Last modified by Mengting Qiu on 2024/04/02 16:44

From version 35.6
edited by Xiaoling
on 2022/06/14 14:03
Change comment: There is no comment for this version
To version 60.2
edited by Xiaoling
on 2022/07/08 14:12
Change comment: There is no comment for this version

Summary

Details

Page properties
Title
... ... @@ -1,1 +1,1 @@
1 -LSE01-LoRaWAN Soil Moisture & EC Sensor User Manual
1 +NSE01 - NB-IoT Soil Moisture & EC Sensor User Manual
Content
... ... @@ -3,9 +3,7 @@
3 3  
4 4  
5 5  
6 -**Table of Contents:**
7 7  
8 -{{toc/}}
9 9  
10 10  
11 11  
... ... @@ -12,66 +12,81 @@
12 12  
13 13  
14 14  
15 -= 1. Introduction =
16 16  
17 -== 1.1 ​What is LoRaWAN Soil Moisture & EC Sensor ==
14 +**Table of Contents:**
18 18  
16 +
17 +
18 +
19 +
20 +
21 += 1.  Introduction =
22 +
23 +== 1.1 ​ What is LoRaWAN Soil Moisture & EC Sensor ==
24 +
19 19  (((
20 20  
21 21  
22 -The Dragino LSE01 is a (% style="color:#4f81bd" %)**LoRaWAN Soil Moisture & EC Sensor**(%%) for IoT of Agriculture. It is designed to measure the soil moisture of saline-alkali soil and loamy soil. The soil sensor uses FDR method to calculate the soil moisture with the compensation from soil temperature and conductivity. It also has been calibrated in factory for Mineral soil type.
23 -)))
28 +Dragino NSE01 is an (% style="color:blue" %)**NB-IOT soil moisture & EC sensor**(%%) for agricultural IoT. Used to measure the soil moisture of saline-alkali soil and loam. The soil sensor uses the FDR method to calculate soil moisture and compensates it with soil temperature and electrical conductivity. It has also been calibrated for mineral soil types at the factory.
24 24  
25 -(((
26 -It detects (% style="color:#4f81bd" %)**Soil Moisture**(%%), (% style="color:#4f81bd" %)**Soil Temperature**(%%) and (% style="color:#4f81bd" %)**Soil Conductivity**(%%), and uploads the value via wireless to LoRaWAN IoT Server.
27 -)))
30 +It can detect (% style="color:blue" %)**Soil Moisture, Soil Temperature and Soil Conductivity**(%%), and upload its value to the server wirelessly.
28 28  
29 -(((
30 -The LoRa wireless technology used in LES01 allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption.
31 -)))
32 +The wireless technology used in NSE01 allows the device to send data at a low data rate and reach ultra-long distances, providing ultra-long-distance spread spectrum Communication.
32 32  
33 -(((
34 -LES01 is powered by (% style="color:#4f81bd" %)**4000mA or 8500mAh Li-SOCI2 battery**(%%), It is designed for long term use up to 10 years.
35 -)))
34 +NSE01 are powered by (% style="color:blue" %)**8500mAh Li-SOCI2**(%%) batteries, which can be used for up to 5 years.  
36 36  
37 -(((
38 -Each LES01 is pre-load with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect after power on.
36 +
39 39  )))
40 40  
41 -
42 42  [[image:1654503236291-817.png]]
43 43  
44 44  
45 -[[image:1654503265560-120.png]]
42 +[[image:1657245163077-232.png]]
46 46  
47 47  
48 48  
49 49  == 1.2 ​Features ==
50 50  
51 -* LoRaWAN 1.0.3 Class A
52 -* Ultra low power consumption
48 +
49 +* NB-IoT Bands: B1/B3/B8/B5/B20/B28 @H-FDD
53 53  * Monitor Soil Moisture
54 54  * Monitor Soil Temperature
55 55  * Monitor Soil Conductivity
56 -* Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865
57 57  * AT Commands to change parameters
58 58  * Uplink on periodically
59 59  * Downlink to change configure
60 60  * IP66 Waterproof Enclosure
61 -* 4000mAh or 8500mAh Battery for long term use
57 +* Ultra-Low Power consumption
58 +* AT Commands to change parameters
59 +* Micro SIM card slot for NB-IoT SIM
60 +* 8500mAh Battery for long term use
62 62  
62 +== 1.3  Specification ==
63 63  
64 64  
65 +(% style="color:#037691" %)**Common DC Characteristics:**
65 65  
66 -== 1.3 Specification ==
67 +* Supply Voltage: 2.1v ~~ 3.6v
68 +* Operating Temperature: -40 ~~ 85°C
67 67  
70 +(% style="color:#037691" %)**NB-IoT Spec:**
71 +
72 +* - B1 @H-FDD: 2100MHz
73 +* - B3 @H-FDD: 1800MHz
74 +* - B8 @H-FDD: 900MHz
75 +* - B5 @H-FDD: 850MHz
76 +* - B20 @H-FDD: 800MHz
77 +* - B28 @H-FDD: 700MHz
78 +
79 +(% style="color:#037691" %)**Probe Specification:**
80 +
68 68  Measure Volume: Base on the centra pin of the probe, a cylinder with 7cm diameter and 10cm height.
69 69  
70 -[[image:image-20220606162220-5.png]]
83 +[[image:image-20220708101224-1.png]]
71 71  
72 72  
73 73  
74 -== ​1.4 Applications ==
87 +== ​1.4  Applications ==
75 75  
76 76  * Smart Agriculture
77 77  
... ... @@ -78,725 +78,547 @@
78 78  (% class="wikigeneratedid" id="H200B1.5FirmwareChangelog" %)
79 79  ​
80 80  
81 -== 1.5 Firmware Change log ==
94 +== 1.5  Pin Definitions ==
82 82  
83 83  
84 -**LSE01 v1.0 :**  Release
97 +[[image:1657246476176-652.png]]
85 85  
86 86  
87 87  
88 -= 2. Configure LSE01 to connect to LoRaWAN network =
101 += 2.  Use NSE01 to communicate with IoT Server =
89 89  
90 -== 2.1 How it works ==
103 +== 2.1  How it works ==
91 91  
105 +
92 92  (((
93 -The LSE01 is configured as LoRaWAN OTAA Class A mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and power on the LSE0150. It will automatically join the network via OTAA and start to send the sensor value
107 +The NSE01 is equipped with a NB-IoT module, the pre-loaded firmware in NSE01 will get environment data from sensors and send the value to local NB-IoT network via the NB-IoT module The NB-IoT network will forward this value to IoT server via the protocol defined by NSE01.
94 94  )))
95 95  
110 +
96 96  (((
97 -In case you can’t set the OTAA keys in the LoRaWAN OTAA server, and you have to use the keys from the server, you can [[use AT Commands >>||anchor="H3.200BUsingtheATCommands"]].
112 +The diagram below shows the working flow in default firmware of NSE01:
98 98  )))
99 99  
115 +[[image:image-20220708101605-2.png]]
100 100  
117 +(((
118 +
119 +)))
101 101  
102 -== 2.2 ​Quick guide to connect to LoRaWAN server (OTAA) ==
103 103  
104 -Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LG308>>url:http://www.dragino.com/products/lora/item/140-lg308.html]] as a LoRaWAN gateway in this example.
105 105  
123 +== 2.2 ​ Configure the NSE01 ==
106 106  
107 -[[image:1654503992078-669.png]]
108 108  
126 +=== 2.2.1 Test Requirement ===
109 109  
110 -The LG308 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
111 111  
129 +To use NSE01 in your city, make sure meet below requirements:
112 112  
113 -**(% style="color:blue" %)Step 1**(%%):  Create a device in TTN with the OTAA keys from LSE01.
131 +* Your local operator has already distributed a NB-IoT Network there.
132 +* The local NB-IoT network used the band that NSE01 supports.
133 +* Your operator is able to distribute the data received in their NB-IoT network to your IoT server.
114 114  
115 -Each LSE01 is shipped with a sticker with the default device EUI as below:
116 -
117 -[[image:image-20220606163732-6.jpeg]]
118 -
119 -You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot:
120 -
121 -**Add APP EUI in the application**
122 -
123 -
124 -[[image:1654504596150-405.png]]
125 -
126 -
127 -
128 -**Add APP KEY and DEV EUI**
129 -
130 -[[image:1654504683289-357.png]]
131 -
132 -
133 -
134 -**(% style="color:blue" %)Step 2**(%%): Power on LSE01
135 -
136 -
137 -Put a Jumper on JP2 to power on the device. ( The Jumper must be in FLASH position).
138 -
139 -[[image:image-20220606163915-7.png]]
140 -
141 -
142 -**(% style="color:blue" %)Step 3(%%):** The LSE01 will auto join to the TTN network. After join success, it will start to upload messages to TTN and you can see the messages in the panel.
143 -
144 -[[image:1654504778294-788.png]]
145 -
146 -
147 -
148 -== 2.3 Uplink Payload ==
149 -
150 -=== ===
151 -
152 -=== 2.3.1 MOD~=0(Default Mode) ===
153 -
154 -LSE01 will uplink payload via LoRaWAN with below payload format: 
155 -
156 156  (((
157 -Uplink payload includes in total 11 bytes.
136 +Below figure shows our testing structure. Here we have NB-IoT network coverage by China Mobile, the band they use is B8.  The NSE01 will use CoAP((% style="color:red" %)120.24.4.116:5683)(%%) or raw UDP((% style="color:red" %)120.24.4.116:5601)(%%) or MQTT((% style="color:red" %)120.24.4.116:1883)(%%)or TCP((% style="color:red" %)120.24.4.116:5600)(%%)protocol to send data to the test server
158 158  )))
159 159  
160 -(% border="1" cellspacing="10" style="background-color:#ffffcc; width:500px" %)
161 -|(((
162 -**Size**
163 163  
164 -**(bytes)**
165 -)))|**2**|**2**|**2**|**2**|**2**|**1**
166 -|**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(((
167 -Temperature
140 +[[image:1657249419225-449.png]]
168 168  
169 -(Reserve, Ignore now)
170 -)))|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]]|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]]|(((
171 -MOD & Digital Interrupt
172 172  
173 -(Optional)
174 -)))
175 175  
176 -=== 2.3.2 MOD~=1(Original value) ===
144 +=== 2.2.2 Insert SIM card ===
177 177  
178 -This mode can get the original AD value of moisture and original conductivity (with temperature drift compensation).
146 +Insert the NB-IoT Card get from your provider.
179 179  
180 -(% border="1" cellspacing="10" style="background-color:#ffffcc; width:500px" %)
181 -|(((
182 -**Size**
148 +User need to take out the NB-IoT module and insert the SIM card like below:
183 183  
184 -**(bytes)**
185 -)))|**2**|**2**|**2**|**2**|**2**|**1**
186 -|**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(((
187 -Temperature
188 188  
189 -(Reserve, Ignore now)
190 -)))|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]](raw)|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]](raw)|(((
191 -MOD & Digital Interrupt
151 +[[image:1657249468462-536.png]]
192 192  
193 -(Optional)
194 -)))
195 195  
196 -=== 2.3.3 Battery Info ===
197 197  
198 -(((
199 -Check the battery voltage for LSE01.
200 -)))
155 +=== 2.2.3 Connect USB – TTL to NSE01 to configure it ===
201 201  
202 202  (((
203 -Ex1: 0x0B45 = 2885mV
204 -)))
205 -
206 206  (((
207 -Ex2: 0x0B49 = 2889mV
159 +User need to configure NSE01 via serial port to set the (% style="color:blue" %)**Server Address** / **Uplink Topic** (%%)to define where and how-to uplink packets. NSE01 support AT Commands, user can use a USB to TTL adapter to connect to NSE01 and use AT Commands to configure it, as below.
208 208  )))
209 -
210 -
211 -
212 -=== 2.3.4 Soil Moisture ===
213 -
214 -(((
215 -Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil.
216 216  )))
217 217  
218 -(((
219 -For example, if the data you get from the register is __0x05 0xDC__, the moisture content in the soil is
220 -)))
221 221  
222 -(((
223 -
224 -)))
164 +**Connection:**
225 225  
226 -(((
227 -(% style="color:#4f81bd" %)**05DC(H) = 1500(D) /100 = 15%.**
228 -)))
166 + (% style="background-color:yellow" %)USB TTL GND <~-~-~-~-> GND
229 229  
168 + (% style="background-color:yellow" %)USB TTL TXD <~-~-~-~-> UART_RXD
230 230  
170 + (% style="background-color:yellow" %)USB TTL RXD <~-~-~-~-> UART_TXD
231 231  
232 -=== 2.3.5 Soil Temperature ===
233 233  
234 -(((
235 - Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is 0x09 0xEC, the temperature content in the soil is
236 -)))
173 +In the PC, use below serial tool settings:
237 237  
238 -(((
239 -**Example**:
240 -)))
175 +* Baud:  (% style="color:green" %)**9600**
176 +* Data bits:** (% style="color:green" %)8(%%)**
177 +* Stop bits: (% style="color:green" %)**1**
178 +* Parity:  (% style="color:green" %)**None**
179 +* Flow Control: (% style="color:green" %)**None**
241 241  
242 242  (((
243 -If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/100 = 2.61 °C
182 +Make sure the switch is in FLASH position, then power on device by connecting the jumper on NSE01. NSE01 will output system info once power on as below, we can enter the (% style="color:green" %)**password: 12345678**(%%) to access AT Command input.
244 244  )))
245 245  
246 -(((
247 -If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C
248 -)))
185 +[[image:image-20220708110657-3.png]]
249 249  
187 +(% style="color:red" %)Note: the valid AT Commands can be found at: (%%)[[http:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/]]
250 250  
251 251  
252 -=== 2.3.6 Soil Conductivity (EC) ===
253 253  
254 -(((
255 -Obtain (% style="color:#4f81bd" %)**__soluble salt concentration__**(%%) in soil or (% style="color:#4f81bd" %)**__soluble ion concentration in liquid fertilizer__**(%%) or (% style="color:#4f81bd" %)**__planting medium__**(%%). The value range of the register is 0 - 20000(Decimal)( Can be greater than 20000).
256 -)))
191 +=== 2.2.4 Use CoAP protocol to uplink data ===
257 257  
258 -(((
259 -For example, if the data you get from the register is 0x00 0xC8, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm.
260 -)))
193 +(% style="color:red" %)Note: if you don't have CoAP server, you can refer this link to set up one: (%%)[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/>>http://wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/]]
261 261  
262 -(((
263 -Generally, the EC value of irrigation water is less than 800uS / cm.
264 -)))
265 265  
266 -(((
267 -
268 -)))
196 +**Use below commands:**
269 269  
270 -(((
271 -
272 -)))
198 +* (% style="color:blue" %)**AT+PRO=1**  (%%) ~/~/ Set to use CoAP protocol to uplink
199 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5683   ** (%%)~/~/ to set CoAP server address and port
200 +* (% style="color:blue" %)**AT+URI=5,11,"mqtt",11,"coap",12,"0",15,"c=text1",23,"0" ** (%%) ~/~/Set COAP resource path
273 273  
274 -=== 2.3.7 MOD ===
202 +For parameter description, please refer to AT command set
275 275  
276 -Firmware version at least v2.1 supports changing mode.
204 +[[image:1657249793983-486.png]]
277 277  
278 -For example, bytes[10]=90
279 279  
280 -mod=(bytes[10]>>7)&0x01=1.
207 +After configure the server address and (% style="color:green" %)**reset the device**(%%) (via AT+ATZ ), NSE01 will start to uplink sensor values to CoAP server.
281 281  
209 +[[image:1657249831934-534.png]]
282 282  
283 -**Downlink Command:**
284 284  
285 -If payload = 0x0A00, workmode=0
286 286  
287 -If** **payload =** **0x0A01, workmode=1
213 +=== 2.2.5 Use UDP protocol to uplink data(Default protocol) ===
288 288  
215 +This feature is supported since firmware version v1.0.1
289 289  
290 290  
291 -=== 2.3.8 ​Decode payload in The Things Network ===
218 +* (% style="color:blue" %)**AT+PRO=2   ** (%%) ~/~/ Set to use UDP protocol to uplink
219 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5601   ** (%%) ~/~/ to set UDP server address and port
220 +* (% style="color:blue" %)**AT+CFM=1       ** (%%) ~/~/If the server does not respond, this command is unnecessary
292 292  
293 -While using TTN network, you can add the payload format to decode the payload.
222 +[[image:1657249864775-321.png]]
294 294  
295 295  
296 -[[image:1654505570700-128.png]]
225 +[[image:1657249930215-289.png]]
297 297  
298 -(((
299 -The payload decoder function for TTN is here:
300 -)))
301 301  
302 -(((
303 -LSE01 TTN Payload Decoder: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Payload_Decoder/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Payload_Decoder/]]
304 -)))
305 305  
229 +=== 2.2.6 Use MQTT protocol to uplink data ===
306 306  
231 +This feature is supported since firmware version v110
307 307  
308 -== 2.4 Uplink Interval ==
309 309  
310 -The LSE01 by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link: [[Change Uplink Interval>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H4.1ChangeUplinkInterval"]]
234 +* (% style="color:blue" %)**AT+PRO=3   ** (%%) ~/~/Set to use MQTT protocol to uplink
235 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,1883   ** (%%) ~/~/Set MQTT server address and port
236 +* (% style="color:blue" %)**AT+CLIENT=CLIENT       ** (%%)~/~/Set up the CLIENT of MQTT
237 +* (% style="color:blue" %)**AT+UNAME=UNAME                               **(%%)~/~/Set the username of MQTT
238 +* (% style="color:blue" %)**AT+PWD=PWD                                        **(%%)~/~/Set the password of MQTT
239 +* (% style="color:blue" %)**AT+PUBTOPIC=NSE01_PUB                    **(%%)~/~/Set the sending topic of MQTT
240 +* (% style="color:blue" %)**AT+SUBTOPIC=NSE01_SUB          **(%%) ~/~/Set the subscription topic of MQTT
311 311  
242 +[[image:1657249978444-674.png]]
312 312  
313 313  
314 -== 2.5 Downlink Payload ==
245 +[[image:1657249990869-686.png]]
315 315  
316 -By default, LSE50 prints the downlink payload to console port.
317 317  
318 -[[image:image-20220606165544-8.png]]
319 -
320 -
321 321  (((
322 -**Examples:**
249 +MQTT protocol has a much higher power consumption compare vs UDP / CoAP protocol. Please check the power analyze document and adjust the uplink period to a suitable interval.
323 323  )))
324 324  
325 -(((
326 -
327 -)))
328 328  
329 -* (((
330 -**Set TDC**
331 -)))
332 332  
333 -(((
334 -If the payload=0100003C, it means set the END Node’s TDC to 0x00003C=60(S), while type code is 01.
335 -)))
254 +=== 2.2.7 Use TCP protocol to uplink data ===
336 336  
337 -(((
338 -Payload:    01 00 00 1E    TDC=30S
339 -)))
256 +This feature is supported since firmware version v110
340 340  
341 -(((
342 -Payload:    01 00 00 3C    TDC=60S
343 -)))
344 344  
345 -(((
346 -
347 -)))
259 +* (% style="color:blue" %)**AT+PRO=4   ** (%%) ~/~/ Set to use TCP protocol to uplink
260 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5600   **(%%) ~/~/ to set TCP server address and port
348 348  
349 -* (((
350 -**Reset**
351 -)))
262 +[[image:1657250217799-140.png]]
352 352  
353 -(((
354 -If payload = 0x04FF, it will reset the LSE01
355 -)))
356 356  
265 +[[image:1657250255956-604.png]]
357 357  
358 -* **CFM**
359 359  
360 -Downlink Payload: 05000001, Set AT+CFM=1 or 05000000 , set AT+CFM=0
361 361  
269 +=== 2.2.8 Change Update Interval ===
362 362  
271 +User can use below command to change the (% style="color:green" %)**uplink interval**.
363 363  
364 -== 2.6 ​Show Data in DataCake IoT Server ==
273 +* (% style="color:blue" %)**AT+TDC=600      ** (%%)~/~/ Set Update Interval to 600s
365 365  
366 366  (((
367 -[[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps:
276 +(% style="color:red" %)**NOTE:**
368 368  )))
369 369  
370 370  (((
371 -
280 +(% style="color:red" %)1. By default, the device will send an uplink message every 1 hour.
372 372  )))
373 373  
374 -(((
375 -**Step 1**: Be sure that your device is programmed and properly connected to the network at this time.
376 -)))
377 377  
378 -(((
379 -**Step 2**: To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps:
380 -)))
381 381  
285 +== 2.3  Uplink Payload ==
382 382  
383 -[[image:1654505857935-743.png]]
287 +In this mode, uplink payload includes in total 18 bytes
384 384  
289 +(% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:510px" %)
290 +|=(% style="width: 50px;" %)(((
291 +**Size(bytes)**
292 +)))|=(% style="width: 50px;" %)**6**|=(% style="width: 25px;" %)2|=(% style="width: 25px;" %)**2**|=(% style="width: 80px;" %)**1**|=(% style="width: 80px;" %)**2**|=(% style="width: 80px;" %)**2**|=(% style="width: 80px;" %)**2**|=(% style="width: 40px;" %)**1**
293 +|(% style="width:97px" %)**Value**|(% style="width:83px" %)[[Device ID>>||anchor="H"]]|(% style="width:41px" %)[[Ver>>||anchor="H"]]|(% style="width:46px" %)[[BAT>>||anchor="H"]]|(% style="width:123px" %)[[Signal Strength>>||anchor="H"]]|(% style="width:108px" %)[[Soil Moisture>>||anchor="H"]]|(% style="width:133px" %)[[Soil Temperature>>||anchor="H"]]|(% style="width:159px" %)[[Soil Conductivity(EC)>>||anchor="H"]]|(% style="width:80px" %)[[Interrupt>>||anchor="H"]]
385 385  
386 -[[image:1654505874829-548.png]]
295 +If we use the MQTT client to subscribe to this MQTT topic, we can see the following information when the NSE01 uplink data.
387 387  
388 -Step 3: Create an account or log in Datacake.
389 389  
390 -Step 4: Search the LSE01 and add DevEUI.
298 +[[image:image-20220708111918-4.png]]
391 391  
392 392  
393 -[[image:1654505905236-553.png]]
301 +The payload is ASCII string, representative same HEX:
394 394  
303 +0x72403155615900640c7817075e0a8c02f900 where:
395 395  
396 -After added, the sensor data arrive TTN, it will also arrive and show in Mydevices.
305 +* Device ID: 0x 724031556159 = 724031556159
306 +* Version: 0x0064=100=1.0.0
397 397  
398 -[[image:1654505925508-181.png]]
308 +* BAT: 0x0c78 = 3192 mV = 3.192V
309 +* Singal: 0x17 = 23
310 +* Soil Moisture: 0x075e= 1886 = 18.86  %
311 +* Soil Temperature:0x0a8c =2700=27 °C
312 +* Soil Conductivity(EC) = 0x02f9 =761 uS /cm
313 +* Interrupt: 0x00 = 0
399 399  
315 +== 2.4  Payload Explanation and Sensor Interface ==
400 400  
401 401  
402 -== 2.7 Frequency Plans ==
318 +=== 2.4.1  Device ID ===
403 403  
404 -The LSE01 uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.
320 +By default, the Device ID equal to the last 6 bytes of IMEI.
405 405  
322 +User can use (% style="color:blue" %)**AT+DEUI**(%%) to set Device ID
406 406  
407 -=== 2.7.1 EU863-870 (EU868) ===
324 +**Example:**
408 408  
409 -(% style="color:#037691" %)** Uplink:**
326 +AT+DEUI=A84041F15612
410 410  
411 -868.1 - SF7BW125 to SF12BW125
328 +The Device ID is stored in a none-erase area, Upgrade the firmware or run AT+FDR won't erase Device ID.
412 412  
413 -868.3 - SF7BW125 to SF12BW125 and SF7BW250
414 414  
415 -868.5 - SF7BW125 to SF12BW125
416 416  
417 -867.1 - SF7BW125 to SF12BW125
332 +=== 2.4.2  Version Info ===
418 418  
419 -867.3 - SF7BW125 to SF12BW125
334 +Specify the software version: 0x64=100, means firmware version 1.00.
420 420  
421 -867.5 - SF7BW125 to SF12BW125
336 +For example: 0x00 64 : this device is NSE01 with firmware version 1.0.0.
422 422  
423 -867.7 - SF7BW125 to SF12BW125
424 424  
425 -867.9 - SF7BW125 to SF12BW125
426 426  
427 -868.8 - FSK
340 +=== 2.4.3  Battery Info ===
428 428  
342 +(((
343 +Check the battery voltage for LSE01.
344 +)))
429 429  
430 -(% style="color:#037691" %)** Downlink:**
346 +(((
347 +Ex1: 0x0B45 = 2885mV
348 +)))
431 431  
432 -Uplink channels 1-9 (RX1)
350 +(((
351 +Ex2: 0x0B49 = 2889mV
352 +)))
433 433  
434 -869.525 - SF9BW125 (RX2 downlink only)
435 435  
436 436  
356 +=== 2.4.4  Signal Strength ===
437 437  
438 -=== 2.7.2 US902-928(US915) ===
358 +NB-IoT Network signal Strength.
439 439  
440 -Used in USA, Canada and South America. Default use CHE=2
360 +**Ex1: 0x1d = 29**
441 441  
442 -(% style="color:#037691" %)**Uplink:**
362 +(% style="color:blue" %)**0**(%%)  -113dBm or less
443 443  
444 -903.9 - SF7BW125 to SF10BW125
364 +(% style="color:blue" %)**1**(%%)  -111dBm
445 445  
446 -904.1 - SF7BW125 to SF10BW125
366 +(% style="color:blue" %)**2...30**(%%) -109dBm... -53dBm
447 447  
448 -904.3 - SF7BW125 to SF10BW125
368 +(% style="color:blue" %)**31**  (%%) -51dBm or greater
449 449  
450 -904.5 - SF7BW125 to SF10BW125
370 +(% style="color:blue" %)**99**   (%%) Not known or not detectable
451 451  
452 -904.7 - SF7BW125 to SF10BW125
453 453  
454 -904.9 - SF7BW125 to SF10BW125
455 455  
456 -905.1 - SF7BW125 to SF10BW125
374 +=== 2.4.5  Soil Moisture ===
457 457  
458 -905.3 - SF7BW125 to SF10BW125
376 +(((
377 +Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil.
378 +)))
459 459  
380 +(((
381 +For example, if the data you get from the register is **__0x05 0xDC__**, the moisture content in the soil is
382 +)))
460 460  
461 -(% style="color:#037691" %)**Downlink:**
384 +(((
385 +
386 +)))
462 462  
463 -923.3 - SF7BW500 to SF12BW500
388 +(((
389 +(% style="color:#4f81bd" %)**05DC(H) = 1500(D) /100 = 15%.**
390 +)))
464 464  
465 -923.9 - SF7BW500 to SF12BW500
466 466  
467 -924.5 - SF7BW500 to SF12BW500
468 468  
469 -925.1 - SF7BW500 to SF12BW500
394 +=== 2.4.6  Soil Temperature ===
470 470  
471 -925.7 - SF7BW500 to SF12BW500
396 +(((
397 + Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is __**0x09 0xEC**__, the temperature content in the soil is
398 +)))
472 472  
473 -926.3 - SF7BW500 to SF12BW500
400 +(((
401 +**Example**:
402 +)))
474 474  
475 -926.9 - SF7BW500 to SF12BW500
404 +(((
405 +If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/100 = 2.61 °C
406 +)))
476 476  
477 -927.5 - SF7BW500 to SF12BW500
408 +(((
409 +If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C
410 +)))
478 478  
479 -923.3 - SF12BW500(RX2 downlink only)
480 480  
481 481  
414 +=== 2.4.7  Soil Conductivity (EC) ===
482 482  
483 -=== 2.7.3 CN470-510 (CN470) ===
416 +(((
417 +Obtain (% style="color:#4f81bd" %)**__soluble salt concentration__**(%%) in soil or (% style="color:#4f81bd" %)**__soluble ion concentration in liquid fertilizer__**(%%) or (% style="color:#4f81bd" %)**__planting medium__**(%%). The value range of the register is 0 - 20000(Decimal)( Can be greater than 20000).
418 +)))
484 484  
485 -Used in China, Default use CHE=1
420 +(((
421 +For example, if the data you get from the register is __**0x00 0xC8**__, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm.
422 +)))
486 486  
487 -(% style="color:#037691" %)**Uplink:**
424 +(((
425 +Generally, the EC value of irrigation water is less than 800uS / cm.
426 +)))
488 488  
489 -486.3 - SF7BW125 to SF12BW125
428 +(((
429 +
430 +)))
490 490  
491 -486.5 - SF7BW125 to SF12BW125
432 +(((
433 +
434 +)))
492 492  
493 -486.7 - SF7BW125 to SF12BW125
436 +=== 2.4. Digital Interrupt ===
494 494  
495 -486.9 - SF7BW125 to SF12BW125
438 +Digital Interrupt refers to pin (% style="color:blue" %)**GPIO_EXTI**(%%), and there are different trigger methods. When there is a trigger, the NSE01 will send a packet to the server.
496 496  
497 -487.1 - SF7BW125 to SF12BW125
440 +The command is:
498 498  
499 -487.3 - SF7BW125 to SF12BW125
442 +(% style="color:blue" %)**AT+INTMOD=3 **(%%) ~/~/(more info about INMOD please refer [[**AT Command Manual**>>url:https://www.dragino.com/downloads/downloads/NB-IoT/NBSN95/DRAGINO_NBSN95-NB_AT%20Commands_v1.1.0.pdf]])**.**
500 500  
501 -487.5 - SF7BW125 to SF12BW125
502 502  
503 -487.7 - SF7BW125 to SF12BW125
445 +The lower four bits of this data field shows if this packet is generated by interrupt or not. [[Click here>>||anchor="H"]] for the hardware and software set up.
504 504  
505 505  
506 -(% style="color:#037691" %)**Downlink:**
448 +Example:
507 507  
508 -506.7 - SF7BW125 to SF12BW125
450 +0x(00): Normal uplink packet.
509 509  
510 -506.9 - SF7BW125 to SF12BW125
452 +0x(01): Interrupt Uplink Packet.
511 511  
512 -507.1 - SF7BW125 to SF12BW125
513 513  
514 -507.3 - SF7BW125 to SF12BW125
515 515  
516 -507.5 - SF7BW125 to SF12BW125
456 +=== 2.4.9  ​+5V Output ===
517 517  
518 -507.7 - SF7BW125 to SF12BW125
458 +NSE01 will enable +5V output before all sampling and disable the +5v after all sampling. 
519 519  
520 -507.9 - SF7BW125 to SF12BW125
521 521  
522 -508.1 - SF7BW125 to SF12BW125
461 +The 5V output time can be controlled by AT Command.
523 523  
524 -505.3 - SF12BW125 (RX2 downlink only)
463 +(% style="color:blue" %)**AT+5VT=1000**
525 525  
465 +Means set 5V valid time to have 1000ms. So the real 5V output will actually have 1000ms + sampling time for other sensors.
526 526  
527 527  
528 -=== 2.7.4 AU915-928(AU915) ===
529 529  
530 -Default use CHE=2
469 +== 2.5  Downlink Payload ==
531 531  
532 -(% style="color:#037691" %)**Uplink:**
471 +By default, NSE01 prints the downlink payload to console port.
533 533  
534 -916.8 - SF7BW125 to SF12BW125
473 +[[image:image-20220708133731-5.png]]
535 535  
536 -917.0 - SF7BW125 to SF12BW125
537 537  
538 -917.2 - SF7BW125 to SF12BW125
539 539  
540 -917.4 - SF7BW125 to SF12BW125
477 +(((
478 +(% style="color:blue" %)**Examples:**
479 +)))
541 541  
542 -917.6 - SF7BW125 to SF12BW125
481 +(((
482 +
483 +)))
543 543  
544 -917.8 - SF7BW125 to SF12BW125
485 +* (((
486 +(% style="color:blue" %)**Set TDC**
487 +)))
545 545  
546 -918.0 - SF7BW125 to SF12BW125
489 +(((
490 +If the payload=0100003C, it means set the END Node's TDC to 0x00003C=60(S), while type code is 01.
491 +)))
547 547  
548 -918.2 - SF7BW125 to SF12BW125
493 +(((
494 +Payload:    01 00 00 1E    TDC=30S
495 +)))
549 549  
497 +(((
498 +Payload:    01 00 00 3C    TDC=60S
499 +)))
550 550  
551 -(% style="color:#037691" %)**Downlink:**
501 +(((
502 +
503 +)))
552 552  
553 -923.3 - SF7BW500 to SF12BW500
505 +* (((
506 +(% style="color:blue" %)**Reset**
507 +)))
554 554  
555 -923.9 - SF7BW500 to SF12BW500
509 +(((
510 +If payload = 0x04FF, it will reset the NSE01
511 +)))
556 556  
557 -924.5 - SF7BW500 to SF12BW500
558 558  
559 -925.1 - SF7BW500 to SF12BW500
514 +* (% style="color:blue" %)**INTMOD**
560 560  
561 -925.7 - SF7BW500 to SF12BW500
516 +Downlink Payload: 06000003, Set AT+INTMOD=3
562 562  
563 -926.3 - SF7BW500 to SF12BW500
564 564  
565 -926.9 - SF7BW500 to SF12BW500
566 566  
567 -927.5 - SF7BW500 to SF12BW500
520 +== 2. ​LED Indicator ==
568 568  
569 -923.3 - SF12BW500(RX2 downlink only)
522 +(((
523 +The NSE01 has an internal LED which is to show the status of different state.
570 570  
571 571  
526 +* When power on, NSE01 will detect if sensor probe is connected, if probe detected, LED will blink four times. (no blinks in this step is no probe)
527 +* Then the LED will be on for 1 second means device is boot normally.
528 +* After NSE01 join NB-IoT network. The LED will be ON for 3 seconds.
529 +* For each uplink probe, LED will be on for 500ms.
530 +)))
572 572  
573 -=== 2.7.5 AS920-923 & AS923-925 (AS923) ===
574 574  
575 -(% style="color:#037691" %)**Default Uplink channel:**
576 576  
577 -923.2 - SF7BW125 to SF10BW125
578 578  
579 -923.4 - SF7BW125 to SF10BW125
535 +== 2.7  Installation in Soil ==
580 580  
537 +__**Measurement the soil surface**__
581 581  
582 -(% style="color:#037691" %)**Additional Uplink Channel**:
539 +Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting. [[https:~~/~~/img.alicdn.com/imgextra/i3/2005165265/O1CN010rj9Oh1olPsQxrdUK_!!2005165265.jpg>>url:https://img.alicdn.com/imgextra/i3/2005165265/O1CN010rj9Oh1olPsQxrdUK_!!2005165265.jpg]]
583 583  
584 -(OTAA mode, channel added by JoinAccept message)
541 +[[image:1657259653666-883.png]] ​
585 585  
586 -(% style="color:#037691" %)**AS920~~AS923 for Japan, Malaysia, Singapore**:
587 587  
588 -922.2 - SF7BW125 to SF10BW125
544 +(((
545 +
589 589  
590 -922.4 - SF7BW125 to SF10BW125
547 +(((
548 +Dig a hole with diameter > 20CM.
549 +)))
591 591  
592 -922.6 - SF7BW125 to SF10BW125
551 +(((
552 +Horizontal insert the probe to the soil and fill the hole for long term measurement.
553 +)))
554 +)))
593 593  
594 -922.8 - SF7BW125 to SF10BW125
556 +[[image:1654506665940-119.png]]
595 595  
596 -923.0 - SF7BW125 to SF10BW125
558 +(((
559 +
560 +)))
597 597  
598 -922.0 - SF7BW125 to SF10BW125
599 599  
563 +== 2.8  ​Firmware Change Log ==
600 600  
601 -(% style="color:#037691" %)**AS923 ~~ AS925 for Brunei, Cambodia, Hong Kong, Indonesia, Laos, Taiwan, Thailand, Vietnam**:
602 602  
603 -923.6 - SF7BW125 to SF10BW125
566 +Download URL & Firmware Change log
604 604  
605 -923.8 - SF7BW125 to SF10BW125
568 +[[www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/Firmware/]]
606 606  
607 -924.0 - SF7BW125 to SF10BW125
608 608  
609 -924.2 - SF7BW125 to SF10BW125
571 +Upgrade Instruction: [[Upgrade_Firmware>>||anchor="H"]]
610 610  
611 -924.4 - SF7BW125 to SF10BW125
612 612  
613 -924.6 - SF7BW125 to SF10BW125
614 614  
575 +== 2.9  ​Battery Analysis ==
615 615  
616 -(% style="color:#037691" %)** Downlink:**
577 +=== 2.9.1  ​Battery Type ===
617 617  
618 -Uplink channels 1-8 (RX1)
619 619  
620 -923.2 - SF10BW125 (RX2)
580 +The NSE01 battery is a combination of an 8500mAh Li/SOCI2 Battery and a Super Capacitor. The battery is none-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter.
621 621  
622 622  
583 +The battery is designed to last for several years depends on the actually use environment and update interval.
623 623  
624 -=== 2.7.6 KR920-923 (KR920) ===
625 625  
626 -Default channel:
586 +The battery related documents as below:
627 627  
628 -922.1 - SF7BW125 to SF12BW125
588 +* [[Battery Dimension>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]
589 +* [[Lithium-Thionyl Chloride Battery>>url:http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]][[ datasheet>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]
590 +* [[Lithium-ion Battery-Capacitor datasheet>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]
629 629  
630 -922.3 - SF7BW125 to SF12BW125
631 -
632 -922.5 - SF7BW125 to SF12BW125
633 -
634 -
635 -(% style="color:#037691" %)**Uplink: (OTAA mode, channel added by JoinAccept message)**
636 -
637 -922.1 - SF7BW125 to SF12BW125
638 -
639 -922.3 - SF7BW125 to SF12BW125
640 -
641 -922.5 - SF7BW125 to SF12BW125
642 -
643 -922.7 - SF7BW125 to SF12BW125
644 -
645 -922.9 - SF7BW125 to SF12BW125
646 -
647 -923.1 - SF7BW125 to SF12BW125
648 -
649 -923.3 - SF7BW125 to SF12BW125
650 -
651 -
652 -(% style="color:#037691" %)**Downlink:**
653 -
654 -Uplink channels 1-7(RX1)
655 -
656 -921.9 - SF12BW125 (RX2 downlink only; SF12BW125 might be changed to SF9BW125)
657 -
658 -
659 -
660 -=== 2.7.7 IN865-867 (IN865) ===
661 -
662 -(% style="color:#037691" %)** Uplink:**
663 -
664 -865.0625 - SF7BW125 to SF12BW125
665 -
666 -865.4025 - SF7BW125 to SF12BW125
667 -
668 -865.9850 - SF7BW125 to SF12BW125
669 -
670 -
671 -(% style="color:#037691" %) **Downlink:**
672 -
673 -Uplink channels 1-3 (RX1)
674 -
675 -866.550 - SF10BW125 (RX2)
676 -
677 -
678 -
679 -
680 -== 2.8 LED Indicator ==
681 -
682 -The LSE01 has an internal LED which is to show the status of different state.
683 -
684 -* Blink once when device power on.
685 -* Solid ON for 5 seconds once device successful Join the network.
686 -* Blink once when device transmit a packet.
687 -
688 -== 2.9 Installation in Soil ==
689 -
690 -**Measurement the soil surface**
691 -
692 -
693 -[[image:1654506634463-199.png]] ​
694 -
695 695  (((
696 -(((
697 -Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting.
593 +[[image:image-20220708140453-6.png]]
698 698  )))
699 -)))
700 700  
701 701  
702 -[[image:1654506665940-119.png]]
703 703  
704 -(((
705 -Dig a hole with diameter > 20CM.
706 -)))
598 +2.9.2 
707 707  
708 -(((
709 -Horizontal insert the probe to the soil and fill the hole for long term measurement.
710 -)))
600 +Dragino battery powered product are all runs in Low Power mode. We have an update battery calculator which base on the measurement of the real device. User can use this calculator to check the battery life and calculate the battery life if want to use different transmit interval.
711 711  
712 712  
713 -== 2.10 ​Firmware Change Log ==
603 +Instruction to use as below:
714 714  
715 -(((
716 -**Firmware download link:**
717 -)))
718 718  
719 -(((
720 -[[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/]]
721 -)))
606 +Step 1: Downlink the up-to-date DRAGINO_Battery_Life_Prediction_Table.xlsx from:
722 722  
723 -(((
724 -
725 -)))
608 +[[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/]]
726 726  
727 -(((
728 -**Firmware Upgrade Method: **[[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome]]
729 -)))
730 730  
731 -(((
732 -
733 -)))
611 +Step 2: Open it and choose
734 734  
735 -(((
736 -**V1.0.**
737 -)))
613 +* Product Model
614 +* Uplink Interval
615 +* Working Mode
738 738  
739 -(((
740 -Release
741 -)))
617 +And the Life expectation in difference case will be shown on the right.
742 742  
743 743  
744 -== 2.11 ​Battery Analysis ==
745 745  
746 -=== 2.11.1 ​Battery Type ===
621 +=== 2.9. ​Battery Note ===
747 747  
748 748  (((
749 -The LSE01 battery is a combination of a 4000mAh Li/SOCI2 Battery and a Super Capacitor. The battery is non-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter.
750 -)))
751 -
752 -(((
753 -The battery is designed to last for more than 5 years for the LSN50.
754 -)))
755 -
756 -(((
757 -(((
758 -The battery-related documents are as below:
759 -)))
760 -)))
761 -
762 -* (((
763 -[[Battery Dimension>>url:http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/&file=LSN50-Battery-Dimension.pdf]],
764 -)))
765 -* (((
766 -[[Lithium-Thionyl Chloride Battery  datasheet>>url:https://www.dragino.com/downloads/downloads/datasheet/Battery/ER26500/ER26500_Datasheet-EN.pdf]],
767 -)))
768 -* (((
769 -[[Lithium-ion Battery-Capacitor datasheet>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC_1520_datasheet.jpg]], [[Tech Spec>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC1520%20Technical%20Specification20171123.pdf]]
770 -)))
771 -
772 - [[image:image-20220610172436-1.png]]
773 -
774 -
775 -
776 -=== 2.11.2 ​Battery Note ===
777 -
778 -(((
779 779  The Li-SICO battery is designed for small current / long period application. It is not good to use a high current, short period transmit method. The recommended minimum period for use of this battery is 5 minutes. If you use a shorter period time to transmit LoRa, then the battery life may be decreased.
780 780  )))
781 781  
782 782  
783 783  
784 -=== 2.11.3 Replace the battery ===
629 +=== 2.9. Replace the battery ===
785 785  
786 -(((
787 -If Battery is lower than 2.7v, user should replace the battery of LSE01.
788 -)))
631 +The default battery pack of NSE01 includes a ER26500 plus super capacitor. If user can't find this pack locally, they can find ER26500 or equivalence without the SPC1520 capacitor, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes).
789 789  
790 -(((
791 -You can change the battery in the LSE01.The type of battery is not limited as long as the output is between 3v to 3.6v. On the main board, there is a diode (D1) between the battery and the main circuit. If you need to use a battery with less than 3.3v, please remove the D1 and shortcut the two pads of it so there won’t be voltage drop between battery and main board.
792 -)))
793 793  
794 -(((
795 -The default battery pack of LSE01 includes a ER18505 plus super capacitor. If user can’t find this pack locally, they can find ER18505 or equivalence, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes)
796 -)))
797 797  
798 -
799 -
800 800  = 3. ​Using the AT Commands =
801 801  
802 802  == 3.1 Access AT Commands ==
... ... @@ -820,7 +820,7 @@
820 820   [[image:1654502050864-459.png||height="564" width="806"]]
821 821  
822 822  
823 -Below are the available commands, a more detailed AT Command manual can be found at [[AT Command Manual>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/]]: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/]]
658 +Below are the available commands, a more detailed AT Command manual can be found at [[AT Command Manual>>https://www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0]]: [[https:~~/~~/www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0>>https://www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0]]
824 824  
825 825  
826 826  (% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>? **(%%) : Help on <CMD>
... ... @@ -978,19 +978,14 @@
978 978  
979 979  (((
980 980  Because the end node is now hopping in 72 frequency, it makes it difficult for the devices to Join the TTN network and uplink data. To solve this issue, you can access the device via the AT commands and run:
981 -)))
982 982  
983 -(% class="box infomessage" %)
984 -(((
985 -**AT+CHE=2**
817 +* (% style="color:#037691" %)**AT+CHE=2**
818 +* (% style="color:#037691" %)**ATZ**
986 986  )))
987 987  
988 -(% class="box infomessage" %)
989 989  (((
990 -**ATZ**
991 -)))
822 +
992 992  
993 -(((
994 994  to set the end node to work in 8 channel mode. The device will work in Channel 8-15 & 64-71 for OTAA, and channel 8-15 for Uplink.
995 995  )))
996 996  
... ... @@ -1005,18 +1005,22 @@
1005 1005  [[image:image-20220606154825-4.png]]
1006 1006  
1007 1007  
838 +== 4.2 ​Can I calibrate LSE01 to different soil types? ==
1008 1008  
840 +LSE01 is calibrated for saline-alkali soil and loamy soil. If users want to use it for other soil, they can calibrate the value in the IoT platform base on the value measured by saline-alkali soil and loamy soil. The formula can be found at [[this link>>https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/&file=Calibrate_to_other_Soil_20220605.pdf]].
841 +
842 +
1009 1009  = 5. Trouble Shooting =
1010 1010  
1011 -== 5.1 ​Why I cant join TTN in US915 / AU915 bands? ==
845 +== 5.1 ​Why I can't join TTN in US915 / AU915 bands? ==
1012 1012  
1013 -It is due to channel mapping. Please see the [[Eight Channel Mode>>doc:Main.LoRaWAN Communication Debug.WebHome||anchor="H2.NoticeofUS9152FCN4702FAU915Frequencyband"]] section above for details.
847 +It is due to channel mapping. Please see the [[Eight Channel Mode>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H7.19EightChannelMode"]] section above for details.
1014 1014  
1015 1015  
1016 -== 5.2 AT Command input doesnt work ==
850 +== 5.2 AT Command input doesn't work ==
1017 1017  
1018 1018  (((
1019 -In the case if user can see the console output but cant type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesnt send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.
853 +In the case if user can see the console output but can't type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn't send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.
1020 1020  )))
1021 1021  
1022 1022  
1657245163077-232.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +81.0 KB
Content
1657246476176-652.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +492.6 KB
Content
1657249419225-449.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +81.0 KB
Content
1657249468462-536.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +483.6 KB
Content
1657249793983-486.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +85.8 KB
Content
1657249831934-534.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +72.5 KB
Content
1657249864775-321.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +87.0 KB
Content
1657249930215-289.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +77.3 KB
Content
1657249978444-674.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +139.5 KB
Content
1657249990869-686.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +96.9 KB
Content
1657250217799-140.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +98.7 KB
Content
1657250255956-604.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +99.0 KB
Content
1657259653666-883.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +344.4 KB
Content
image-20220708101224-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +22.2 KB
Content
image-20220708101605-2.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +87.5 KB
Content
image-20220708110657-3.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +251.7 KB
Content
image-20220708111918-4.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +38.8 KB
Content
image-20220708133731-5.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +8.7 KB
Content
image-20220708140453-6.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +132.7 KB
Content