<
From version < 35.7 >
edited by Xiaoling
on 2022/06/14 14:03
To version < 65.12 >
edited by Xiaoling
on 2022/07/08 15:49
>
Change comment: There is no comment for this version

Summary

Details

Page properties
Title
... ... @@ -1,1 +1,1 @@
1 -LSE01-LoRaWAN Soil Moisture & EC Sensor User Manual
1 +NSE01 - NB-IoT Soil Moisture & EC Sensor User Manual
Content
... ... @@ -3,6 +3,14 @@
3 3  
4 4  
5 5  
6 +
7 +
8 +
9 +
10 +
11 +
12 +
13 +
6 6  **Table of Contents:**
7 7  
8 8  {{toc/}}
... ... @@ -12,66 +12,82 @@
12 12  
13 13  
14 14  
15 -= 1. Introduction =
16 16  
17 -== 1.1 ​What is LoRaWAN Soil Moisture & EC Sensor ==
24 += 1.  Introduction =
18 18  
26 +== 1.1 ​ What is LoRaWAN Soil Moisture & EC Sensor ==
27 +
19 19  (((
20 20  
21 21  
22 -The Dragino LSE01 is a (% style="color:#4f81bd" %)**LoRaWAN Soil Moisture & EC Sensor**(%%) for IoT of Agriculture. It is designed to measure the soil moisture of saline-alkali soil and loamy soil. The soil sensor uses FDR method to calculate the soil moisture with the compensation from soil temperature and conductivity. It also has been calibrated in factory for Mineral soil type.
31 +(((
32 +Dragino NSE01 is an (% style="color:blue" %)**NB-IOT soil moisture & EC sensor**(%%) for agricultural IoT. Used to measure the soil moisture of saline-alkali soil and loam. The soil sensor uses the FDR method to calculate soil moisture and compensates it with soil temperature and electrical conductivity. It has also been calibrated for mineral soil types at the factory.
23 23  )))
24 24  
25 25  (((
26 -It detects (% style="color:#4f81bd" %)**Soil Moisture**(%%), (% style="color:#4f81bd" %)**Soil Temperature**(%%) and (% style="color:#4f81bd" %)**Soil Conductivity**(%%), and uploads the value via wireless to LoRaWAN IoT Server.
36 +It can detect (% style="color:blue" %)**Soil Moisture, Soil Temperature and Soil Conductivity**(%%), and upload its value to the server wirelessly.
27 27  )))
28 28  
29 29  (((
30 -The LoRa wireless technology used in LES01 allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption.
40 +The wireless technology used in NSE01 allows the device to send data at a low data rate and reach ultra-long distances, providing ultra-long-distance spread spectrum Communication.
31 31  )))
32 32  
33 33  (((
34 -LES01 is powered by (% style="color:#4f81bd" %)**4000mA or 8500mAh Li-SOCI2 battery**(%%), It is designed for long term use up to 10 years.
44 +NSE01 are powered by (% style="color:blue" %)**8500mAh Li-SOCI2**(%%) batteries, which can be used for up to 5 years.  
35 35  )))
36 36  
37 -(((
38 -Each LES01 is pre-load with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect after power on.
47 +
39 39  )))
40 40  
41 -
42 42  [[image:1654503236291-817.png]]
43 43  
44 44  
45 -[[image:1654503265560-120.png]]
53 +[[image:1657245163077-232.png]]
46 46  
47 47  
48 48  
49 -== 1.2 ​Features ==
57 +== 1.2 ​ Features ==
50 50  
51 -* LoRaWAN 1.0.3 Class A
52 -* Ultra low power consumption
59 +* NB-IoT Bands: B1/B3/B8/B5/B20/B28 @H-FDD
53 53  * Monitor Soil Moisture
54 54  * Monitor Soil Temperature
55 55  * Monitor Soil Conductivity
56 -* Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865
57 57  * AT Commands to change parameters
58 58  * Uplink on periodically
59 59  * Downlink to change configure
60 60  * IP66 Waterproof Enclosure
61 -* 4000mAh or 8500mAh Battery for long term use
67 +* Ultra-Low Power consumption
68 +* AT Commands to change parameters
69 +* Micro SIM card slot for NB-IoT SIM
70 +* 8500mAh Battery for long term use
62 62  
63 63  
73 +== 1.3  Specification ==
64 64  
65 65  
66 -== 1.3 Specification ==
76 +(% style="color:#037691" %)**Common DC Characteristics:**
67 67  
78 +* Supply Voltage: 2.1v ~~ 3.6v
79 +* Operating Temperature: -40 ~~ 85°C
80 +
81 +(% style="color:#037691" %)**NB-IoT Spec:**
82 +
83 +* - B1 @H-FDD: 2100MHz
84 +* - B3 @H-FDD: 1800MHz
85 +* - B8 @H-FDD: 900MHz
86 +* - B5 @H-FDD: 850MHz
87 +* - B20 @H-FDD: 800MHz
88 +* - B28 @H-FDD: 700MHz
89 +
90 +Probe(% style="color:#037691" %)** Specification:**
91 +
68 68  Measure Volume: Base on the centra pin of the probe, a cylinder with 7cm diameter and 10cm height.
69 69  
70 -[[image:image-20220606162220-5.png]]
94 +[[image:image-20220708101224-1.png]]
71 71  
72 72  
73 73  
74 -== ​1.4 Applications ==
98 +== ​1.4  Applications ==
75 75  
76 76  * Smart Agriculture
77 77  
... ... @@ -78,1006 +78,724 @@
78 78  (% class="wikigeneratedid" id="H200B1.5FirmwareChangelog" %)
79 79  ​
80 80  
81 -== 1.5 Firmware Change log ==
105 +== 1.5  Pin Definitions ==
82 82  
83 83  
84 -**LSE01 v1.0 :**  Release
108 +[[image:1657246476176-652.png]]
85 85  
86 86  
87 87  
88 -= 2. Configure LSE01 to connect to LoRaWAN network =
112 += 2.  Use NSE01 to communicate with IoT Server =
89 89  
90 -== 2.1 How it works ==
114 +== 2.1  How it works ==
91 91  
116 +
92 92  (((
93 -The LSE01 is configured as LoRaWAN OTAA Class A mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and power on the LSE0150. It will automatically join the network via OTAA and start to send the sensor value
118 +The NSE01 is equipped with a NB-IoT module, the pre-loaded firmware in NSE01 will get environment data from sensors and send the value to local NB-IoT network via the NB-IoT module The NB-IoT network will forward this value to IoT server via the protocol defined by NSE01.
94 94  )))
95 95  
121 +
96 96  (((
97 -In case you can’t set the OTAA keys in the LoRaWAN OTAA server, and you have to use the keys from the server, you can [[use AT Commands >>||anchor="H3.200BUsingtheATCommands"]].
123 +The diagram below shows the working flow in default firmware of NSE01:
98 98  )))
99 99  
126 +[[image:image-20220708101605-2.png]]
100 100  
128 +(((
129 +
130 +)))
101 101  
102 -== 2.2 ​Quick guide to connect to LoRaWAN server (OTAA) ==
103 103  
104 -Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LG308>>url:http://www.dragino.com/products/lora/item/140-lg308.html]] as a LoRaWAN gateway in this example.
105 105  
134 +== 2.2 ​ Configure the NSE01 ==
106 106  
107 -[[image:1654503992078-669.png]]
108 108  
137 +=== 2.2.1 Test Requirement ===
109 109  
110 -The LG308 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
111 111  
112 -
113 -**(% style="color:blue" %)Step 1**(%%):  Create a device in TTN with the OTAA keys from LSE01.
114 -
115 -Each LSE01 is shipped with a sticker with the default device EUI as below:
116 -
117 -[[image:image-20220606163732-6.jpeg]]
118 -
119 -You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot:
120 -
121 -**Add APP EUI in the application**
122 -
123 -
124 -[[image:1654504596150-405.png]]
125 -
126 -
127 -
128 -**Add APP KEY and DEV EUI**
129 -
130 -[[image:1654504683289-357.png]]
131 -
132 -
133 -
134 -**(% style="color:blue" %)Step 2**(%%): Power on LSE01
135 -
136 -
137 -Put a Jumper on JP2 to power on the device. ( The Jumper must be in FLASH position).
138 -
139 -[[image:image-20220606163915-7.png]]
140 -
141 -
142 -**(% style="color:blue" %)Step 3(%%):** The LSE01 will auto join to the TTN network. After join success, it will start to upload messages to TTN and you can see the messages in the panel.
143 -
144 -[[image:1654504778294-788.png]]
145 -
146 -
147 -
148 -== 2.3 Uplink Payload ==
149 -
150 -
151 -
152 -=== 2.3.1 MOD~=0(Default Mode) ===
153 -
154 -LSE01 will uplink payload via LoRaWAN with below payload format: 
155 -
156 156  (((
157 -Uplink payload includes in total 11 bytes.
141 +To use NSE01 in your city, make sure meet below requirements:
158 158  )))
159 159  
160 -(% border="1" cellspacing="10" style="background-color:#ffffcc; width:500px" %)
161 -|(((
162 -**Size**
144 +* Your local operator has already distributed a NB-IoT Network there.
145 +* The local NB-IoT network used the band that NSE01 supports.
146 +* Your operator is able to distribute the data received in their NB-IoT network to your IoT server.
163 163  
164 -**(bytes)**
165 -)))|**2**|**2**|**2**|**2**|**2**|**1**
166 -|**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(((
167 -Temperature
168 -
169 -(Reserve, Ignore now)
170 -)))|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]]|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]]|(((
171 -MOD & Digital Interrupt
172 -
173 -(Optional)
148 +(((
149 +Below figure shows our testing structure. Here we have NB-IoT network coverage by China Mobile, the band they use is B8.  The NSE01 will use CoAP((% style="color:red" %)120.24.4.116:5683)(%%) or raw UDP((% style="color:red" %)120.24.4.116:5601)(%%) or MQTT((% style="color:red" %)120.24.4.116:1883)(%%)or TCP((% style="color:red" %)120.24.4.116:5600)(%%)protocol to send data to the test server
174 174  )))
175 175  
176 -=== 2.3.2 MOD~=1(Original value) ===
177 177  
178 -This mode can get the original AD value of moisture and original conductivity (with temperature drift compensation).
153 +[[image:1657249419225-449.png]]
179 179  
180 -(% border="1" cellspacing="10" style="background-color:#ffffcc; width:500px" %)
181 -|(((
182 -**Size**
183 183  
184 -**(bytes)**
185 -)))|**2**|**2**|**2**|**2**|**2**|**1**
186 -|**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(((
187 -Temperature
188 188  
189 -(Reserve, Ignore now)
190 -)))|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]](raw)|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]](raw)|(((
191 -MOD & Digital Interrupt
157 +=== 2.2.2 Insert SIM card ===
192 192  
193 -(Optional)
194 -)))
195 -
196 -=== 2.3.3 Battery Info ===
197 -
198 198  (((
199 -Check the battery voltage for LSE01.
160 +Insert the NB-IoT Card get from your provider.
200 200  )))
201 201  
202 202  (((
203 -Ex1: 0x0B45 = 2885mV
164 +User need to take out the NB-IoT module and insert the SIM card like below:
204 204  )))
205 205  
206 -(((
207 -Ex2: 0x0B49 = 2889mV
208 -)))
209 209  
168 +[[image:1657249468462-536.png]]
210 210  
211 211  
212 -=== 2.3.4 Soil Moisture ===
213 213  
214 -(((
215 -Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil.
216 -)))
172 +=== 2.2.3 Connect USB – TTL to NSE01 to configure it ===
217 217  
218 218  (((
219 -For example, if the data you get from the register is __0x05 0xDC__, the moisture content in the soil is
220 -)))
221 -
222 222  (((
223 -
176 +User need to configure NSE01 via serial port to set the (% style="color:blue" %)**Server Address** / **Uplink Topic** (%%)to define where and how-to uplink packets. NSE01 support AT Commands, user can use a USB to TTL adapter to connect to NSE01 and use AT Commands to configure it, as below.
224 224  )))
225 -
226 -(((
227 -(% style="color:#4f81bd" %)**05DC(H) = 1500(D) /100 = 15%.**
228 228  )))
229 229  
230 230  
181 +**Connection:**
231 231  
232 -=== 2.3.5 Soil Temperature ===
183 + (% style="background-color:yellow" %)USB TTL GND <~-~-~-~-> GND
233 233  
234 -(((
235 - Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is 0x09 0xEC, the temperature content in the soil is
236 -)))
185 + (% style="background-color:yellow" %)USB TTL TXD <~-~-~-~-> UART_RXD
237 237  
238 -(((
239 -**Example**:
240 -)))
187 + (% style="background-color:yellow" %)USB TTL RXD <~-~-~-~-> UART_TXD
241 241  
242 -(((
243 -If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/100 = 2.61 °C
244 -)))
245 245  
246 -(((
247 -If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C
248 -)))
190 +In the PC, use below serial tool settings:
249 249  
192 +* Baud:  (% style="color:green" %)**9600**
193 +* Data bits:** (% style="color:green" %)8(%%)**
194 +* Stop bits: (% style="color:green" %)**1**
195 +* Parity:  (% style="color:green" %)**None**
196 +* Flow Control: (% style="color:green" %)**None**
250 250  
251 -
252 -=== 2.3.6 Soil Conductivity (EC) ===
253 -
254 254  (((
255 -Obtain (% style="color:#4f81bd" %)**__soluble salt concentration__**(%%) in soil or (% style="color:#4f81bd" %)**__soluble ion concentration in liquid fertilizer__**(%%) or (% style="color:#4f81bd" %)**__planting medium__**(%%). The value range of the register is 0 - 20000(Decimal)( Can be greater than 20000).
199 +Make sure the switch is in FLASH position, then power on device by connecting the jumper on NSE01. NSE01 will output system info once power on as below, we can enter the (% style="color:green" %)**password: 12345678**(%%) to access AT Command input.
256 256  )))
257 257  
258 -(((
259 -For example, if the data you get from the register is 0x00 0xC8, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm.
260 -)))
202 +[[image:image-20220708110657-3.png]]
261 261  
262 262  (((
263 -Generally, the EC value of irrigation water is less than 800uS / cm.
205 +(% style="color:red" %)Note: the valid AT Commands can be found at: (%%)[[http:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/]]
264 264  )))
265 265  
266 -(((
267 -
268 -)))
269 269  
270 -(((
271 -
272 -)))
273 273  
274 -=== 2.3.7 MOD ===
210 +=== 2.2.4 Use CoAP protocol to uplink data ===
275 275  
276 -Firmware version at least v2.1 supports changing mode.
212 +(% style="color:red" %)Note: if you don't have CoAP server, you can refer this link to set up one: (%%)[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/>>http://wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/]]
277 277  
278 -For example, bytes[10]=90
279 279  
280 -mod=(bytes[10]>>7)&0x01=1.
215 +**Use below commands:**
281 281  
217 +* (% style="color:blue" %)**AT+PRO=1**  (%%) ~/~/ Set to use CoAP protocol to uplink
218 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5683   ** (%%)~/~/ to set CoAP server address and port
219 +* (% style="color:blue" %)**AT+URI=5,11,"mqtt",11,"coap",12,"0",15,"c=text1",23,"0" ** (%%) ~/~/Set COAP resource path
282 282  
283 -**Downlink Command:**
221 +For parameter description, please refer to AT command set
284 284  
285 -If payload = 0x0A00, workmode=0
223 +[[image:1657249793983-486.png]]
286 286  
287 -If** **payload =** **0x0A01, workmode=1
288 288  
226 +After configure the server address and (% style="color:green" %)**reset the device**(%%) (via AT+ATZ ), NSE01 will start to uplink sensor values to CoAP server.
289 289  
228 +[[image:1657249831934-534.png]]
290 290  
291 -=== 2.3.8 ​Decode payload in The Things Network ===
292 292  
293 -While using TTN network, you can add the payload format to decode the payload.
294 294  
232 +=== 2.2.5 Use UDP protocol to uplink data(Default protocol) ===
295 295  
296 -[[image:1654505570700-128.png]]
234 +This feature is supported since firmware version v1.0.1
297 297  
298 -(((
299 -The payload decoder function for TTN is here:
300 -)))
301 301  
302 -(((
303 -LSE01 TTN Payload Decoder: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Payload_Decoder/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Payload_Decoder/]]
304 -)))
237 +* (% style="color:blue" %)**AT+PRO=2   ** (%%) ~/~/ Set to use UDP protocol to uplink
238 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5601   ** (%%) ~/~/ to set UDP server address and port
239 +* (% style="color:blue" %)**AT+CFM=1       ** (%%) ~/~/If the server does not respond, this command is unnecessary
305 305  
241 +[[image:1657249864775-321.png]]
306 306  
307 307  
308 -== 2.4 Uplink Interval ==
244 +[[image:1657249930215-289.png]]
309 309  
310 -The LSE01 by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link: [[Change Uplink Interval>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H4.1ChangeUplinkInterval"]]
311 311  
312 312  
248 +=== 2.2.6 Use MQTT protocol to uplink data ===
313 313  
314 -== 2.5 Downlink Payload ==
250 +This feature is supported since firmware version v110
315 315  
316 -By default, LSE50 prints the downlink payload to console port.
317 317  
318 -[[image:image-20220606165544-8.png]]
253 +* (% style="color:blue" %)**AT+PRO=3   ** (%%) ~/~/Set to use MQTT protocol to uplink
254 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,1883   ** (%%) ~/~/Set MQTT server address and port
255 +* (% style="color:blue" %)**AT+CLIENT=CLIENT       ** (%%)~/~/Set up the CLIENT of MQTT
256 +* (% style="color:blue" %)**AT+UNAME=UNAME                               **(%%)~/~/Set the username of MQTT
257 +* (% style="color:blue" %)**AT+PWD=PWD                                        **(%%)~/~/Set the password of MQTT
258 +* (% style="color:blue" %)**AT+PUBTOPIC=NSE01_PUB                    **(%%)~/~/Set the sending topic of MQTT
259 +* (% style="color:blue" %)**AT+SUBTOPIC=NSE01_SUB          **(%%) ~/~/Set the subscription topic of MQTT
319 319  
261 +[[image:1657249978444-674.png]]
320 320  
321 -(((
322 -**Examples:**
323 -)))
324 324  
325 -(((
326 -
327 -)))
264 +[[image:1657249990869-686.png]]
328 328  
329 -* (((
330 -**Set TDC**
331 -)))
332 332  
333 333  (((
334 -If the payload=0100003C, it means set the END Node’s TDC to 0x00003C=60(S), while type code is 01.
268 +MQTT protocol has a much higher power consumption compare vs UDP / CoAP protocol. Please check the power analyze document and adjust the uplink period to a suitable interval.
335 335  )))
336 336  
337 -(((
338 -Payload:    01 00 00 1E    TDC=30S
339 -)))
340 340  
341 -(((
342 -Payload:    01 00 00 3C    TDC=60S
343 -)))
344 344  
345 -(((
346 -
347 -)))
273 +=== 2.2.7 Use TCP protocol to uplink data ===
348 348  
349 -* (((
350 -**Reset**
351 -)))
275 +This feature is supported since firmware version v110
352 352  
353 -(((
354 -If payload = 0x04FF, it will reset the LSE01
355 -)))
356 356  
278 +* (% style="color:blue" %)**AT+PRO=4   ** (%%) ~/~/ Set to use TCP protocol to uplink
279 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5600   **(%%) ~/~/ to set TCP server address and port
357 357  
358 -* **CFM**
281 +[[image:1657250217799-140.png]]
359 359  
360 -Downlink Payload: 05000001, Set AT+CFM=1 or 05000000 , set AT+CFM=0
361 361  
284 +[[image:1657250255956-604.png]]
362 362  
363 363  
364 -== 2.6 ​Show Data in DataCake IoT Server ==
365 365  
366 -(((
367 -[[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps:
368 -)))
288 +=== 2.2.8 Change Update Interval ===
369 369  
370 -(((
371 -
372 -)))
290 +User can use below command to change the (% style="color:green" %)**uplink interval**.
373 373  
292 +* (% style="color:blue" %)**AT+TDC=600      ** (%%)~/~/ Set Update Interval to 600s
293 +
374 374  (((
375 -**Step 1**: Be sure that your device is programmed and properly connected to the network at this time.
295 +(% style="color:red" %)**NOTE:**
376 376  )))
377 377  
378 378  (((
379 -**Step 2**: To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps:
299 +(% style="color:red" %)1. By default, the device will send an uplink message every 1 hour.
380 380  )))
381 381  
382 382  
383 -[[image:1654505857935-743.png]]
384 384  
304 +== 2.3  Uplink Payload ==
385 385  
386 -[[image:1654505874829-548.png]]
306 +In this mode, uplink payload includes in total 18 bytes
387 387  
388 -Step 3: Create an account or log in Datacake.
308 +(% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:510px" %)
309 +|=(% style="width: 60px;" %)(((
310 +**Size(bytes)**
311 +)))|=(% style="width: 50px;" %)**6**|=(% style="width: 25px;" %)2|=(% style="width: 25px;" %)**2**|=(% style="width: 70px;" %)**1**|=(% style="width: 60px;" %)**2**|=(% style="width: 80px;" %)**2**|=(% style="width: 90px;" %)**2**|=(% style="width: 50px;" %)**1**
312 +|(% style="width:97px" %)**Value**|(% style="width:83px" %)[[Device ID>>||anchor="H2.4.1A0A0DeviceID"]]|(% style="width:41px" %)[[Ver>>||anchor="H2.4.2A0VersionInfo"]]|(% style="width:46px" %)[[BAT>>||anchor="H2.4.3A0BatteryInfo"]]|(% style="width:123px" %)[[Signal Strength>>||anchor="H2.4.4A0SignalStrength"]]|(% style="width:108px" %)[[Soil Moisture>>||anchor="H2.4.5A0SoilMoisture"]]|(% style="width:133px" %)[[Soil Temperature>>||anchor="H2.4.6A0SoilTemperature"]]|(% style="width:159px" %)[[Soil Conductivity(EC)>>||anchor="H2.4.7A0SoilConductivity28EC29"]]|(% style="width:80px" %)[[Interrupt>>||anchor="H2.4.8A0DigitalInterrupt"]]
389 389  
390 -Step 4: Search the LSE01 and add DevEUI.
314 +If we use the MQTT client to subscribe to this MQTT topic, we can see the following information when the NSE01 uplink data.
391 391  
392 392  
393 -[[image:1654505905236-553.png]]
317 +[[image:image-20220708111918-4.png]]
394 394  
395 395  
396 -After added, the sensor data arrive TTN, it will also arrive and show in Mydevices.
320 +The payload is ASCII string, representative same HEX:
397 397  
398 -[[image:1654505925508-181.png]]
322 +0x72403155615900640c7817075e0a8c02f900 where:
399 399  
324 +* Device ID: 0x 724031556159 = 724031556159
325 +* Version: 0x0064=100=1.0.0
400 400  
327 +* BAT: 0x0c78 = 3192 mV = 3.192V
328 +* Singal: 0x17 = 23
329 +* Soil Moisture: 0x075e= 1886 = 18.86  %
330 +* Soil Temperature:0x0a8c =2700=27 °C
331 +* Soil Conductivity(EC) = 0x02f9 =761 uS /cm
332 +* Interrupt: 0x00 = 0
401 401  
402 -== 2.7 Frequency Plans ==
403 403  
404 -The LSE01 uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.
335 +== 2.4  Payload Explanation and Sensor Interface ==
405 405  
406 406  
407 -=== 2.7.1 EU863-870 (EU868) ===
338 +=== 2.4.1  Device ID ===
408 408  
409 -(% style="color:#037691" %)** Uplink:**
340 +By default, the Device ID equal to the last 6 bytes of IMEI.
410 410  
411 -868.1 - SF7BW125 to SF12BW125
342 +User can use (% style="color:blue" %)**AT+DEUI**(%%) to set Device ID
412 412  
413 -868.3 - SF7BW125 to SF12BW125 and SF7BW250
344 +**Example:**
414 414  
415 -868.5 - SF7BW125 to SF12BW125
346 +AT+DEUI=A84041F15612
416 416  
417 -867.1 - SF7BW125 to SF12BW125
348 +The Device ID is stored in a none-erase area, Upgrade the firmware or run AT+FDR won't erase Device ID.
418 418  
419 -867.3 - SF7BW125 to SF12BW125
420 420  
421 -867.5 - SF7BW125 to SF12BW125
422 422  
423 -867.7 - SF7BW125 to SF12BW125
352 +=== 2.4.2  Version Info ===
424 424  
425 -867.9 - SF7BW125 to SF12BW125
354 +Specify the software version: 0x64=100, means firmware version 1.00.
426 426  
427 -868.8 - FSK
356 +For example: 0x00 64 : this device is NSE01 with firmware version 1.0.0.
428 428  
429 429  
430 -(% style="color:#037691" %)** Downlink:**
431 431  
432 -Uplink channels 1-9 (RX1)
360 +=== 2.4.3  Battery Info ===
433 433  
434 -869.525 - SF9BW125 (RX2 downlink only)
362 +(((
363 +Check the battery voltage for LSE01.
364 +)))
435 435  
366 +(((
367 +Ex1: 0x0B45 = 2885mV
368 +)))
436 436  
370 +(((
371 +Ex2: 0x0B49 = 2889mV
372 +)))
437 437  
438 -=== 2.7.2 US902-928(US915) ===
439 439  
440 -Used in USA, Canada and South America. Default use CHE=2
441 441  
442 -(% style="color:#037691" %)**Uplink:**
376 +=== 2.4.4  Signal Strength ===
443 443  
444 -903.9 - SF7BW125 to SF10BW125
378 +NB-IoT Network signal Strength.
445 445  
446 -904.1 - SF7BW125 to SF10BW125
380 +**Ex1: 0x1d = 29**
447 447  
448 -904.3 - SF7BW125 to SF10BW125
382 +(% style="color:blue" %)**0**(%%)  -113dBm or less
449 449  
450 -904.5 - SF7BW125 to SF10BW125
384 +(% style="color:blue" %)**1**(%%)  -111dBm
451 451  
452 -904.7 - SF7BW125 to SF10BW125
386 +(% style="color:blue" %)**2...30**(%%) -109dBm... -53dBm
453 453  
454 -904.9 - SF7BW125 to SF10BW125
388 +(% style="color:blue" %)**31**  (%%) -51dBm or greater
455 455  
456 -905.1 - SF7BW125 to SF10BW125
390 +(% style="color:blue" %)**99**   (%%) Not known or not detectable
457 457  
458 -905.3 - SF7BW125 to SF10BW125
459 459  
460 460  
461 -(% style="color:#037691" %)**Downlink:**
394 +=== 2.4.5  Soil Moisture ===
462 462  
463 -923.3 - SF7BW500 to SF12BW500
396 +(((
397 +Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil.
398 +)))
464 464  
465 -923.9 - SF7BW500 to SF12BW500
400 +(((
401 +For example, if the data you get from the register is **__0x05 0xDC__**, the moisture content in the soil is
402 +)))
466 466  
467 -924.5 - SF7BW500 to SF12BW500
404 +(((
405 +
406 +)))
468 468  
469 -925.1 - SF7BW500 to SF12BW500
408 +(((
409 +(% style="color:#4f81bd" %)**05DC(H) = 1500(D) /100 = 15%.**
410 +)))
470 470  
471 -925.7 - SF7BW500 to SF12BW500
472 472  
473 -926.3 - SF7BW500 to SF12BW500
474 474  
475 -926.9 - SF7BW500 to SF12BW500
414 +=== 2.4.6  Soil Temperature ===
476 476  
477 -927.5 - SF7BW500 to SF12BW500
416 +(((
417 + Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is __**0x09 0xEC**__, the temperature content in the soil is
418 +)))
478 478  
479 -923.3 - SF12BW500(RX2 downlink only)
420 +(((
421 +**Example**:
422 +)))
480 480  
424 +(((
425 +If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/100 = 2.61 °C
426 +)))
481 481  
428 +(((
429 +If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C
430 +)))
482 482  
483 -=== 2.7.3 CN470-510 (CN470) ===
484 484  
485 -Used in China, Default use CHE=1
486 486  
487 -(% style="color:#037691" %)**Uplink:**
434 +=== 2.4.7  Soil Conductivity (EC) ===
488 488  
489 -486.3 - SF7BW125 to SF12BW125
436 +(((
437 +Obtain (% style="color:#4f81bd" %)**__soluble salt concentration__**(%%) in soil or (% style="color:#4f81bd" %)**__soluble ion concentration in liquid fertilizer__**(%%) or (% style="color:#4f81bd" %)**__planting medium__**(%%). The value range of the register is 0 - 20000(Decimal)( Can be greater than 20000).
438 +)))
490 490  
491 -486.5 - SF7BW125 to SF12BW125
440 +(((
441 +For example, if the data you get from the register is __**0x00 0xC8**__, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm.
442 +)))
492 492  
493 -486.7 - SF7BW125 to SF12BW125
444 +(((
445 +Generally, the EC value of irrigation water is less than 800uS / cm.
446 +)))
494 494  
495 -486.9 - SF7BW125 to SF12BW125
448 +(((
449 +
450 +)))
496 496  
497 -487.1 - SF7BW125 to SF12BW125
452 +(((
453 +
454 +)))
498 498  
499 -487.3 - SF7BW125 to SF12BW125
456 +=== 2.4. Digital Interrupt ===
500 500  
501 -487.5 - SF7BW125 to SF12BW125
458 +Digital Interrupt refers to pin (% style="color:blue" %)**GPIO_EXTI**(%%), and there are different trigger methods. When there is a trigger, the NSE01 will send a packet to the server.
502 502  
503 -487.7 - SF7BW125 to SF12BW125
460 +The command is:
504 504  
462 +(% style="color:blue" %)**AT+INTMOD=3 **(%%) ~/~/(more info about INMOD please refer [[**AT Command Manual**>>url:https://www.dragino.com/downloads/downloads/NB-IoT/NBSN95/DRAGINO_NBSN95-NB_AT%20Commands_v1.1.0.pdf]])**.**
505 505  
506 -(% style="color:#037691" %)**Downlink:**
507 507  
508 -506.7 - SF7BW125 to SF12BW125
465 +The lower four bits of this data field shows if this packet is generated by interrupt or not. Click here for the hardware and software set up.
509 509  
510 -506.9 - SF7BW125 to SF12BW125
511 511  
512 -507.1 - SF7BW125 to SF12BW125
468 +Example:
513 513  
514 -507.3 - SF7BW125 to SF12BW125
470 +0x(00): Normal uplink packet.
515 515  
516 -507.5 - SF7BW125 to SF12BW125
472 +0x(01): Interrupt Uplink Packet.
517 517  
518 -507.7 - SF7BW125 to SF12BW125
519 519  
520 -507.9 - SF7BW125 to SF12BW125
521 521  
522 -508.1 - SF7BW125 to SF12BW125
476 +=== 2.4.9  ​+5V Output ===
523 523  
524 -505.3 - SF12BW125 (RX2 downlink only)
478 +NSE01 will enable +5V output before all sampling and disable the +5v after all sampling. 
525 525  
526 526  
481 +The 5V output time can be controlled by AT Command.
527 527  
528 -=== 2.7.4 AU915-928(AU915) ===
483 +(% style="color:blue" %)**AT+5VT=1000**
529 529  
530 -Default use CHE=2
485 +Means set 5V valid time to have 1000ms. So the real 5V output will actually have 1000ms + sampling time for other sensors.
531 531  
532 -(% style="color:#037691" %)**Uplink:**
533 533  
534 -916.8 - SF7BW125 to SF12BW125
535 535  
536 -917.0 - SF7BW125 to SF12BW125
489 +== 2.5  Downlink Payload ==
537 537  
538 -917.2 - SF7BW125 to SF12BW125
491 +By default, NSE01 prints the downlink payload to console port.
539 539  
540 -917.4 - SF7BW125 to SF12BW125
493 +[[image:image-20220708133731-5.png]]
541 541  
542 -917.6 - SF7BW125 to SF12BW125
543 543  
544 -917.8 - SF7BW125 to SF12BW125
496 +(((
497 +(% style="color:blue" %)**Examples:**
498 +)))
545 545  
546 -918.0 - SF7BW125 to SF12BW125
500 +(((
501 +
502 +)))
547 547  
548 -918.2 - SF7BW125 to SF12BW125
504 +* (((
505 +(% style="color:blue" %)**Set TDC**
506 +)))
549 549  
508 +(((
509 +If the payload=0100003C, it means set the END Node's TDC to 0x00003C=60(S), while type code is 01.
510 +)))
550 550  
551 -(% style="color:#037691" %)**Downlink:**
512 +(((
513 +Payload:    01 00 00 1E    TDC=30S
514 +)))
552 552  
553 -923.3 - SF7BW500 to SF12BW500
516 +(((
517 +Payload:    01 00 00 3C    TDC=60S
518 +)))
554 554  
555 -923.9 - SF7BW500 to SF12BW500
520 +(((
521 +
522 +)))
556 556  
557 -924.5 - SF7BW500 to SF12BW500
524 +* (((
525 +(% style="color:blue" %)**Reset**
526 +)))
558 558  
559 -925.1 - SF7BW500 to SF12BW500
528 +(((
529 +If payload = 0x04FF, it will reset the NSE01
530 +)))
560 560  
561 -925.7 - SF7BW500 to SF12BW500
562 562  
563 -926.3 - SF7BW500 to SF12BW500
533 +* (% style="color:blue" %)**INTMOD**
564 564  
565 -926.9 - SF7BW500 to SF12BW500
535 +Downlink Payload: 06000003, Set AT+INTMOD=3
566 566  
567 -927.5 - SF7BW500 to SF12BW500
568 568  
569 -923.3 - SF12BW500(RX2 downlink only)
570 570  
539 +== 2.6  ​LED Indicator ==
571 571  
541 +(((
542 +The NSE01 has an internal LED which is to show the status of different state.
572 572  
573 -=== 2.7.5 AS920-923 & AS923-925 (AS923) ===
574 574  
575 -(% style="color:#037691" %)**Default Uplink channel:**
545 +* When power on, NSE01 will detect if sensor probe is connected, if probe detected, LED will blink four times. (no blinks in this step is no probe)
546 +* Then the LED will be on for 1 second means device is boot normally.
547 +* After NSE01 join NB-IoT network. The LED will be ON for 3 seconds.
548 +* For each uplink probe, LED will be on for 500ms.
549 +)))
576 576  
577 -923.2 - SF7BW125 to SF10BW125
578 578  
579 -923.4 - SF7BW125 to SF10BW125
580 580  
581 581  
582 -(% style="color:#037691" %)**Additional Uplink Channel**:
554 +== 2.7  Installation in Soil ==
583 583  
584 -(OTAA mode, channel added by JoinAccept message)
556 +__**Measurement the soil surface**__
585 585  
586 -(% style="color:#037691" %)**AS920~~AS923 for Japan, Malaysia, Singapore**:
558 +Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting. [[https:~~/~~/img.alicdn.com/imgextra/i3/2005165265/O1CN010rj9Oh1olPsQxrdUK_!!2005165265.jpg>>url:https://img.alicdn.com/imgextra/i3/2005165265/O1CN010rj9Oh1olPsQxrdUK_!!2005165265.jpg]]
587 587  
588 -922.2 - SF7BW125 to SF10BW125
560 +[[image:1657259653666-883.png]] ​
589 589  
590 -922.4 - SF7BW125 to SF10BW125
591 591  
592 -922.6 - SF7BW125 to SF10BW125
563 +(((
564 +
593 593  
594 -922.8 - SF7BW125 to SF10BW125
566 +(((
567 +Dig a hole with diameter > 20CM.
568 +)))
595 595  
596 -923.0 - SF7BW125 to SF10BW125
570 +(((
571 +Horizontal insert the probe to the soil and fill the hole for long term measurement.
572 +)))
573 +)))
597 597  
598 -922.0 - SF7BW125 to SF10BW125
575 +[[image:1654506665940-119.png]]
599 599  
577 +(((
578 +
579 +)))
600 600  
601 -(% style="color:#037691" %)**AS923 ~~ AS925 for Brunei, Cambodia, Hong Kong, Indonesia, Laos, Taiwan, Thailand, Vietnam**:
602 602  
603 -923.6 - SF7BW125 to SF10BW125
582 +== 2. Firmware Change Log ==
604 604  
605 -923.8 - SF7BW125 to SF10BW125
606 606  
607 -924.0 - SF7BW125 to SF10BW125
585 +Download URL & Firmware Change log
608 608  
609 -924.2 - SF7BW125 to SF10BW125
587 +[[www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/Firmware/]]
610 610  
611 -924.4 - SF7BW125 to SF10BW125
612 612  
613 -924.6 - SF7BW125 to SF10BW125
590 +Upgrade Instruction: [[Upgrade_Firmware>>||anchor="H5.1200BHowtoUpgradeFirmware"]]
614 614  
615 615  
616 -(% style="color:#037691" %)** Downlink:**
617 617  
618 -Uplink channels 1-8 (RX1)
594 +== 2.9  ​Battery Analysis ==
619 619  
620 -923.2 - SF10BW125 (RX2)
596 +=== 2.9.1  ​Battery Type ===
621 621  
622 622  
599 +The NSE01 battery is a combination of an 8500mAh Li/SOCI2 Battery and a Super Capacitor. The battery is none-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter.
623 623  
624 -=== 2.7.6 KR920-923 (KR920) ===
625 625  
626 -Default channel:
602 +The battery is designed to last for several years depends on the actually use environment and update interval
627 627  
628 -922.1 - SF7BW125 to SF12BW125
629 629  
630 -922.3 - SF7BW125 to SF12BW125
605 +The battery related documents as below:
631 631  
632 -922.5 - SF7BW125 to SF12BW125
607 +* [[Battery Dimension>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]
608 +* [[Lithium-Thionyl Chloride Battery datasheet>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]
609 +* [[Lithium-ion Battery-Capacitor datasheet>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]
633 633  
634 -
635 -(% style="color:#037691" %)**Uplink: (OTAA mode, channel added by JoinAccept message)**
636 -
637 -922.1 - SF7BW125 to SF12BW125
638 -
639 -922.3 - SF7BW125 to SF12BW125
640 -
641 -922.5 - SF7BW125 to SF12BW125
642 -
643 -922.7 - SF7BW125 to SF12BW125
644 -
645 -922.9 - SF7BW125 to SF12BW125
646 -
647 -923.1 - SF7BW125 to SF12BW125
648 -
649 -923.3 - SF7BW125 to SF12BW125
650 -
651 -
652 -(% style="color:#037691" %)**Downlink:**
653 -
654 -Uplink channels 1-7(RX1)
655 -
656 -921.9 - SF12BW125 (RX2 downlink only; SF12BW125 might be changed to SF9BW125)
657 -
658 -
659 -
660 -=== 2.7.7 IN865-867 (IN865) ===
661 -
662 -(% style="color:#037691" %)** Uplink:**
663 -
664 -865.0625 - SF7BW125 to SF12BW125
665 -
666 -865.4025 - SF7BW125 to SF12BW125
667 -
668 -865.9850 - SF7BW125 to SF12BW125
669 -
670 -
671 -(% style="color:#037691" %) **Downlink:**
672 -
673 -Uplink channels 1-3 (RX1)
674 -
675 -866.550 - SF10BW125 (RX2)
676 -
677 -
678 -
679 -
680 -== 2.8 LED Indicator ==
681 -
682 -The LSE01 has an internal LED which is to show the status of different state.
683 -
684 -* Blink once when device power on.
685 -* Solid ON for 5 seconds once device successful Join the network.
686 -* Blink once when device transmit a packet.
687 -
688 -== 2.9 Installation in Soil ==
689 -
690 -**Measurement the soil surface**
691 -
692 -
693 -[[image:1654506634463-199.png]] ​
694 -
695 695  (((
696 -(((
697 -Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting.
612 +[[image:image-20220708140453-6.png]]
698 698  )))
699 -)))
700 700  
701 701  
702 -[[image:1654506665940-119.png]]
703 703  
704 -(((
705 -Dig a hole with diameter > 20CM.
706 -)))
617 +=== 2.9.2  Power consumption Analyze ===
707 707  
708 708  (((
709 -Horizontal insert the probe to the soil and fill the hole for long term measurement.
620 +Dragino battery powered product are all runs in Low Power mode. We have an update battery calculator which base on the measurement of the real device. User can use this calculator to check the battery life and calculate the battery life if want to use different transmit interval.
710 710  )))
711 711  
712 712  
713 -== 2.10 ​Firmware Change Log ==
714 -
715 715  (((
716 -**Firmware download link:**
625 +Instruction to use as below:
717 717  )))
718 718  
719 719  (((
720 -[[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/]]
629 +(% style="color:blue" %)**Step 1:  **(%%)Downlink the up-to-date DRAGINO_Battery_Life_Prediction_Table.xlsx from: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/]]
721 721  )))
722 722  
723 -(((
724 -
725 -)))
726 726  
727 727  (((
728 -**Firmware Upgrade Method: **[[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome]]
634 +(% style="color:blue" %)**Step 2: **(%%) Open it and choose
729 729  )))
730 730  
731 -(((
732 -
637 +* (((
638 +Product Model
733 733  )))
734 -
735 -(((
736 -**V1.0.**
640 +* (((
641 +Uplink Interval
737 737  )))
643 +* (((
644 +Working Mode
645 +)))
738 738  
739 739  (((
740 -Release
648 +And the Life expectation in difference case will be shown on the right.
741 741  )))
742 742  
651 +[[image:image-20220708141352-7.jpeg]]
743 743  
744 -== 2.11 ​Battery Analysis ==
745 745  
746 -=== 2.11.1 ​Battery Type ===
747 747  
748 -(((
749 -The LSE01 battery is a combination of a 4000mAh Li/SOCI2 Battery and a Super Capacitor. The battery is non-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter.
750 -)))
655 +=== 2.9.3  ​Battery Note ===
751 751  
752 752  (((
753 -The battery is designed to last for more than 5 years for the LSN50.
658 +The Li-SICO battery is designed for small current / long period application. It is not good to use a high current, short period transmit method. The recommended minimum period for use of this battery is 5 minutes. If you use a shorter period time to transmit LoRa, then the battery life may be decreased.
754 754  )))
755 755  
756 -(((
757 -(((
758 -The battery-related documents are as below:
759 -)))
760 -)))
761 761  
762 -* (((
763 -[[Battery Dimension>>url:http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/&file=LSN50-Battery-Dimension.pdf]],
764 -)))
765 -* (((
766 -[[Lithium-Thionyl Chloride Battery  datasheet>>url:https://www.dragino.com/downloads/downloads/datasheet/Battery/ER26500/ER26500_Datasheet-EN.pdf]],
767 -)))
768 -* (((
769 -[[Lithium-ion Battery-Capacitor datasheet>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC_1520_datasheet.jpg]], [[Tech Spec>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC1520%20Technical%20Specification20171123.pdf]]
770 -)))
771 771  
772 - [[image:image-20220610172436-1.png]]
663 +=== 2.9.4  Replace the battery ===
773 773  
774 -
775 -
776 -=== 2.11.2 ​Battery Note ===
777 -
778 778  (((
779 -The Li-SICO battery is designed for small current / long period application. It is not good to use a high current, short period transmit method. The recommended minimum period for use of this battery is 5 minutes. If you use a shorter period time to transmit LoRa, then the battery life may be decreased.
666 +The default battery pack of NSE01 includes a ER26500 plus super capacitor. If user can't find this pack locally, they can find ER26500 or equivalence without the SPC1520 capacitor, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes).
780 780  )))
781 781  
782 782  
783 783  
784 -=== 2.11.3 Replace the battery ===
671 += 3. ​ Access NB-IoT Module =
785 785  
786 786  (((
787 -If Battery is lower than 2.7v, user should replace the battery of LSE01.
674 +Users can directly access the AT command set of the NB-IoT module.
788 788  )))
789 789  
790 790  (((
791 -You can change the battery in the LSE01.The type of battery is not limited as long as the output is between 3v to 3.6v. On the main board, there is a diode (D1) between the battery and the main circuit. If you need to use a battery with less than 3.3v, please remove the D1 and shortcut the two pads of it so there won’t be voltage drop between battery and main board.
678 +The AT Command set can refer the BC35-G NB-IoT Module AT Command: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=datasheet/other_vendors/BC35-G/>>url:https://www.dragino.com/downloads/index.php?dir=datasheet/other_vendors/BC35-G/]] 
792 792  )))
793 793  
794 -(((
795 -The default battery pack of LSE01 includes a ER18505 plus super capacitor. If user can’t find this pack locally, they can find ER18505 or equivalence, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes)
796 -)))
681 +[[image:1657261278785-153.png]]
797 797  
798 798  
799 799  
800 -= 3. Using the AT Commands =
685 += 4.  Using the AT Commands =
801 801  
802 -== 3.1 Access AT Commands ==
687 +== 4.1  Access AT Commands ==
803 803  
689 +See this link for detail: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/]]
804 804  
805 -LSE01 supports AT Command set in the stock firmware. You can use a USB to TTL adapter to connect to LSE01 for using AT command, as below.
806 806  
807 -[[image:1654501986557-872.png||height="391" width="800"]]
692 +AT+<CMD>?  : Help on <CMD>
808 808  
694 +AT+<CMD>         : Run <CMD>
809 809  
810 -Or if you have below board, use below connection:
696 +AT+<CMD>=<value> : Set the value
811 811  
698 +AT+<CMD>=?  : Get the value
812 812  
813 -[[image:1654502005655-729.png||height="503" width="801"]]
814 814  
815 -
816 -
817 -In the PC, you need to set the serial baud rate to (% style="color:green" %)**9600**(%%) to access the serial console for LSE01. LSE01 will output system info once power on as below:
818 -
819 -
820 - [[image:1654502050864-459.png||height="564" width="806"]]
821 -
822 -
823 -Below are the available commands, a more detailed AT Command manual can be found at [[AT Command Manual>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/]]: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/]]
824 -
825 -
826 -(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>? **(%%) : Help on <CMD>
827 -
828 -(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD> **(%%) : Run <CMD>
829 -
830 -(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>=<value>**(%%) : Set the value
831 -
832 -(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>=?**(%%)  : Get the value
833 -
834 -
835 835  (% style="color:#037691" %)**General Commands**(%%)      
836 836  
837 -(% style="background-color:#dcdcdc" %)**AT**(%%)  : Attention       
703 +AT  : Attention       
838 838  
839 -(% style="background-color:#dcdcdc" %)**AT?**(%%)  : Short Help     
705 +AT?  : Short Help     
840 840  
841 -(% style="background-color:#dcdcdc" %)**ATZ**(%%)  : MCU Reset    
707 +ATZ  : MCU Reset    
842 842  
843 -(% style="background-color:#dcdcdc" %)**AT+TDC**(%%)  : Application Data Transmission Interval 
709 +AT+TDC  : Application Data Transmission Interval
844 844  
711 +AT+CFG  : Print all configurations
845 845  
846 -(% style="color:#037691" %)**Keys, IDs and EUIs management**
713 +AT+CFGMOD           : Working mode selection
847 847  
848 -(% style="background-color:#dcdcdc" %)**AT+APPEUI**(%%)              : Application EUI      
715 +AT+INTMOD            : Set the trigger interrupt mode
849 849  
850 -(% style="background-color:#dcdcdc" %)**AT+APPKEY**(%%)              : Application Key     
717 +AT+5VT  : Set extend the time of 5V power  
851 851  
852 -(% style="background-color:#dcdcdc" %)**AT+APPSKEY**(%%)            : Application Session Key
719 +AT+PRO  : Choose agreement
853 853  
854 -(% style="background-color:#dcdcdc" %)**AT+DADDR**(%%)              : Device Address     
721 +AT+WEIGRE  : Get weight or set weight to 0
855 855  
856 -(% style="background-color:#dcdcdc" %)**AT+DEUI**(%%)                   : Device EUI     
723 +AT+WEIGAP  : Get or Set the GapValue of weight
857 857  
858 -(% style="background-color:#dcdcdc" %)**AT+NWKID**(%%)               : Network ID (You can enter this command change only after successful network connection
725 +AT+RXDL  : Extend the sending and receiving time
859 859  
860 -(% style="background-color:#dcdcdc" %)**AT+NWKSKEY**(%%)          : Network Session Key Joining and sending date on LoRa network  
727 +AT+CNTFAC  : Get or set counting parameters
861 861  
862 -(% style="background-color:#dcdcdc" %)**AT+CFM**(%%)  : Confirm Mode       
729 +AT+SERVADDR  : Server Address
863 863  
864 -(% style="background-color:#dcdcdc" %)**AT+CFS**(%%)                     : Confirm Status       
865 865  
866 -(% style="background-color:#dcdcdc" %)**AT+JOIN**(%%)  : Join LoRa? Network       
732 +(% style="color:#037691" %)**COAP Management**      
867 867  
868 -(% style="background-color:#dcdcdc" %)**AT+NJM**(%%)  : LoRa? Network Join Mode    
734 +AT+URI            : Resource parameters
869 869  
870 -(% style="background-color:#dcdcdc" %)**AT+NJS**(%%)                     : LoRa? Network Join Status    
871 871  
872 -(% style="background-color:#dcdcdc" %)**AT+RECV**(%%)                  : Print Last Received Data in Raw Format
737 +(% style="color:#037691" %)**UDP Management**
873 873  
874 -(% style="background-color:#dcdcdc" %)**AT+RECVB**(%%)                : Print Last Received Data in Binary Format      
739 +AT+CFM          : Upload confirmation mode (only valid for UDP)
875 875  
876 -(% style="background-color:#dcdcdc" %)**AT+SEND**(%%)                  : Send Text Data      
877 877  
878 -(% style="background-color:#dcdcdc" %)**AT+SENB**(%%)                  : Send Hexadecimal Data
742 +(% style="color:#037691" %)**MQTT Management**
879 879  
744 +AT+CLIENT               : Get or Set MQTT client
880 880  
881 -(% style="color:#037691" %)**LoRa Network Management**
746 +AT+UNAME  : Get or Set MQTT Username
882 882  
883 -(% style="background-color:#dcdcdc" %)**AT+ADR**(%%)          : Adaptive Rate
748 +AT+PWD                  : Get or Set MQTT password
884 884  
885 -(% style="background-color:#dcdcdc" %)**AT+CLASS**(%%)  : LoRa Class(Currently only support class A
750 +AT+PUBTOPI : Get or Set MQTT publish topic
886 886  
887 -(% style="background-color:#dcdcdc" %)**AT+DCS**(%%)  : Duty Cycle Settin
752 +AT+SUBTOPIC  : Get or Set MQTT subscription topic
888 888  
889 -(% style="background-color:#dcdcdc" %)**AT+DR**(%%)  : Data Rate (Can Only be Modified after ADR=0)     
890 890  
891 -(% style="background-color:#dcdcdc" %)**AT+FCD**(%%)  : Frame Counter Downlink       
755 +(% style="color:#037691" %)**Information**          
892 892  
893 -(% style="background-color:#dcdcdc" %)**AT+FCU**(%%)  : Frame Counter Uplink   
757 +AT+FDR  : Factory Data Reset
894 894  
895 -(% style="background-color:#dcdcdc" %)**AT+JN1DL**(%%)  : Join Accept Delay1
759 +AT+PWOR : Serial Access Password
896 896  
897 -(% style="background-color:#dcdcdc" %)**AT+JN2DL**(%%)  : Join Accept Delay2
898 898  
899 -(% style="background-color:#dcdcdc" %)**AT+PNM**(%%)  : Public Network Mode   
900 900  
901 -(% style="background-color:#dcdcdc" %)**AT+RX1DL**(%%)  : Receive Delay1      
763 += ​5.  FAQ =
902 902  
903 -(% style="background-color:#dcdcdc" %)**AT+RX2DL**(%%)  : Receive Delay2      
765 +== 5.1 How to Upgrade Firmware ==
904 904  
905 -(% style="background-color:#dcdcdc" %)**AT+RX2DR**(%%)  : Rx2 Window Data Rate 
906 906  
907 -(% style="background-color:#dcdcdc" %)**AT+RX2FQ**(%%)  : Rx2 Window Frequency
908 -
909 -(% style="background-color:#dcdcdc" %)**AT+TXP**(%%)  : Transmit Power
910 -
911 -(% style="background-color:#dcdcdc" %)**AT+ MOD**(%%)  : Set work mode
912 -
913 -
914 -(% style="color:#037691" %)**Information** 
915 -
916 -(% style="background-color:#dcdcdc" %)**AT+RSSI**(%%)           : RSSI of the Last Received Packet   
917 -
918 -(% style="background-color:#dcdcdc" %)**AT+SNR**(%%)           : SNR of the Last Received Packet   
919 -
920 -(% style="background-color:#dcdcdc" %)**AT+VER**(%%)           : Image Version and Frequency Band       
921 -
922 -(% style="background-color:#dcdcdc" %)**AT+FDR**(%%)           : Factory Data Reset
923 -
924 -(% style="background-color:#dcdcdc" %)**AT+PORT**(%%)  : Application Port    
925 -
926 -(% style="background-color:#dcdcdc" %)**AT+CHS**(%%)  : Get or Set Frequency (Unit: Hz) for Single Channel Mode
927 -
928 - (% style="background-color:#dcdcdc" %)**AT+CHE**(%%)  : Get or Set eight channels mode, Only for US915, AU915, CN470
929 -
930 -
931 -= ​4. FAQ =
932 -
933 -== 4.1 ​How to change the LoRa Frequency Bands/Region? ==
934 -
935 935  (((
936 -You can follow the instructions for [[how to upgrade image>>||anchor="H2.10200BFirmwareChangeLog"]].
937 -When downloading the images, choose the required image file for download. ​
769 +User can upgrade the firmware for 1) bug fix, 2) new feature release.
938 938  )))
939 939  
940 940  (((
941 -
773 +Please see this link for how to upgrade:  [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H2.HardwareUpgradeMethodSupportList>>http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H2.HardwareUpgradeMethodSupportList]]
942 942  )))
943 943  
944 944  (((
945 -How to set up LSE01 to work in 8 channel mode By default, the frequency bands US915, AU915, CN470 work in 72 frequencies. Many gateways are 8 channel gateways, and in this case, the OTAA join time and uplink schedule is long and unpredictable while the end node is hopping in 72 frequencies.
777 +(% style="color:red" %)Notice, NSE01 and LSE01 share the same mother board. They use the same connection and method to update.
946 946  )))
947 947  
948 -(((
949 -
950 -)))
951 951  
952 -(((
953 -You can configure the end node to work in 8 channel mode by using the AT+CHE command. The 500kHz channels are always included for OTAA.
954 -)))
955 955  
956 -(((
957 -
958 -)))
782 += 6.  Trouble Shooting =
959 959  
960 -(((
961 -For example, in **US915** band, the frequency table is as below. By default, the end node will use all channels (0~~71) for OTAA Join process. After the OTAA Join, the end node will use these all channels (0~~71) to send uplink packets.
962 -)))
784 +== 6.1  ​Connection problem when uploading firmware ==
963 963  
964 -[[image:image-20220606154726-3.png]]
965 965  
966 -
967 -When you use the TTN network, the US915 frequency bands use are:
968 -
969 -* 903.9 - SF7BW125 to SF10BW125
970 -* 904.1 - SF7BW125 to SF10BW125
971 -* 904.3 - SF7BW125 to SF10BW125
972 -* 904.5 - SF7BW125 to SF10BW125
973 -* 904.7 - SF7BW125 to SF10BW125
974 -* 904.9 - SF7BW125 to SF10BW125
975 -* 905.1 - SF7BW125 to SF10BW125
976 -* 905.3 - SF7BW125 to SF10BW125
977 -* 904.6 - SF8BW500
978 -
787 +(% class="wikigeneratedid" %)
979 979  (((
980 -Because the end node is now hopping in 72 frequency, it makes it difficult for the devices to Join the TTN network and uplink data. To solve this issue, you can access the device via the AT commands and run:
789 +(% style="font-size:14px" %)**Please see: **(%%)[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H3.3Troubleshooting>>http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H3.3Troubleshooting||style="background-color: rgb(255, 255, 255); font-size: 14px;"]]
981 981  )))
982 982  
983 -(% class="box infomessage" %)
984 -(((
985 -**AT+CHE=2**
986 -)))
987 987  
988 -(% class="box infomessage" %)
989 -(((
990 -**ATZ**
991 -)))
992 992  
993 -(((
994 -to set the end node to work in 8 channel mode. The device will work in Channel 8-15 & 64-71 for OTAA, and channel 8-15 for Uplink.
995 -)))
794 +== 6.2  AT Command input doesn't work ==
996 996  
997 997  (((
998 -
797 +In the case if user can see the console output but can't type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn't send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.
999 999  )))
1000 1000  
1001 -(((
1002 -The **AU915** band is similar. Below are the AU915 Uplink Channels.
1003 -)))
1004 1004  
1005 -[[image:image-20220606154825-4.png]]
1006 1006  
802 += 7. ​ Order Info =
1007 1007  
1008 1008  
1009 -= 5. Trouble Shooting =
805 +Part Number**:** (% style="color:#4f81bd" %)**NSE01**
1010 1010  
1011 -== 5.1 ​Why I can’t join TTN in US915 / AU915 bands? ==
1012 1012  
1013 -It is due to channel mapping. Please see the [[Eight Channel Mode>>doc:Main.LoRaWAN Communication Debug.WebHome||anchor="H2.NoticeofUS9152FCN4702FAU915Frequencyband"]] section above for details.
1014 -
1015 -
1016 -== 5.2 AT Command input doesn’t work ==
1017 -
1018 -(((
1019 -In the case if user can see the console output but can’t type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn’t send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.
1020 -)))
1021 -
1022 -
1023 -== 5.3 Device rejoin in at the second uplink packet ==
1024 -
1025 -(% style="color:#4f81bd" %)**Issue describe as below:**
1026 -
1027 -[[image:1654500909990-784.png]]
1028 -
1029 -
1030 -(% style="color:#4f81bd" %)**Cause for this issue:**
1031 -
1032 -(((
1033 -The fuse on LSE01 is not large enough, some of the soil probe require large current up to 5v 800mA, in a short pulse. When this happen, it cause the device reboot so user see rejoin.
1034 -)))
1035 -
1036 -
1037 -(% style="color:#4f81bd" %)**Solution: **
1038 -
1039 -All new shipped LSE01 after 2020-May-30 will have this to fix. For the customer who see this issue, please bypass the fuse as below:
1040 -
1041 -[[image:1654500929571-736.png||height="458" width="832"]]
1042 -
1043 -
1044 -= 6. ​Order Info =
1045 -
1046 -
1047 -Part Number**:** (% style="color:#4f81bd" %)**LSE01-XX-YY**
1048 -
1049 -
1050 -(% style="color:#4f81bd" %)**XX**(%%)**:** The default frequency band
1051 -
1052 -* (% style="color:red" %)**AS923**(%%): LoRaWAN AS923 band
1053 -* (% style="color:red" %)**AU915**(%%): LoRaWAN AU915 band
1054 -* (% style="color:red" %)**EU433**(%%): LoRaWAN EU433 band
1055 -* (% style="color:red" %)**EU868**(%%): LoRaWAN EU868 band
1056 -* (% style="color:red" %)**KR920**(%%): LoRaWAN KR920 band
1057 -* (% style="color:red" %)**US915**(%%): LoRaWAN US915 band
1058 -* (% style="color:red" %)**IN865**(%%):  LoRaWAN IN865 band
1059 -* (% style="color:red" %)**CN470**(%%): LoRaWAN CN470 band
1060 -
1061 -(% style="color:#4f81bd" %)**YY**(%%)**: **Battery Option
1062 -
1063 -* (% style="color:red" %)**4**(%%): 4000mAh battery
1064 -* (% style="color:red" %)**8**(%%): 8500mAh battery
1065 -
1066 1066  (% class="wikigeneratedid" %)
1067 1067  (((
1068 1068  
1069 1069  )))
1070 1070  
1071 -= 7. Packing Info =
813 += 8.  Packing Info =
1072 1072  
1073 1073  (((
1074 1074  
1075 1075  
1076 1076  (% style="color:#037691" %)**Package Includes**:
1077 -)))
1078 1078  
1079 -* (((
1080 -LSE01 LoRaWAN Soil Moisture & EC Sensor x 1
820 +
821 +* NSE01 NB-IoT Soil Moisture & EC Sensor x 1
822 +* External antenna x 1
1081 1081  )))
1082 1082  
1083 1083  (((
... ... @@ -1084,24 +1084,20 @@
1084 1084  
1085 1085  
1086 1086  (% style="color:#037691" %)**Dimension and weight**:
1087 -)))
1088 1088  
1089 -* (((
1090 -Device Size: cm
830 +
831 +* Size: 195 x 125 x 55 mm
832 +* Weight:   420g
1091 1091  )))
1092 -* (((
1093 -Device Weight: g
1094 -)))
1095 -* (((
1096 -Package Size / pcs : cm
1097 -)))
1098 -* (((
1099 -Weight / pcs : g
1100 1100  
835 +(((
1101 1101  
837 +
838 +
839 +
1102 1102  )))
1103 1103  
1104 -= 8. Support =
842 += 9.  Support =
1105 1105  
1106 1106  * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
1107 1107  * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.com]]
1657245163077-232.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +81.0 KB
Content
1657246476176-652.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +492.6 KB
Content
1657249419225-449.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +81.0 KB
Content
1657249468462-536.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +483.6 KB
Content
1657249793983-486.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +85.8 KB
Content
1657249831934-534.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +72.5 KB
Content
1657249864775-321.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +87.0 KB
Content
1657249930215-289.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +77.3 KB
Content
1657249978444-674.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +139.5 KB
Content
1657249990869-686.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +96.9 KB
Content
1657250217799-140.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +98.7 KB
Content
1657250255956-604.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +99.0 KB
Content
1657259653666-883.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +344.4 KB
Content
1657260785982-288.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +138.2 KB
Content
1657261119050-993.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +126.1 KB
Content
1657261278785-153.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +126.1 KB
Content
image-20220708101224-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +22.2 KB
Content
image-20220708101605-2.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +87.5 KB
Content
image-20220708110657-3.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +251.7 KB
Content
image-20220708111918-4.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +38.8 KB
Content
image-20220708133731-5.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +8.7 KB
Content
image-20220708140453-6.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +132.7 KB
Content
image-20220708141352-7.jpeg
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +102.7 KB
Content
Copyright ©2010-2022 Dragino Technology Co., LTD. All rights reserved
Dragino Wiki v2.0