoAP protocol to uplink data ===
176 176  
177 -(Reserve, Ignore now)
178 -)))|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]]|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]]|(((
179 -MOD & Digital Interrupt
193 +(% style="color:red" %)Note: if you don't have CoAP server, you can refer this link to set up one: (%%)[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/>>http://wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/]]
180 180  
181 -(Optional)
182 -)))
183 183  
196 +**Use below commands:**
184 184  
198 +* (% style="color:blue" %)**AT+PRO=1**  (%%) ~/~/ Set to use CoAP protocol to uplink
199 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5683   ** (%%)~/~/ to set CoAP server address and port
200 +* (% style="color:blue" %)**AT+URI=5,11,"mqtt",11,"coap",12,"0",15,"c=text1",23,"0" ** (%%) ~/~/Set COAP resource path
185 185  
202 +For parameter description, please refer to AT command set
186 186  
204 +[[image:1657249793983-486.png]]
187 187  
188 188  
207 +After configure the server address and (% style="color:green" %)**reset the device**(%%) (via AT+ATZ ), NSE01 will start to uplink sensor values to CoAP server.
189 189  
190 -=== 2.3.2 MOD~=1(Original value) ===
209 +[[image:1657249831934-534.png]]
191 191  
192 -This mode can get the original AD value of moisture and original conductivity (with temperature drift compensation).
193 193  
194 -(% border="1" cellspacing="10" style="background-color:#ffffcc; width:500px" %)
195 -|(((
196 -**Size**
197 197  
198 -**(bytes)**
199 -)))|**2**|**2**|**2**|**2**|**2**|**1**
200 -|**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(((
201 -Temperature
213 +=== 2.2.5 Use UDP protocol to uplink data(Default protocol) ===
202 202  
203 -(Reserve, Ignore now)
204 -)))|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]](raw)|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]](raw)|(((
205 -MOD & Digital Interrupt
215 +This feature is supported since firmware version v1.0.1
206 206  
207 -(Optional)
208 -)))
209 209  
218 +* (% style="color:blue" %)**AT+PRO=2   ** (%%) ~/~/ Set to use UDP protocol to uplink
219 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5601   ** (%%) ~/~/ to set UDP server address and port
220 +* (% style="color:blue" %)**AT+CFM=1       ** (%%) ~/~/If the server does not respond, this command is unnecessary
210 210  
222 +[[image:1657249864775-321.png]]
211 211  
212 212  
225 +[[image:1657249930215-289.png]]
213 213  
214 214  
215 215  
216 -=== 2.3.3 Battery Info ===
229 +=== 2.2.6 Use MQTT protocol to uplink data ===
217 217  
218 -(((
219 -Check the battery voltage for LSE01.
220 -)))
231 +This feature is supported since firmware version v110
221 221  
222 -(((
223 -Ex1: 0x0B45 = 2885mV
224 -)))
225 225  
226 -(((
227 -Ex2: 0x0B49 = 2889mV
228 -)))
234 +* (% style="color:blue" %)**AT+PRO=3   ** (%%) ~/~/Set to use MQTT protocol to uplink
235 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,1883   ** (%%) ~/~/Set MQTT server address and port
236 +* (% style="color:blue" %)**AT+CLIENT=CLIENT       ** (%%)~/~/Set up the CLIENT of MQTT
237 +* (% style="color:blue" %)**AT+UNAME=UNAME                               **(%%)~/~/Set the username of MQTT
238 +* (% style="color:blue" %)**AT+PWD=PWD                                        **(%%)~/~/Set the password of MQTT
239 +* (% style="color:blue" %)**AT+PUBTOPIC=NSE01_PUB                    **(%%)~/~/Set the sending topic of MQTT
240 +* (% style="color:blue" %)**AT+SUBTOPIC=NSE01_SUB          **(%%) ~/~/Set the subscription topic of MQTT
229 229  
242 +[[image:1657249978444-674.png]]
230 230  
231 231  
232 -=== 2.3.4 Soil Moisture ===
245 +[[image:1657249990869-686.png]]
233 233  
234 -(((
235 -Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil.
236 -)))
237 237  
238 238  (((
239 -For example, if the data you get from the register is __0x05 0xDC__, the moisture content in the soil is
249 +MQTT protocol has a much higher power consumption compare vs UDP / CoAP protocol. Please check the power analyze document and adjust the uplink period to a suitable interval.
240 240  )))
241 241  
242 -(((
243 -
244 -)))
245 245  
246 -(((
247 -(% style="color:#4f81bd" %)**05DC(H) = 1500(D) /100 = 15%.**
248 -)))
249 249  
254 +=== 2.2.7 Use TCP protocol to uplink data ===
250 250  
256 +This feature is supported since firmware version v110
251 251  
252 -=== 2.3.5 Soil Temperature ===
253 253  
254 -(((
255 - Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is 0x09 0xEC, the temperature content in the soil is
256 -)))
259 +* (% style="color:blue" %)**AT+PRO=4   ** (%%) ~/~/ Set to use TCP protocol to uplink
260 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5600   **(%%) ~/~/ to set TCP server address and port
257 257  
258 -(((
259 -**Example**:
260 -)))
262 +[[image:1657250217799-140.png]]
261 261  
262 -(((
263 -If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/100 = 2.61 °C
264 -)))
265 265  
266 -(((
267 -If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C
268 -)))
265 +[[image:1657250255956-604.png]]
269 269  
270 270  
271 271  
272 -=== 2.3.6 Soil Conductivity (EC) ===
269 +=== 2.2.8 Change Update Interval ===
273 273  
274 -(((
275 -Obtain (% style="color:#4f81bd" %)**__soluble salt concentration__**(%%) in soil or (% style="color:#4f81bd" %)**__soluble ion concentration in liquid fertilizer__**(%%) or (% style="color:#4f81bd" %)**__planting medium__**(%%). The value range of the register is 0 - 20000(Decimal)( Can be greater than 20000).
276 -)))
271 +User can use below command to change the (% style="color:green" %)**uplink interval**.
277 277  
278 -(((
279 -For example, if the data you get from the register is 0x00 0xC8, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm.
280 -)))
273 +* (% style="color:blue" %)**AT+TDC=600      ** (%%)~/~/ Set Update Interval to 600s
281 281  
282 282  (((
283 -Generally, the EC value of irrigation water is less than 800uS / cm.
276 +(% style="color:red" %)**NOTE:**
284 284  )))
285 285  
286 286  (((
287 -
280 +(% style="color:red" %)1. By default, the device will send an uplink message every 1 hour.
288 288  )))
289 289  
290 -(((
291 -
292 -)))
293 293  
294 -=== 2.3.7 MOD ===
295 295  
296 -Firmware version at least v2.1 supports changing mode.
285 +== 2. Uplink Payload ==
297 297  
298 -For example, bytes[10]=90
287 +In this mode, uplink payload includes in total 18 bytes
299 299  
300 -mod=(bytes[10]>>7)&0x01=1.
289 +(% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:510px" %)
290 +|=(% style="width: 50px;" %)(((
291 +**Size(bytes)**
292 +)))|=(% style="width: 50px;" %)**6**|=(% style="width: 25px;" %)2|=(% style="width: 25px;" %)**2**|=(% style="width: 80px;" %)**1**|=(% style="width: 80px;" %)**2**|=(% style="width: 80px;" %)**2**|=(% style="width: 80px;" %)**2**|=(% style="width: 40px;" %)**1**
293 +|(% style="width:97px" %)**Value**|(% style="width:83px" %)[[Device ID>>||anchor="H"]]|(% style="width:41px" %)[[Ver>>||anchor="H"]]|(% style="width:46px" %)[[BAT>>||anchor="H"]]|(% style="width:123px" %)[[Signal Strength>>||anchor="H"]]|(% style="width:108px" %)[[Soil Moisture>>||anchor="H"]]|(% style="width:133px" %)[[Soil Temperature>>||anchor="H"]]|(% style="width:159px" %)[[Soil Conductivity(EC)>>||anchor="H"]]|(% style="width:80px" %)[[Interrupt>>||anchor="H"]]
301 301  
295 +If we use the MQTT client to subscribe to this MQTT topic, we can see the following information when the NSE01 uplink data.
302 302  
303 -**Downlink Command:**
304 304  
305 -If payload = 0x0A00, workmode=0
298 +[[image:image-20220708111918-4.png]]
306 306  
307 -If** **payload =** **0x0A01, workmode=1
308 308  
301 +The payload is ASCII string, representative same HEX:
309 309  
303 +0x72403155615900640c7817075e0a8c02f900 where:
310 310  
311 -=== 2.3.8 ​Decode payload in The Things Network ===
305 +* Device ID: 0x 724031556159 = 724031556159
306 +* Version: 0x0064=100=1.0.0
312 312  
313 -While using TTN network, you can add the payload format to decode the payload.
308 +* BAT: 0x0c78 = 3192 mV = 3.192V
309 +* Singal: 0x17 = 23
310 +* Soil Moisture: 0x075e= 1886 = 18.86  %
311 +* Soil Temperature:0x0a8c =2700=27 °C
312 +* Soil Conductivity(EC) = 0x02f9 =761 uS /cm
313 +* Interrupt: 0x00 = 0
314 314  
315 +== 2.4  Payload Explanation and Sensor Interface ==
315 315  
316 -[[image:1654505570700-128.png]]
317 317  
318 -(((
319 -The payload decoder function for TTN is here:
320 -)))
318 +=== 2.4.1  Device ID ===
321 321  
322 -(((
323 -LSE01 TTN Payload Decoder: [[https:~~/~~/www.dropbox.com/sh/si8icbrjlamxqdb/AAACYwjsxxr5fj_vpqRtrETAa?dl=0>>https://www.dropbox.com/sh/si8icbrjlamxqdb/AAACYwjsxxr5fj_vpqRtrETAa?dl=0]]
324 -)))
320 +By default, the Device ID equal to the last 6 bytes of IMEI.
325 325  
322 +User can use (% style="color:blue" %)**AT+DEUI**(%%) to set Device ID
326 326  
327 -== 2.4 Uplink Interval ==
324 +**Example:**
328 328  
329 -The LSE01 by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link: [[Change Uplink Interval>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H4.1ChangeUplinkInterval"]]
326 +AT+DEUI=A84041F15612
330 330  
328 +The Device ID is stored in a none-erase area, Upgrade the firmware or run AT+FDR won't erase Device ID.
331 331  
332 332  
333 -== 2.5 Downlink Payload ==
334 334  
335 -By default, LSE50 prints the downlink payload to console port.
332 +=== 2.4.2  Version Info ===
336 336  
337 -[[image:image-20220606165544-8.png]]
334 +Specify the software version: 0x64=100, means firmware version 1.00.
338 338  
336 +For example: 0x00 64 : this device is NSE01 with firmware version 1.0.0.
339 339  
340 -(((
341 -**Examples:**
342 -)))
343 343  
344 -(((
345 -
346 -)))
347 347  
348 -* (((
349 -**Set TDC**
350 -)))
340 +=== 2.4.3  Battery Info ===
351 351  
352 352  (((
353 -If the payload=0100003C, it means set the END Node’s TDC to 0x00003C=60(S), while type code is 01.
343 +Check the battery voltage for LSE01.
354 354  )))
355 355  
356 356  (((
357 -Payload:    01 00 00 1E    TDC=30S
347 +Ex1: 0x0B45 = 2885mV
358 358  )))
359 359  
360 360  (((
361 -Payload:    01 00 00 3C    TDC=60S
351 +Ex2: 0x0B49 = 2889mV
362 362  )))
363 363  
364 -(((
365 -
366 -)))
367 367  
368 -* (((
369 -**Reset**
370 -)))
371 371  
372 -(((
373 -If payload = 0x04FF, it will reset the LSE01
374 -)))
356 +=== 2.4.4  Signal Strength ===
375 375  
358 +NB-IoT Network signal Strength.
376 376  
377 -* **CFM**
360 +**Ex1: 0x1d = 29**
378 378  
379 -Downlink Payload: 05000001, Set AT+CFM=1 or 05000000 , set AT+CFM=0
362 +(% style="color:blue" %)**0**(%%)  -113dBm or less
380 380  
364 +(% style="color:blue" %)**1**(%%)  -111dBm
381 381  
366 +(% style="color:blue" %)**2...30**(%%) -109dBm... -53dBm
382 382  
383 -== 2.6 ​Show Data in DataCake IoT Server ==
368 +(% style="color:blue" %)**31**  (%%) -51dBm or greater
384 384  
370 +(% style="color:blue" %)**99**   (%%) Not known or not detectable
371 +
372 +
373 +
374 +=== 2.4.5  Soil Moisture ===
375 +
385 385  (((
386 -[[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps:
377 +Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil.
387 387  )))
388 388  
389 389  (((
390 -
381 +For example, if the data you get from the register is **__0x05 0xDC__**, the moisture content in the soil is
391 391  )))
392 392  
393 393  (((
394 -(% style="color:blue" %)**Step 1**(%%):  Be sure that your device is programmed and properly connected to the network at this time.
385 +
395 395  )))
396 396  
397 397  (((
398 -(% style="color:blue" %)**Step 2**(%%) To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps:
389 +(% style="color:#4f81bd" %)**05DC(H) = 1500(D) /100 = 15%.**
399 399  )))
400 400  
401 401  
402 -[[image:1654505857935-743.png]]
403 403  
394 +=== 2.4.6  Soil Temperature ===
404 404  
405 -[[image:1654505874829-548.png]]
396 +(((
397 + Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is __**0x09 0xEC**__, the temperature content in the soil is
398 +)))
406 406  
400 +(((
401 +**Example**:
402 +)))
407 407  
408 -(% style="color:blue" %)**Step 3**(%%)**:**  Create an account or log in Datacake.
404 +(((
405 +If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/100 = 2.61 °C
406 +)))
409 409  
410 -(% style="color:blue" %)**Step 4**(%%)**:**  Search the LSE01 and add DevEUI.
408 +(((
409 +If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C
410 +)))
411 411  
412 412  
413 -[[image:1654505905236-553.png]]
414 414  
414 +=== 2.4.7  Soil Conductivity (EC) ===
415 415  
416 -After added, the sensor data arrive TTN, it will also arrive and show in Mydevices.
416 +(((
417 +Obtain (% style="color:#4f81bd" %)**__soluble salt concentration__**(%%) in soil or (% style="color:#4f81bd" %)**__soluble ion concentration in liquid fertilizer__**(%%) or (% style="color:#4f81bd" %)**__planting medium__**(%%). The value range of the register is 0 - 20000(Decimal)( Can be greater than 20000).
418 +)))
417 417  
418 -[[image:1654505925508-181.png]]
420 +(((
421 +For example, if the data you get from the register is __**0x00 0xC8**__, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm.
422 +)))
419 419  
424 +(((
425 +Generally, the EC value of irrigation water is less than 800uS / cm.
426 +)))
420 420  
428 +(((
429 +
430 +)))
421 421  
422 -== 2.7 Frequency Plans ==
432 +(((
433 +
434 +)))
423 423  
424 -The LSE01 uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.
436 +=== 2.4.8  Digital Interrupt ===
425 425  
438 +Digital Interrupt refers to pin (% style="color:blue" %)**GPIO_EXTI**(%%), and there are different trigger methods. When there is a trigger, the NSE01 will send a packet to the server.
426 426  
427 -=== 2.7.1 EU863-870 (EU868) ===
440 +The command is:
428 428  
429 -(% style="color:#037691" %)** Uplink:**
442 +(% style="color:blue" %)**AT+INTMOD=3 **(%%) ~/~/(more info about INMOD please refer [[**AT Command Manual**>>url:https://www.dragino.com/downloads/downloads/NB-IoT/NBSN95/DRAGINO_NBSN95-NB_AT%20Commands_v1.1.0.pdf]])**.**
430 430  
431 -868.1 - SF7BW125 to SF12BW125
432 432  
433 -868.3 - SF7BW125 to SF12BW125 and SF7BW250
445 +The lower four bits of this data field shows if this packet is generated by interrupt or not. [[Click here>>||anchor="H"]] for the hardware and software set up.
434 434  
435 -868.5 - SF7BW125 to SF12BW125
436 436  
437 -867.1 - SF7BW125 to SF12BW125
448 +Example:
438 438  
439 -867.3 - SF7BW125 to SF12BW125
450 +0x(00): Normal uplink packet.
440 440  
441 -867.5 - SF7BW125 to SF12BW125
452 +0x(01): Interrupt Uplink Packet.
442 442  
443 -867.7 - SF7BW125 to SF12BW125
444 444  
445 -867.9 - SF7BW125 to SF12BW125
446 446  
447 -868.8 - FSK
456 +=== 2.4.9  ​+5V Output ===
448 448  
458 +NSE01 will enable +5V output before all sampling and disable the +5v after all sampling. 
449 449  
450 -(% style="color:#037691" %)** Downlink:**
451 451  
452 -Uplink channels 1-9 (RX1)
461 +The 5V output time can be controlled by AT Command.
453 453  
454 -869.525 - SF9BW125 (RX2 downlink only)
463 +(% style="color:blue" %)**AT+5VT=1000**
455 455  
465 +Means set 5V valid time to have 1000ms. So the real 5V output will actually have 1000ms + sampling time for other sensors.
456 456  
457 457  
458 -=== 2.7.2 US902-928(US915) ===
459 459  
460 -Used in USA, Canada and South America. Default use CHE=2
469 +== 2.5  Downlink Payload ==
461 461  
462 -(% style="color:#037691" %)**Uplink:**
471 +By default, NSE01 prints the downlink payload to console port.
463 463  
464 -903.9 - SF7BW125 to SF10BW125
473 +[[image:image-20220708133731-5.png]]
465 465  
466 -904.1 - SF7BW125 to SF10BW125
467 467  
468 -904.3 - SF7BW125 to SF10BW125
469 469  
470 -904.5 - SF7BW125 to SF10BW125
477 +(((
478 +(% style="color:blue" %)**Examples:**
479 +)))
471 471  
472 -904.7 - SF7BW125 to SF10BW125
481 +(((
482 +
483 +)))
473 473  
474 -904.9 - SF7BW125 to SF10BW125
485 +* (((
486 +(% style="color:blue" %)**Set TDC**
487 +)))
475 475  
476 -905.1 - SF7BW125 to SF10BW125
489 +(((
490 +If the payload=0100003C, it means set the END Node's TDC to 0x00003C=60(S), while type code is 01.
491 +)))
477 477  
478 -905.3 - SF7BW125 to SF10BW125
493 +(((
494 +Payload:    01 00 00 1E    TDC=30S
495 +)))
479 479  
497 +(((
498 +Payload:    01 00 00 3C    TDC=60S
499 +)))
480 480  
481 -(% style="color:#037691" %)**Downlink:**
501 +(((
502 +
503 +)))
482 482  
483 -923.3 - SF7BW500 to SF12BW500
505 +* (((
506 +(% style="color:blue" %)**Reset**
507 +)))
484 484  
485 -923.9 - SF7BW500 to SF12BW500
509 +(((
510 +If payload = 0x04FF, it will reset the NSE01
511 +)))
486 486  
487 -924.5 - SF7BW500 to SF12BW500
488 488  
489 -925.1 - SF7BW500 to SF12BW500
514 +* (% style="color:blue" %)**INTMOD**
490 490  
491 -925.7 - SF7BW500 to SF12BW500
516 +Downlink Payload: 06000003, Set AT+INTMOD=3
492 492  
493 -926.3 - SF7BW500 to SF12BW500
494 494  
495 -926.9 - SF7BW500 to SF12BW500
496 496  
497 -927.5 - SF7BW500 to SF12BW500
520 +== 2. ​LED Indicator ==
498 498  
499 -923.3 - SF12BW500(RX2 downlink only)
522 +(((
523 +The NSE01 has an internal LED which is to show the status of different state.
500 500  
501 501  
526 +* When power on, NSE01 will detect if sensor probe is connected, if probe detected, LED will blink four times. (no blinks in this step is no probe)
527 +* Then the LED will be on for 1 second means device is boot normally.
528 +* After NSE01 join NB-IoT network. The LED will be ON for 3 seconds.
529 +* For each uplink probe, LED will be on for 500ms.
530 +)))
502 502  
503 -=== 2.7.3 CN470-510 (CN470) ===
504 504  
505 -Used in China, Default use CHE=1
506 506  
507 -(% style="color:#037691" %)**Uplink:**
508 508  
509 -486.3 - SF7BW125 to SF12BW125
535 +== 2.7  Installation in Soil ==
510 510  
511 -486.5 - SF7BW125 to SF12BW125
537 +__**Measurement the soil surface**__
512 512  
513 -486.7 - SF7BW125 to SF12BW125
539 +Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting. [[https:~~/~~/img.alicdn.com/imgextra/i3/2005165265/O1CN010rj9Oh1olPsQxrdUK_!!2005165265.jpg>>url:https://img.alicdn.com/imgextra/i3/2005165265/O1CN010rj9Oh1olPsQxrdUK_!!2005165265.jpg]]
514 514  
515 -486.9 - SF7BW125 to SF12BW125
541 +[[image:1657259653666-883.png]] ​
516 516  
517 -487.1 - SF7BW125 to SF12BW125
518 518  
519 -487.3 - SF7BW125 to SF12BW125
544 +(((
545 +
520 520  
521 -487.5 - SF7BW125 to SF12BW125
547 +(((
548 +Dig a hole with diameter > 20CM.
549 +)))
522 522  
523 -487.7 - SF7BW125 to SF12BW125
551 +(((
552 +Horizontal insert the probe to the soil and fill the hole for long term measurement.
553 +)))
554 +)))
524 524  
556 +[[image:1654506665940-119.png]]
525 525  
526 -(% style="color:#037691" %)**Downlink:**
558 +(((
559 +
560 +)))
527 527  
528 -506.7 - SF7BW125 to SF12BW125
529 529  
530 -506.9 - SF7BW125 to SF12BW125
563 +== 2. Firmware Change Log ==
531 531  
532 -507.1 - SF7BW125 to SF12BW125
533 533  
534 -507.3 - SF7BW125 to SF12BW125
566 +Download URL & Firmware Change log
535 535  
536 -507.5 - SF7BW125 to SF12BW125
568 +[[www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/Firmware/]]
537 537  
538 -507.7 - SF7BW125 to SF12BW125
539 539  
540 -507.9 - SF7BW125 to SF12BW125
571 +Upgrade Instruction: [[Upgrade_Firmware>>||anchor="H"]]
541 541  
542 -508.1 - SF7BW125 to SF12BW125
543 543  
544 -505.3 - SF12BW125 (RX2 downlink only)
545 545  
575 +== 2.9  ​Battery Analysis ==
546 546  
577 +=== 2.9.1  ​Battery Type ===
547 547  
548 -=== 2.7.4 AU915-928(AU915) ===
549 549  
550 -Default use CHE=2
580 +The NSE01 battery is a combination of an 8500mAh Li/SOCI2 Battery and a Super Capacitor. The battery is none-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter.
551 551  
552 -(% style="color:#037691" %)**Uplink:**
553 553  
554 -916.8 - SF7BW125 to SF12BW125
583 +The battery is designed to last for several years depends on the actually use environment and update interval.
555 555  
556 -917.0 - SF7BW125 to SF12BW125
557 557  
558 -917.2 - SF7BW125 to SF12BW125
586 +The battery related documents as below:
559 559  
560 -917.4 - SF7BW125 to SF12BW125
588 +* [[Battery Dimension>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]
589 +* [[Lithium-Thionyl Chloride Battery>>url:http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]][[ datasheet>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]
590 +* [[Lithium-ion Battery-Capacitor datasheet>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]
561 561  
562 -917.6 - SF7BW125 to SF12BW125
563 -
564 -917.8 - SF7BW125 to SF12BW125
565 -
566 -918.0 - SF7BW125 to SF12BW125
567 -
568 -918.2 - SF7BW125 to SF12BW125
569 -
570 -
571 -(% style="color:#037691" %)**Downlink:**
572 -
573 -923.3 - SF7BW500 to SF12BW500
574 -
575 -923.9 - SF7BW500 to SF12BW500
576 -
577 -924.5 - SF7BW500 to SF12BW500
578 -
579 -925.1 - SF7BW500 to SF12BW500
580 -
581 -925.7 - SF7BW500 to SF12BW500
582 -
583 -926.3 - SF7BW500 to SF12BW500
584 -
585 -926.9 - SF7BW500 to SF12BW500
586 -
587 -927.5 - SF7BW500 to SF12BW500
588 -
589 -923.3 - SF12BW500(RX2 downlink only)
590 -
591 -
592 -
593 -=== 2.7.5 AS920-923 & AS923-925 (AS923) ===
594 -
595 -(% style="color:#037691" %)**Default Uplink channel:**
596 -
597 -923.2 - SF7BW125 to SF10BW125
598 -
599 -923.4 - SF7BW125 to SF10BW125
600 -
601 -
602 -(% style="color:#037691" %)**Additional Uplink Channel**:
603 -
604 -(OTAA mode, channel added by JoinAccept message)
605 -
606 -(% style="color:#037691" %)**AS920~~AS923 for Japan, Malaysia, Singapore**:
607 -
608 -922.2 - SF7BW125 to SF10BW125
609 -
610 -922.4 - SF7BW125 to SF10BW125
611 -
612 -922.6 - SF7BW125 to SF10BW125
613 -
614 -922.8 - SF7BW125 to SF10BW125
615 -
616 -923.0 - SF7BW125 to SF10BW125
617 -
618 -922.0 - SF7BW125 to SF10BW125
619 -
620 -
621 -(% style="color:#037691" %)**AS923 ~~ AS925 for Brunei, Cambodia, Hong Kong, Indonesia, Laos, Taiwan, Thailand, Vietnam**:
622 -
623 -923.6 - SF7BW125 to SF10BW125
624 -
625 -923.8 - SF7BW125 to SF10BW125
626 -
627 -924.0 - SF7BW125 to SF10BW125
628 -
629 -924.2 - SF7BW125 to SF10BW125
630 -
631 -924.4 - SF7BW125 to SF10BW125
632 -
633 -924.6 - SF7BW125 to SF10BW125
634 -
635 -
636 -(% style="color:#037691" %)** Downlink:**
637 -
638 -Uplink channels 1-8 (RX1)
639 -
640 -923.2 - SF10BW125 (RX2)
641 -
642 -
643 -
644 -=== 2.7.6 KR920-923 (KR920) ===
645 -
646 -Default channel:
647 -
648 -922.1 - SF7BW125 to SF12BW125
649 -
650 -922.3 - SF7BW125 to SF12BW125
651 -
652 -922.5 - SF7BW125 to SF12BW125
653 -
654 -
655 -(% style="color:#037691" %)**Uplink: (OTAA mode, channel added by JoinAccept message)**
656 -
657 -922.1 - SF7BW125 to SF12BW125
658 -
659 -922.3 - SF7BW125 to SF12BW125
660 -
661 -922.5 - SF7BW125 to SF12BW125
662 -
663 -922.7 - SF7BW125 to SF12BW125
664 -
665 -922.9 - SF7BW125 to SF12BW125
666 -
667 -923.1 - SF7BW125 to SF12BW125
668 -
669 -923.3 - SF7BW125 to SF12BW125
670 -
671 -
672 -(% style="color:#037691" %)**Downlink:**
673 -
674 -Uplink channels 1-7(RX1)
675 -
676 -921.9 - SF12BW125 (RX2 downlink only; SF12BW125 might be changed to SF9BW125)
677 -
678 -
679 -
680 -=== 2.7.7 IN865-867 (IN865) ===
681 -
682 -(% style="color:#037691" %)** Uplink:**
683 -
684 -865.0625 - SF7BW125 to SF12BW125
685 -
686 -865.4025 - SF7BW125 to SF12BW125
687 -
688 -865.9850 - SF7BW125 to SF12BW125
689 -
690 -
691 -(% style="color:#037691" %) **Downlink:**
692 -
693 -Uplink channels 1-3 (RX1)
694 -
695 -866.550 - SF10BW125 (RX2)
696 -
697 -
698 -
699 -
700 -== 2.8 LED Indicator ==
701 -
702 -The LSE01 has an internal LED which is to show the status of different state.
703 -
704 -* Blink once when device power on.
705 -* Solid ON for 5 seconds once device successful Join the network.
706 -* Blink once when device transmit a packet.
707 -
708 -== 2.9 Installation in Soil ==
709 -
710 -**Measurement the soil surface**
711 -
712 -
713 -[[image:1654506634463-199.png]] ​
714 -
715 715  (((
716 -(((
717 -Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting.
593 +[[image:image-20220708140453-6.png]]
718 718  )))
719 -)))
720 720  
721 721  
722 722  
723 -[[image:1654506665940-119.png]]
598 +=== 2.9.2  Power consumption Analyze ===
724 724  
725 -(((
726 -Dig a hole with diameter > 20CM.
727 -)))
600 +Dragino battery powered product are all runs in Low Power mode. We have an update battery calculator which base on the measurement of the real device. User can use this calculator to check the battery life and calculate the battery life if want to use different transmit interval.
728 728  
729 -(((
730 -Horizontal insert the probe to the soil and fill the hole for long term measurement.
731 -)))
732 732  
603 +Instruction to use as below:
733 733  
734 -== 2.10 ​Firmware Change Log ==
735 735  
736 -(((
737 -**Firmware download link:**
738 -)))
606 +Step 1: Downlink the up-to-date DRAGINO_Battery_Life_Prediction_Table.xlsx from:
739 739  
740 -(((
741 -[[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/]]
742 -)))
608 +[[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/]]
743 743  
744 -(((
745 -
746 -)))
747 747  
748 -(((
749 -**Firmware Upgrade Method: **[[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome]]
750 -)))
611 +Step 2: Open it and choose
751 751  
752 -(((
753 -
754 -)))
613 +* Product Model
614 +* Uplink Interval
615 +* Working Mode
755 755  
756 -(((
757 -**V1.0.**
758 -)))
617 +And the Life expectation in difference case will be shown on the right.
759 759  
760 -(((
761 -Release
762 -)))
619 +[[image:image-20220708141352-7.jpeg]]
763 763  
764 764  
765 -== 2.11 ​Battery Analysis ==
766 766  
767 -=== 2.11.1 ​Battery Type ===
623 +=== 2.9. ​Battery Note ===
768 768  
769 769  (((
770 -The LSE01 battery is a combination of a 4000mAh Li/SOCI2 Battery and a Super Capacitor. The battery is non-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter.
771 -)))
772 -
773 -(((
774 -The battery is designed to last for more than 5 years for the LSN50.
775 -)))
776 -
777 -(((
778 -(((
779 -The battery-related documents are as below:
780 -)))
781 -)))
782 -
783 -* (((
784 -[[Battery Dimension>>url:http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/&file=LSN50-Battery-Dimension.pdf]],
785 -)))
786 -* (((
787 -[[Lithium-Thionyl Chloride Battery  datasheet>>url:https://www.dragino.com/downloads/downloads/datasheet/Battery/ER26500/ER26500_Datasheet-EN.pdf]],
788 -)))
789 -* (((
790 -[[Lithium-ion Battery-Capacitor datasheet>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC_1520_datasheet.jpg]], [[Tech Spec>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC1520%20Technical%20Specification20171123.pdf]]
791 -)))
792 -
793 - [[image:image-20220610172436-1.png]]
794 -
795 -
796 -
797 -=== 2.11.2 ​Battery Note ===
798 -
799 -(((
800 800  The Li-SICO battery is designed for small current / long period application. It is not good to use a high current, short period transmit method. The recommended minimum period for use of this battery is 5 minutes. If you use a shorter period time to transmit LoRa, then the battery life may be decreased.
801 801  )))
802 802  
803 803  
804 804  
805 -=== 2.11.3 Replace the battery ===
631 +=== 2.9. Replace the battery ===
806 806  
807 807  (((
808 -If Battery is lower than 2.7v, user should replace the battery of LSE01.
634 +The default battery pack of NSE01 includes a ER26500 plus super capacitor. If user can't find this pack locally, they can find ER26500 or equivalence without the SPC1520 capacitor, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes).
809 809  )))
810 810  
811 -(((
812 -You can change the battery in the LSE01.The type of battery is not limited as long as the output is between 3v to 3.6v. On the main board, there is a diode (D1) between the battery and the main circuit. If you need to use a battery with less than 3.3v, please remove the D1 and shortcut the two pads of it so there won’t be voltage drop between battery and main board.
813 -)))
814 814  
815 -(((
816 -The default battery pack of LSE01 includes a ER18505 plus super capacitor. If user can’t find this pack locally, they can find ER18505 or equivalence, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes)
817 -)))
818 818  
819 -
820 -
821 821  = 3. ​Using the AT Commands =
822 822  
823 823  == 3.1 Access AT Commands ==
... ... @@ -1021,18 +1021,22 @@
1021 1021  [[image:image-20220606154825-4.png]]
1022 1022  
1023 1023  
842 +== 4.2 ​Can I calibrate LSE01 to different soil types? ==
1024 1024  
844 +LSE01 is calibrated for saline-alkali soil and loamy soil. If users want to use it for other soil, they can calibrate the value in the IoT platform base on the value measured by saline-alkali soil and loamy soil. The formula can be found at [[this link>>https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/&file=Calibrate_to_other_Soil_20220605.pdf]].
845 +
846 +
1025 1025  = 5. Trouble Shooting =
1026 1026  
1027 -== 5.1 ​Why I cant join TTN in US915 / AU915 bands? ==
849 +== 5.1 ​Why I can't join TTN in US915 / AU915 bands? ==
1028 1028  
1029 -It is due to channel mapping. Please see the [[Eight Channel Mode>>doc:Main.LoRaWAN Communication Debug.WebHome||anchor="H2.NoticeofUS9152FCN4702FAU915Frequencyband"]] section above for details.
851 +It is due to channel mapping. Please see the [[Eight Channel Mode>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H7.19EightChannelMode"]] section above for details.
1030 1030  
1031 1031  
1032 -== 5.2 AT Command input doesnt work ==
854 +== 5.2 AT Command input doesn't work ==
1033 1033  
1034 1034  (((
1035 -In the case if user can see the console output but cant type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesnt send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.
857 +In the case if user can see the console output but can't type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn't send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.
1036 1036  )))
1037 1037  
1038 1038  
1657245163077-232.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +81.0 KB
Content
1657246476176-652.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +492.6 KB
Content
1657249419225-449.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +81.0 KB
Content
1657249468462-536.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +483.6 KB
Content
1657249793983-486.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +85.8 KB
Content
1657249831934-534.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +72.5 KB
Content
1657249864775-321.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +87.0 KB
Content
1657249930215-289.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +77.3 KB
Content
1657249978444-674.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +139.5 KB
Content
1657249990869-686.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +96.9 KB
Content
1657250217799-140.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +98.7 KB
Content
1657250255956-604.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +99.0 KB
Content
1657259653666-883.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +344.4 KB
Content
1657260785982-288.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +138.2 KB
Content
image-20220708101224-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +22.2 KB
Content
image-20220708101605-2.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +87.5 KB
Content
image-20220708110657-3.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +251.7 KB
Content
image-20220708111918-4.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +38.8 KB
Content
image-20220708133731-5.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +8.7 KB
Content
image-20220708140453-6.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +132.7 KB
Content
image-20220708141352-7.jpeg
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +102.7 KB
Content
Copyright ©2010-2022 Dragino Technology Co., LTD. All rights reserved
Dragino Wiki v2.0