Changes for page N95S31B -- NB-IoT Temperature & Humidity Sensor User Manual
Last modified by Mengting Qiu on 2024/04/02 16:44
Summary
-
Page properties (2 modified, 0 added, 0 removed)
-
Attachments (0 modified, 25 added, 0 removed)
- 1657245163077-232.png
- 1657246476176-652.png
- 1657249419225-449.png
- 1657249468462-536.png
- 1657249793983-486.png
- 1657249831934-534.png
- 1657249864775-321.png
- 1657249930215-289.png
- 1657249978444-674.png
- 1657249990869-686.png
- 1657250217799-140.png
- 1657250255956-604.png
- 1657259653666-883.png
- 1657260785982-288.png
- 1657261119050-993.png
- 1657261278785-153.png
- 1657271519014-786.png
- image-20220708101224-1.png
- image-20220708101605-2.png
- image-20220708110657-3.png
- image-20220708111918-4.png
- image-20220708133731-5.png
- image-20220708140453-6.png
- image-20220708141352-7.jpeg
- image-20220709084038-1.jpeg
Details
- Page properties
-
- Title
-
... ... @@ -1,1 +1,1 @@ 1 - LSE01-LoRaWANSoil Moisture&ECSensor User Manual1 +NDDS75 NB-IoT Distance Detect Sensor User Manual - Content
-
... ... @@ -1,11 +1,17 @@ 1 1 (% style="text-align:center" %) 2 -[[image: image-20220606151504-2.jpeg||height="554" width="554"]]2 +[[image:1657271519014-786.png]] 3 3 4 4 5 5 6 + 7 + 8 + 9 + 10 + 11 + 12 + 6 6 **Table of Contents:** 7 7 8 -{{toc/}} 9 9 10 10 11 11 ... ... @@ -12,767 +12,705 @@ 12 12 13 13 14 14 15 -= 1. Introduction = 21 += 1. Introduction = 16 16 17 -== 1.1 What is LoRaWANoilMoisture&ECSensor ==23 +== 1.1 What is NDDS75 Distance Detection Sensor == 18 18 19 19 ((( 20 20 21 21 22 -The Dragino LSE01 is a (% style="color:#4f81bd" %)**LoRaWAN Soil Moisture & EC Sensor**(%%) for IoT of Agriculture. It is designed to measure the soil moisture of saline-alkali soil and loamy soil. The soil sensor uses FDR method to calculate the soil moisture with the compensation from soil temperature and conductivity. It also has been calibrated in factory for Mineral soil type. 23 -))) 28 +The Dragino NDDS75 is a **NB-IOT Distance Detection Sensor** for Internet of Things solution. It is used to measure the distance between the sensor and a flat object. The distance detection sensor is a module that uses **ultrasonic sensing technology** for **distance measurement**, and temperature compensation is performed internally to improve the reliability of data. The NDDS75 can be applied to scenarios such as horizontal distance measurement, liquid level measurement, parking management system, object proximity and presence detection, intelligent trash can management system, robot obstacle avoidance, automatic control, sewer, bottom water level monitoring, etc. 24 24 25 -((( 26 -It detects (% style="color:#4f81bd" %)**Soil Moisture**(%%), (% style="color:#4f81bd" %)**Soil Temperature**(%%) and (% style="color:#4f81bd" %)**Soil Conductivity**(%%), and uploads the value via wireless to LoRaWAN IoT Server. 27 -))) 30 +It detects the distance between the measured object and the sensor, and uploads the value via wireless to IoT Server. 28 28 29 -((( 30 -The LoRa wireless technology used in LES01 allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption. 31 -))) 32 +**NarrowBand-Internet of Things (NB-IoT)** is a standards-based low power wide area (LPWA) technology developed to enable a wide range of new IoT devices and services. NB-IoT significantly improves the power consumption of user devices, system capacity and spectrum efficiency, especially in deep coverage. 32 32 34 +NDDS75 is powered by 8**500mA Li-SOCI2 battery**; It is designed for long term use up to 5 years*. 35 + 36 +~* Actually lifetime depends on network coverage and uplink interval and other factors 37 + 33 33 ((( 34 - LES01ispowered by (% style="color:#4f81bd" %)**4000mA or 8500mAh Li-SOCI2 battery**(%%), It is designed for long term use up to 10 years.39 + 35 35 ))) 36 36 37 -((( 38 -Each LES01 is pre-load with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect after power on. 42 + 39 39 ))) 40 40 41 - 42 42 [[image:1654503236291-817.png]] 43 43 44 44 45 -[[image:16545 03265560-120.png]]48 +[[image:1657245163077-232.png]] 46 46 47 47 48 48 49 -== 1.2 Features == 52 +== 1.2 Features == 50 50 51 -* LoRaWAN 1.0.3 Class A 52 -* Ultra low power consumption 54 +* NB-IoT Bands: B1/B3/B8/B5/B20/B28 @H-FDD 53 53 * Monitor Soil Moisture 54 54 * Monitor Soil Temperature 55 55 * Monitor Soil Conductivity 56 -* Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865 57 57 * AT Commands to change parameters 58 58 * Uplink on periodically 59 59 * Downlink to change configure 60 60 * IP66 Waterproof Enclosure 61 -* 4000mAh or 8500mAh Battery for long term use 62 +* Ultra-Low Power consumption 63 +* AT Commands to change parameters 64 +* Micro SIM card slot for NB-IoT SIM 65 +* 8500mAh Battery for long term use 62 62 63 63 64 64 65 -== 1.3 Specification == 69 +== 1.3 Specification == 66 66 67 -Measure Volume: Base on the centra pin of the probe, a cylinder with 7cm diameter and 10cm height. 68 68 69 - [[image:image-20220606162220-5.png]]72 +(% style="color:#037691" %)**Common DC Characteristics:** 70 70 74 +* Supply Voltage: 2.1v ~~ 3.6v 75 +* Operating Temperature: -40 ~~ 85°C 71 71 77 +(% style="color:#037691" %)**NB-IoT Spec:** 72 72 73 -== 1.4 Applications == 79 +* - B1 @H-FDD: 2100MHz 80 +* - B3 @H-FDD: 1800MHz 81 +* - B8 @H-FDD: 900MHz 82 +* - B5 @H-FDD: 850MHz 83 +* - B20 @H-FDD: 800MHz 84 +* - B28 @H-FDD: 700MHz 74 74 75 - * SmartAgriculture86 +Probe(% style="color:#037691" %)** Specification:** 76 76 77 -(% class="wikigeneratedid" id="H200B1.5FirmwareChangelog" %) 78 - 88 +Measure Volume: Base on the centra pin of the probe, a cylinder with 7cm diameter and 10cm height. 79 79 80 - == 1.5 FirmwareChangelog==90 +[[image:image-20220708101224-1.png]] 81 81 82 82 83 -**LSE01 v1.0 :** Release 84 84 94 +== 1.4 Applications == 85 85 96 +* Smart Agriculture 86 86 87 -= 2. Configure LSE01 to connect to LoRaWAN network = 98 +(% class="wikigeneratedid" id="H200B1.5FirmwareChangelog" %) 99 + 88 88 89 -== 2.1Howitworks ==101 +== 1.5 Pin Definitions == 90 90 91 -((( 92 -The LSE01 is configured as LoRaWAN OTAA Class A mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and power on the LSE0150. It will automatically join the network via OTAA and start to send the sensor value 93 -))) 94 94 95 -((( 96 -In case you can’t set the OTAA keys in the LoRaWAN OTAA server, and you have to use the keys from the server, you can [[use AT Commands >>||anchor="H3.200BUsingtheATCommands"]]. 97 -))) 104 +[[image:1657246476176-652.png]] 98 98 99 99 100 100 101 -= =2.2Quick guide to connect toLoRaWANserver(OTAA)==108 += 2. Use NSE01 to communicate with IoT Server = 102 102 103 - Followingis an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]].Below isthenetworktructure;we use the [[LG308>>url:http://www.dragino.com/products/lora/item/140-lg308.html]] as a LoRaWAN gateway in this example.110 +== 2.1 How it works == 104 104 105 105 106 -[[image:1654503992078-669.png]] 107 - 108 - 109 -The LG308 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server. 110 - 111 - 112 -(% style="color:blue" %)**Step 1**(%%): Create a device in TTN with the OTAA keys from LSE01. 113 - 114 -Each LSE01 is shipped with a sticker with the default device EUI as below: 115 - 116 -[[image:image-20220606163732-6.jpeg]] 117 - 118 -You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot: 119 - 120 -**Add APP EUI in the application** 121 - 122 - 123 -[[image:1654504596150-405.png]] 124 - 125 - 126 - 127 -**Add APP KEY and DEV EUI** 128 - 129 -[[image:1654504683289-357.png]] 130 - 131 - 132 - 133 -(% style="color:blue" %)**Step 2**(%%): Power on LSE01 134 - 135 - 136 -Put a Jumper on JP2 to power on the device. ( The Jumper must be in FLASH position). 137 - 138 -[[image:image-20220606163915-7.png]] 139 - 140 - 141 -(% style="color:blue" %)**Step 3**(%%)**:** The LSE01 will auto join to the TTN network. After join success, it will start to upload messages to TTN and you can see the messages in the panel. 142 - 143 -[[image:1654504778294-788.png]] 144 - 145 - 146 - 147 -== 2.3 Uplink Payload == 148 - 149 - 150 -=== 2.3.1 MOD~=0(Default Mode) === 151 - 152 -LSE01 will uplink payload via LoRaWAN with below payload format: 153 - 154 154 ((( 155 - Uplinkpayload includesin total11bytes.114 +The NSE01 is equipped with a NB-IoT module, the pre-loaded firmware in NSE01 will get environment data from sensors and send the value to local NB-IoT network via the NB-IoT module. The NB-IoT network will forward this value to IoT server via the protocol defined by NSE01. 156 156 ))) 157 157 158 -(% border="1" cellspacing="10" style="background-color:#ffffcc; width:500px" %) 159 -|((( 160 -**Size** 161 161 162 -**(bytes)** 163 -)))|**2**|**2**|**2**|**2**|**2**|**1** 164 -|**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|((( 165 -Temperature 166 - 167 -(Reserve, Ignore now) 168 -)))|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]]|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]]|((( 169 -MOD & Digital Interrupt 170 - 171 -(Optional) 118 +((( 119 +The diagram below shows the working flow in default firmware of NSE01: 172 172 ))) 173 173 174 - === 2.3.2 MOD~=1(Original value) ===122 +[[image:image-20220708101605-2.png]] 175 175 176 -This mode can get the original AD value of moisture and original conductivity (with temperature drift compensation). 177 - 178 -(% border="1" cellspacing="10" style="background-color:#ffffcc; width:500px" %) 179 -|((( 180 -**Size** 181 - 182 -**(bytes)** 183 -)))|**2**|**2**|**2**|**2**|**2**|**1** 184 -|**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|((( 185 -Temperature 186 - 187 -(Reserve, Ignore now) 188 -)))|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]](raw)|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]](raw)|((( 189 -MOD & Digital Interrupt 190 - 191 -(Optional) 192 -))) 193 - 194 -=== 2.3.3 Battery Info === 195 - 196 196 ((( 197 - Checkthe battery voltage for LSE01.125 + 198 198 ))) 199 199 200 -((( 201 -Ex1: 0x0B45 = 2885mV 202 -))) 203 203 204 -((( 205 -Ex2: 0x0B49 = 2889mV 206 -))) 207 207 130 +== 2.2 Configure the NSE01 == 208 208 209 209 210 -=== 2. 3.4SoilMoisture ===133 +=== 2.2.1 Test Requirement === 211 211 212 -((( 213 -Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil. 214 -))) 215 215 216 216 ((( 217 - Forexample,ifthe datayouget fromthe register is __0x05 0xDC__,themoisturecontentin thesoil is137 +To use NSE01 in your city, make sure meet below requirements: 218 218 ))) 219 219 220 - (((221 - 222 - )))140 +* Your local operator has already distributed a NB-IoT Network there. 141 +* The local NB-IoT network used the band that NSE01 supports. 142 +* Your operator is able to distribute the data received in their NB-IoT network to your IoT server. 223 223 224 224 ((( 225 -(% style="color: #4f81bd" %)**05DC(H) = 1500(D)/100= 15%.**145 +Below figure shows our testing structure. Here we have NB-IoT network coverage by China Mobile, the band they use is B8. The NSE01 will use CoAP((% style="color:red" %)120.24.4.116:5683)(%%) or raw UDP((% style="color:red" %)120.24.4.116:5601)(%%) or MQTT((% style="color:red" %)120.24.4.116:1883)(%%)or TCP((% style="color:red" %)120.24.4.116:5600)(%%)protocol to send data to the test server 226 226 ))) 227 227 228 228 149 +[[image:1657249419225-449.png]] 229 229 230 -=== 2.3.5 Soil Temperature === 231 231 232 -((( 233 - Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is 0x09 0xEC, the temperature content in the soil is 234 -))) 235 235 236 -((( 237 -**Example**: 238 -))) 153 +=== 2.2.2 Insert SIM card === 239 239 240 240 ((( 241 -I fpayloadis 0105H: ((0x0105 & 0x8000)>>15 === 0),temp=0105(H)/100 = 2.61 °C156 +Insert the NB-IoT Card get from your provider. 242 242 ))) 243 243 244 244 ((( 245 - IfpayloadisFF7EH:((FF7E&0x8000)>>15===1),temp=(FF7E(H)-FFFF(H))/100=-1.29 °C160 +User need to take out the NB-IoT module and insert the SIM card like below: 246 246 ))) 247 247 248 248 164 +[[image:1657249468462-536.png]] 249 249 250 -=== 2.3.6 Soil Conductivity (EC) === 251 251 252 -((( 253 -Obtain (% style="color:#4f81bd" %)**__soluble salt concentration__**(%%) in soil or (% style="color:#4f81bd" %)**__soluble ion concentration in liquid fertilizer__**(%%) or (% style="color:#4f81bd" %)**__planting medium__**(%%). The value range of the register is 0 - 20000(Decimal)( Can be greater than 20000). 254 -))) 255 255 256 -((( 257 -For example, if the data you get from the register is 0x00 0xC8, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm. 258 -))) 168 +=== 2.2.3 Connect USB – TTL to NSE01 to configure it === 259 259 260 260 ((( 261 -Generally, the EC value of irrigation water is less than 800uS / cm. 262 -))) 263 - 264 264 ((( 265 - 172 +User need to configure NSE01 via serial port to set the (% style="color:blue" %)**Server Address** / **Uplink Topic** (%%)to define where and how-to uplink packets. NSE01 support AT Commands, user can use a USB to TTL adapter to connect to NSE01 and use AT Commands to configure it, as below. 266 266 ))) 267 - 268 -((( 269 - 270 270 ))) 271 271 272 -=== 2.3.7 MOD === 273 273 274 - Firmware versionat least v2.1 supportschanging mode.177 +**Connection:** 275 275 276 - Forexample,bytes[10]=90179 + (% style="background-color:yellow" %)USB TTL GND <~-~-~-~-> GND 277 277 278 - mod=(bytes[10]>>7)&0x01=1.181 + (% style="background-color:yellow" %)USB TTL TXD <~-~-~-~-> UART_RXD 279 279 183 + (% style="background-color:yellow" %)USB TTL RXD <~-~-~-~-> UART_TXD 280 280 281 -**Downlink Command:** 282 282 283 -I fpayload= 0x0A00,workmode=0186 +In the PC, use below serial tool settings: 284 284 285 -If** **payload =** **0x0A01, workmode=1 188 +* Baud: (% style="color:green" %)**9600** 189 +* Data bits:** (% style="color:green" %)8(%%)** 190 +* Stop bits: (% style="color:green" %)**1** 191 +* Parity: (% style="color:green" %)**None** 192 +* Flow Control: (% style="color:green" %)**None** 286 286 287 - 288 - 289 -=== 2.3.8 Decode payload in The Things Network === 290 - 291 -While using TTN network, you can add the payload format to decode the payload. 292 - 293 - 294 -[[image:1654505570700-128.png]] 295 - 296 296 ((( 297 - The payloaddecoderfunction forTTNis here:195 +Make sure the switch is in FLASH position, then power on device by connecting the jumper on NSE01. NSE01 will output system info once power on as below, we can enter the (% style="color:green" %)**password: 12345678**(%%) to access AT Command input. 298 298 ))) 299 299 300 -((( 301 -LSE01 TTN Payload Decoder: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Payload_Decoder/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Payload_Decoder/]] 302 -))) 198 +[[image:image-20220708110657-3.png]] 303 303 304 - 305 - 306 -== 2.4 Uplink Interval == 307 - 308 -The LSE01 by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link: [[Change Uplink Interval>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H4.1ChangeUplinkInterval"]] 309 - 310 - 311 - 312 -== 2.5 Downlink Payload == 313 - 314 -By default, LSE50 prints the downlink payload to console port. 315 - 316 -[[image:image-20220606165544-8.png]] 317 - 318 - 319 319 ((( 320 - **Examples:**201 +(% style="color:red" %)Note: the valid AT Commands can be found at: (%%)[[http:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/]] 321 321 ))) 322 322 323 -((( 324 - 325 -))) 326 326 327 -* ((( 328 -**Set TDC** 329 -))) 330 330 331 -((( 332 -If the payload=0100003C, it means set the END Node’s TDC to 0x00003C=60(S), while type code is 01. 333 -))) 206 +=== 2.2.4 Use CoAP protocol to uplink data === 334 334 335 -((( 336 -Payload: 01 00 00 1E TDC=30S 337 -))) 208 +(% style="color:red" %)Note: if you don't have CoAP server, you can refer this link to set up one: (%%)[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/>>http://wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/]] 338 338 339 -((( 340 -Payload: 01 00 00 3C TDC=60S 341 -))) 342 342 343 -((( 344 - 345 -))) 211 +**Use below commands:** 346 346 347 -* (( (348 -**Reset **349 -)) )213 +* (% style="color:blue" %)**AT+PRO=1** (%%) ~/~/ Set to use CoAP protocol to uplink 214 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5683 ** (%%)~/~/ to set CoAP server address and port 215 +* (% style="color:blue" %)**AT+URI=5,11,"mqtt",11,"coap",12,"0",15,"c=text1",23,"0" ** (%%) ~/~/Set COAP resource path 350 350 351 -((( 352 -If payload = 0x04FF, it will reset the LSE01 353 -))) 217 +For parameter description, please refer to AT command set 354 354 219 +[[image:1657249793983-486.png]] 355 355 356 -* **CFM** 357 357 358 - DownlinkPayload:05000001, Set AT+CFM=1or05000000,setAT+CFM=0222 +After configure the server address and (% style="color:green" %)**reset the device**(%%) (via AT+ATZ ), NSE01 will start to uplink sensor values to CoAP server. 359 359 224 +[[image:1657249831934-534.png]] 360 360 361 361 362 -== 2.6 Show Data in DataCake IoT Server == 363 363 364 -((( 365 -[[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps: 366 -))) 228 +=== 2.2.5 Use UDP protocol to uplink data(Default protocol) === 367 367 368 -((( 369 - 370 -))) 230 +This feature is supported since firmware version v1.0.1 371 371 372 -((( 373 -**Step 1**: Be sure that your device is programmed and properly connected to the network at this time. 374 -))) 375 375 376 -(( (377 -* *Step2**:To configurethe Application toforwarddata to DATACAKEyouwillneedtoadd integration.ToaddtheDATACAKE integration,performthe following steps:378 -)) )233 +* (% style="color:blue" %)**AT+PRO=2 ** (%%) ~/~/ Set to use UDP protocol to uplink 234 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5601 ** (%%) ~/~/ to set UDP server address and port 235 +* (% style="color:blue" %)**AT+CFM=1 ** (%%) ~/~/If the server does not respond, this command is unnecessary 379 379 237 +[[image:1657249864775-321.png]] 380 380 381 -[[image:1654505857935-743.png]] 382 382 240 +[[image:1657249930215-289.png]] 383 383 384 -[[image:1654505874829-548.png]] 385 385 386 -Step 3: Create an account or log in Datacake. 387 387 388 - Step4:SearchtheLSE01 andaddDevEUI.244 +=== 2.2.6 Use MQTT protocol to uplink data === 389 389 246 +This feature is supported since firmware version v110 390 390 391 -[[image:1654505905236-553.png]] 392 392 249 +* (% style="color:blue" %)**AT+PRO=3 ** (%%) ~/~/Set to use MQTT protocol to uplink 250 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,1883 ** (%%) ~/~/Set MQTT server address and port 251 +* (% style="color:blue" %)**AT+CLIENT=CLIENT ** (%%)~/~/Set up the CLIENT of MQTT 252 +* (% style="color:blue" %)**AT+UNAME=UNAME **(%%)~/~/Set the username of MQTT 253 +* (% style="color:blue" %)**AT+PWD=PWD **(%%)~/~/Set the password of MQTT 254 +* (% style="color:blue" %)**AT+PUBTOPIC=NSE01_PUB **(%%)~/~/Set the sending topic of MQTT 255 +* (% style="color:blue" %)**AT+SUBTOPIC=NSE01_SUB **(%%) ~/~/Set the subscription topic of MQTT 393 393 394 - After added, the sensor data arrive TTN, it willalso arriveand show in Mydevices.257 +[[image:1657249978444-674.png]] 395 395 396 -[[image:1654505925508-181.png]] 397 397 260 +[[image:1657249990869-686.png]] 398 398 399 399 400 -== 2.7 Frequency Plans == 263 +((( 264 +MQTT protocol has a much higher power consumption compare vs UDP / CoAP protocol. Please check the power analyze document and adjust the uplink period to a suitable interval. 265 +))) 401 401 402 -The LSE01 uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets. 403 403 404 404 405 -=== 2. 7.1 EU863-870(EU868)===269 +=== 2.2.7 Use TCP protocol to uplink data === 406 406 407 - (%style="color:#037691"%)**Uplink:**271 +This feature is supported since firmware version v110 408 408 409 -868.1 - SF7BW125 to SF12BW125 410 410 411 -868.3 - SF7BW125 to SF12BW125 and SF7BW250 274 +* (% style="color:blue" %)**AT+PRO=4 ** (%%) ~/~/ Set to use TCP protocol to uplink 275 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5600 **(%%) ~/~/ to set TCP server address and port 412 412 413 - 868.5- SF7BW125to SF12BW125277 +[[image:1657250217799-140.png]] 414 414 415 -867.1 - SF7BW125 to SF12BW125 416 416 417 - 867.3 - SF7BW125to SF12BW125280 +[[image:1657250255956-604.png]] 418 418 419 -867.5 - SF7BW125 to SF12BW125 420 420 421 -867.7 - SF7BW125 to SF12BW125 422 422 423 - 867.9-SF7BW125toSF12BW125284 +=== 2.2.8 Change Update Interval === 424 424 425 - 868.8 -FSK286 +User can use below command to change the (% style="color:green" %)**uplink interval**. 426 426 288 +* (% style="color:blue" %)**AT+TDC=600 ** (%%)~/~/ Set Update Interval to 600s 427 427 428 -(% style="color:#037691" %)** Downlink:** 290 +((( 291 +(% style="color:red" %)**NOTE:** 292 +))) 429 429 430 -Uplink channels 1-9 (RX1) 294 +((( 295 +(% style="color:red" %)1. By default, the device will send an uplink message every 1 hour. 296 +))) 431 431 432 -869.525 - SF9BW125 (RX2 downlink only) 433 433 434 434 300 +== 2.3 Uplink Payload == 435 435 436 - ===2.7.2US902-928(US915)===302 +In this mode, uplink payload includes in total 18 bytes 437 437 438 -Used in USA, Canada and South America. Default use CHE=2 304 +(% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:510px" %) 305 +|=(% style="width: 60px;" %)((( 306 +**Size(bytes)** 307 +)))|=(% style="width: 50px;" %)**6**|=(% style="width: 25px;" %)2|=(% style="width: 25px;" %)**2**|=(% style="width: 70px;" %)**1**|=(% style="width: 60px;" %)**2**|=(% style="width: 80px;" %)**2**|=(% style="width: 90px;" %)**2**|=(% style="width: 50px;" %)**1** 308 +|(% style="width:97px" %)**Value**|(% style="width:83px" %)[[Device ID>>||anchor="H2.4.1A0A0DeviceID"]]|(% style="width:41px" %)[[Ver>>||anchor="H2.4.2A0VersionInfo"]]|(% style="width:46px" %)[[BAT>>||anchor="H2.4.3A0BatteryInfo"]]|(% style="width:123px" %)[[Signal Strength>>||anchor="H2.4.4A0SignalStrength"]]|(% style="width:108px" %)[[Soil Moisture>>||anchor="H2.4.5A0SoilMoisture"]]|(% style="width:133px" %)[[Soil Temperature>>||anchor="H2.4.6A0SoilTemperature"]]|(% style="width:159px" %)[[Soil Conductivity(EC)>>||anchor="H2.4.7A0SoilConductivity28EC29"]]|(% style="width:80px" %)[[Interrupt>>||anchor="H2.4.8A0DigitalInterrupt"]] 439 439 440 -(% style="color:#037691" %)**Uplink:** 310 +((( 311 +If we use the MQTT client to subscribe to this MQTT topic, we can see the following information when the NSE01 uplink data. 312 +))) 441 441 442 -903.9 - SF7BW125 to SF10BW125 443 443 444 - 904.1-SF7BW125 to SF10BW125315 +[[image:image-20220708111918-4.png]] 445 445 446 -904.3 - SF7BW125 to SF10BW125 447 447 448 - 904.5-SF7BW125toSF10BW125318 +The payload is ASCII string, representative same HEX: 449 449 450 - 904.7- SF7BW125to SF10BW125320 +0x72403155615900640c7817075e0a8c02f900 where: 451 451 452 -904.9 - SF7BW125 to SF10BW125 322 +* Device ID: 0x 724031556159 = 724031556159 323 +* Version: 0x0064=100=1.0.0 453 453 454 -905.1 - SF7BW125 to SF10BW125 325 +* BAT: 0x0c78 = 3192 mV = 3.192V 326 +* Singal: 0x17 = 23 327 +* Soil Moisture: 0x075e= 1886 = 18.86 % 328 +* Soil Temperature:0x0a8c =2700=27 °C 329 +* Soil Conductivity(EC) = 0x02f9 =761 uS /cm 330 +* Interrupt: 0x00 = 0 455 455 456 -905.3 - SF7BW125 to SF10BW125 457 457 458 458 459 - (%style="color:#037691"%)**Downlink:**334 +== 2.4 Payload Explanation and Sensor Interface == 460 460 461 -923.3 - SF7BW500 to SF12BW500 462 462 463 - 923.9-SF7BW500 to SF12BW500337 +=== 2.4.1 Device ID === 464 464 465 -924.5 - SF7BW500 to SF12BW500 339 +((( 340 +By default, the Device ID equal to the last 6 bytes of IMEI. 341 +))) 466 466 467 -925.1 - SF7BW500 to SF12BW500 343 +((( 344 +User can use (% style="color:blue" %)**AT+DEUI**(%%) to set Device ID 345 +))) 468 468 469 -925.7 - SF7BW500 to SF12BW500 347 +((( 348 +**Example:** 349 +))) 470 470 471 -926.3 - SF7BW500 to SF12BW500 351 +((( 352 +AT+DEUI=A84041F15612 353 +))) 472 472 473 -926.9 - SF7BW500 to SF12BW500 355 +((( 356 +The Device ID is stored in a none-erase area, Upgrade the firmware or run AT+FDR won't erase Device ID. 357 +))) 474 474 475 -927.5 - SF7BW500 to SF12BW500 476 476 477 -923.3 - SF12BW500(RX2 downlink only) 478 478 361 +=== 2.4.2 Version Info === 479 479 363 +((( 364 +Specify the software version: 0x64=100, means firmware version 1.00. 365 +))) 480 480 481 -=== 2.7.3 CN470-510 (CN470) === 367 +((( 368 +For example: 0x00 64 : this device is NSE01 with firmware version 1.0.0. 369 +))) 482 482 483 -Used in China, Default use CHE=1 484 484 485 -(% style="color:#037691" %)**Uplink:** 486 486 487 -4 86.3- SF7BW125toSF12BW125373 +=== 2.4.3 Battery Info === 488 488 489 -486.5 - SF7BW125 to SF12BW125 375 +((( 376 +Check the battery voltage for LSE01. 377 +))) 490 490 491 -486.7 - SF7BW125 to SF12BW125 379 +((( 380 +Ex1: 0x0B45 = 2885mV 381 +))) 492 492 493 -486.9 - SF7BW125 to SF12BW125 383 +((( 384 +Ex2: 0x0B49 = 2889mV 385 +))) 494 494 495 -487.1 - SF7BW125 to SF12BW125 496 496 497 -487.3 - SF7BW125 to SF12BW125 498 498 499 -4 87.5-SF7BW125toSF12BW125389 +=== 2.4.4 Signal Strength === 500 500 501 -487.7 - SF7BW125 to SF12BW125 391 +((( 392 +NB-IoT Network signal Strength. 393 +))) 502 502 395 +((( 396 +**Ex1: 0x1d = 29** 397 +))) 503 503 504 -(% style="color:#037691" %)**Downlink:** 399 +((( 400 +(% style="color:blue" %)**0**(%%) -113dBm or less 401 +))) 505 505 506 -506.7 - SF7BW125 to SF12BW125 403 +((( 404 +(% style="color:blue" %)**1**(%%) -111dBm 405 +))) 507 507 508 -506.9 - SF7BW125 to SF12BW125 407 +((( 408 +(% style="color:blue" %)**2...30**(%%) -109dBm... -53dBm 409 +))) 509 509 510 -507.1 - SF7BW125 to SF12BW125 411 +((( 412 +(% style="color:blue" %)**31** (%%) -51dBm or greater 413 +))) 511 511 512 -507.3 - SF7BW125 to SF12BW125 415 +((( 416 +(% style="color:blue" %)**99** (%%) Not known or not detectable 417 +))) 513 513 514 -507.5 - SF7BW125 to SF12BW125 515 515 516 -507.7 - SF7BW125 to SF12BW125 517 517 518 - 507.9- SF7BW125toSF12BW125421 +=== 2.4.5 Soil Moisture === 519 519 520 -508.1 - SF7BW125 to SF12BW125 423 +((( 424 +((( 425 +Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil. 426 +))) 427 +))) 521 521 522 -505.3 - SF12BW125 (RX2 downlink only) 429 +((( 430 +((( 431 +For example, if the data you get from the register is **__0x05 0xDC__**, the moisture content in the soil is 432 +))) 433 +))) 523 523 435 +((( 436 + 437 +))) 524 524 439 +((( 440 +(% style="color:#4f81bd" %)**05DC(H) = 1500(D) /100 = 15%.** 441 +))) 525 525 526 -=== 2.7.4 AU915-928(AU915) === 527 527 528 -Default use CHE=2 529 529 530 - (% style="color:#037691"%)**Uplink:**445 +=== 2.4.6 Soil Temperature === 531 531 532 -916.8 - SF7BW125 to SF12BW125 447 +((( 448 +Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is __**0x09 0xEC**__, the temperature content in the soil is 449 +))) 533 533 534 -917.0 - SF7BW125 to SF12BW125 451 +((( 452 +**Example**: 453 +))) 535 535 536 -917.2 - SF7BW125 to SF12BW125 455 +((( 456 +If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/100 = 2.61 °C 457 +))) 537 537 538 -917.4 - SF7BW125 to SF12BW125 459 +((( 460 +If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C 461 +))) 539 539 540 -917.6 - SF7BW125 to SF12BW125 541 541 542 -917.8 - SF7BW125 to SF12BW125 543 543 544 - 918.0-SF7BW125toSF12BW125465 +=== 2.4.7 Soil Conductivity (EC) === 545 545 546 -918.2 - SF7BW125 to SF12BW125 467 +((( 468 +Obtain (% style="color:#4f81bd" %)**__soluble salt concentration__**(%%) in soil or (% style="color:#4f81bd" %)**__soluble ion concentration in liquid fertilizer__**(%%) or (% style="color:#4f81bd" %)**__planting medium__**(%%). The value range of the register is 0 - 20000(Decimal)( Can be greater than 20000). 469 +))) 547 547 471 +((( 472 +For example, if the data you get from the register is __**0x00 0xC8**__, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm. 473 +))) 548 548 549 -(% style="color:#037691" %)**Downlink:** 475 +((( 476 +Generally, the EC value of irrigation water is less than 800uS / cm. 477 +))) 550 550 551 -923.3 - SF7BW500 to SF12BW500 479 +((( 480 + 481 +))) 552 552 553 -923.9 - SF7BW500 to SF12BW500 483 +((( 484 + 485 +))) 554 554 555 - 924.5-SF7BW500toSF12BW500487 +=== 2.4.8 Digital Interrupt === 556 556 557 -925.1 - SF7BW500 to SF12BW500 489 +((( 490 +Digital Interrupt refers to pin (% style="color:blue" %)**GPIO_EXTI**(%%), and there are different trigger methods. When there is a trigger, the NSE01 will send a packet to the server. 491 +))) 558 558 559 -925.7 - SF7BW500 to SF12BW500 493 +((( 494 +The command is: 495 +))) 560 560 561 -926.3 - SF7BW500 to SF12BW500 497 +((( 498 +(% style="color:blue" %)**AT+INTMOD=3 **(%%) ~/~/(more info about INMOD please refer [[**AT Command Manual**>>url:https://www.dragino.com/downloads/downloads/NB-IoT/NBSN95/DRAGINO_NBSN95-NB_AT%20Commands_v1.1.0.pdf]])**.** 499 +))) 562 562 563 -926.9 - SF7BW500 to SF12BW500 564 564 565 -927.5 - SF7BW500 to SF12BW500 502 +((( 503 +The lower four bits of this data field shows if this packet is generated by interrupt or not. Click here for the hardware and software set up. 504 +))) 566 566 567 -923.3 - SF12BW500(RX2 downlink only) 568 568 507 +((( 508 +Example: 509 +))) 569 569 511 +((( 512 +0x(00): Normal uplink packet. 513 +))) 570 570 571 -=== 2.7.5 AS920-923 & AS923-925 (AS923) === 515 +((( 516 +0x(01): Interrupt Uplink Packet. 517 +))) 572 572 573 -(% style="color:#037691" %)**Default Uplink channel:** 574 574 575 -923.2 - SF7BW125 to SF10BW125 576 576 577 - 923.4- SF7BW125 toSF10BW125521 +=== 2.4.9 +5V Output === 578 578 523 +((( 524 +NSE01 will enable +5V output before all sampling and disable the +5v after all sampling. 525 +))) 579 579 580 -(% style="color:#037691" %)**Additional Uplink Channel**: 581 581 582 -(OTAA mode, channel added by JoinAccept message) 528 +((( 529 +The 5V output time can be controlled by AT Command. 530 +))) 583 583 584 -(% style="color:#037691" %)**AS920~~AS923 for Japan, Malaysia, Singapore**: 532 +((( 533 +(% style="color:blue" %)**AT+5VT=1000** 534 +))) 585 585 586 -922.2 - SF7BW125 to SF10BW125 536 +((( 537 +Means set 5V valid time to have 1000ms. So the real 5V output will actually have 1000ms + sampling time for other sensors. 538 +))) 587 587 588 -922.4 - SF7BW125 to SF10BW125 589 589 590 -922.6 - SF7BW125 to SF10BW125 591 591 592 - 922.8- SF7BW125toSF10BW125542 +== 2.5 Downlink Payload == 593 593 594 - 923.0-SF7BW125toSF10BW125544 +By default, NSE01 prints the downlink payload to console port. 595 595 596 - 922.0- SF7BW125 to SF10BW125546 +[[image:image-20220708133731-5.png]] 597 597 598 598 599 -(% style="color:#037691" %)**AS923 ~~ AS925 for Brunei, Cambodia, Hong Kong, Indonesia, Laos, Taiwan, Thailand, Vietnam**: 549 +((( 550 +(% style="color:blue" %)**Examples:** 551 +))) 600 600 601 -923.6 - SF7BW125 to SF10BW125 553 +((( 554 + 555 +))) 602 602 603 -923.8 - SF7BW125 to SF10BW125 557 +* ((( 558 +(% style="color:blue" %)**Set TDC** 559 +))) 604 604 605 -924.0 - SF7BW125 to SF10BW125 561 +((( 562 +If the payload=0100003C, it means set the END Node's TDC to 0x00003C=60(S), while type code is 01. 563 +))) 606 606 607 -924.2 - SF7BW125 to SF10BW125 565 +((( 566 +Payload: 01 00 00 1E TDC=30S 567 +))) 608 608 609 -924.4 - SF7BW125 to SF10BW125 569 +((( 570 +Payload: 01 00 00 3C TDC=60S 571 +))) 610 610 611 -924.6 - SF7BW125 to SF10BW125 573 +((( 574 + 575 +))) 612 612 577 +* ((( 578 +(% style="color:blue" %)**Reset** 579 +))) 613 613 614 -(% style="color:#037691" %)** Downlink:** 581 +((( 582 +If payload = 0x04FF, it will reset the NSE01 583 +))) 615 615 616 -Uplink channels 1-8 (RX1) 617 617 618 - 923.2-SF10BW125(RX2)586 +* (% style="color:blue" %)**INTMOD** 619 619 588 +((( 589 +Downlink Payload: 06000003, Set AT+INTMOD=3 590 +))) 620 620 621 621 622 -=== 2.7.6 KR920-923 (KR920) === 623 623 624 -D efaultchannel:594 +== 2.6 LED Indicator == 625 625 626 -922.1 - SF7BW125 to SF12BW125 596 +((( 597 +The NSE01 has an internal LED which is to show the status of different state. 627 627 628 -922.3 - SF7BW125 to SF12BW125 629 629 630 -922.5 - SF7BW125 to SF12BW125 600 +* When power on, NSE01 will detect if sensor probe is connected, if probe detected, LED will blink four times. (no blinks in this step is no probe) 601 +* Then the LED will be on for 1 second means device is boot normally. 602 +* After NSE01 join NB-IoT network. The LED will be ON for 3 seconds. 603 +* For each uplink probe, LED will be on for 500ms. 604 +))) 631 631 632 632 633 -(% style="color:#037691" %)**Uplink: (OTAA mode, channel added by JoinAccept message)** 634 634 635 -922.1 - SF7BW125 to SF12BW125 636 636 637 - 922.3 - SF7BW125to SF12BW125609 +== 2.7 Installation in Soil == 638 638 639 - 922.5- SF7BW125toSF12BW125611 +__**Measurement the soil surface**__ 640 640 641 -922.7 - SF7BW125 to SF12BW125 613 +((( 614 +Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting. [[https:~~/~~/img.alicdn.com/imgextra/i3/2005165265/O1CN010rj9Oh1olPsQxrdUK_!!2005165265.jpg>>url:https://img.alicdn.com/imgextra/i3/2005165265/O1CN010rj9Oh1olPsQxrdUK_!!2005165265.jpg]] 615 +))) 642 642 643 - 922.9 - SF7BW125to SF12BW125617 +[[image:1657259653666-883.png]] 644 644 645 -923.1 - SF7BW125 to SF12BW125 646 646 647 -923.3 - SF7BW125 to SF12BW125 620 +((( 621 + 648 648 623 +((( 624 +Dig a hole with diameter > 20CM. 625 +))) 649 649 650 -(% style="color:#037691" %)**Downlink:** 627 +((( 628 +Horizontal insert the probe to the soil and fill the hole for long term measurement. 629 +))) 630 +))) 651 651 652 - Uplink channels1-7(RX1)632 +[[image:1654506665940-119.png]] 653 653 654 -921.9 - SF12BW125 (RX2 downlink only; SF12BW125 might be changed to SF9BW125) 634 +((( 635 + 636 +))) 655 655 656 656 639 +== 2.8 Firmware Change Log == 657 657 658 -=== 2.7.7 IN865-867 (IN865) === 659 659 660 - (% style="color:#037691"%)**Uplink:**642 +Download URL & Firmware Change log 661 661 662 - 865.0625-F7BW125toSF12BW125644 +[[www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/Firmware/]] 663 663 664 -865.4025 - SF7BW125 to SF12BW125 665 665 666 - 865.9850- SF7BW125toSF12BW125647 +Upgrade Instruction: [[Upgrade_Firmware>>||anchor="H5.1200BHowtoUpgradeFirmware"]] 667 667 668 668 669 -(% style="color:#037691" %) **Downlink:** 670 670 671 - Uplinkchannels1-3 (RX1)651 +== 2.9 Battery Analysis == 672 672 673 - 866.550- SF10BW125(RX2)653 +=== 2.9.1 Battery Type === 674 674 675 675 676 - 677 - 678 -== 2.8 LED Indicator == 679 - 680 -The LSE01 has an internal LED which is to show the status of different state. 681 - 682 -* Blink once when device power on. 683 -* Solid ON for 5 seconds once device successful Join the network. 684 -* Blink once when device transmit a packet. 685 - 686 -== 2.9 Installation in Soil == 687 - 688 -**Measurement the soil surface** 689 - 690 - 691 -[[image:1654506634463-199.png]] 692 - 693 693 ((( 694 -((( 695 -Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting. 657 +The NSE01 battery is a combination of an 8500mAh Li/SOCI2 Battery and a Super Capacitor. The battery is none-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter. 696 696 ))) 697 -))) 698 698 699 699 700 -[[image:1654506665940-119.png]] 701 - 702 702 ((( 703 - Dig aholewithdiameter>20CM.662 +The battery is designed to last for several years depends on the actually use environment and update interval. 704 704 ))) 705 705 706 -((( 707 -Horizontal insert the probe to the soil and fill the hole for long term measurement. 708 -))) 709 709 710 - 711 -== 2.10 Firmware Change Log == 712 - 713 713 ((( 714 - **Firmware downloadlink:**667 +The battery related documents as below: 715 715 ))) 716 716 717 - (((718 -[[ http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/]]719 - )))670 +* [[Battery Dimension>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]] 671 +* [[Lithium-Thionyl Chloride Battery datasheet>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]] 672 +* [[Lithium-ion Battery-Capacitor datasheet>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]] 720 720 721 721 ((( 722 - 675 +[[image:image-20220708140453-6.png]] 723 723 ))) 724 724 725 -((( 726 -**Firmware Upgrade Method: **[[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome]] 727 -))) 728 728 729 -((( 730 - 731 -))) 732 732 733 -((( 734 -**V1.0.** 735 -))) 680 +=== 2.9.2 Power consumption Analyze === 736 736 737 737 ((( 738 - Release683 +Dragino battery powered product are all runs in Low Power mode. We have an update battery calculator which base on the measurement of the real device. User can use this calculator to check the battery life and calculate the battery life if want to use different transmit interval. 739 739 ))) 740 740 741 741 742 -== 2.11 Battery Analysis == 743 - 744 -=== 2.11.1 Battery Type === 745 - 746 746 ((( 747 - The LSE01 battery is a combination of a 4000mAh Li/SOCI2 Battery and a Super Capacitor. The batteryis non-rechargeablebattery type with a lowdischargerate (<2% per year). Thistype ofbattery is commonly used in IoT devices such aswater meter.688 +Instruction to use as below: 748 748 ))) 749 749 750 750 ((( 751 - Thebatterys designedlastforrethan5 years fortheSN50.692 +(% style="color:blue" %)**Step 1: **(%%)Downlink the up-to-date DRAGINO_Battery_Life_Prediction_Table.xlsx from: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/]] 752 752 ))) 753 753 695 + 754 754 ((( 755 -((( 756 -The battery-related documents are as below: 697 +(% style="color:blue" %)**Step 2: **(%%) Open it and choose 757 757 ))) 758 -))) 759 759 760 760 * ((( 761 - [[Battery Dimension>>url:http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/&file=LSN50-Battery-Dimension.pdf]],701 +Product Model 762 762 ))) 763 763 * ((( 764 - [[Lithium-ThionylChloride Battery datasheet>>url:https://www.dragino.com/downloads/downloads/datasheet/Battery/ER26500/ER26500_Datasheet-EN.pdf]],704 +Uplink Interval 765 765 ))) 766 766 * ((( 767 - [[Lithium-ion Battery-Capacitor datasheet>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC_1520_datasheet.jpg]],[[Tech Spec>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC1520%20Technical%20Specification20171123.pdf]]707 +Working Mode 768 768 ))) 769 769 770 - [[image:image-20220610172436-1.png]] 710 +((( 711 +And the Life expectation in difference case will be shown on the right. 712 +))) 771 771 714 +[[image:image-20220708141352-7.jpeg]] 772 772 773 773 774 -=== 2.11.2 Battery Note === 775 775 718 +=== 2.9.3 Battery Note === 719 + 776 776 ((( 777 777 The Li-SICO battery is designed for small current / long period application. It is not good to use a high current, short period transmit method. The recommended minimum period for use of this battery is 5 minutes. If you use a shorter period time to transmit LoRa, then the battery life may be decreased. 778 778 ))) ... ... @@ -779,303 +779,176 @@ 779 779 780 780 781 781 782 -=== 2. 11.3Replace the battery ===726 +=== 2.9.4 Replace the battery === 783 783 784 784 ((( 785 - IfBattery is lower than 2.7v,usershouldreplace the battery ofLSE01.729 +The default battery pack of NSE01 includes a ER26500 plus super capacitor. If user can't find this pack locally, they can find ER26500 or equivalence without the SPC1520 capacitor, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes). 786 786 ))) 787 787 732 + 733 + 734 += 3. Access NB-IoT Module = 735 + 788 788 ((( 789 - You can changethe battery in the LSE01.The type of battery isnot limitedas longas the outputis between 3v to 3.6v. On the main board, there is a diode (D1) between the battery and the maincircuit. If you need to use a battery with lessthan 3.3v, pleaseremovethe D1and shortcut thewopadsofitso therewon’tbe voltage drop between battery andmain board.737 +Users can directly access the AT command set of the NB-IoT module. 790 790 ))) 791 791 792 792 ((( 793 -The defaultbattery packof LSE01 includesa ER18505 plussupercapacitor.Ifusercan’tfind this pack locally, theycan find ER18505orequivalence,whichwillalsoworkinmostcase.The SPC can enlargethebattery lifeforigh frequency use(updateperiod below5minutes)741 +The AT Command set can refer the BC35-G NB-IoT Module AT Command: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=datasheet/other_vendors/BC35-G/>>url:https://www.dragino.com/downloads/index.php?dir=datasheet/other_vendors/BC35-G/]] 794 794 ))) 795 795 744 +[[image:1657261278785-153.png]] 796 796 797 797 798 -= 3. Using the AT Commands = 799 799 800 -= =3.1AccessAT Commands ==748 += 4. Using the AT Commands = 801 801 750 +== 4.1 Access AT Commands == 802 802 803 - LSE01supportsATCommandsetn the stock firmware.Youcanuse a USB toTTLadaptertoconnect to LSE01forusing ATcommand,asbelow.752 +See this link for detail: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/]] 804 804 805 -[[image:1654501986557-872.png||height="391" width="800"]] 806 806 755 +AT+<CMD>? : Help on <CMD> 807 807 808 - Orifyouhavebelowboard,usebelowconnection:757 +AT+<CMD> : Run <CMD> 809 809 759 +AT+<CMD>=<value> : Set the value 810 810 811 - [[image:1654502005655-729.png||height="503"width="801"]]761 +AT+<CMD>=? : Get the value 812 812 813 813 814 - 815 -In the PC, you need to set the serial baud rate to (% style="color:green" %)**9600**(%%) to access the serial console for LSE01. LSE01 will output system info once power on as below: 816 - 817 - 818 - [[image:1654502050864-459.png||height="564" width="806"]] 819 - 820 - 821 -Below are the available commands, a more detailed AT Command manual can be found at [[AT Command Manual>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/]]: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/]] 822 - 823 - 824 -(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>? **(%%) : Help on <CMD> 825 - 826 -(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD> **(%%) : Run <CMD> 827 - 828 -(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>=<value>**(%%) : Set the value 829 - 830 -(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>=?**(%%) : Get the value 831 - 832 - 833 833 (% style="color:#037691" %)**General Commands**(%%) 834 834 835 - (% style="background-color:#dcdcdc" %)**AT**(%%): Attention766 +AT : Attention 836 836 837 - (% style="background-color:#dcdcdc" %)**AT?**(%%): Short Help768 +AT? : Short Help 838 838 839 - (% style="background-color:#dcdcdc" %)**ATZ**(%%): MCU Reset770 +ATZ : MCU Reset 840 840 841 - (% style="background-color:#dcdcdc" %)**AT+TDC**(%%): Application Data Transmission Interval772 +AT+TDC : Application Data Transmission Interval 842 842 774 +AT+CFG : Print all configurations 843 843 844 - (%style="color:#037691"%)**Keys,IDsand EUIs management**776 +AT+CFGMOD : Working mode selection 845 845 846 - (% style="background-color:#dcdcdc" %)**AT+APPEUI**(%%)ApplicationEUI778 +AT+INTMOD : Set the trigger interrupt mode 847 847 848 - (% style="background-color:#dcdcdc" %)**AT+APPKEY**(%%)ApplicationKey780 +AT+5VT : Set extend the time of 5V power 849 849 850 - (% style="background-color:#dcdcdc" %)**AT+APPSKEY**(%%)Application Session Key782 +AT+PRO : Choose agreement 851 851 852 - (% style="background-color:#dcdcdc" %)**AT+DADDR**(%%)DeviceAddress784 +AT+WEIGRE : Get weight or set weight to 0 853 853 854 - (% style="background-color:#dcdcdc" %)**AT+DEUI**(%%)DeviceEUI786 +AT+WEIGAP : Get or Set the GapValue of weight 855 855 856 - (% style="background-color:#dcdcdc" %)**AT+NWKID**(%%):NetworkID(Youcanenterthiscommandchangeonlyaftersuccessful networkconnection)788 +AT+RXDL : Extend the sending and receiving time 857 857 858 - (% style="background-color:#dcdcdc" %)**AT+NWKSKEY**(%%)NetworkSession KeyJoining and sending dateon LoRa network790 +AT+CNTFAC : Get or set counting parameters 859 859 860 - (% style="background-color:#dcdcdc" %)**AT+CFM**(%%)ConfirmMode792 +AT+SERVADDR : Server Address 861 861 862 -(% style="background-color:#dcdcdc" %)**AT+CFS**(%%) : Confirm Status 863 863 864 -(% style=" background-color:#dcdcdc" %)**AT+JOIN**(%%): JoinLoRa? Network795 +(% style="color:#037691" %)**COAP Management** 865 865 866 - (% style="background-color:#dcdcdc" %)**AT+NJM**(%%)LoRa? Network Join Mode797 +AT+URI : Resource parameters 867 867 868 -(% style="background-color:#dcdcdc" %)**AT+NJS**(%%) : LoRa? Network Join Status 869 869 870 -(% style=" background-color:#dcdcdc" %)**AT+RECV**(%%) :PrintLast Received Data inRaw Format800 +(% style="color:#037691" %)**UDP Management** 871 871 872 - (% style="background-color:#dcdcdc" %)**AT+RECVB**(%%)Print LastReceived DatainBinaryFormat802 +AT+CFM : Upload confirmation mode (only valid for UDP) 873 873 874 -(% style="background-color:#dcdcdc" %)**AT+SEND**(%%) : Send Text Data 875 875 876 -(% style=" background-color:#dcdcdc" %)**AT+SENB**(%%): Send Hexadecimal Data805 +(% style="color:#037691" %)**MQTT Management** 877 877 807 +AT+CLIENT : Get or Set MQTT client 878 878 879 - (%style="color:#037691"%)**LoRaNetworkManagement**809 +AT+UNAME : Get or Set MQTT Username 880 880 881 - (% style="background-color:#dcdcdc" %)**AT+ADR**(%%):AdaptiveRate811 +AT+PWD : Get or Set MQTT password 882 882 883 - (% style="background-color:#dcdcdc" %)**AT+CLASS**(%%):LoRaClass(Currentlyonly supportclassA813 +AT+PUBTOPIC : Get or Set MQTT publish topic 884 884 885 - (% style="background-color:#dcdcdc" %)**AT+DCS**(%%):DutyCycleSetting815 +AT+SUBTOPIC : Get or Set MQTT subscription topic 886 886 887 -(% style="background-color:#dcdcdc" %)**AT+DR**(%%) : Data Rate (Can Only be Modified after ADR=0) 888 888 889 -(% style=" background-color:#dcdcdc" %)**AT+FCD**(%%) : Frame Counter Downlink818 +(% style="color:#037691" %)**Information** 890 890 891 - (% style="background-color:#dcdcdc" %)**AT+FCU**(%%): Frame CounterUplink820 +AT+FDR : Factory Data Reset 892 892 893 - (% style="background-color:#dcdcdc" %)**AT+JN1DL**(%%):JoinAcceptDelay1822 +AT+PWORD : Serial Access Password 894 894 895 -(% style="background-color:#dcdcdc" %)**AT+JN2DL**(%%) : Join Accept Delay2 896 896 897 -(% style="background-color:#dcdcdc" %)**AT+PNM**(%%) : Public Network Mode 898 898 899 - (% style="background-color:#dcdcdc"%)**AT+RX1DL**(%%): Receive Delay1826 += 5. FAQ = 900 900 901 - (% style="background-color:#dcdcdc"%)**AT+RX2DL**(%%): ReceiveDelay2828 +== 5.1 How to Upgrade Firmware == 902 902 903 -(% style="background-color:#dcdcdc" %)**AT+RX2DR**(%%) : Rx2 Window Data Rate 904 904 905 -(% style="background-color:#dcdcdc" %)**AT+RX2FQ**(%%) : Rx2 Window Frequency 906 - 907 -(% style="background-color:#dcdcdc" %)**AT+TXP**(%%) : Transmit Power 908 - 909 -(% style="background-color:#dcdcdc" %)**AT+ MOD**(%%) : Set work mode 910 - 911 - 912 -(% style="color:#037691" %)**Information** 913 - 914 -(% style="background-color:#dcdcdc" %)**AT+RSSI**(%%) : RSSI of the Last Received Packet 915 - 916 -(% style="background-color:#dcdcdc" %)**AT+SNR**(%%) : SNR of the Last Received Packet 917 - 918 -(% style="background-color:#dcdcdc" %)**AT+VER**(%%) : Image Version and Frequency Band 919 - 920 -(% style="background-color:#dcdcdc" %)**AT+FDR**(%%) : Factory Data Reset 921 - 922 -(% style="background-color:#dcdcdc" %)**AT+PORT**(%%) : Application Port 923 - 924 -(% style="background-color:#dcdcdc" %)**AT+CHS**(%%) : Get or Set Frequency (Unit: Hz) for Single Channel Mode 925 - 926 - (% style="background-color:#dcdcdc" %)**AT+CHE**(%%) : Get or Set eight channels mode, Only for US915, AU915, CN470 927 - 928 - 929 -= 4. FAQ = 930 - 931 -== 4.1 How to change the LoRa Frequency Bands/Region? == 932 - 933 933 ((( 934 -You can follow the instructions for [[how to upgrade image>>||anchor="H2.10200BFirmwareChangeLog"]]. 935 -When downloading the images, choose the required image file for download. 832 +User can upgrade the firmware for 1) bug fix, 2) new feature release. 936 936 ))) 937 937 938 938 ((( 939 - 836 +Please see this link for how to upgrade: [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H2.HardwareUpgradeMethodSupportList>>http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H2.HardwareUpgradeMethodSupportList]] 940 940 ))) 941 941 942 942 ((( 943 - Howtosetup LSE01 towork in 8 channel modeBy default,thefrequency bandsUS915,AU915, CN470 work in 72 frequencies.Many gatewaysare8 channelgateways, andin thiscase,theOTAA join timeand uplink scheduleis longandunpredictable while the end nodeis hoppingin 72 frequencies.840 +(% style="color:red" %)Notice, NSE01 and LSE01 share the same mother board. They use the same connection and method to update. 944 944 ))) 945 945 946 -((( 947 - 948 -))) 949 949 950 -((( 951 -You can configure the end node to work in 8 channel mode by using the AT+CHE command. The 500kHz channels are always included for OTAA. 952 -))) 953 953 954 -((( 955 - 956 -))) 845 +== 5.2 Can I calibrate NSE01 to different soil types? == 957 957 958 958 ((( 959 - Forexample,in **US915**band,the frequencytablesasbelow. By default,the endnodewilluse all channels(0~~71)forOTAAJoinprocess.AftertheOTAAJoin,theend nodewilluse these allchannels(0~~71)tosenduplinkkets.848 +NSE01 is calibrated for saline-alkali soil and loamy soil. If users want to use it for other soil, they can calibrate the value in the IoT platform base on the value measured by saline-alkali soil and loamy soil. The formula can be found at [[this link>>https://www.dragino.com/downloads/downloads/LoRa_End_Node/LSE01/Calibrate_to_other_Soil_20220605.pdf]]. 960 960 ))) 961 961 962 -[[image:image-20220606154726-3.png]] 963 963 852 += 6. Trouble Shooting = 964 964 965 - Whenyouuse the TTNnetwork,theUS915 frequencybandsuseare:854 +== 6.1 Connection problem when uploading firmware == 966 966 967 -* 903.9 - SF7BW125 to SF10BW125 968 -* 904.1 - SF7BW125 to SF10BW125 969 -* 904.3 - SF7BW125 to SF10BW125 970 -* 904.5 - SF7BW125 to SF10BW125 971 -* 904.7 - SF7BW125 to SF10BW125 972 -* 904.9 - SF7BW125 to SF10BW125 973 -* 905.1 - SF7BW125 to SF10BW125 974 -* 905.3 - SF7BW125 to SF10BW125 975 -* 904.6 - SF8BW500 976 976 977 977 ((( 978 - Becausethendnodeisnow hoppingin72 frequency,itmakesitdifficulttheevicestoJointhe TTN network and uplinkta.Tosolve thisissue, you canccess thedevice viatheAT commandsandrun:858 +**Please see: **[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H3.3Troubleshooting>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H3.3Troubleshooting]] 979 979 ))) 980 980 981 -(% class=" boxinfomessage" %)861 +(% class="wikigeneratedid" %) 982 982 ((( 983 -**AT+CHE=2** 984 -))) 985 - 986 -(% class="box infomessage" %) 987 -((( 988 -**ATZ** 989 -))) 990 - 991 -((( 992 -to set the end node to work in 8 channel mode. The device will work in Channel 8-15 & 64-71 for OTAA, and channel 8-15 for Uplink. 993 -))) 994 - 995 -((( 996 996 997 997 ))) 998 998 999 -((( 1000 -The **AU915** band is similar. Below are the AU915 Uplink Channels. 1001 -))) 1002 1002 1003 - [[image:image-20220606154825-4.png]]867 +== 6.2 AT Command input doesn't work == 1004 1004 1005 - 1006 - 1007 -= 5. Trouble Shooting = 1008 - 1009 -== 5.1 Why I can’t join TTN in US915 / AU915 bands? == 1010 - 1011 -It is due to channel mapping. Please see the [[Eight Channel Mode>>doc:Main.LoRaWAN Communication Debug.WebHome||anchor="H2.NoticeofUS9152FCN4702FAU915Frequencyband"]] section above for details. 1012 - 1013 - 1014 -== 5.2 AT Command input doesn’t work == 1015 - 1016 1016 ((( 1017 -In the case if user can see the console output but can’t type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn’t send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string. 1018 -))) 870 +In the case if user can see the console output but can't type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn't send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string. 1019 1019 1020 - 1021 -== 5.3 Device rejoin in at the second uplink packet == 1022 - 1023 -(% style="color:#4f81bd" %)**Issue describe as below:** 1024 - 1025 -[[image:1654500909990-784.png]] 1026 - 1027 - 1028 -(% style="color:#4f81bd" %)**Cause for this issue:** 1029 - 1030 -((( 1031 -The fuse on LSE01 is not large enough, some of the soil probe require large current up to 5v 800mA, in a short pulse. When this happen, it cause the device reboot so user see rejoin. 872 + 1032 1032 ))) 1033 1033 1034 1034 1035 - (% style="color:#4f81bd"%)**Solution:**876 += 7. Order Info = 1036 1036 1037 -All new shipped LSE01 after 2020-May-30 will have this to fix. For the customer who see this issue, please bypass the fuse as below: 1038 1038 1039 - [[image:1654500929571-736.png||height="458" width="832"]]879 +Part Number**:** (% style="color:#4f81bd" %)**NSE01** 1040 1040 1041 1041 1042 -= 6. Order Info = 1043 - 1044 - 1045 -Part Number**:** (% style="color:#4f81bd" %)**LSE01-XX-YY** 1046 - 1047 - 1048 -(% style="color:#4f81bd" %)**XX**(%%)**:** The default frequency band 1049 - 1050 -* (% style="color:red" %)**AS923**(%%): LoRaWAN AS923 band 1051 -* (% style="color:red" %)**AU915**(%%): LoRaWAN AU915 band 1052 -* (% style="color:red" %)**EU433**(%%): LoRaWAN EU433 band 1053 -* (% style="color:red" %)**EU868**(%%): LoRaWAN EU868 band 1054 -* (% style="color:red" %)**KR920**(%%): LoRaWAN KR920 band 1055 -* (% style="color:red" %)**US915**(%%): LoRaWAN US915 band 1056 -* (% style="color:red" %)**IN865**(%%): LoRaWAN IN865 band 1057 -* (% style="color:red" %)**CN470**(%%): LoRaWAN CN470 band 1058 - 1059 -(% style="color:#4f81bd" %)**YY**(%%)**: **Battery Option 1060 - 1061 -* (% style="color:red" %)**4**(%%): 4000mAh battery 1062 -* (% style="color:red" %)**8**(%%): 8500mAh battery 1063 - 1064 1064 (% class="wikigeneratedid" %) 1065 1065 ((( 1066 1066 1067 1067 ))) 1068 1068 1069 -= 7. Packing Info =887 += 8. Packing Info = 1070 1070 1071 1071 ((( 1072 1072 1073 1073 1074 1074 (% style="color:#037691" %)**Package Includes**: 1075 -))) 1076 1076 1077 -* (((1078 - LSE01LoRaWAN SoilMoisture& EC Sensorx 1894 +* NSE01 NB-IoT Soil Moisture & EC Sensor x 1 895 +* External antenna x 1 1079 1079 ))) 1080 1080 1081 1081 ((( ... ... @@ -1082,24 +1082,19 @@ 1082 1082 1083 1083 1084 1084 (% style="color:#037691" %)**Dimension and weight**: 1085 -))) 1086 1086 1087 -* (((1088 - DeviceSize:cm903 +* Size: 195 x 125 x 55 mm 904 +* Weight: 420g 1089 1089 ))) 1090 -* ((( 1091 -Device Weight: g 1092 -))) 1093 -* ((( 1094 -Package Size / pcs : cm 1095 -))) 1096 -* ((( 1097 -Weight / pcs : g 1098 1098 907 +((( 1099 1099 909 + 910 + 911 + 1100 1100 ))) 1101 1101 1102 -= 8. Support =914 += 9. Support = 1103 1103 1104 1104 * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule. 1105 1105 * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.com]]
- 1657245163077-232.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +81.0 KB - Content
- 1657246476176-652.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +492.6 KB - Content
- 1657249419225-449.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +81.0 KB - Content
- 1657249468462-536.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +483.6 KB - Content
- 1657249793983-486.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +85.8 KB - Content
- 1657249831934-534.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +72.5 KB - Content
- 1657249864775-321.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +87.0 KB - Content
- 1657249930215-289.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +77.3 KB - Content
- 1657249978444-674.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +139.5 KB - Content
- 1657249990869-686.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +96.9 KB - Content
- 1657250217799-140.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +98.7 KB - Content
- 1657250255956-604.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +99.0 KB - Content
- 1657259653666-883.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +344.4 KB - Content
- 1657260785982-288.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +138.2 KB - Content
- 1657261119050-993.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +126.1 KB - Content
- 1657261278785-153.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +126.1 KB - Content
- 1657271519014-786.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +71.5 KB - Content
- image-20220708101224-1.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +22.2 KB - Content
- image-20220708101605-2.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +87.5 KB - Content
- image-20220708110657-3.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +251.7 KB - Content
- image-20220708111918-4.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +38.8 KB - Content
- image-20220708133731-5.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +8.7 KB - Content
- image-20220708140453-6.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +132.7 KB - Content
- image-20220708141352-7.jpeg
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +102.7 KB - Content
- image-20220709084038-1.jpeg
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +72.0 KB - Content