Changes for page N95S31B -- NB-IoT Temperature & Humidity Sensor User Manual
Last modified by Mengting Qiu on 2024/04/02 16:44
Summary
-
Page properties (2 modified, 0 added, 0 removed)
-
Attachments (0 modified, 20 added, 0 removed)
- 1657245163077-232.png
- 1657246476176-652.png
- 1657249419225-449.png
- 1657249468462-536.png
- 1657249793983-486.png
- 1657249831934-534.png
- 1657249864775-321.png
- 1657249930215-289.png
- 1657249978444-674.png
- 1657249990869-686.png
- 1657250217799-140.png
- 1657250255956-604.png
- 1657259653666-883.png
- 1657260785982-288.png
- image-20220708101224-1.png
- image-20220708101605-2.png
- image-20220708110657-3.png
- image-20220708111918-4.png
- image-20220708133731-5.png
- image-20220708140453-6.png
Details
- Page properties
-
- Title
-
... ... @@ -1,1 +1,1 @@ 1 - LSE01-LoRaWAN Soil Moisture & EC Sensor User Manual1 +NSE01 - NB-IoT Soil Moisture & EC Sensor User Manual - Content
-
... ... @@ -3,9 +3,7 @@ 3 3 4 4 5 5 6 -**Table of Contents:** 7 7 8 -{{toc/}} 9 9 10 10 11 11 ... ... @@ -12,66 +12,81 @@ 12 12 13 13 14 14 15 -= 1. Introduction = 16 16 17 - == 1.1 Whatis LoRaWANSoil Moisture& EC Sensor ==14 +**Table of Contents:** 18 18 16 + 17 + 18 + 19 + 20 + 21 += 1. Introduction = 22 + 23 +== 1.1 What is LoRaWAN Soil Moisture & EC Sensor == 24 + 19 19 ((( 20 20 21 21 22 -The Dragino LSE01 is a (% style="color:#4f81bd" %)**LoRaWAN Soil Moisture & EC Sensor**(%%) for IoT of Agriculture. It is designed to measure the soil moisture of saline-alkali soil and loamy soil. The soil sensor uses FDR method to calculate the soil moisture with the compensation from soil temperature and conductivity. It also has been calibrated in factory for Mineral soil type. 23 -))) 28 +Dragino NSE01 is an (% style="color:blue" %)**NB-IOT soil moisture & EC sensor**(%%) for agricultural IoT. Used to measure the soil moisture of saline-alkali soil and loam. The soil sensor uses the FDR method to calculate soil moisture and compensates it with soil temperature and electrical conductivity. It has also been calibrated for mineral soil types at the factory. 24 24 25 -((( 26 -It detects (% style="color:#4f81bd" %)**Soil Moisture**(%%), (% style="color:#4f81bd" %)**Soil Temperature**(%%) and (% style="color:#4f81bd" %)**Soil Conductivity**(%%), and uploads the value via wireless to LoRaWAN IoT Server. 27 -))) 30 +It can detect (% style="color:blue" %)**Soil Moisture, Soil Temperature and Soil Conductivity**(%%), and upload its value to the server wirelessly. 28 28 29 -((( 30 -The LoRa wireless technology used in LES01 allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption. 31 -))) 32 +The wireless technology used in NSE01 allows the device to send data at a low data rate and reach ultra-long distances, providing ultra-long-distance spread spectrum Communication. 32 32 33 -((( 34 -LES01 is powered by (% style="color:#4f81bd" %)**4000mA or 8500mAh Li-SOCI2 battery**(%%), It is designed for long term use up to 10 years. 35 -))) 34 +NSE01 are powered by (% style="color:blue" %)**8500mAh Li-SOCI2**(%%) batteries, which can be used for up to 5 years. 36 36 37 -((( 38 -Each LES01 is pre-load with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect after power on. 36 + 39 39 ))) 40 40 41 - 42 42 [[image:1654503236291-817.png]] 43 43 44 44 45 -[[image:16545 03265560-120.png]]42 +[[image:1657245163077-232.png]] 46 46 47 47 48 48 49 49 == 1.2 Features == 50 50 51 - * LoRaWAN 1.0.3 Class A52 -* Ultra lowpower consumption48 + 49 +* NB-IoT Bands: B1/B3/B8/B5/B20/B28 @H-FDD 53 53 * Monitor Soil Moisture 54 54 * Monitor Soil Temperature 55 55 * Monitor Soil Conductivity 56 -* Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865 57 57 * AT Commands to change parameters 58 58 * Uplink on periodically 59 59 * Downlink to change configure 60 60 * IP66 Waterproof Enclosure 61 -* 4000mAh or 8500mAh Battery for long term use 57 +* Ultra-Low Power consumption 58 +* AT Commands to change parameters 59 +* Micro SIM card slot for NB-IoT SIM 60 +* 8500mAh Battery for long term use 62 62 62 +== 1.3 Specification == 63 63 64 64 65 +(% style="color:#037691" %)**Common DC Characteristics:** 65 65 66 -== 1.3 Specification == 67 +* Supply Voltage: 2.1v ~~ 3.6v 68 +* Operating Temperature: -40 ~~ 85°C 67 67 70 +(% style="color:#037691" %)**NB-IoT Spec:** 71 + 72 +* - B1 @H-FDD: 2100MHz 73 +* - B3 @H-FDD: 1800MHz 74 +* - B8 @H-FDD: 900MHz 75 +* - B5 @H-FDD: 850MHz 76 +* - B20 @H-FDD: 800MHz 77 +* - B28 @H-FDD: 700MHz 78 + 79 +(% style="color:#037691" %)**Probe Specification:** 80 + 68 68 Measure Volume: Base on the centra pin of the probe, a cylinder with 7cm diameter and 10cm height. 69 69 70 -[[image:image-20220 606162220-5.png]]83 +[[image:image-20220708101224-1.png]] 71 71 72 72 73 73 74 -== 1.4 Applications == 87 +== 1.4 Applications == 75 75 76 76 * Smart Agriculture 77 77 ... ... @@ -78,725 +78,547 @@ 78 78 (% class="wikigeneratedid" id="H200B1.5FirmwareChangelog" %) 79 79 80 80 81 -== 1.5 Firmware Changelog==94 +== 1.5 Pin Definitions == 82 82 83 83 84 - **LSE01v1.0 :** Release97 +[[image:1657246476176-652.png]] 85 85 86 86 87 87 88 -= 2. ConfigureLSE01 to connect toLoRaWANnetwork=101 += 2. Use NSE01 to communicate with IoT Server = 89 89 90 -== 2.1 How it works == 103 +== 2.1 How it works == 91 91 105 + 92 92 ((( 93 -The LSE01 isconfiguredasLoRaWANOTAAClass Amodebydefault.IthasOTAAkeystojoinLoRaWANnetwork.Toconnect a localLoRaWAN network,you need toinputtheOTAAkeysin theLoRaWANserverandpoweronthe LSE0150. It willautomaticallyjointhenetworkviaOTAA and starttosendthesensor value107 +The NSE01 is equipped with a NB-IoT module, the pre-loaded firmware in NSE01 will get environment data from sensors and send the value to local NB-IoT network via the NB-IoT module. The NB-IoT network will forward this value to IoT server via the protocol defined by NSE01. 94 94 ))) 95 95 110 + 96 96 ((( 97 - In case you can’t set the OTAA keys in theLoRaWAN OTAA server,andyouhave tousethe keysfromtheserver, you can [[useAT Commands >>||anchor="H3.200BUsingtheATCommands"]].112 +The diagram below shows the working flow in default firmware of NSE01: 98 98 ))) 99 99 115 +[[image:image-20220708101605-2.png]] 100 100 117 +((( 118 + 119 +))) 101 101 102 -== 2.2 Quick guide to connect to LoRaWAN server (OTAA) == 103 103 104 -Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LG308>>url:http://www.dragino.com/products/lora/item/140-lg308.html]] as a LoRaWAN gateway in this example. 105 105 123 +== 2.2 Configure the NSE01 == 106 106 107 -[[image:1654503992078-669.png]] 108 108 126 +=== 2.2.1 Test Requirement === 109 109 110 -The LG308 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server. 111 111 129 +To use NSE01 in your city, make sure meet below requirements: 112 112 113 -**(% style="color:blue" %)Step 1**(%%): Create a device in TTN with the OTAA keys from LSE01. 131 +* Your local operator has already distributed a NB-IoT Network there. 132 +* The local NB-IoT network used the band that NSE01 supports. 133 +* Your operator is able to distribute the data received in their NB-IoT network to your IoT server. 114 114 115 -Each LSE01 is shipped with a sticker with the default device EUI as below: 116 - 117 -[[image:image-20220606163732-6.jpeg]] 118 - 119 -You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot: 120 - 121 -**Add APP EUI in the application** 122 - 123 - 124 -[[image:1654504596150-405.png]] 125 - 126 - 127 - 128 -**Add APP KEY and DEV EUI** 129 - 130 -[[image:1654504683289-357.png]] 131 - 132 - 133 - 134 -**(% style="color:blue" %)Step 2**(%%): Power on LSE01 135 - 136 - 137 -Put a Jumper on JP2 to power on the device. ( The Jumper must be in FLASH position). 138 - 139 -[[image:image-20220606163915-7.png]] 140 - 141 - 142 -**(% style="color:blue" %)Step 3(%%):** The LSE01 will auto join to the TTN network. After join success, it will start to upload messages to TTN and you can see the messages in the panel. 143 - 144 -[[image:1654504778294-788.png]] 145 - 146 - 147 - 148 -== 2.3 Uplink Payload == 149 - 150 -=== === 151 - 152 -=== 2.3.1 MOD~=0(Default Mode) === 153 - 154 -LSE01 will uplink payload via LoRaWAN with below payload format: 155 - 156 156 ((( 157 - Uplinkpayload includesintotal 11bytes.136 +Below figure shows our testing structure. Here we have NB-IoT network coverage by China Mobile, the band they use is B8. The NSE01 will use CoAP((% style="color:red" %)120.24.4.116:5683)(%%) or raw UDP((% style="color:red" %)120.24.4.116:5601)(%%) or MQTT((% style="color:red" %)120.24.4.116:1883)(%%)or TCP((% style="color:red" %)120.24.4.116:5600)(%%)protocol to send data to the test server 158 158 ))) 159 159 160 -(% border="1" cellspacing="10" style="background-color:#ffffcc; width:500px" %) 161 -|((( 162 -**Size** 163 163 164 -**(bytes)** 165 -)))|**2**|**2**|**2**|**2**|**2**|**1** 166 -|**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|((( 167 -Temperature 140 +[[image:1657249419225-449.png]] 168 168 169 -(Reserve, Ignore now) 170 -)))|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]]|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]]|((( 171 -MOD & Digital Interrupt 172 172 173 -(Optional) 174 -))) 175 175 176 -=== 2. 3.2MOD~=1(Originalvalue)===144 +=== 2.2.2 Insert SIM card === 177 177 178 - Thismodecan get the originalAD valueofistureand original conductivity (with temperaturedrift compensation).146 +Insert the NB-IoT Card get from your provider. 179 179 180 -(% border="1" cellspacing="10" style="background-color:#ffffcc; width:500px" %) 181 -|((( 182 -**Size** 148 +User need to take out the NB-IoT module and insert the SIM card like below: 183 183 184 -**(bytes)** 185 -)))|**2**|**2**|**2**|**2**|**2**|**1** 186 -|**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|((( 187 -Temperature 188 188 189 -(Reserve, Ignore now) 190 -)))|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]](raw)|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]](raw)|((( 191 -MOD & Digital Interrupt 151 +[[image:1657249468462-536.png]] 192 192 193 -(Optional) 194 -))) 195 195 196 -=== 2.3.3 Battery Info === 197 197 198 -((( 199 -Check the battery voltage for LSE01. 200 -))) 155 +=== 2.2.3 Connect USB – TTL to NSE01 to configure it === 201 201 202 202 ((( 203 -Ex1: 0x0B45 = 2885mV 204 -))) 205 - 206 206 ((( 207 -E x2: 0x0B49=2889mV159 +User need to configure NSE01 via serial port to set the (% style="color:blue" %)**Server Address** / **Uplink Topic** (%%)to define where and how-to uplink packets. NSE01 support AT Commands, user can use a USB to TTL adapter to connect to NSE01 and use AT Commands to configure it, as below. 208 208 ))) 209 - 210 - 211 - 212 -=== 2.3.4 Soil Moisture === 213 - 214 -((( 215 -Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil. 216 216 ))) 217 217 218 -((( 219 -For example, if the data you get from the register is __0x05 0xDC__, the moisture content in the soil is 220 -))) 221 221 222 -((( 223 - 224 -))) 164 +**Connection:** 225 225 226 -((( 227 -(% style="color:#4f81bd" %)**05DC(H) = 1500(D) /100 = 15%.** 228 -))) 166 + (% style="background-color:yellow" %)USB TTL GND <~-~-~-~-> GND 229 229 168 + (% style="background-color:yellow" %)USB TTL TXD <~-~-~-~-> UART_RXD 230 230 170 + (% style="background-color:yellow" %)USB TTL RXD <~-~-~-~-> UART_TXD 231 231 232 -=== 2.3.5 Soil Temperature === 233 233 234 -((( 235 - Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is 0x09 0xEC, the temperature content in the soil is 236 -))) 173 +In the PC, use below serial tool settings: 237 237 238 -((( 239 -**Example**: 240 -))) 175 +* Baud: (% style="color:green" %)**9600** 176 +* Data bits:** (% style="color:green" %)8(%%)** 177 +* Stop bits: (% style="color:green" %)**1** 178 +* Parity: (% style="color:green" %)**None** 179 +* Flow Control: (% style="color:green" %)**None** 241 241 242 242 ((( 243 - Ifpayload is0105H:((0x0105&0x8000)>>15===0),temp =0105(H)/100=2.61°C182 +Make sure the switch is in FLASH position, then power on device by connecting the jumper on NSE01. NSE01 will output system info once power on as below, we can enter the (% style="color:green" %)**password: 12345678**(%%) to access AT Command input. 244 244 ))) 245 245 246 -((( 247 -If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C 248 -))) 185 +[[image:image-20220708110657-3.png]] 249 249 187 +(% style="color:red" %)Note: the valid AT Commands can be found at: (%%)[[http:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/]] 250 250 251 251 252 -=== 2.3.6 Soil Conductivity (EC) === 253 253 254 -((( 255 -Obtain (% style="color:#4f81bd" %)**__soluble salt concentration__**(%%) in soil or (% style="color:#4f81bd" %)**__soluble ion concentration in liquid fertilizer__**(%%) or (% style="color:#4f81bd" %)**__planting medium__**(%%). The value range of the register is 0 - 20000(Decimal)( Can be greater than 20000). 256 -))) 191 +=== 2.2.4 Use CoAP protocol to uplink data === 257 257 258 -((( 259 -For example, if the data you get from the register is 0x00 0xC8, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm. 260 -))) 193 +(% style="color:red" %)Note: if you don't have CoAP server, you can refer this link to set up one: (%%)[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/>>http://wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/]] 261 261 262 -((( 263 -Generally, the EC value of irrigation water is less than 800uS / cm. 264 -))) 265 265 266 -((( 267 - 268 -))) 196 +**Use below commands:** 269 269 270 -(( (271 - 272 -)) )198 +* (% style="color:blue" %)**AT+PRO=1** (%%) ~/~/ Set to use CoAP protocol to uplink 199 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5683 ** (%%)~/~/ to set CoAP server address and port 200 +* (% style="color:blue" %)**AT+URI=5,11,"mqtt",11,"coap",12,"0",15,"c=text1",23,"0" ** (%%) ~/~/Set COAP resource path 273 273 274 - ===2.3.7MOD===202 +For parameter description, please refer to AT command set 275 275 276 - Firmwareversion at least v2.1 supports changing mode.204 +[[image:1657249793983-486.png]] 277 277 278 -For example, bytes[10]=90 279 279 280 - mod=(bytes[10]>>7)&0x01=1.207 +After configure the server address and (% style="color:green" %)**reset the device**(%%) (via AT+ATZ ), NSE01 will start to uplink sensor values to CoAP server. 281 281 209 +[[image:1657249831934-534.png]] 282 282 283 -**Downlink Command:** 284 284 285 -If payload = 0x0A00, workmode=0 286 286 287 - If****payload=****0x0A01,workmode=1213 +=== 2.2.5 Use UDP protocol to uplink data(Default protocol) === 288 288 215 +This feature is supported since firmware version v1.0.1 289 289 290 290 291 -=== 2.3.8 Decode payload in The Things Network === 218 +* (% style="color:blue" %)**AT+PRO=2 ** (%%) ~/~/ Set to use UDP protocol to uplink 219 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5601 ** (%%) ~/~/ to set UDP server address and port 220 +* (% style="color:blue" %)**AT+CFM=1 ** (%%) ~/~/If the server does not respond, this command is unnecessary 292 292 293 - While using TTN network, you can add the payload format to decode the payload.222 +[[image:1657249864775-321.png]] 294 294 295 295 296 -[[image:1654 505570700-128.png]]225 +[[image:1657249930215-289.png]] 297 297 298 -((( 299 -The payload decoder function for TTN is here: 300 -))) 301 301 302 -((( 303 -LSE01 TTN Payload Decoder: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Payload_Decoder/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Payload_Decoder/]] 304 -))) 305 305 229 +=== 2.2.6 Use MQTT protocol to uplink data === 306 306 231 +This feature is supported since firmware version v110 307 307 308 -== 2.4 Uplink Interval == 309 309 310 -The LSE01 by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link: [[Change Uplink Interval>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H4.1ChangeUplinkInterval"]] 234 +* (% style="color:blue" %)**AT+PRO=3 ** (%%) ~/~/Set to use MQTT protocol to uplink 235 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,1883 ** (%%) ~/~/Set MQTT server address and port 236 +* (% style="color:blue" %)**AT+CLIENT=CLIENT ** (%%)~/~/Set up the CLIENT of MQTT 237 +* (% style="color:blue" %)**AT+UNAME=UNAME **(%%)~/~/Set the username of MQTT 238 +* (% style="color:blue" %)**AT+PWD=PWD **(%%)~/~/Set the password of MQTT 239 +* (% style="color:blue" %)**AT+PUBTOPIC=NSE01_PUB **(%%)~/~/Set the sending topic of MQTT 240 +* (% style="color:blue" %)**AT+SUBTOPIC=NSE01_SUB **(%%) ~/~/Set the subscription topic of MQTT 311 311 242 +[[image:1657249978444-674.png]] 312 312 313 313 314 - ==2.5 Downlink Payload ==245 +[[image:1657249990869-686.png]] 315 315 316 -By default, LSE50 prints the downlink payload to console port. 317 317 318 -[[image:image-20220606165544-8.png]] 319 - 320 - 321 321 ((( 322 - **Examples:**249 +MQTT protocol has a much higher power consumption compare vs UDP / CoAP protocol. Please check the power analyze document and adjust the uplink period to a suitable interval. 323 323 ))) 324 324 325 -((( 326 - 327 -))) 328 328 329 -* ((( 330 -**Set TDC** 331 -))) 332 332 333 -((( 334 -If the payload=0100003C, it means set the END Node’s TDC to 0x00003C=60(S), while type code is 01. 335 -))) 254 +=== 2.2.7 Use TCP protocol to uplink data === 336 336 337 -((( 338 -Payload: 01 00 00 1E TDC=30S 339 -))) 256 +This feature is supported since firmware version v110 340 340 341 -((( 342 -Payload: 01 00 00 3C TDC=60S 343 -))) 344 344 345 -((( 346 - 347 -))) 259 +* (% style="color:blue" %)**AT+PRO=4 ** (%%) ~/~/ Set to use TCP protocol to uplink 260 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5600 **(%%) ~/~/ to set TCP server address and port 348 348 349 -* ((( 350 -**Reset** 351 -))) 262 +[[image:1657250217799-140.png]] 352 352 353 -((( 354 -If payload = 0x04FF, it will reset the LSE01 355 -))) 356 356 265 +[[image:1657250255956-604.png]] 357 357 358 -* **CFM** 359 359 360 -Downlink Payload: 05000001, Set AT+CFM=1 or 05000000 , set AT+CFM=0 361 361 269 +=== 2.2.8 Change Update Interval === 362 362 271 +User can use below command to change the (% style="color:green" %)**uplink interval**. 363 363 364 - ==2.6ShowDatainDataCake IoT Server==273 +* (% style="color:blue" %)**AT+TDC=600 ** (%%)~/~/ Set Update Interval to 600s 365 365 366 366 ((( 367 - [[DATACAKE>>url:https://datacake.co/]] provides a human friendly interfaceto show the sensordata,once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps:276 +(% style="color:red" %)**NOTE:** 368 368 ))) 369 369 370 370 ((( 371 - 280 +(% style="color:red" %)1. By default, the device will send an uplink message every 1 hour. 372 372 ))) 373 373 374 -((( 375 -**Step 1**: Be sure that your device is programmed and properly connected to the network at this time. 376 -))) 377 377 378 -((( 379 -**Step 2**: To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps: 380 -))) 381 381 285 +== 2.3 Uplink Payload == 382 382 383 - [[image:1654505857935-743.png]]287 +In this mode, uplink payload includes in total 18 bytes 384 384 289 +(% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:510px" %) 290 +|=(% style="width: 50px;" %)((( 291 +**Size(bytes)** 292 +)))|=(% style="width: 50px;" %)**6**|=(% style="width: 25px;" %)2|=(% style="width: 25px;" %)**2**|=(% style="width: 80px;" %)**1**|=(% style="width: 80px;" %)**2**|=(% style="width: 80px;" %)**2**|=(% style="width: 80px;" %)**2**|=(% style="width: 40px;" %)**1** 293 +|(% style="width:97px" %)**Value**|(% style="width:83px" %)[[Device ID>>||anchor="H"]]|(% style="width:41px" %)[[Ver>>||anchor="H"]]|(% style="width:46px" %)[[BAT>>||anchor="H"]]|(% style="width:123px" %)[[Signal Strength>>||anchor="H"]]|(% style="width:108px" %)[[Soil Moisture>>||anchor="H"]]|(% style="width:133px" %)[[Soil Temperature>>||anchor="H"]]|(% style="width:159px" %)[[Soil Conductivity(EC)>>||anchor="H"]]|(% style="width:80px" %)[[Interrupt>>||anchor="H"]] 385 385 386 - [[image:1654505874829-548.png]]295 +If we use the MQTT client to subscribe to this MQTT topic, we can see the following information when the NSE01 uplink data. 387 387 388 -Step 3: Create an account or log in Datacake. 389 389 390 - Step 4:Search theLSE01and add DevEUI.298 +[[image:image-20220708111918-4.png]] 391 391 392 392 393 - [[image:1654505905236-553.png]]301 +The payload is ASCII string, representative same HEX: 394 394 303 +0x72403155615900640c7817075e0a8c02f900 where: 395 395 396 -After added, the sensor data arrive TTN, it will also arrive and show in Mydevices. 305 +* Device ID: 0x 724031556159 = 724031556159 306 +* Version: 0x0064=100=1.0.0 397 397 398 -[[image:1654505925508-181.png]] 308 +* BAT: 0x0c78 = 3192 mV = 3.192V 309 +* Singal: 0x17 = 23 310 +* Soil Moisture: 0x075e= 1886 = 18.86 % 311 +* Soil Temperature:0x0a8c =2700=27 °C 312 +* Soil Conductivity(EC) = 0x02f9 =761 uS /cm 313 +* Interrupt: 0x00 = 0 399 399 315 +== 2.4 Payload Explanation and Sensor Interface == 400 400 401 401 402 -== 2. 7 FrequencyPlans==318 +=== 2.4.1 Device ID === 403 403 404 - TheLSE01 uses OTAA modendbelowfrequency plans by default.Ifuser wanttouse itwithdifferentfrequency plan, pleaserefertheAT commandsets.320 +By default, the Device ID equal to the last 6 bytes of IMEI. 405 405 322 +User can use (% style="color:blue" %)**AT+DEUI**(%%) to set Device ID 406 406 407 - === 2.7.1EU863-870 (EU868) ===324 +**Example:** 408 408 409 - (% style="color:#037691" %)** Uplink:**326 +AT+DEUI=A84041F15612 410 410 411 - 868.1-SF7BW125toSF12BW125328 +The Device ID is stored in a none-erase area, Upgrade the firmware or run AT+FDR won't erase Device ID. 412 412 413 -868.3 - SF7BW125 to SF12BW125 and SF7BW250 414 414 415 -868.5 - SF7BW125 to SF12BW125 416 416 417 - 867.1- SF7BW125toSF12BW125332 +=== 2.4.2 Version Info === 418 418 419 - 867.3-SF7BW125toSF12BW125334 +Specify the software version: 0x64=100, means firmware version 1.00. 420 420 421 - 867.5-SF7BW125toSF12BW125336 +For example: 0x00 64 : this device is NSE01 with firmware version 1.0.0. 422 422 423 -867.7 - SF7BW125 to SF12BW125 424 424 425 -867.9 - SF7BW125 to SF12BW125 426 426 427 - 868.8-FSK340 +=== 2.4.3 Battery Info === 428 428 342 +((( 343 +Check the battery voltage for LSE01. 344 +))) 429 429 430 -(% style="color:#037691" %)** Downlink:** 346 +((( 347 +Ex1: 0x0B45 = 2885mV 348 +))) 431 431 432 -Uplink channels 1-9 (RX1) 350 +((( 351 +Ex2: 0x0B49 = 2889mV 352 +))) 433 433 434 -869.525 - SF9BW125 (RX2 downlink only) 435 435 436 436 356 +=== 2.4.4 Signal Strength === 437 437 438 - ===2.7.2US902-928(US915)===358 +NB-IoT Network signal Strength. 439 439 440 - Usedin USA, Canadaand South America. Default use CHE=2360 +**Ex1: 0x1d = 29** 441 441 442 -(% style="color: #037691" %)**Uplink:**362 +(% style="color:blue" %)**0**(%%) -113dBm or less 443 443 444 - 903.9-SF7BW125toSF10BW125364 +(% style="color:blue" %)**1**(%%) -111dBm 445 445 446 - 904.1- SF7BW125toSF10BW125366 +(% style="color:blue" %)**2...30**(%%) -109dBm... -53dBm 447 447 448 - 904.3-SF7BW125toSF10BW125368 +(% style="color:blue" %)**31** (%%) -51dBm or greater 449 449 450 -9 04.5-SF7BW125toSF10BW125370 +(% style="color:blue" %)**99** (%%) Not known or not detectable 451 451 452 -904.7 - SF7BW125 to SF10BW125 453 453 454 -904.9 - SF7BW125 to SF10BW125 455 455 456 - 905.1- SF7BW125toSF10BW125374 +=== 2.4.5 Soil Moisture === 457 457 458 -905.3 - SF7BW125 to SF10BW125 376 +((( 377 +Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil. 378 +))) 459 459 380 +((( 381 +For example, if the data you get from the register is **__0x05 0xDC__**, the moisture content in the soil is 382 +))) 460 460 461 -(% style="color:#037691" %)**Downlink:** 384 +((( 385 + 386 +))) 462 462 463 -923.3 - SF7BW500 to SF12BW500 388 +((( 389 +(% style="color:#4f81bd" %)**05DC(H) = 1500(D) /100 = 15%.** 390 +))) 464 464 465 -923.9 - SF7BW500 to SF12BW500 466 466 467 -924.5 - SF7BW500 to SF12BW500 468 468 469 - 925.1-SF7BW500toSF12BW500394 +=== 2.4.6 Soil Temperature === 470 470 471 -925.7 - SF7BW500 to SF12BW500 396 +((( 397 + Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is __**0x09 0xEC**__, the temperature content in the soil is 398 +))) 472 472 473 -926.3 - SF7BW500 to SF12BW500 400 +((( 401 +**Example**: 402 +))) 474 474 475 -926.9 - SF7BW500 to SF12BW500 404 +((( 405 +If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/100 = 2.61 °C 406 +))) 476 476 477 -927.5 - SF7BW500 to SF12BW500 408 +((( 409 +If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C 410 +))) 478 478 479 -923.3 - SF12BW500(RX2 downlink only) 480 480 481 481 414 +=== 2.4.7 Soil Conductivity (EC) === 482 482 483 -=== 2.7.3 CN470-510 (CN470) === 416 +((( 417 +Obtain (% style="color:#4f81bd" %)**__soluble salt concentration__**(%%) in soil or (% style="color:#4f81bd" %)**__soluble ion concentration in liquid fertilizer__**(%%) or (% style="color:#4f81bd" %)**__planting medium__**(%%). The value range of the register is 0 - 20000(Decimal)( Can be greater than 20000). 418 +))) 484 484 485 -Used in China, Default use CHE=1 420 +((( 421 +For example, if the data you get from the register is __**0x00 0xC8**__, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm. 422 +))) 486 486 487 -(% style="color:#037691" %)**Uplink:** 424 +((( 425 +Generally, the EC value of irrigation water is less than 800uS / cm. 426 +))) 488 488 489 -486.3 - SF7BW125 to SF12BW125 428 +((( 429 + 430 +))) 490 490 491 -486.5 - SF7BW125 to SF12BW125 432 +((( 433 + 434 +))) 492 492 493 -4 86.7-SF7BW125toSF12BW125436 +=== 2.4.8 Digital Interrupt === 494 494 495 - 486.9-SF7BW125toSF12BW125438 +Digital Interrupt refers to pin (% style="color:blue" %)**GPIO_EXTI**(%%), and there are different trigger methods. When there is a trigger, the NSE01 will send a packet to the server. 496 496 497 - 487.1- SF7BW125 toSF12BW125440 +The command is: 498 498 499 - 487.3-SF7BW125to SF12BW125442 +(% style="color:blue" %)**AT+INTMOD=3 **(%%) ~/~/(more info about INMOD please refer [[**AT Command Manual**>>url:https://www.dragino.com/downloads/downloads/NB-IoT/NBSN95/DRAGINO_NBSN95-NB_AT%20Commands_v1.1.0.pdf]])**.** 500 500 501 -487.5 - SF7BW125 to SF12BW125 502 502 503 - 487.7-SF7BW125toSF12BW125445 +The lower four bits of this data field shows if this packet is generated by interrupt or not. [[Click here>>||anchor="H"]] for the hardware and software set up. 504 504 505 505 506 - (% style="color:#037691" %)**Downlink:**448 +Example: 507 507 508 - 506.7-SF7BW125to SF12BW125450 +0x(00): Normal uplink packet. 509 509 510 - 506.9 - SF7BW125toSF12BW125452 +0x(01): Interrupt Uplink Packet. 511 511 512 -507.1 - SF7BW125 to SF12BW125 513 513 514 -507.3 - SF7BW125 to SF12BW125 515 515 516 - 507.5- SF7BW125 toSF12BW125456 +=== 2.4.9 +5V Output === 517 517 518 - 507.7-SF7BW125 toSF12BW125458 +NSE01 will enable +5V output before all sampling and disable the +5v after all sampling. 519 519 520 -507.9 - SF7BW125 to SF12BW125 521 521 522 -5 08.1-SF7BW125toSF12BW125461 +The 5V output time can be controlled by AT Command. 523 523 524 - 505.3 - SF12BW125(RX2downlinkonly)463 +(% style="color:blue" %)**AT+5VT=1000** 525 525 465 +Means set 5V valid time to have 1000ms. So the real 5V output will actually have 1000ms + sampling time for other sensors. 526 526 527 527 528 -=== 2.7.4 AU915-928(AU915) === 529 529 530 -D efaultuse CHE=2469 +== 2.5 Downlink Payload == 531 531 532 - (% style="color:#037691"%)**Uplink:**471 +By default, NSE01 prints the downlink payload to console port. 533 533 534 - 916.8-SF7BW125 to SF12BW125473 +[[image:image-20220708133731-5.png]] 535 535 536 -917.0 - SF7BW125 to SF12BW125 537 537 538 -917.2 - SF7BW125 to SF12BW125 539 539 540 -917.4 - SF7BW125 to SF12BW125 477 +((( 478 +(% style="color:blue" %)**Examples:** 479 +))) 541 541 542 -917.6 - SF7BW125 to SF12BW125 481 +((( 482 + 483 +))) 543 543 544 -917.8 - SF7BW125 to SF12BW125 485 +* ((( 486 +(% style="color:blue" %)**Set TDC** 487 +))) 545 545 546 -918.0 - SF7BW125 to SF12BW125 489 +((( 490 +If the payload=0100003C, it means set the END Node's TDC to 0x00003C=60(S), while type code is 01. 491 +))) 547 547 548 -918.2 - SF7BW125 to SF12BW125 493 +((( 494 +Payload: 01 00 00 1E TDC=30S 495 +))) 549 549 497 +((( 498 +Payload: 01 00 00 3C TDC=60S 499 +))) 550 550 551 -(% style="color:#037691" %)**Downlink:** 501 +((( 502 + 503 +))) 552 552 553 -923.3 - SF7BW500 to SF12BW500 505 +* ((( 506 +(% style="color:blue" %)**Reset** 507 +))) 554 554 555 -923.9 - SF7BW500 to SF12BW500 509 +((( 510 +If payload = 0x04FF, it will reset the NSE01 511 +))) 556 556 557 -924.5 - SF7BW500 to SF12BW500 558 558 559 - 925.1-SF7BW500toSF12BW500514 +* (% style="color:blue" %)**INTMOD** 560 560 561 - 925.7-SF7BW500 toSF12BW500516 +Downlink Payload: 06000003, Set AT+INTMOD=3 562 562 563 -926.3 - SF7BW500 to SF12BW500 564 564 565 -926.9 - SF7BW500 to SF12BW500 566 566 567 - 927.5-SF7BW500toSF12BW500520 +== 2.6 LED Indicator == 568 568 569 -923.3 - SF12BW500(RX2 downlink only) 522 +((( 523 +The NSE01 has an internal LED which is to show the status of different state. 570 570 571 571 526 +* When power on, NSE01 will detect if sensor probe is connected, if probe detected, LED will blink four times. (no blinks in this step is no probe) 527 +* Then the LED will be on for 1 second means device is boot normally. 528 +* After NSE01 join NB-IoT network. The LED will be ON for 3 seconds. 529 +* For each uplink probe, LED will be on for 500ms. 530 +))) 572 572 573 -=== 2.7.5 AS920-923 & AS923-925 (AS923) === 574 574 575 -(% style="color:#037691" %)**Default Uplink channel:** 576 576 577 -923.2 - SF7BW125 to SF10BW125 578 578 579 - 923.4 - SF7BW125to SF10BW125535 +== 2.7 Installation in Soil == 580 580 537 +__**Measurement the soil surface**__ 581 581 582 - (%style="color:#037691"%)**AdditionalUplinkChannel**:539 +Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting. [[https:~~/~~/img.alicdn.com/imgextra/i3/2005165265/O1CN010rj9Oh1olPsQxrdUK_!!2005165265.jpg>>url:https://img.alicdn.com/imgextra/i3/2005165265/O1CN010rj9Oh1olPsQxrdUK_!!2005165265.jpg]] 583 583 584 - (OTAA mode, channel added by JoinAcceptmessage)541 +[[image:1657259653666-883.png]] 585 585 586 -(% style="color:#037691" %)**AS920~~AS923 for Japan, Malaysia, Singapore**: 587 587 588 -922.2 - SF7BW125 to SF10BW125 544 +((( 545 + 589 589 590 -922.4 - SF7BW125 to SF10BW125 547 +((( 548 +Dig a hole with diameter > 20CM. 549 +))) 591 591 592 -922.6 - SF7BW125 to SF10BW125 551 +((( 552 +Horizontal insert the probe to the soil and fill the hole for long term measurement. 553 +))) 554 +))) 593 593 594 - 922.8 - SF7BW125to SF10BW125556 +[[image:1654506665940-119.png]] 595 595 596 -923.0 - SF7BW125 to SF10BW125 558 +((( 559 + 560 +))) 597 597 598 -922.0 - SF7BW125 to SF10BW125 599 599 563 +== 2.8 Firmware Change Log == 600 600 601 -(% style="color:#037691" %)**AS923 ~~ AS925 for Brunei, Cambodia, Hong Kong, Indonesia, Laos, Taiwan, Thailand, Vietnam**: 602 602 603 - 923.6-SF7BW125toSF10BW125566 +Download URL & Firmware Change log 604 604 605 - 923.8-F7BW125toSF10BW125568 +[[www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/Firmware/]] 606 606 607 -924.0 - SF7BW125 to SF10BW125 608 608 609 - 924.2- SF7BW125toSF10BW125571 +Upgrade Instruction: [[Upgrade_Firmware>>||anchor="H"]] 610 610 611 -924.4 - SF7BW125 to SF10BW125 612 612 613 -924.6 - SF7BW125 to SF10BW125 614 614 575 +== 2.9 Battery Analysis == 615 615 616 - (%style="color:#037691"%)**Downlink:**577 +=== 2.9.1 Battery Type === 617 617 618 -Uplink channels 1-8 (RX1) 619 619 620 - 923.2-SF10BW125 (RX2)580 +The NSE01 battery is a combination of an 8500mAh Li/SOCI2 Battery and a Super Capacitor. The battery is none-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter. 621 621 622 622 583 +The battery is designed to last for several years depends on the actually use environment and update interval. 623 623 624 -=== 2.7.6 KR920-923 (KR920) === 625 625 626 - Default channel:586 +The battery related documents as below: 627 627 628 -922.1 - SF7BW125 to SF12BW125 588 +* [[Battery Dimension>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]] 589 +* [[Lithium-Thionyl Chloride Battery>>url:http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]][[ datasheet>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]] 590 +* [[Lithium-ion Battery-Capacitor datasheet>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]] 629 629 630 -922.3 - SF7BW125 to SF12BW125 631 - 632 -922.5 - SF7BW125 to SF12BW125 633 - 634 - 635 -(% style="color:#037691" %)**Uplink: (OTAA mode, channel added by JoinAccept message)** 636 - 637 -922.1 - SF7BW125 to SF12BW125 638 - 639 -922.3 - SF7BW125 to SF12BW125 640 - 641 -922.5 - SF7BW125 to SF12BW125 642 - 643 -922.7 - SF7BW125 to SF12BW125 644 - 645 -922.9 - SF7BW125 to SF12BW125 646 - 647 -923.1 - SF7BW125 to SF12BW125 648 - 649 -923.3 - SF7BW125 to SF12BW125 650 - 651 - 652 -(% style="color:#037691" %)**Downlink:** 653 - 654 -Uplink channels 1-7(RX1) 655 - 656 -921.9 - SF12BW125 (RX2 downlink only; SF12BW125 might be changed to SF9BW125) 657 - 658 - 659 - 660 -=== 2.7.7 IN865-867 (IN865) === 661 - 662 -(% style="color:#037691" %)** Uplink:** 663 - 664 -865.0625 - SF7BW125 to SF12BW125 665 - 666 -865.4025 - SF7BW125 to SF12BW125 667 - 668 -865.9850 - SF7BW125 to SF12BW125 669 - 670 - 671 -(% style="color:#037691" %) **Downlink:** 672 - 673 -Uplink channels 1-3 (RX1) 674 - 675 -866.550 - SF10BW125 (RX2) 676 - 677 - 678 - 679 - 680 -== 2.8 LED Indicator == 681 - 682 -The LSE01 has an internal LED which is to show the status of different state. 683 - 684 -* Blink once when device power on. 685 -* Solid ON for 5 seconds once device successful Join the network. 686 -* Blink once when device transmit a packet. 687 - 688 -== 2.9 Installation in Soil == 689 - 690 -**Measurement the soil surface** 691 - 692 - 693 -[[image:1654506634463-199.png]] 694 - 695 695 ((( 696 -((( 697 -Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting. 593 +[[image:image-20220708140453-6.png]] 698 698 ))) 699 -))) 700 700 701 701 702 -[[image:1654506665940-119.png]] 703 703 704 -((( 705 -Dig a hole with diameter > 20CM. 706 -))) 598 +2.9.2 707 707 708 -((( 709 -Horizontal insert the probe to the soil and fill the hole for long term measurement. 710 -))) 600 +Dragino battery powered product are all runs in Low Power mode. We have an update battery calculator which base on the measurement of the real device. User can use this calculator to check the battery life and calculate the battery life if want to use different transmit interval. 711 711 712 712 713 - ==2.10FirmwareChangeLog ==603 +Instruction to use as below: 714 714 715 -((( 716 -**Firmware download link:** 717 -))) 718 718 719 -((( 720 -[[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/]] 721 -))) 606 +Step 1: Downlink the up-to-date DRAGINO_Battery_Life_Prediction_Table.xlsx from: 722 722 723 -((( 724 - 725 -))) 608 +[[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/]] 726 726 727 -((( 728 -**Firmware Upgrade Method: **[[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome]] 729 -))) 730 730 731 -((( 732 - 733 -))) 611 +Step 2: Open it and choose 734 734 735 - (((736 -* *V1.0.**737 - )))613 +* Product Model 614 +* Uplink Interval 615 +* Working Mode 738 738 739 -((( 740 -Release 741 -))) 617 +And the Life expectation in difference case will be shown on the right. 742 742 743 743 744 -== 2.11 Battery Analysis == 745 745 746 -=== 2. 11.1BatteryType ===621 +=== 2.9.3 Battery Note === 747 747 748 748 ((( 749 -The LSE01 battery is a combination of a 4000mAh Li/SOCI2 Battery and a Super Capacitor. The battery is non-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter. 750 -))) 751 - 752 -((( 753 -The battery is designed to last for more than 5 years for the LSN50. 754 -))) 755 - 756 -((( 757 -((( 758 -The battery-related documents are as below: 759 -))) 760 -))) 761 - 762 -* ((( 763 -[[Battery Dimension>>url:http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/&file=LSN50-Battery-Dimension.pdf]], 764 -))) 765 -* ((( 766 -[[Lithium-Thionyl Chloride Battery datasheet>>url:https://www.dragino.com/downloads/downloads/datasheet/Battery/ER26500/ER26500_Datasheet-EN.pdf]], 767 -))) 768 -* ((( 769 -[[Lithium-ion Battery-Capacitor datasheet>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC_1520_datasheet.jpg]], [[Tech Spec>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC1520%20Technical%20Specification20171123.pdf]] 770 -))) 771 - 772 - [[image:image-20220610172436-1.png]] 773 - 774 - 775 - 776 -=== 2.11.2 Battery Note === 777 - 778 -((( 779 779 The Li-SICO battery is designed for small current / long period application. It is not good to use a high current, short period transmit method. The recommended minimum period for use of this battery is 5 minutes. If you use a shorter period time to transmit LoRa, then the battery life may be decreased. 780 780 ))) 781 781 782 782 783 783 784 -=== 2. 11.3Replace the battery ===629 +=== 2.9.4 Replace the battery === 785 785 786 -((( 787 -If Battery is lower than 2.7v, user should replace the battery of LSE01. 788 -))) 631 +The default battery pack of NSE01 includes a ER26500 plus super capacitor. If user can't find this pack locally, they can find ER26500 or equivalence without the SPC1520 capacitor, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes). 789 789 790 -((( 791 -You can change the battery in the LSE01.The type of battery is not limited as long as the output is between 3v to 3.6v. On the main board, there is a diode (D1) between the battery and the main circuit. If you need to use a battery with less than 3.3v, please remove the D1 and shortcut the two pads of it so there won’t be voltage drop between battery and main board. 792 -))) 793 793 794 -((( 795 -The default battery pack of LSE01 includes a ER18505 plus super capacitor. If user can’t find this pack locally, they can find ER18505 or equivalence, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes) 796 -))) 797 797 798 - 799 - 800 800 = 3. Using the AT Commands = 801 801 802 802 == 3.1 Access AT Commands == ... ... @@ -820,7 +820,7 @@ 820 820 [[image:1654502050864-459.png||height="564" width="806"]] 821 821 822 822 823 -Below are the available commands, a more detailed AT Command manual can be found at [[AT Command Manual>> url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/]]: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/]]658 +Below are the available commands, a more detailed AT Command manual can be found at [[AT Command Manual>>https://www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0]]: [[https:~~/~~/www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0>>https://www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0]] 824 824 825 825 826 826 (% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>? **(%%) : Help on <CMD> ... ... @@ -978,19 +978,14 @@ 978 978 979 979 ((( 980 980 Because the end node is now hopping in 72 frequency, it makes it difficult for the devices to Join the TTN network and uplink data. To solve this issue, you can access the device via the AT commands and run: 981 -))) 982 982 983 -(% class="box infomessage" %) 984 -((( 985 -**AT+CHE=2** 817 +* (% style="color:#037691" %)**AT+CHE=2** 818 +* (% style="color:#037691" %)**ATZ** 986 986 ))) 987 987 988 -(% class="box infomessage" %) 989 989 ((( 990 -**ATZ** 991 -))) 822 + 992 992 993 -((( 994 994 to set the end node to work in 8 channel mode. The device will work in Channel 8-15 & 64-71 for OTAA, and channel 8-15 for Uplink. 995 995 ))) 996 996 ... ... @@ -1005,18 +1005,22 @@ 1005 1005 [[image:image-20220606154825-4.png]] 1006 1006 1007 1007 838 +== 4.2 Can I calibrate LSE01 to different soil types? == 1008 1008 840 +LSE01 is calibrated for saline-alkali soil and loamy soil. If users want to use it for other soil, they can calibrate the value in the IoT platform base on the value measured by saline-alkali soil and loamy soil. The formula can be found at [[this link>>https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/&file=Calibrate_to_other_Soil_20220605.pdf]]. 841 + 842 + 1009 1009 = 5. Trouble Shooting = 1010 1010 1011 -== 5.1 Why I can ’t join TTN in US915 / AU915 bands? ==845 +== 5.1 Why I can't join TTN in US915 / AU915 bands? == 1012 1012 1013 -It is due to channel mapping. Please see the [[Eight Channel Mode>>doc:Main. LoRaWANCommunication Debug.WebHome||anchor="H2.NoticeofUS9152FCN4702FAU915Frequencyband"]] section above for details.847 +It is due to channel mapping. Please see the [[Eight Channel Mode>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H7.19EightChannelMode"]] section above for details. 1014 1014 1015 1015 1016 -== 5.2 AT Command input doesn ’t work ==850 +== 5.2 AT Command input doesn't work == 1017 1017 1018 1018 ((( 1019 -In the case if user can see the console output but can ’t type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn’t send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.853 +In the case if user can see the console output but can't type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn't send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string. 1020 1020 ))) 1021 1021 1022 1022
- 1657245163077-232.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +81.0 KB - Content
- 1657246476176-652.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +492.6 KB - Content
- 1657249419225-449.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +81.0 KB - Content
- 1657249468462-536.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +483.6 KB - Content
- 1657249793983-486.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +85.8 KB - Content
- 1657249831934-534.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +72.5 KB - Content
- 1657249864775-321.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +87.0 KB - Content
- 1657249930215-289.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +77.3 KB - Content
- 1657249978444-674.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +139.5 KB - Content
- 1657249990869-686.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +96.9 KB - Content
- 1657250217799-140.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +98.7 KB - Content
- 1657250255956-604.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +99.0 KB - Content
- 1657259653666-883.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +344.4 KB - Content
- 1657260785982-288.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +138.2 KB - Content
- image-20220708101224-1.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +22.2 KB - Content
- image-20220708101605-2.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +87.5 KB - Content
- image-20220708110657-3.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +251.7 KB - Content
- image-20220708111918-4.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +38.8 KB - Content
- image-20220708133731-5.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +8.7 KB - Content
- image-20220708140453-6.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +132.7 KB - Content