<
From version < 35.8 >
edited by Xiaoling
on 2022/06/14 14:03
To version < 31.16 >
edited by Xiaoling
on 2022/06/07 09:25
>
Change comment: There is no comment for this version

Summary

Details

Page properties
Content
... ... @@ -3,22 +3,16 @@
3 3  
4 4  
5 5  
6 -**Table of Contents:**
7 7  
8 -{{toc/}}
9 9  
10 10  
11 11  
12 12  
13 -
14 -
15 15  = 1. Introduction =
16 16  
17 17  == 1.1 ​What is LoRaWAN Soil Moisture & EC Sensor ==
18 18  
19 19  (((
20 -
21 -
22 22  The Dragino LSE01 is a (% style="color:#4f81bd" %)**LoRaWAN Soil Moisture & EC Sensor**(%%) for IoT of Agriculture. It is designed to measure the soil moisture of saline-alkali soil and loamy soil. The soil sensor uses FDR method to calculate the soil moisture with the compensation from soil temperature and conductivity. It also has been calibrated in factory for Mineral soil type.
23 23  )))
24 24  
... ... @@ -93,7 +93,7 @@
93 93  )))
94 94  
95 95  (((
96 -In case you can’t set the OTAA keys in the LoRaWAN OTAA server, and you have to use the keys from the server, you can [[use AT Commands >>||anchor="H3.200BUsingtheATCommands"]].
90 +In case you can’t set the OTAA keys in the LoRaWAN OTAA server, and you have to use the keys from the server, you can [[use AT Commands >>||anchor="H3.UsingtheATCommands"]].
97 97  )))
98 98  
99 99  
... ... @@ -109,7 +109,7 @@
109 109  The LG308 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
110 110  
111 111  
112 -(% style="color:blue" %)**Step 1**(%%):  Create a device in TTN with the OTAA keys from LSE01.
106 +**Step 1**: Create a device in TTN with the OTAA keys from LSE01.
113 113  
114 114  Each LSE01 is shipped with a sticker with the default device EUI as below:
115 115  
... ... @@ -130,7 +130,7 @@
130 130  
131 131  
132 132  
133 -(% style="color:blue" %)**Step 2**(%%): Power on LSE01
127 +**Step 2**: Power on LSE01
134 134  
135 135  
136 136  Put a Jumper on JP2 to power on the device. ( The Jumper must be in FLASH position).
... ... @@ -138,7 +138,7 @@
138 138  [[image:image-20220606163915-7.png]]
139 139  
140 140  
141 -(% style="color:blue" %)**Step 3**(%%)**:** The LSE01 will auto join to the TTN network. After join success, it will start to upload messages to TTN and you can see the messages in the panel.
135 +**Step 3:** The LSE01 will auto join to the TTN network. After join success, it will start to upload messages to TTN and you can see the messages in the panel.
142 142  
143 143  [[image:1654504778294-788.png]]
144 144  
... ... @@ -146,104 +146,86 @@
146 146  
147 147  == 2.3 Uplink Payload ==
148 148  
149 -
150 150  === 2.3.1 MOD~=0(Default Mode) ===
151 151  
152 152  LSE01 will uplink payload via LoRaWAN with below payload format: 
153 153  
154 -(((
147 +
155 155  Uplink payload includes in total 11 bytes.
156 -)))
149 +
157 157  
158 -(% border="1" cellspacing="10" style="background-color:#ffffcc; width:500px" %)
159 159  |(((
160 160  **Size**
161 161  
162 162  **(bytes)**
163 163  )))|**2**|**2**|**2**|**2**|**2**|**1**
164 -|**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(((
156 +|**Value**|[[BAT>>path:#bat]]|(((
165 165  Temperature
166 166  
167 167  (Reserve, Ignore now)
168 -)))|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]]|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]]|(((
160 +)))|[[Soil Moisture>>path:#soil_moisture]]|[[Soil Temperature>>path:#soil_tem]]|[[Soil Conductivity (EC)>>path:#EC]]|(((
169 169  MOD & Digital Interrupt
170 170  
171 171  (Optional)
172 172  )))
173 173  
166 +[[image:1654504881641-514.png]]
167 +
168 +
169 +
174 174  === 2.3.2 MOD~=1(Original value) ===
175 175  
176 176  This mode can get the original AD value of moisture and original conductivity (with temperature drift compensation).
177 177  
178 -(% border="1" cellspacing="10" style="background-color:#ffffcc; width:500px" %)
179 179  |(((
180 180  **Size**
181 181  
182 182  **(bytes)**
183 183  )))|**2**|**2**|**2**|**2**|**2**|**1**
184 -|**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(((
179 +|**Value**|[[BAT>>path:#bat]]|(((
185 185  Temperature
186 186  
187 187  (Reserve, Ignore now)
188 -)))|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]](raw)|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]](raw)|(((
183 +)))|[[Soil Moisture>>path:#soil_moisture]](raw)|[[Soil Temperature>>path:#soil_tem]]|[[Soil Conductivity (EC)>>path:#EC]](raw)|(((
189 189  MOD & Digital Interrupt
190 190  
191 191  (Optional)
192 192  )))
193 193  
189 +[[image:1654504907647-967.png]]
190 +
191 +
192 +
194 194  === 2.3.3 Battery Info ===
195 195  
196 -(((
197 197  Check the battery voltage for LSE01.
198 -)))
199 199  
200 -(((
201 201  Ex1: 0x0B45 = 2885mV
202 -)))
203 203  
204 -(((
205 205  Ex2: 0x0B49 = 2889mV
206 -)))
207 207  
208 208  
209 209  
210 210  === 2.3.4 Soil Moisture ===
211 211  
212 -(((
213 213  Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil.
214 -)))
215 215  
216 -(((
217 217  For example, if the data you get from the register is __0x05 0xDC__, the moisture content in the soil is
218 -)))
219 219  
220 -(((
221 -
222 -)))
223 223  
224 -(((
225 225  (% style="color:#4f81bd" %)**05DC(H) = 1500(D) /100 = 15%.**
226 -)))
227 227  
228 228  
229 229  
230 230  === 2.3.5 Soil Temperature ===
231 231  
232 -(((
233 233   Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is 0x09 0xEC, the temperature content in the soil is
234 -)))
235 235  
236 -(((
237 237  **Example**:
238 -)))
239 239  
240 -(((
241 241  If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/100 = 2.61 °C
242 -)))
243 243  
244 -(((
245 245  If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C
246 -)))
247 247  
248 248  
249 249  
... ... @@ -278,7 +278,7 @@
278 278  mod=(bytes[10]>>7)&0x01=1.
279 279  
280 280  
281 -**Downlink Command:**
257 +Downlink Command:
282 282  
283 283  If payload = 0x0A00, workmode=0
284 284  
... ... @@ -293,22 +293,19 @@
293 293  
294 294  [[image:1654505570700-128.png]]
295 295  
296 -(((
297 297  The payload decoder function for TTN is here:
298 -)))
299 299  
300 -(((
301 301  LSE01 TTN Payload Decoder: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Payload_Decoder/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Payload_Decoder/]]
302 -)))
303 303  
304 304  
305 -
306 306  == 2.4 Uplink Interval ==
307 307  
308 -The LSE01 by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link: [[Change Uplink Interval>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H4.1ChangeUplinkInterval"]]
279 +The LSE01 by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link:
309 309  
281 +[[http:~~/~~/wiki.dragino.com/index.php?title=End_Device_AT_Commands_and_Downlink_Commands#Change_Uplink_Interval>>url:http://wiki.dragino.com/index.php?title=End_Device_AT_Commands_and_Downlink_Commands#Change_Uplink_Interval]]
310 310  
311 311  
284 +
312 312  == 2.5 Downlink Payload ==
313 313  
314 314  By default, LSE50 prints the downlink payload to console port.
... ... @@ -316,41 +316,21 @@
316 316  [[image:image-20220606165544-8.png]]
317 317  
318 318  
319 -(((
320 320  **Examples:**
321 -)))
322 322  
323 -(((
324 -
325 -)))
326 326  
327 -* (((
328 -**Set TDC**
329 -)))
295 +* **Set TDC**
330 330  
331 -(((
332 332  If the payload=0100003C, it means set the END Node’s TDC to 0x00003C=60(S), while type code is 01.
333 -)))
334 334  
335 -(((
336 336  Payload:    01 00 00 1E    TDC=30S
337 -)))
338 338  
339 -(((
340 340  Payload:    01 00 00 3C    TDC=60S
341 -)))
342 342  
343 -(((
344 -
345 -)))
346 346  
347 -* (((
348 -**Reset**
349 -)))
304 +* **Reset**
350 350  
351 -(((
352 352  If payload = 0x04FF, it will reset the LSE01
353 -)))
354 354  
355 355  
356 356  * **CFM**
... ... @@ -361,21 +361,12 @@
361 361  
362 362  == 2.6 ​Show Data in DataCake IoT Server ==
363 363  
364 -(((
365 365  [[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps:
366 -)))
367 367  
368 -(((
369 -
370 -)))
371 371  
372 -(((
373 373  **Step 1**: Be sure that your device is programmed and properly connected to the network at this time.
374 -)))
375 375  
376 -(((
377 377  **Step 2**: To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps:
378 -)))
379 379  
380 380  
381 381  [[image:1654505857935-743.png]]
... ... @@ -767,7 +767,7 @@
767 767  [[Lithium-ion Battery-Capacitor datasheet>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC_1520_datasheet.jpg]], [[Tech Spec>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC1520%20Technical%20Specification20171123.pdf]]
768 768  )))
769 769  
770 - [[image:image-20220610172436-1.png]]
714 + [[image:image-20220606171726-9.png]]
771 771  
772 772  
773 773  
... ... @@ -802,13 +802,13 @@
802 802  
803 803  LSE01 supports AT Command set in the stock firmware. You can use a USB to TTL adapter to connect to LSE01 for using AT command, as below.
804 804  
805 -[[image:1654501986557-872.png||height="391" width="800"]]
749 +[[image:1654501986557-872.png]]
806 806  
807 807  
808 808  Or if you have below board, use below connection:
809 809  
810 810  
811 -[[image:1654502005655-729.png||height="503" width="801"]]
755 +[[image:1654502005655-729.png]]
812 812  
813 813  
814 814  
... ... @@ -815,7 +815,7 @@
815 815  In the PC, you need to set the serial baud rate to (% style="color:green" %)**9600**(%%) to access the serial console for LSE01. LSE01 will output system info once power on as below:
816 816  
817 817  
818 - [[image:1654502050864-459.png||height="564" width="806"]]
762 + [[image:1654502050864-459.png]]
819 819  
820 820  
821 821  Below are the available commands, a more detailed AT Command manual can be found at [[AT Command Manual>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/]]: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/]]
... ... @@ -930,38 +930,20 @@
930 930  
931 931  == 4.1 ​How to change the LoRa Frequency Bands/Region? ==
932 932  
933 -(((
934 -You can follow the instructions for [[how to upgrade image>>||anchor="H2.10200BFirmwareChangeLog"]].
877 +You can follow the instructions for [[how to upgrade image>>||anchor="H2.10FirmwareChangeLog"]].
935 935  When downloading the images, choose the required image file for download. ​
936 -)))
937 937  
938 -(((
939 -
940 -)))
941 941  
942 -(((
943 943  How to set up LSE01 to work in 8 channel mode By default, the frequency bands US915, AU915, CN470 work in 72 frequencies. Many gateways are 8 channel gateways, and in this case, the OTAA join time and uplink schedule is long and unpredictable while the end node is hopping in 72 frequencies.
944 -)))
945 945  
946 -(((
947 -
948 -)))
949 949  
950 -(((
951 951  You can configure the end node to work in 8 channel mode by using the AT+CHE command. The 500kHz channels are always included for OTAA.
952 -)))
953 953  
954 -(((
955 -
956 -)))
957 957  
958 -(((
959 959  For example, in **US915** band, the frequency table is as below. By default, the end node will use all channels (0~~71) for OTAA Join process. After the OTAA Join, the end node will use these all channels (0~~71) to send uplink packets.
960 -)))
961 961  
962 962  [[image:image-20220606154726-3.png]]
963 963  
964 -
965 965  When you use the TTN network, the US915 frequency bands use are:
966 966  
967 967  * 903.9 - SF7BW125 to SF10BW125
... ... @@ -974,9 +974,7 @@
974 974  * 905.3 - SF7BW125 to SF10BW125
975 975  * 904.6 - SF8BW500
976 976  
977 -(((
978 978  Because the end node is now hopping in 72 frequency, it makes it difficult for the devices to Join the TTN network and uplink data. To solve this issue, you can access the device via the AT commands and run:
979 -)))
980 980  
981 981  (% class="box infomessage" %)
982 982  (((
... ... @@ -988,17 +988,10 @@
988 988  **ATZ**
989 989  )))
990 990  
991 -(((
992 992  to set the end node to work in 8 channel mode. The device will work in Channel 8-15 & 64-71 for OTAA, and channel 8-15 for Uplink.
993 -)))
994 994  
995 -(((
996 -
997 -)))
998 998  
999 -(((
1000 1000  The **AU915** band is similar. Below are the AU915 Uplink Channels.
1001 -)))
1002 1002  
1003 1003  [[image:image-20220606154825-4.png]]
1004 1004  
... ... @@ -1013,9 +1013,7 @@
1013 1013  
1014 1014  == 5.2 AT Command input doesn’t work ==
1015 1015  
1016 -(((
1017 1017  In the case if user can see the console output but can’t type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn’t send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.
1018 -)))
1019 1019  
1020 1020  
1021 1021  == 5.3 Device rejoin in at the second uplink packet ==
... ... @@ -1027,9 +1027,7 @@
1027 1027  
1028 1028  (% style="color:#4f81bd" %)**Cause for this issue:**
1029 1029  
1030 -(((
1031 1031  The fuse on LSE01 is not large enough, some of the soil probe require large current up to 5v 800mA, in a short pulse. When this happen, it cause the device reboot so user see rejoin.
1032 -)))
1033 1033  
1034 1034  
1035 1035  (% style="color:#4f81bd" %)**Solution: **
... ... @@ -1036,7 +1036,7 @@
1036 1036  
1037 1037  All new shipped LSE01 after 2020-May-30 will have this to fix. For the customer who see this issue, please bypass the fuse as below:
1038 1038  
1039 -[[image:1654500929571-736.png||height="458" width="832"]]
952 +[[image:1654500929571-736.png]]
1040 1040  
1041 1041  
1042 1042  = 6. ​Order Info =
... ... @@ -1069,9 +1069,7 @@
1069 1069  = 7. Packing Info =
1070 1070  
1071 1071  (((
1072 -
1073 -
1074 -(% style="color:#037691" %)**Package Includes**:
985 +**Package Includes**:
1075 1075  )))
1076 1076  
1077 1077  * (((
... ... @@ -1080,8 +1080,10 @@
1080 1080  
1081 1081  (((
1082 1082  
994 +)))
1083 1083  
1084 -(% style="color:#037691" %)**Dimension and weight**:
996 +(((
997 +**Dimension and weight**:
1085 1085  )))
1086 1086  
1087 1087  * (((
... ... @@ -1096,6 +1096,7 @@
1096 1096  * (((
1097 1097  Weight / pcs : g
1098 1098  
1012 +
1099 1099  
1100 1100  )))
1101 1101  
... ... @@ -1103,3 +1103,5 @@
1103 1103  
1104 1104  * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
1105 1105  * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.com]]
1020 +
1021 +
image-20220610172436-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -370.3 KB
Content
Copyright ©2010-2022 Dragino Technology Co., LTD. All rights reserved
Dragino Wiki v2.0