<
From version < 35.9 >
edited by Xiaoling
on 2022/06/14 14:04
To version < 65.11 >
edited by Xiaoling
on 2022/07/08 15:44
>
Change comment: There is no comment for this version

Summary

Details

Page properties
Title
... ... @@ -1,1 +1,1 @@
1 -LSE01-LoRaWAN Soil Moisture & EC Sensor User Manual
1 +NSE01 - NB-IoT Soil Moisture & EC Sensor User Manual
Content
... ... @@ -3,6 +3,14 @@
3 3  
4 4  
5 5  
6 +
7 +
8 +
9 +
10 +
11 +
12 +
13 +
6 6  **Table of Contents:**
7 7  
8 8  {{toc/}}
... ... @@ -12,65 +12,82 @@
12 12  
13 13  
14 14  
15 -= 1. Introduction =
16 16  
17 -== 1.1 ​What is LoRaWAN Soil Moisture & EC Sensor ==
24 += 1.  Introduction =
18 18  
26 +== 1.1 ​ What is LoRaWAN Soil Moisture & EC Sensor ==
27 +
19 19  (((
20 20  
21 21  
22 -The Dragino LSE01 is a (% style="color:#4f81bd" %)**LoRaWAN Soil Moisture & EC Sensor**(%%) for IoT of Agriculture. It is designed to measure the soil moisture of saline-alkali soil and loamy soil. The soil sensor uses FDR method to calculate the soil moisture with the compensation from soil temperature and conductivity. It also has been calibrated in factory for Mineral soil type.
31 +(((
32 +Dragino NSE01 is an (% style="color:blue" %)**NB-IOT soil moisture & EC sensor**(%%) for agricultural IoT. Used to measure the soil moisture of saline-alkali soil and loam. The soil sensor uses the FDR method to calculate soil moisture and compensates it with soil temperature and electrical conductivity. It has also been calibrated for mineral soil types at the factory.
23 23  )))
24 24  
25 25  (((
26 -It detects (% style="color:#4f81bd" %)**Soil Moisture**(%%), (% style="color:#4f81bd" %)**Soil Temperature**(%%) and (% style="color:#4f81bd" %)**Soil Conductivity**(%%), and uploads the value via wireless to LoRaWAN IoT Server.
36 +It can detect (% style="color:blue" %)**Soil Moisture, Soil Temperature and Soil Conductivity**(%%), and upload its value to the server wirelessly.
27 27  )))
28 28  
29 29  (((
30 -The LoRa wireless technology used in LES01 allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption.
40 +The wireless technology used in NSE01 allows the device to send data at a low data rate and reach ultra-long distances, providing ultra-long-distance spread spectrum Communication.
31 31  )))
32 32  
33 33  (((
34 -LES01 is powered by (% style="color:#4f81bd" %)**4000mA or 8500mAh Li-SOCI2 battery**(%%), It is designed for long term use up to 10 years.
44 +NSE01 are powered by (% style="color:blue" %)**8500mAh Li-SOCI2**(%%) batteries, which can be used for up to 5 years.  
35 35  )))
36 36  
37 -(((
38 -Each LES01 is pre-load with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect after power on.
47 +
39 39  )))
40 40  
41 -
42 42  [[image:1654503236291-817.png]]
43 43  
44 44  
45 -[[image:1654503265560-120.png]]
53 +[[image:1657245163077-232.png]]
46 46  
47 47  
48 48  
49 -== 1.2 ​Features ==
57 +== 1.2 ​ Features ==
50 50  
51 -* LoRaWAN 1.0.3 Class A
52 -* Ultra low power consumption
59 +* NB-IoT Bands: B1/B3/B8/B5/B20/B28 @H-FDD
53 53  * Monitor Soil Moisture
54 54  * Monitor Soil Temperature
55 55  * Monitor Soil Conductivity
56 -* Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865
57 57  * AT Commands to change parameters
58 58  * Uplink on periodically
59 59  * Downlink to change configure
60 60  * IP66 Waterproof Enclosure
61 -* 4000mAh or 8500mAh Battery for long term use
67 +* Ultra-Low Power consumption
68 +* AT Commands to change parameters
69 +* Micro SIM card slot for NB-IoT SIM
70 +* 8500mAh Battery for long term use
62 62  
63 63  
73 +== 1.3  Specification ==
64 64  
65 -== 1.3 Specification ==
66 66  
76 +(% style="color:#037691" %)**Common DC Characteristics:**
77 +
78 +* Supply Voltage: 2.1v ~~ 3.6v
79 +* Operating Temperature: -40 ~~ 85°C
80 +
81 +(% style="color:#037691" %)**NB-IoT Spec:**
82 +
83 +* - B1 @H-FDD: 2100MHz
84 +* - B3 @H-FDD: 1800MHz
85 +* - B8 @H-FDD: 900MHz
86 +* - B5 @H-FDD: 850MHz
87 +* - B20 @H-FDD: 800MHz
88 +* - B28 @H-FDD: 700MHz
89 +
90 +Probe(% style="color:#037691" %)** Specification:**
91 +
67 67  Measure Volume: Base on the centra pin of the probe, a cylinder with 7cm diameter and 10cm height.
68 68  
69 -[[image:image-20220606162220-5.png]]
94 +[[image:image-20220708101224-1.png]]
70 70  
71 71  
72 72  
73 -== ​1.4 Applications ==
98 +== ​1.4  Applications ==
74 74  
75 75  * Smart Agriculture
76 76  
... ... @@ -77,1009 +77,722 @@
77 77  (% class="wikigeneratedid" id="H200B1.5FirmwareChangelog" %)
78 78  ​
79 79  
80 -== 1.5 Firmware Change log ==
105 +== 1.5  Pin Definitions ==
81 81  
82 82  
83 -**LSE01 v1.0 :**  Release
108 +[[image:1657246476176-652.png]]
84 84  
85 85  
86 86  
87 -= 2. Configure LSE01 to connect to LoRaWAN network =
112 += 2.  Use NSE01 to communicate with IoT Server =
88 88  
89 -== 2.1 How it works ==
114 +== 2.1  How it works ==
90 90  
116 +
91 91  (((
92 -The LSE01 is configured as LoRaWAN OTAA Class A mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and power on the LSE0150. It will automatically join the network via OTAA and start to send the sensor value
118 +The NSE01 is equipped with a NB-IoT module, the pre-loaded firmware in NSE01 will get environment data from sensors and send the value to local NB-IoT network via the NB-IoT module The NB-IoT network will forward this value to IoT server via the protocol defined by NSE01.
93 93  )))
94 94  
121 +
95 95  (((
96 -In case you can’t set the OTAA keys in the LoRaWAN OTAA server, and you have to use the keys from the server, you can [[use AT Commands >>||anchor="H3.200BUsingtheATCommands"]].
123 +The diagram below shows the working flow in default firmware of NSE01:
97 97  )))
98 98  
126 +[[image:image-20220708101605-2.png]]
99 99  
128 +(((
129 +
130 +)))
100 100  
101 -== 2.2 ​Quick guide to connect to LoRaWAN server (OTAA) ==
102 102  
103 -Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LG308>>url:http://www.dragino.com/products/lora/item/140-lg308.html]] as a LoRaWAN gateway in this example.
104 104  
134 +== 2.2 ​ Configure the NSE01 ==
105 105  
106 -[[image:1654503992078-669.png]]
107 107  
137 +=== 2.2.1 Test Requirement ===
108 108  
109 -The LG308 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
110 110  
111 -
112 -(% style="color:blue" %)**Step 1**(%%):  Create a device in TTN with the OTAA keys from LSE01.
113 -
114 -Each LSE01 is shipped with a sticker with the default device EUI as below:
115 -
116 -[[image:image-20220606163732-6.jpeg]]
117 -
118 -You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot:
119 -
120 -**Add APP EUI in the application**
121 -
122 -
123 -[[image:1654504596150-405.png]]
124 -
125 -
126 -
127 -**Add APP KEY and DEV EUI**
128 -
129 -[[image:1654504683289-357.png]]
130 -
131 -
132 -
133 -(% style="color:blue" %)**Step 2**(%%): Power on LSE01
134 -
135 -
136 -Put a Jumper on JP2 to power on the device. ( The Jumper must be in FLASH position).
137 -
138 -[[image:image-20220606163915-7.png]]
139 -
140 -
141 -(% style="color:blue" %)**Step 3**(%%)**:** The LSE01 will auto join to the TTN network. After join success, it will start to upload messages to TTN and you can see the messages in the panel.
142 -
143 -[[image:1654504778294-788.png]]
144 -
145 -
146 -
147 -== 2.3 Uplink Payload ==
148 -
149 -
150 -=== 2.3.1 MOD~=0(Default Mode) ===
151 -
152 -LSE01 will uplink payload via LoRaWAN with below payload format: 
153 -
154 154  (((
155 -Uplink payload includes in total 11 bytes.
141 +To use NSE01 in your city, make sure meet below requirements:
156 156  )))
157 157  
158 -(% border="1" cellspacing="10" style="background-color:#ffffcc; width:500px" %)
159 -|(((
160 -**Size**
144 +* Your local operator has already distributed a NB-IoT Network there.
145 +* The local NB-IoT network used the band that NSE01 supports.
146 +* Your operator is able to distribute the data received in their NB-IoT network to your IoT server.
161 161  
162 -**(bytes)**
163 -)))|**2**|**2**|**2**|**2**|**2**|**1**
164 -|**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(((
165 -Temperature
166 -
167 -(Reserve, Ignore now)
168 -)))|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]]|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]]|(((
169 -MOD & Digital Interrupt
170 -
171 -(Optional)
148 +(((
149 +Below figure shows our testing structure. Here we have NB-IoT network coverage by China Mobile, the band they use is B8.  The NSE01 will use CoAP((% style="color:red" %)120.24.4.116:5683)(%%) or raw UDP((% style="color:red" %)120.24.4.116:5601)(%%) or MQTT((% style="color:red" %)120.24.4.116:1883)(%%)or TCP((% style="color:red" %)120.24.4.116:5600)(%%)protocol to send data to the test server
172 172  )))
173 173  
174 174  
153 +[[image:1657249419225-449.png]]
175 175  
176 176  
177 177  
178 -=== 2.3.2 MOD~=1(Original value) ===
157 +=== 2.2.2 Insert SIM card ===
179 179  
180 -This mode can get the original AD value of moisture and original conductivity (with temperature drift compensation).
181 -
182 -(% border="1" cellspacing="10" style="background-color:#ffffcc; width:500px" %)
183 -|(((
184 -**Size**
185 -
186 -**(bytes)**
187 -)))|**2**|**2**|**2**|**2**|**2**|**1**
188 -|**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(((
189 -Temperature
190 -
191 -(Reserve, Ignore now)
192 -)))|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]](raw)|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]](raw)|(((
193 -MOD & Digital Interrupt
194 -
195 -(Optional)
196 -)))
197 -
198 -=== 2.3.3 Battery Info ===
199 -
200 200  (((
201 -Check the battery voltage for LSE01.
160 +Insert the NB-IoT Card get from your provider.
202 202  )))
203 203  
204 204  (((
205 -Ex1: 0x0B45 = 2885mV
164 +User need to take out the NB-IoT module and insert the SIM card like below:
206 206  )))
207 207  
208 -(((
209 -Ex2: 0x0B49 = 2889mV
210 -)))
211 211  
168 +[[image:1657249468462-536.png]]
212 212  
213 213  
214 -=== 2.3.4 Soil Moisture ===
215 215  
216 -(((
217 -Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil.
218 -)))
172 +=== 2.2.3 Connect USB – TTL to NSE01 to configure it ===
219 219  
220 220  (((
221 -For example, if the data you get from the register is __0x05 0xDC__, the moisture content in the soil is
222 -)))
223 -
224 224  (((
225 -
176 +User need to configure NSE01 via serial port to set the (% style="color:blue" %)**Server Address** / **Uplink Topic** (%%)to define where and how-to uplink packets. NSE01 support AT Commands, user can use a USB to TTL adapter to connect to NSE01 and use AT Commands to configure it, as below.
226 226  )))
227 -
228 -(((
229 -(% style="color:#4f81bd" %)**05DC(H) = 1500(D) /100 = 15%.**
230 230  )))
231 231  
232 232  
181 +**Connection:**
233 233  
234 -=== 2.3.5 Soil Temperature ===
183 + (% style="background-color:yellow" %)USB TTL GND <~-~-~-~-> GND
235 235  
236 -(((
237 - Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is 0x09 0xEC, the temperature content in the soil is
238 -)))
185 + (% style="background-color:yellow" %)USB TTL TXD <~-~-~-~-> UART_RXD
239 239  
240 -(((
241 -**Example**:
242 -)))
187 + (% style="background-color:yellow" %)USB TTL RXD <~-~-~-~-> UART_TXD
243 243  
244 -(((
245 -If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/100 = 2.61 °C
246 -)))
247 247  
248 -(((
249 -If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C
250 -)))
190 +In the PC, use below serial tool settings:
251 251  
192 +* Baud:  (% style="color:green" %)**9600**
193 +* Data bits:** (% style="color:green" %)8(%%)**
194 +* Stop bits: (% style="color:green" %)**1**
195 +* Parity:  (% style="color:green" %)**None**
196 +* Flow Control: (% style="color:green" %)**None**
252 252  
253 -
254 -=== 2.3.6 Soil Conductivity (EC) ===
255 -
256 256  (((
257 -Obtain (% style="color:#4f81bd" %)**__soluble salt concentration__**(%%) in soil or (% style="color:#4f81bd" %)**__soluble ion concentration in liquid fertilizer__**(%%) or (% style="color:#4f81bd" %)**__planting medium__**(%%). The value range of the register is 0 - 20000(Decimal)( Can be greater than 20000).
199 +Make sure the switch is in FLASH position, then power on device by connecting the jumper on NSE01. NSE01 will output system info once power on as below, we can enter the (% style="color:green" %)**password: 12345678**(%%) to access AT Command input.
258 258  )))
259 259  
260 -(((
261 -For example, if the data you get from the register is 0x00 0xC8, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm.
262 -)))
202 +[[image:image-20220708110657-3.png]]
263 263  
264 -(((
265 -Generally, the EC value of irrigation water is less than 800uS / cm.
266 -)))
204 +(% style="color:red" %)Note: the valid AT Commands can be found at: (%%)[[http:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/]]
267 267  
268 -(((
269 -
270 -)))
271 271  
272 -(((
273 -
274 -)))
275 275  
276 -=== 2.3.7 MOD ===
208 +=== 2.2.4 Use CoAP protocol to uplink data ===
277 277  
278 -Firmware version at least v2.1 supports changing mode.
210 +(% style="color:red" %)Note: if you don't have CoAP server, you can refer this link to set up one: (%%)[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/>>http://wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/]]
279 279  
280 -For example, bytes[10]=90
281 281  
282 -mod=(bytes[10]>>7)&0x01=1.
213 +**Use below commands:**
283 283  
215 +* (% style="color:blue" %)**AT+PRO=1**  (%%) ~/~/ Set to use CoAP protocol to uplink
216 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5683   ** (%%)~/~/ to set CoAP server address and port
217 +* (% style="color:blue" %)**AT+URI=5,11,"mqtt",11,"coap",12,"0",15,"c=text1",23,"0" ** (%%) ~/~/Set COAP resource path
284 284  
285 -**Downlink Command:**
219 +For parameter description, please refer to AT command set
286 286  
287 -If payload = 0x0A00, workmode=0
221 +[[image:1657249793983-486.png]]
288 288  
289 -If** **payload =** **0x0A01, workmode=1
290 290  
224 +After configure the server address and (% style="color:green" %)**reset the device**(%%) (via AT+ATZ ), NSE01 will start to uplink sensor values to CoAP server.
291 291  
226 +[[image:1657249831934-534.png]]
292 292  
293 -=== 2.3.8 ​Decode payload in The Things Network ===
294 294  
295 -While using TTN network, you can add the payload format to decode the payload.
296 296  
230 +=== 2.2.5 Use UDP protocol to uplink data(Default protocol) ===
297 297  
298 -[[image:1654505570700-128.png]]
232 +This feature is supported since firmware version v1.0.1
299 299  
300 -(((
301 -The payload decoder function for TTN is here:
302 -)))
303 303  
304 -(((
305 -LSE01 TTN Payload Decoder: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Payload_Decoder/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Payload_Decoder/]]
306 -)))
235 +* (% style="color:blue" %)**AT+PRO=2   ** (%%) ~/~/ Set to use UDP protocol to uplink
236 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5601   ** (%%) ~/~/ to set UDP server address and port
237 +* (% style="color:blue" %)**AT+CFM=1       ** (%%) ~/~/If the server does not respond, this command is unnecessary
307 307  
239 +[[image:1657249864775-321.png]]
308 308  
309 309  
310 -== 2.4 Uplink Interval ==
242 +[[image:1657249930215-289.png]]
311 311  
312 -The LSE01 by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link: [[Change Uplink Interval>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H4.1ChangeUplinkInterval"]]
313 313  
314 314  
246 +=== 2.2.6 Use MQTT protocol to uplink data ===
315 315  
316 -== 2.5 Downlink Payload ==
248 +This feature is supported since firmware version v110
317 317  
318 -By default, LSE50 prints the downlink payload to console port.
319 319  
320 -[[image:image-20220606165544-8.png]]
251 +* (% style="color:blue" %)**AT+PRO=3   ** (%%) ~/~/Set to use MQTT protocol to uplink
252 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,1883   ** (%%) ~/~/Set MQTT server address and port
253 +* (% style="color:blue" %)**AT+CLIENT=CLIENT       ** (%%)~/~/Set up the CLIENT of MQTT
254 +* (% style="color:blue" %)**AT+UNAME=UNAME                               **(%%)~/~/Set the username of MQTT
255 +* (% style="color:blue" %)**AT+PWD=PWD                                        **(%%)~/~/Set the password of MQTT
256 +* (% style="color:blue" %)**AT+PUBTOPIC=NSE01_PUB                    **(%%)~/~/Set the sending topic of MQTT
257 +* (% style="color:blue" %)**AT+SUBTOPIC=NSE01_SUB          **(%%) ~/~/Set the subscription topic of MQTT
321 321  
259 +[[image:1657249978444-674.png]]
322 322  
323 -(((
324 -**Examples:**
325 -)))
326 326  
327 -(((
328 -
329 -)))
262 +[[image:1657249990869-686.png]]
330 330  
331 -* (((
332 -**Set TDC**
333 -)))
334 334  
335 335  (((
336 -If the payload=0100003C, it means set the END Node’s TDC to 0x00003C=60(S), while type code is 01.
266 +MQTT protocol has a much higher power consumption compare vs UDP / CoAP protocol. Please check the power analyze document and adjust the uplink period to a suitable interval.
337 337  )))
338 338  
339 -(((
340 -Payload:    01 00 00 1E    TDC=30S
341 -)))
342 342  
343 -(((
344 -Payload:    01 00 00 3C    TDC=60S
345 -)))
346 346  
347 -(((
348 -
349 -)))
271 +=== 2.2.7 Use TCP protocol to uplink data ===
350 350  
351 -* (((
352 -**Reset**
353 -)))
273 +This feature is supported since firmware version v110
354 354  
355 -(((
356 -If payload = 0x04FF, it will reset the LSE01
357 -)))
358 358  
276 +* (% style="color:blue" %)**AT+PRO=4   ** (%%) ~/~/ Set to use TCP protocol to uplink
277 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5600   **(%%) ~/~/ to set TCP server address and port
359 359  
360 -* **CFM**
279 +[[image:1657250217799-140.png]]
361 361  
362 -Downlink Payload: 05000001, Set AT+CFM=1 or 05000000 , set AT+CFM=0
363 363  
282 +[[image:1657250255956-604.png]]
364 364  
365 365  
366 -== 2.6 ​Show Data in DataCake IoT Server ==
367 367  
368 -(((
369 -[[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps:
370 -)))
286 +=== 2.2.8 Change Update Interval ===
371 371  
372 -(((
373 -
374 -)))
288 +User can use below command to change the (% style="color:green" %)**uplink interval**.
375 375  
290 +* (% style="color:blue" %)**AT+TDC=600      ** (%%)~/~/ Set Update Interval to 600s
291 +
376 376  (((
377 -**Step 1**: Be sure that your device is programmed and properly connected to the network at this time.
293 +(% style="color:red" %)**NOTE:**
378 378  )))
379 379  
380 380  (((
381 -**Step 2**: To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps:
297 +(% style="color:red" %)1. By default, the device will send an uplink message every 1 hour.
382 382  )))
383 383  
384 384  
385 -[[image:1654505857935-743.png]]
386 386  
302 +== 2.3  Uplink Payload ==
387 387  
388 -[[image:1654505874829-548.png]]
304 +In this mode, uplink payload includes in total 18 bytes
389 389  
390 -Step 3: Create an account or log in Datacake.
306 +(% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:510px" %)
307 +|=(% style="width: 50px;" %)(((
308 +**Size(bytes)**
309 +)))|=(% style="width: 50px;" %)**6**|=(% style="width: 25px;" %)2|=(% style="width: 25px;" %)**2**|=(% style="width: 80px;" %)**1**|=(% style="width: 80px;" %)**2**|=(% style="width: 80px;" %)**2**|=(% style="width: 80px;" %)**2**|=(% style="width: 40px;" %)**1**
310 +|(% style="width:97px" %)**Value**|(% style="width:83px" %)[[Device ID>>||anchor="H2.4.1A0A0DeviceID"]]|(% style="width:41px" %)[[Ver>>||anchor="H2.4.2A0VersionInfo"]]|(% style="width:46px" %)[[BAT>>||anchor="H2.4.3A0BatteryInfo"]]|(% style="width:123px" %)[[Signal Strength>>||anchor="H2.4.4A0SignalStrength"]]|(% style="width:108px" %)[[Soil Moisture>>||anchor="H2.4.5A0SoilMoisture"]]|(% style="width:133px" %)[[Soil Temperature>>||anchor="H2.4.6A0SoilTemperature"]]|(% style="width:159px" %)[[Soil Conductivity(EC)>>||anchor="H2.4.7A0SoilConductivity28EC29"]]|(% style="width:80px" %)[[Interrupt>>||anchor="H2.4.8A0DigitalInterrupt"]]
391 391  
392 -Step 4: Search the LSE01 and add DevEUI.
312 +If we use the MQTT client to subscribe to this MQTT topic, we can see the following information when the NSE01 uplink data.
393 393  
394 394  
395 -[[image:1654505905236-553.png]]
315 +[[image:image-20220708111918-4.png]]
396 396  
397 397  
398 -After added, the sensor data arrive TTN, it will also arrive and show in Mydevices.
318 +The payload is ASCII string, representative same HEX:
399 399  
400 -[[image:1654505925508-181.png]]
320 +0x72403155615900640c7817075e0a8c02f900 where:
401 401  
322 +* Device ID: 0x 724031556159 = 724031556159
323 +* Version: 0x0064=100=1.0.0
402 402  
325 +* BAT: 0x0c78 = 3192 mV = 3.192V
326 +* Singal: 0x17 = 23
327 +* Soil Moisture: 0x075e= 1886 = 18.86  %
328 +* Soil Temperature:0x0a8c =2700=27 °C
329 +* Soil Conductivity(EC) = 0x02f9 =761 uS /cm
330 +* Interrupt: 0x00 = 0
403 403  
404 -== 2.7 Frequency Plans ==
405 405  
406 -The LSE01 uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.
333 +== 2.4  Payload Explanation and Sensor Interface ==
407 407  
408 408  
409 -=== 2.7.1 EU863-870 (EU868) ===
336 +=== 2.4.1  Device ID ===
410 410  
411 -(% style="color:#037691" %)** Uplink:**
338 +By default, the Device ID equal to the last 6 bytes of IMEI.
412 412  
413 -868.1 - SF7BW125 to SF12BW125
340 +User can use (% style="color:blue" %)**AT+DEUI**(%%) to set Device ID
414 414  
415 -868.3 - SF7BW125 to SF12BW125 and SF7BW250
342 +**Example:**
416 416  
417 -868.5 - SF7BW125 to SF12BW125
344 +AT+DEUI=A84041F15612
418 418  
419 -867.1 - SF7BW125 to SF12BW125
346 +The Device ID is stored in a none-erase area, Upgrade the firmware or run AT+FDR won't erase Device ID.
420 420  
421 -867.3 - SF7BW125 to SF12BW125
422 422  
423 -867.5 - SF7BW125 to SF12BW125
424 424  
425 -867.7 - SF7BW125 to SF12BW125
350 +=== 2.4.2  Version Info ===
426 426  
427 -867.9 - SF7BW125 to SF12BW125
352 +Specify the software version: 0x64=100, means firmware version 1.00.
428 428  
429 -868.8 - FSK
354 +For example: 0x00 64 : this device is NSE01 with firmware version 1.0.0.
430 430  
431 431  
432 -(% style="color:#037691" %)** Downlink:**
433 433  
434 -Uplink channels 1-9 (RX1)
358 +=== 2.4.3  Battery Info ===
435 435  
436 -869.525 - SF9BW125 (RX2 downlink only)
360 +(((
361 +Check the battery voltage for LSE01.
362 +)))
437 437  
364 +(((
365 +Ex1: 0x0B45 = 2885mV
366 +)))
438 438  
368 +(((
369 +Ex2: 0x0B49 = 2889mV
370 +)))
439 439  
440 -=== 2.7.2 US902-928(US915) ===
441 441  
442 -Used in USA, Canada and South America. Default use CHE=2
443 443  
444 -(% style="color:#037691" %)**Uplink:**
374 +=== 2.4.4  Signal Strength ===
445 445  
446 -903.9 - SF7BW125 to SF10BW125
376 +NB-IoT Network signal Strength.
447 447  
448 -904.1 - SF7BW125 to SF10BW125
378 +**Ex1: 0x1d = 29**
449 449  
450 -904.3 - SF7BW125 to SF10BW125
380 +(% style="color:blue" %)**0**(%%)  -113dBm or less
451 451  
452 -904.5 - SF7BW125 to SF10BW125
382 +(% style="color:blue" %)**1**(%%)  -111dBm
453 453  
454 -904.7 - SF7BW125 to SF10BW125
384 +(% style="color:blue" %)**2...30**(%%) -109dBm... -53dBm
455 455  
456 -904.9 - SF7BW125 to SF10BW125
386 +(% style="color:blue" %)**31**  (%%) -51dBm or greater
457 457  
458 -905.1 - SF7BW125 to SF10BW125
388 +(% style="color:blue" %)**99**   (%%) Not known or not detectable
459 459  
460 -905.3 - SF7BW125 to SF10BW125
461 461  
462 462  
463 -(% style="color:#037691" %)**Downlink:**
392 +=== 2.4.5  Soil Moisture ===
464 464  
465 -923.3 - SF7BW500 to SF12BW500
394 +(((
395 +Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil.
396 +)))
466 466  
467 -923.9 - SF7BW500 to SF12BW500
398 +(((
399 +For example, if the data you get from the register is **__0x05 0xDC__**, the moisture content in the soil is
400 +)))
468 468  
469 -924.5 - SF7BW500 to SF12BW500
402 +(((
403 +
404 +)))
470 470  
471 -925.1 - SF7BW500 to SF12BW500
406 +(((
407 +(% style="color:#4f81bd" %)**05DC(H) = 1500(D) /100 = 15%.**
408 +)))
472 472  
473 -925.7 - SF7BW500 to SF12BW500
474 474  
475 -926.3 - SF7BW500 to SF12BW500
476 476  
477 -926.9 - SF7BW500 to SF12BW500
412 +=== 2.4.6  Soil Temperature ===
478 478  
479 -927.5 - SF7BW500 to SF12BW500
414 +(((
415 + Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is __**0x09 0xEC**__, the temperature content in the soil is
416 +)))
480 480  
481 -923.3 - SF12BW500(RX2 downlink only)
418 +(((
419 +**Example**:
420 +)))
482 482  
422 +(((
423 +If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/100 = 2.61 °C
424 +)))
483 483  
426 +(((
427 +If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C
428 +)))
484 484  
485 -=== 2.7.3 CN470-510 (CN470) ===
486 486  
487 -Used in China, Default use CHE=1
488 488  
489 -(% style="color:#037691" %)**Uplink:**
432 +=== 2.4.7  Soil Conductivity (EC) ===
490 490  
491 -486.3 - SF7BW125 to SF12BW125
434 +(((
435 +Obtain (% style="color:#4f81bd" %)**__soluble salt concentration__**(%%) in soil or (% style="color:#4f81bd" %)**__soluble ion concentration in liquid fertilizer__**(%%) or (% style="color:#4f81bd" %)**__planting medium__**(%%). The value range of the register is 0 - 20000(Decimal)( Can be greater than 20000).
436 +)))
492 492  
493 -486.5 - SF7BW125 to SF12BW125
438 +(((
439 +For example, if the data you get from the register is __**0x00 0xC8**__, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm.
440 +)))
494 494  
495 -486.7 - SF7BW125 to SF12BW125
442 +(((
443 +Generally, the EC value of irrigation water is less than 800uS / cm.
444 +)))
496 496  
497 -486.9 - SF7BW125 to SF12BW125
446 +(((
447 +
448 +)))
498 498  
499 -487.1 - SF7BW125 to SF12BW125
450 +(((
451 +
452 +)))
500 500  
501 -487.3 - SF7BW125 to SF12BW125
454 +=== 2.4. Digital Interrupt ===
502 502  
503 -487.5 - SF7BW125 to SF12BW125
456 +Digital Interrupt refers to pin (% style="color:blue" %)**GPIO_EXTI**(%%), and there are different trigger methods. When there is a trigger, the NSE01 will send a packet to the server.
504 504  
505 -487.7 - SF7BW125 to SF12BW125
458 +The command is:
506 506  
460 +(% style="color:blue" %)**AT+INTMOD=3 **(%%) ~/~/(more info about INMOD please refer [[**AT Command Manual**>>url:https://www.dragino.com/downloads/downloads/NB-IoT/NBSN95/DRAGINO_NBSN95-NB_AT%20Commands_v1.1.0.pdf]])**.**
507 507  
508 -(% style="color:#037691" %)**Downlink:**
509 509  
510 -506.7 - SF7BW125 to SF12BW125
463 +The lower four bits of this data field shows if this packet is generated by interrupt or not. Click here for the hardware and software set up.
511 511  
512 -506.9 - SF7BW125 to SF12BW125
513 513  
514 -507.1 - SF7BW125 to SF12BW125
466 +Example:
515 515  
516 -507.3 - SF7BW125 to SF12BW125
468 +0x(00): Normal uplink packet.
517 517  
518 -507.5 - SF7BW125 to SF12BW125
470 +0x(01): Interrupt Uplink Packet.
519 519  
520 -507.7 - SF7BW125 to SF12BW125
521 521  
522 -507.9 - SF7BW125 to SF12BW125
523 523  
524 -508.1 - SF7BW125 to SF12BW125
474 +=== 2.4.9  ​+5V Output ===
525 525  
526 -505.3 - SF12BW125 (RX2 downlink only)
476 +NSE01 will enable +5V output before all sampling and disable the +5v after all sampling. 
527 527  
528 528  
479 +The 5V output time can be controlled by AT Command.
529 529  
530 -=== 2.7.4 AU915-928(AU915) ===
481 +(% style="color:blue" %)**AT+5VT=1000**
531 531  
532 -Default use CHE=2
483 +Means set 5V valid time to have 1000ms. So the real 5V output will actually have 1000ms + sampling time for other sensors.
533 533  
534 -(% style="color:#037691" %)**Uplink:**
535 535  
536 -916.8 - SF7BW125 to SF12BW125
537 537  
538 -917.0 - SF7BW125 to SF12BW125
487 +== 2.5  Downlink Payload ==
539 539  
540 -917.2 - SF7BW125 to SF12BW125
489 +By default, NSE01 prints the downlink payload to console port.
541 541  
542 -917.4 - SF7BW125 to SF12BW125
491 +[[image:image-20220708133731-5.png]]
543 543  
544 -917.6 - SF7BW125 to SF12BW125
545 545  
546 -917.8 - SF7BW125 to SF12BW125
494 +(((
495 +(% style="color:blue" %)**Examples:**
496 +)))
547 547  
548 -918.0 - SF7BW125 to SF12BW125
498 +(((
499 +
500 +)))
549 549  
550 -918.2 - SF7BW125 to SF12BW125
502 +* (((
503 +(% style="color:blue" %)**Set TDC**
504 +)))
551 551  
506 +(((
507 +If the payload=0100003C, it means set the END Node's TDC to 0x00003C=60(S), while type code is 01.
508 +)))
552 552  
553 -(% style="color:#037691" %)**Downlink:**
510 +(((
511 +Payload:    01 00 00 1E    TDC=30S
512 +)))
554 554  
555 -923.3 - SF7BW500 to SF12BW500
514 +(((
515 +Payload:    01 00 00 3C    TDC=60S
516 +)))
556 556  
557 -923.9 - SF7BW500 to SF12BW500
518 +(((
519 +
520 +)))
558 558  
559 -924.5 - SF7BW500 to SF12BW500
522 +* (((
523 +(% style="color:blue" %)**Reset**
524 +)))
560 560  
561 -925.1 - SF7BW500 to SF12BW500
526 +(((
527 +If payload = 0x04FF, it will reset the NSE01
528 +)))
562 562  
563 -925.7 - SF7BW500 to SF12BW500
564 564  
565 -926.3 - SF7BW500 to SF12BW500
531 +* (% style="color:blue" %)**INTMOD**
566 566  
567 -926.9 - SF7BW500 to SF12BW500
533 +Downlink Payload: 06000003, Set AT+INTMOD=3
568 568  
569 -927.5 - SF7BW500 to SF12BW500
570 570  
571 -923.3 - SF12BW500(RX2 downlink only)
572 572  
537 +== 2.6  ​LED Indicator ==
573 573  
539 +(((
540 +The NSE01 has an internal LED which is to show the status of different state.
574 574  
575 -=== 2.7.5 AS920-923 & AS923-925 (AS923) ===
576 576  
577 -(% style="color:#037691" %)**Default Uplink channel:**
543 +* When power on, NSE01 will detect if sensor probe is connected, if probe detected, LED will blink four times. (no blinks in this step is no probe)
544 +* Then the LED will be on for 1 second means device is boot normally.
545 +* After NSE01 join NB-IoT network. The LED will be ON for 3 seconds.
546 +* For each uplink probe, LED will be on for 500ms.
547 +)))
578 578  
579 -923.2 - SF7BW125 to SF10BW125
580 580  
581 -923.4 - SF7BW125 to SF10BW125
582 582  
583 583  
584 -(% style="color:#037691" %)**Additional Uplink Channel**:
552 +== 2.7  Installation in Soil ==
585 585  
586 -(OTAA mode, channel added by JoinAccept message)
554 +__**Measurement the soil surface**__
587 587  
588 -(% style="color:#037691" %)**AS920~~AS923 for Japan, Malaysia, Singapore**:
556 +Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting. [[https:~~/~~/img.alicdn.com/imgextra/i3/2005165265/O1CN010rj9Oh1olPsQxrdUK_!!2005165265.jpg>>url:https://img.alicdn.com/imgextra/i3/2005165265/O1CN010rj9Oh1olPsQxrdUK_!!2005165265.jpg]]
589 589  
590 -922.2 - SF7BW125 to SF10BW125
558 +[[image:1657259653666-883.png]] ​
591 591  
592 -922.4 - SF7BW125 to SF10BW125
593 593  
594 -922.6 - SF7BW125 to SF10BW125
561 +(((
562 +
595 595  
596 -922.8 - SF7BW125 to SF10BW125
564 +(((
565 +Dig a hole with diameter > 20CM.
566 +)))
597 597  
598 -923.0 - SF7BW125 to SF10BW125
568 +(((
569 +Horizontal insert the probe to the soil and fill the hole for long term measurement.
570 +)))
571 +)))
599 599  
600 -922.0 - SF7BW125 to SF10BW125
573 +[[image:1654506665940-119.png]]
601 601  
575 +(((
576 +
577 +)))
602 602  
603 -(% style="color:#037691" %)**AS923 ~~ AS925 for Brunei, Cambodia, Hong Kong, Indonesia, Laos, Taiwan, Thailand, Vietnam**:
604 604  
605 -923.6 - SF7BW125 to SF10BW125
580 +== 2. Firmware Change Log ==
606 606  
607 -923.8 - SF7BW125 to SF10BW125
608 608  
609 -924.0 - SF7BW125 to SF10BW125
583 +Download URL & Firmware Change log
610 610  
611 -924.2 - SF7BW125 to SF10BW125
585 +[[www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/Firmware/]]
612 612  
613 -924.4 - SF7BW125 to SF10BW125
614 614  
615 -924.6 - SF7BW125 to SF10BW125
588 +Upgrade Instruction: [[Upgrade_Firmware>>||anchor="H5.1200BHowtoUpgradeFirmware"]]
616 616  
617 617  
618 -(% style="color:#037691" %)** Downlink:**
619 619  
620 -Uplink channels 1-8 (RX1)
592 +== 2.9  ​Battery Analysis ==
621 621  
622 -923.2 - SF10BW125 (RX2)
594 +=== 2.9.1  ​Battery Type ===
623 623  
624 624  
597 +The NSE01 battery is a combination of an 8500mAh Li/SOCI2 Battery and a Super Capacitor. The battery is none-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter.
625 625  
626 -=== 2.7.6 KR920-923 (KR920) ===
627 627  
628 -Default channel:
600 +The battery is designed to last for several years depends on the actually use environment and update interval
629 629  
630 -922.1 - SF7BW125 to SF12BW125
631 631  
632 -922.3 - SF7BW125 to SF12BW125
603 +The battery related documents as below:
633 633  
634 -922.5 - SF7BW125 to SF12BW125
605 +* [[Battery Dimension>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]
606 +* [[Lithium-Thionyl Chloride Battery datasheet>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]
607 +* [[Lithium-ion Battery-Capacitor datasheet>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]
635 635  
636 -
637 -(% style="color:#037691" %)**Uplink: (OTAA mode, channel added by JoinAccept message)**
638 -
639 -922.1 - SF7BW125 to SF12BW125
640 -
641 -922.3 - SF7BW125 to SF12BW125
642 -
643 -922.5 - SF7BW125 to SF12BW125
644 -
645 -922.7 - SF7BW125 to SF12BW125
646 -
647 -922.9 - SF7BW125 to SF12BW125
648 -
649 -923.1 - SF7BW125 to SF12BW125
650 -
651 -923.3 - SF7BW125 to SF12BW125
652 -
653 -
654 -(% style="color:#037691" %)**Downlink:**
655 -
656 -Uplink channels 1-7(RX1)
657 -
658 -921.9 - SF12BW125 (RX2 downlink only; SF12BW125 might be changed to SF9BW125)
659 -
660 -
661 -
662 -=== 2.7.7 IN865-867 (IN865) ===
663 -
664 -(% style="color:#037691" %)** Uplink:**
665 -
666 -865.0625 - SF7BW125 to SF12BW125
667 -
668 -865.4025 - SF7BW125 to SF12BW125
669 -
670 -865.9850 - SF7BW125 to SF12BW125
671 -
672 -
673 -(% style="color:#037691" %) **Downlink:**
674 -
675 -Uplink channels 1-3 (RX1)
676 -
677 -866.550 - SF10BW125 (RX2)
678 -
679 -
680 -
681 -
682 -== 2.8 LED Indicator ==
683 -
684 -The LSE01 has an internal LED which is to show the status of different state.
685 -
686 -* Blink once when device power on.
687 -* Solid ON for 5 seconds once device successful Join the network.
688 -* Blink once when device transmit a packet.
689 -
690 -== 2.9 Installation in Soil ==
691 -
692 -**Measurement the soil surface**
693 -
694 -
695 -[[image:1654506634463-199.png]] ​
696 -
697 697  (((
698 -(((
699 -Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting.
610 +[[image:image-20220708140453-6.png]]
700 700  )))
701 -)))
702 702  
703 703  
704 -[[image:1654506665940-119.png]]
705 705  
706 -(((
707 -Dig a hole with diameter > 20CM.
708 -)))
615 +=== 2.9.2  Power consumption Analyze ===
709 709  
710 710  (((
711 -Horizontal insert the probe to the soil and fill the hole for long term measurement.
618 +Dragino battery powered product are all runs in Low Power mode. We have an update battery calculator which base on the measurement of the real device. User can use this calculator to check the battery life and calculate the battery life if want to use different transmit interval.
712 712  )))
713 713  
714 714  
715 -== 2.10 ​Firmware Change Log ==
716 -
717 717  (((
718 -**Firmware download link:**
623 +Instruction to use as below:
719 719  )))
720 720  
721 721  (((
722 -[[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/]]
627 +(% style="color:blue" %)**Step 1:  **(%%)Downlink the up-to-date DRAGINO_Battery_Life_Prediction_Table.xlsx from: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/]]
723 723  )))
724 724  
725 -(((
726 -
727 -)))
728 728  
729 729  (((
730 -**Firmware Upgrade Method: **[[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome]]
632 +(% style="color:blue" %)**Step 2: **(%%) Open it and choose
731 731  )))
732 732  
733 -(((
734 -
635 +* (((
636 +Product Model
735 735  )))
736 -
737 -(((
738 -**V1.0.**
638 +* (((
639 +Uplink Interval
739 739  )))
641 +* (((
642 +Working Mode
643 +)))
740 740  
741 741  (((
742 -Release
646 +And the Life expectation in difference case will be shown on the right.
743 743  )))
744 744  
649 +[[image:image-20220708141352-7.jpeg]]
745 745  
746 -== 2.11 ​Battery Analysis ==
747 747  
748 -=== 2.11.1 ​Battery Type ===
749 749  
750 -(((
751 -The LSE01 battery is a combination of a 4000mAh Li/SOCI2 Battery and a Super Capacitor. The battery is non-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter.
752 -)))
653 +=== 2.9.3  ​Battery Note ===
753 753  
754 754  (((
755 -The battery is designed to last for more than 5 years for the LSN50.
656 +The Li-SICO battery is designed for small current / long period application. It is not good to use a high current, short period transmit method. The recommended minimum period for use of this battery is 5 minutes. If you use a shorter period time to transmit LoRa, then the battery life may be decreased.
756 756  )))
757 757  
758 -(((
759 -(((
760 -The battery-related documents are as below:
761 -)))
762 -)))
763 763  
764 -* (((
765 -[[Battery Dimension>>url:http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/&file=LSN50-Battery-Dimension.pdf]],
766 -)))
767 -* (((
768 -[[Lithium-Thionyl Chloride Battery  datasheet>>url:https://www.dragino.com/downloads/downloads/datasheet/Battery/ER26500/ER26500_Datasheet-EN.pdf]],
769 -)))
770 -* (((
771 -[[Lithium-ion Battery-Capacitor datasheet>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC_1520_datasheet.jpg]], [[Tech Spec>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC1520%20Technical%20Specification20171123.pdf]]
772 -)))
773 773  
774 - [[image:image-20220610172436-1.png]]
661 +=== 2.9.4  Replace the battery ===
775 775  
776 -
777 -
778 -=== 2.11.2 ​Battery Note ===
779 -
780 780  (((
781 -The Li-SICO battery is designed for small current / long period application. It is not good to use a high current, short period transmit method. The recommended minimum period for use of this battery is 5 minutes. If you use a shorter period time to transmit LoRa, then the battery life may be decreased.
664 +The default battery pack of NSE01 includes a ER26500 plus super capacitor. If user can't find this pack locally, they can find ER26500 or equivalence without the SPC1520 capacitor, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes).
782 782  )))
783 783  
784 784  
785 785  
786 -=== 2.11.3 Replace the battery ===
669 += 3. ​ Access NB-IoT Module =
787 787  
788 788  (((
789 -If Battery is lower than 2.7v, user should replace the battery of LSE01.
672 +Users can directly access the AT command set of the NB-IoT module.
790 790  )))
791 791  
792 792  (((
793 -You can change the battery in the LSE01.The type of battery is not limited as long as the output is between 3v to 3.6v. On the main board, there is a diode (D1) between the battery and the main circuit. If you need to use a battery with less than 3.3v, please remove the D1 and shortcut the two pads of it so there won’t be voltage drop between battery and main board.
676 +The AT Command set can refer the BC35-G NB-IoT Module AT Command: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=datasheet/other_vendors/BC35-G/>>url:https://www.dragino.com/downloads/index.php?dir=datasheet/other_vendors/BC35-G/]] 
794 794  )))
795 795  
796 -(((
797 -The default battery pack of LSE01 includes a ER18505 plus super capacitor. If user can’t find this pack locally, they can find ER18505 or equivalence, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes)
798 -)))
679 +[[image:1657261278785-153.png]]
799 799  
800 800  
801 801  
802 -= 3. Using the AT Commands =
683 += 4.  Using the AT Commands =
803 803  
804 -== 3.1 Access AT Commands ==
685 +== 4.1  Access AT Commands ==
805 805  
687 +See this link for detail: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/]]
806 806  
807 -LSE01 supports AT Command set in the stock firmware. You can use a USB to TTL adapter to connect to LSE01 for using AT command, as below.
808 808  
809 -[[image:1654501986557-872.png||height="391" width="800"]]
690 +AT+<CMD>?  : Help on <CMD>
810 810  
692 +AT+<CMD>         : Run <CMD>
811 811  
812 -Or if you have below board, use below connection:
694 +AT+<CMD>=<value> : Set the value
813 813  
696 +AT+<CMD>=?  : Get the value
814 814  
815 -[[image:1654502005655-729.png||height="503" width="801"]]
816 816  
817 -
818 -
819 -In the PC, you need to set the serial baud rate to (% style="color:green" %)**9600**(%%) to access the serial console for LSE01. LSE01 will output system info once power on as below:
820 -
821 -
822 - [[image:1654502050864-459.png||height="564" width="806"]]
823 -
824 -
825 -Below are the available commands, a more detailed AT Command manual can be found at [[AT Command Manual>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/]]: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/]]
826 -
827 -
828 -(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>? **(%%) : Help on <CMD>
829 -
830 -(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD> **(%%) : Run <CMD>
831 -
832 -(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>=<value>**(%%) : Set the value
833 -
834 -(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>=?**(%%)  : Get the value
835 -
836 -
837 837  (% style="color:#037691" %)**General Commands**(%%)      
838 838  
839 -(% style="background-color:#dcdcdc" %)**AT**(%%)  : Attention       
701 +AT  : Attention       
840 840  
841 -(% style="background-color:#dcdcdc" %)**AT?**(%%)  : Short Help     
703 +AT?  : Short Help     
842 842  
843 -(% style="background-color:#dcdcdc" %)**ATZ**(%%)  : MCU Reset    
705 +ATZ  : MCU Reset    
844 844  
845 -(% style="background-color:#dcdcdc" %)**AT+TDC**(%%)  : Application Data Transmission Interval 
707 +AT+TDC  : Application Data Transmission Interval
846 846  
709 +AT+CFG  : Print all configurations
847 847  
848 -(% style="color:#037691" %)**Keys, IDs and EUIs management**
711 +AT+CFGMOD           : Working mode selection
849 849  
850 -(% style="background-color:#dcdcdc" %)**AT+APPEUI**(%%)              : Application EUI      
713 +AT+INTMOD            : Set the trigger interrupt mode
851 851  
852 -(% style="background-color:#dcdcdc" %)**AT+APPKEY**(%%)              : Application Key     
715 +AT+5VT  : Set extend the time of 5V power  
853 853  
854 -(% style="background-color:#dcdcdc" %)**AT+APPSKEY**(%%)            : Application Session Key
717 +AT+PRO  : Choose agreement
855 855  
856 -(% style="background-color:#dcdcdc" %)**AT+DADDR**(%%)              : Device Address     
719 +AT+WEIGRE  : Get weight or set weight to 0
857 857  
858 -(% style="background-color:#dcdcdc" %)**AT+DEUI**(%%)                   : Device EUI     
721 +AT+WEIGAP  : Get or Set the GapValue of weight
859 859  
860 -(% style="background-color:#dcdcdc" %)**AT+NWKID**(%%)               : Network ID (You can enter this command change only after successful network connection
723 +AT+RXDL  : Extend the sending and receiving time
861 861  
862 -(% style="background-color:#dcdcdc" %)**AT+NWKSKEY**(%%)          : Network Session Key Joining and sending date on LoRa network  
725 +AT+CNTFAC  : Get or set counting parameters
863 863  
864 -(% style="background-color:#dcdcdc" %)**AT+CFM**(%%)  : Confirm Mode       
727 +AT+SERVADDR  : Server Address
865 865  
866 -(% style="background-color:#dcdcdc" %)**AT+CFS**(%%)                     : Confirm Status       
867 867  
868 -(% style="background-color:#dcdcdc" %)**AT+JOIN**(%%)  : Join LoRa? Network       
730 +(% style="color:#037691" %)**COAP Management**      
869 869  
870 -(% style="background-color:#dcdcdc" %)**AT+NJM**(%%)  : LoRa? Network Join Mode    
732 +AT+URI            : Resource parameters
871 871  
872 -(% style="background-color:#dcdcdc" %)**AT+NJS**(%%)                     : LoRa? Network Join Status    
873 873  
874 -(% style="background-color:#dcdcdc" %)**AT+RECV**(%%)                  : Print Last Received Data in Raw Format
735 +(% style="color:#037691" %)**UDP Management**
875 875  
876 -(% style="background-color:#dcdcdc" %)**AT+RECVB**(%%)                : Print Last Received Data in Binary Format      
737 +AT+CFM          : Upload confirmation mode (only valid for UDP)
877 877  
878 -(% style="background-color:#dcdcdc" %)**AT+SEND**(%%)                  : Send Text Data      
879 879  
880 -(% style="background-color:#dcdcdc" %)**AT+SENB**(%%)                  : Send Hexadecimal Data
740 +(% style="color:#037691" %)**MQTT Management**
881 881  
742 +AT+CLIENT               : Get or Set MQTT client
882 882  
883 -(% style="color:#037691" %)**LoRa Network Management**
744 +AT+UNAME  : Get or Set MQTT Username
884 884  
885 -(% style="background-color:#dcdcdc" %)**AT+ADR**(%%)          : Adaptive Rate
746 +AT+PWD                  : Get or Set MQTT password
886 886  
887 -(% style="background-color:#dcdcdc" %)**AT+CLASS**(%%)  : LoRa Class(Currently only support class A
748 +AT+PUBTOPI : Get or Set MQTT publish topic
888 888  
889 -(% style="background-color:#dcdcdc" %)**AT+DCS**(%%)  : Duty Cycle Settin
750 +AT+SUBTOPIC  : Get or Set MQTT subscription topic
890 890  
891 -(% style="background-color:#dcdcdc" %)**AT+DR**(%%)  : Data Rate (Can Only be Modified after ADR=0)     
892 892  
893 -(% style="background-color:#dcdcdc" %)**AT+FCD**(%%)  : Frame Counter Downlink       
753 +(% style="color:#037691" %)**Information**          
894 894  
895 -(% style="background-color:#dcdcdc" %)**AT+FCU**(%%)  : Frame Counter Uplink   
755 +AT+FDR  : Factory Data Reset
896 896  
897 -(% style="background-color:#dcdcdc" %)**AT+JN1DL**(%%)  : Join Accept Delay1
757 +AT+PWOR : Serial Access Password
898 898  
899 -(% style="background-color:#dcdcdc" %)**AT+JN2DL**(%%)  : Join Accept Delay2
900 900  
901 -(% style="background-color:#dcdcdc" %)**AT+PNM**(%%)  : Public Network Mode   
902 902  
903 -(% style="background-color:#dcdcdc" %)**AT+RX1DL**(%%)  : Receive Delay1      
761 += ​5.  FAQ =
904 904  
905 -(% style="background-color:#dcdcdc" %)**AT+RX2DL**(%%)  : Receive Delay2      
763 +== 5.1 How to Upgrade Firmware ==
906 906  
907 -(% style="background-color:#dcdcdc" %)**AT+RX2DR**(%%)  : Rx2 Window Data Rate 
908 908  
909 -(% style="background-color:#dcdcdc" %)**AT+RX2FQ**(%%)  : Rx2 Window Frequency
910 -
911 -(% style="background-color:#dcdcdc" %)**AT+TXP**(%%)  : Transmit Power
912 -
913 -(% style="background-color:#dcdcdc" %)**AT+ MOD**(%%)  : Set work mode
914 -
915 -
916 -(% style="color:#037691" %)**Information** 
917 -
918 -(% style="background-color:#dcdcdc" %)**AT+RSSI**(%%)           : RSSI of the Last Received Packet   
919 -
920 -(% style="background-color:#dcdcdc" %)**AT+SNR**(%%)           : SNR of the Last Received Packet   
921 -
922 -(% style="background-color:#dcdcdc" %)**AT+VER**(%%)           : Image Version and Frequency Band       
923 -
924 -(% style="background-color:#dcdcdc" %)**AT+FDR**(%%)           : Factory Data Reset
925 -
926 -(% style="background-color:#dcdcdc" %)**AT+PORT**(%%)  : Application Port    
927 -
928 -(% style="background-color:#dcdcdc" %)**AT+CHS**(%%)  : Get or Set Frequency (Unit: Hz) for Single Channel Mode
929 -
930 - (% style="background-color:#dcdcdc" %)**AT+CHE**(%%)  : Get or Set eight channels mode, Only for US915, AU915, CN470
931 -
932 -
933 -= ​4. FAQ =
934 -
935 -== 4.1 ​How to change the LoRa Frequency Bands/Region? ==
936 -
937 937  (((
938 -You can follow the instructions for [[how to upgrade image>>||anchor="H2.10200BFirmwareChangeLog"]].
939 -When downloading the images, choose the required image file for download. ​
767 +User can upgrade the firmware for 1) bug fix, 2) new feature release.
940 940  )))
941 941  
942 942  (((
943 -
771 +Please see this link for how to upgrade:  [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H2.HardwareUpgradeMethodSupportList>>http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H2.HardwareUpgradeMethodSupportList]]
944 944  )))
945 945  
946 946  (((
947 -How to set up LSE01 to work in 8 channel mode By default, the frequency bands US915, AU915, CN470 work in 72 frequencies. Many gateways are 8 channel gateways, and in this case, the OTAA join time and uplink schedule is long and unpredictable while the end node is hopping in 72 frequencies.
775 +(% style="color:red" %)Notice, NSE01 and LSE01 share the same mother board. They use the same connection and method to update.
948 948  )))
949 949  
950 -(((
951 -
952 -)))
953 953  
954 -(((
955 -You can configure the end node to work in 8 channel mode by using the AT+CHE command. The 500kHz channels are always included for OTAA.
956 -)))
957 957  
958 -(((
959 -
960 -)))
780 += 6.  Trouble Shooting =
961 961  
962 -(((
963 -For example, in **US915** band, the frequency table is as below. By default, the end node will use all channels (0~~71) for OTAA Join process. After the OTAA Join, the end node will use these all channels (0~~71) to send uplink packets.
964 -)))
782 +== 6.1  ​Connection problem when uploading firmware ==
965 965  
966 -[[image:image-20220606154726-3.png]]
967 967  
968 -
969 -When you use the TTN network, the US915 frequency bands use are:
970 -
971 -* 903.9 - SF7BW125 to SF10BW125
972 -* 904.1 - SF7BW125 to SF10BW125
973 -* 904.3 - SF7BW125 to SF10BW125
974 -* 904.5 - SF7BW125 to SF10BW125
975 -* 904.7 - SF7BW125 to SF10BW125
976 -* 904.9 - SF7BW125 to SF10BW125
977 -* 905.1 - SF7BW125 to SF10BW125
978 -* 905.3 - SF7BW125 to SF10BW125
979 -* 904.6 - SF8BW500
980 -
785 +(% class="wikigeneratedid" %)
981 981  (((
982 -Because the end node is now hopping in 72 frequency, it makes it difficult for the devices to Join the TTN network and uplink data. To solve this issue, you can access the device via the AT commands and run:
787 +(% style="font-size:14px" %)**Please see: **(%%)[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H3.3Troubleshooting>>http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H3.3Troubleshooting||style="background-color: rgb(255, 255, 255); font-size: 14px;"]]
983 983  )))
984 984  
985 -(% class="box infomessage" %)
986 -(((
987 -**AT+CHE=2**
988 -)))
989 989  
990 -(% class="box infomessage" %)
991 -(((
992 -**ATZ**
993 -)))
994 994  
995 -(((
996 -to set the end node to work in 8 channel mode. The device will work in Channel 8-15 & 64-71 for OTAA, and channel 8-15 for Uplink.
997 -)))
792 +== 6.2  AT Command input doesn't work ==
998 998  
999 999  (((
1000 -
795 +In the case if user can see the console output but can't type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn't send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.
1001 1001  )))
1002 1002  
1003 -(((
1004 -The **AU915** band is similar. Below are the AU915 Uplink Channels.
1005 -)))
1006 1006  
1007 -[[image:image-20220606154825-4.png]]
1008 1008  
800 += 7. ​ Order Info =
1009 1009  
1010 1010  
1011 -= 5. Trouble Shooting =
803 +Part Number**:** (% style="color:#4f81bd" %)**NSE01**
1012 1012  
1013 -== 5.1 ​Why I can’t join TTN in US915 / AU915 bands? ==
1014 1014  
1015 -It is due to channel mapping. Please see the [[Eight Channel Mode>>doc:Main.LoRaWAN Communication Debug.WebHome||anchor="H2.NoticeofUS9152FCN4702FAU915Frequencyband"]] section above for details.
1016 -
1017 -
1018 -== 5.2 AT Command input doesn’t work ==
1019 -
1020 -(((
1021 -In the case if user can see the console output but can’t type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn’t send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.
1022 -)))
1023 -
1024 -
1025 -== 5.3 Device rejoin in at the second uplink packet ==
1026 -
1027 -(% style="color:#4f81bd" %)**Issue describe as below:**
1028 -
1029 -[[image:1654500909990-784.png]]
1030 -
1031 -
1032 -(% style="color:#4f81bd" %)**Cause for this issue:**
1033 -
1034 -(((
1035 -The fuse on LSE01 is not large enough, some of the soil probe require large current up to 5v 800mA, in a short pulse. When this happen, it cause the device reboot so user see rejoin.
1036 -)))
1037 -
1038 -
1039 -(% style="color:#4f81bd" %)**Solution: **
1040 -
1041 -All new shipped LSE01 after 2020-May-30 will have this to fix. For the customer who see this issue, please bypass the fuse as below:
1042 -
1043 -[[image:1654500929571-736.png||height="458" width="832"]]
1044 -
1045 -
1046 -= 6. ​Order Info =
1047 -
1048 -
1049 -Part Number**:** (% style="color:#4f81bd" %)**LSE01-XX-YY**
1050 -
1051 -
1052 -(% style="color:#4f81bd" %)**XX**(%%)**:** The default frequency band
1053 -
1054 -* (% style="color:red" %)**AS923**(%%): LoRaWAN AS923 band
1055 -* (% style="color:red" %)**AU915**(%%): LoRaWAN AU915 band
1056 -* (% style="color:red" %)**EU433**(%%): LoRaWAN EU433 band
1057 -* (% style="color:red" %)**EU868**(%%): LoRaWAN EU868 band
1058 -* (% style="color:red" %)**KR920**(%%): LoRaWAN KR920 band
1059 -* (% style="color:red" %)**US915**(%%): LoRaWAN US915 band
1060 -* (% style="color:red" %)**IN865**(%%):  LoRaWAN IN865 band
1061 -* (% style="color:red" %)**CN470**(%%): LoRaWAN CN470 band
1062 -
1063 -(% style="color:#4f81bd" %)**YY**(%%)**: **Battery Option
1064 -
1065 -* (% style="color:red" %)**4**(%%): 4000mAh battery
1066 -* (% style="color:red" %)**8**(%%): 8500mAh battery
1067 -
1068 1068  (% class="wikigeneratedid" %)
1069 1069  (((
1070 1070  
1071 1071  )))
1072 1072  
1073 -= 7. Packing Info =
811 += 8.  Packing Info =
1074 1074  
1075 1075  (((
1076 1076  
1077 1077  
1078 1078  (% style="color:#037691" %)**Package Includes**:
1079 -)))
1080 1080  
1081 -* (((
1082 -LSE01 LoRaWAN Soil Moisture & EC Sensor x 1
818 +
819 +* NSE01 NB-IoT Soil Moisture & EC Sensor x 1
820 +* External antenna x 1
1083 1083  )))
1084 1084  
1085 1085  (((
... ... @@ -1086,24 +1086,20 @@
1086 1086  
1087 1087  
1088 1088  (% style="color:#037691" %)**Dimension and weight**:
1089 -)))
1090 1090  
1091 -* (((
1092 -Device Size: cm
828 +
829 +* Size: 195 x 125 x 55 mm
830 +* Weight:   420g
1093 1093  )))
1094 -* (((
1095 -Device Weight: g
1096 -)))
1097 -* (((
1098 -Package Size / pcs : cm
1099 -)))
1100 -* (((
1101 -Weight / pcs : g
1102 1102  
833 +(((
1103 1103  
835 +
836 +
837 +
1104 1104  )))
1105 1105  
1106 -= 8. Support =
840 += 9.  Support =
1107 1107  
1108 1108  * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
1109 1109  * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.com]]
1657245163077-232.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +81.0 KB
Content
1657246476176-652.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +492.6 KB
Content
1657249419225-449.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +81.0 KB
Content
1657249468462-536.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +483.6 KB
Content
1657249793983-486.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +85.8 KB
Content
1657249831934-534.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +72.5 KB
Content
1657249864775-321.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +87.0 KB
Content
1657249930215-289.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +77.3 KB
Content
1657249978444-674.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +139.5 KB
Content
1657249990869-686.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +96.9 KB
Content
1657250217799-140.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +98.7 KB
Content
1657250255956-604.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +99.0 KB
Content
1657259653666-883.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +344.4 KB
Content
1657260785982-288.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +138.2 KB
Content
1657261119050-993.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +126.1 KB
Content
1657261278785-153.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +126.1 KB
Content
image-20220708101224-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +22.2 KB
Content
image-20220708101605-2.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +87.5 KB
Content
image-20220708110657-3.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +251.7 KB
Content
image-20220708111918-4.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +38.8 KB
Content
image-20220708133731-5.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +8.7 KB
Content
image-20220708140453-6.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +132.7 KB
Content
image-20220708141352-7.jpeg
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +102.7 KB
Content
Copyright ©2010-2022 Dragino Technology Co., LTD. All rights reserved
Dragino Wiki v2.0