Changes for page N95S31B -- NB-IoT Temperature & Humidity Sensor User Manual
Last modified by Mengting Qiu on 2024/04/02 16:44
Summary
-
Page properties (2 modified, 0 added, 0 removed)
-
Attachments (0 modified, 44 added, 0 removed)
- 1657245163077-232.png
- 1657246476176-652.png
- 1657249419225-449.png
- 1657249468462-536.png
- 1657249793983-486.png
- 1657249831934-534.png
- 1657249864775-321.png
- 1657249930215-289.png
- 1657249978444-674.png
- 1657249990869-686.png
- 1657250217799-140.png
- 1657250255956-604.png
- 1657259653666-883.png
- 1657260785982-288.png
- 1657261119050-993.png
- 1657261278785-153.png
- 1657271519014-786.png
- 1657327959271-447.png
- 1657328609906-564.png
- 1657328659945-416.png
- 1657328756309-230.png
- 1657328884227-504.png
- 1657329814315-101.png
- 1657330452568-615.png
- 1657330472797-498.png
- 1657330501006-241.png
- 1657330533775-472.png
- 1657330723006-866.png
- 1657331036973-987.png
- image-20220708101224-1.png
- image-20220708101605-2.png
- image-20220708110657-3.png
- image-20220708111918-4.png
- image-20220708133731-5.png
- image-20220708140453-6.png
- image-20220708141352-7.jpeg
- image-20220709084038-1.jpeg
- image-20220709084137-2.jpeg
- image-20220709084207-3.jpeg
- image-20220709084458-4.png
- image-20220709085040-1.png
- image-20220709092052-2.png
- image-20220709093918-1.png
- image-20220709093918-2.png
Details
- Page properties
-
- Title
-
... ... @@ -1,1 +1,1 @@ 1 - LSE01-LoRaWANSoil Moisture&ECSensor User Manual1 +NDDS75 NB-IoT Distance Detect Sensor User Manual - Content
-
... ... @@ -1,776 +1,689 @@ 1 1 (% style="text-align:center" %) 2 -[[image:image-20220 606151504-2.jpeg||height="554" width="554"]]2 +[[image:image-20220709085040-1.png||height="542" width="524"]] 3 3 4 4 5 5 6 -**Contents:** 7 7 8 -{{toc/}} 9 9 8 +**Table of Contents:** 10 10 11 11 12 12 13 13 14 14 15 -= 1. Introduction = 16 16 17 -== 1.1 What is LoRaWAN Soil Moisture & EC Sensor == 18 18 19 -((( 20 -The Dragino LSE01 is a (% style="color:#4f81bd" %)**LoRaWAN Soil Moisture & EC Sensor**(%%) for IoT of Agriculture. It is designed to measure the soil moisture of saline-alkali soil and loamy soil. The soil sensor uses FDR method to calculate the soil moisture with the compensation from soil temperature and conductivity. It also has been calibrated in factory for Mineral soil type. 21 -))) 16 += 1. Introduction = 22 22 23 -((( 24 -It detects (% style="color:#4f81bd" %)**Soil Moisture**(%%), (% style="color:#4f81bd" %)**Soil Temperature**(%%) and (% style="color:#4f81bd" %)**Soil Conductivity**(%%), and uploads the value via wireless to LoRaWAN IoT Server. 25 -))) 18 +== 1.1 What is NDDS75 Distance Detection Sensor == 26 26 27 27 ((( 28 -The LoRa wireless technology used in LES01 allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption. 29 -))) 21 + 30 30 31 31 ((( 32 -LES01 is powered by (% style="color:#4f81bd" %)**4000mA or 8500mAh Li-SOCI2 battery**(%%), It is designed for long term use up to 10 years. 24 +The Dragino NDDS75 is a (% style="color:blue" %)**NB-IoT Distance Detection Sensor**(%%) for Internet of Things solution. It is designed to measure the distance between the sensor and a flat object. The distance detection sensor is a module that uses ultrasonic sensing technology for distance measurement, and temperature compensation is performed internally to improve the reliability of data. 25 +\\The NDDS75 can be applied to scenarios such as horizontal distance measurement, liquid level measurement, parking management system, object proximity and presence detection, intelligent trash can management system, robot obstacle avoidance, automatic control, sewer, bottom water level monitoring, etc. It detects the distance between the measured object and the sensor, and uploads the value via wireless to IoT Server via NB-IoT Network. 26 +\\NarrowBand-Internet of Things (NB-IoT) is a standards-based low power wide area (LPWA) technology developed to enable a wide range of new IoT devices and services. NB-IoT significantly improves the power consumption of user devices, system capacity and spectrum efficiency, especially in deep coverage. 27 +\\NDDS75 supports different uplink methods include (% style="color:blue" %)**TCP, MQTT, UDP and CoAP** (%%)for different application requirement. 28 +\\NDDS75 is powered by (% style="color:blue" %)**8500mAh Li-SOCI2 battery**(%%), It is designed for long term use up to 5 years. (Actually Battery life depends on the use environment, update period & uplink method) 29 +\\To use NDDS75, user needs to check if there is NB-IoT coverage in local area and with the bands NDDS75 supports. If the local operate support it, user needs to get a NB-IoT SIM card from local operator and install NDDS75 to get NB-IoT network connection. 33 33 ))) 34 34 35 -((( 36 -Each LES01 is pre-load with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect after power on. 32 + 37 37 ))) 38 38 39 - 40 40 [[image:1654503236291-817.png]] 41 41 42 42 43 -[[image:165 4503265560-120.png]]38 +[[image:1657327959271-447.png]] 44 44 45 45 46 46 47 -== 1.2 Features == 42 +== 1.2 Features == 48 48 49 -* LoRaWAN 1.0.3 Class A 44 + 45 +* NB-IoT Bands: B1/B3/B8/B5/B20/B28 @H-FDD 50 50 * Ultra low power consumption 51 -* MonitorSoilMoisture52 -* MonitorSoil Temperature53 -* Monitor SoilConductivity54 -* Bands:CN470/EU433/KR920/US915/EU868/AS923/AU915/IN86547 +* Distance Detection by Ultrasonic technology 48 +* Flat object range 280mm - 7500mm 49 +* Accuracy: ±(1cm+S*0.3%) (S: Distance) 50 +* Cable Length: 25cm 55 55 * AT Commands to change parameters 56 56 * Uplink on periodically 57 57 * Downlink to change configure 58 58 * IP66 Waterproof Enclosure 59 -* 4000mAh or 8500mAh Battery for long term use 55 +* Micro SIM card slot for NB-IoT SIM 56 +* 8500mAh Battery for long term use 60 60 61 61 62 -== 1.3 Specification == 59 +== 1.3 Specification == 63 63 64 -Measure Volume: Base on the centra pin of the probe, a cylinder with 7cm diameter and 10cm height. 65 65 66 - [[image:image-20220606162220-5.png]]62 +(% style="color:#037691" %)**Common DC Characteristics:** 67 67 64 +* Supply Voltage: 2.1v ~~ 3.6v 65 +* Operating Temperature: -40 ~~ 85°C 68 68 67 +(% style="color:#037691" %)**NB-IoT Spec:** 69 69 70 -== 1.4 Applications == 69 +* - B1 @H-FDD: 2100MHz 70 +* - B3 @H-FDD: 1800MHz 71 +* - B8 @H-FDD: 900MHz 72 +* - B5 @H-FDD: 850MHz 73 +* - B20 @H-FDD: 800MHz 74 +* - B28 @H-FDD: 700MHz 71 71 76 +(% style="color:#037691" %)**Battery:** 77 + 78 +* Li/SOCI2 un-chargeable battery 79 +* Capacity: 8500mAh 80 +* Self Discharge: <1% / Year @ 25°C 81 +* Max continuously current: 130mA 82 +* Max boost current: 2A, 1 second 83 + 84 +(% style="color:#037691" %)**Power Consumption** 85 + 86 +* STOP Mode: 10uA @ 3.3v 87 +* Max transmit power: [[350mA@3.3v>>mailto:350mA@3.3v]] 88 + 89 + 90 + 91 +== 1.4 Applications == 92 + 93 +* Smart Buildings & Home Automation 94 +* Logistics and Supply Chain Management 95 +* Smart Metering 72 72 * Smart Agriculture 97 +* Smart Cities 98 +* Smart Factory 73 73 74 74 (% class="wikigeneratedid" id="H200B1.5FirmwareChangelog" %) 75 75 76 76 77 -== 1.5 Firmware Change log == 78 78 79 79 80 - **LSE01v1.0 :**Release105 +== 1.5 Pin Definitions == 81 81 82 82 108 +[[image:1657328609906-564.png]] 83 83 84 -= 2. Configure LSE01 to connect to LoRaWAN network = 85 85 86 -== 2.1 How it works == 87 87 112 += 2. Use NDDS75 to communicate with IoT Server = 113 + 114 +== 2.1 How it works == 115 + 88 88 ((( 89 -The LSE01isconfiguredasLoRaWANOTAAClass Amodebydefault.IthasOTAAkeystojoinLoRaWANnetwork.Toconnect a localLoRaWAN network,you need toinputtheOTAAkeysin theLoRaWANserverandpoweronthe LSE0150. It willautomaticallyjointhenetworkviaOTAA and starttosendthesensor value117 +The NDDS75 is equipped with a NB-IoT module, the pre-loaded firmware in NDDS75 will get environment data from sensors and send the value to local NB-IoT network via the NB-IoT module. The NB-IoT network will forward this value to IoT server via the protocol defined by NDDS75. 90 90 ))) 91 91 120 + 92 92 ((( 93 - In case you can’t set the OTAA keys in theLoRaWAN OTAA server,andyouhave tousethe keysfromtheserver, you can [[useAT Commands >>||anchor="H3.200BUsingtheATCommands"]].122 +The diagram below shows the working flow in default firmware of NDDS75: 94 94 ))) 95 95 125 +((( 126 + 127 +))) 96 96 129 +[[image:1657328659945-416.png]] 97 97 98 -== 2.2 Quick guide to connect to LoRaWAN server (OTAA) == 131 +((( 132 + 133 +))) 99 99 100 -Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LG308>>url:http://www.dragino.com/products/lora/item/140-lg308.html]] as a LoRaWAN gateway in this example. 101 101 136 +== 2.2 Configure the NDDS75 == 102 102 103 -[[image:1654503992078-669.png]] 104 104 139 +=== 2.2.1 Test Requirement === 105 105 106 -The LG308 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server. 141 +((( 142 +To use NDDS75 in your city, make sure meet below requirements: 143 +))) 107 107 145 +* Your local operator has already distributed a NB-IoT Network there. 146 +* The local NB-IoT network used the band that NSE01 supports. 147 +* Your operator is able to distribute the data received in their NB-IoT network to your IoT server. 108 108 109 -**Step 1**: Create a device in TTN with the OTAA keys from LSE01. 149 +((( 150 +Below figure shows our testing structure. Here we have NB-IoT network coverage by China Mobile, the band they use is B8. The NDDS75 will use CoAP((% style="color:red" %)120.24.4.116:5683)(%%) or raw UDP((% style="color:red" %)120.24.4.116:5601)(%%) or MQTT((% style="color:red" %)120.24.4.116:1883)(%%)or TCP((% style="color:red" %)120.24.4.116:5600)(%%)protocol to send data to the test server 151 +))) 110 110 111 -Each LSE01 is shipped with a sticker with the default device EUI as below: 112 112 113 -[[image: image-20220606163732-6.jpeg]]154 +[[image:1657328756309-230.png]] 114 114 115 -You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot: 116 116 117 -**Add APP EUI in the application** 118 118 158 +=== 2.2.2 Insert SIM card === 119 119 120 -[[image:1654504596150-405.png]] 160 +((( 161 +Insert the NB-IoT Card get from your provider. 162 +))) 121 121 164 +((( 165 +User need to take out the NB-IoT module and insert the SIM card like below: 166 +))) 122 122 123 123 124 - **Add APP KEYand DEV EUI**169 +[[image:1657328884227-504.png]] 125 125 126 -[[image:1654504683289-357.png]] 127 127 128 128 173 +=== 2.2.3 Connect USB – TTL to NDDS75 to configure it === 129 129 130 -**Step 2**: Power on LSE01 175 +((( 176 +((( 177 +User need to configure NDDS75 via serial port to set the (% style="color:blue" %)**Server Address** / **Uplink Topic** (%%)to define where and how-to uplink packets. NDDS75 support AT Commands, user can use a USB to TTL adapter to connect to NDDS75 and use AT Commands to configure it, as below. 178 +))) 179 +))) 131 131 181 +[[image:image-20220709092052-2.png]] 132 132 133 - Put a JumperonJP2 to power onthedevice. ( The Jumper mustbein FLASH position).183 +**Connection:** 134 134 135 - [[image:image-20220606163915-7.png]]185 + (% style="background-color:yellow" %)USB TTL GND <~-~-~-~-> GND 136 136 187 + (% style="background-color:yellow" %)USB TTL TXD <~-~-~-~-> UART_RXD 137 137 138 - **Step3:**The LSE01 will auto join to theTTN network. Afterjoin success, it will start toupload messages to TTNandyoucan see the messages in the panel.189 + (% style="background-color:yellow" %)USB TTL RXD <~-~-~-~-> UART_TXD 139 139 140 -[[image:1654504778294-788.png]] 141 141 192 +In the PC, use below serial tool settings: 142 142 194 +* Baud: (% style="color:green" %)**9600** 195 +* Data bits:** (% style="color:green" %)8(%%)** 196 +* Stop bits: (% style="color:green" %)**1** 197 +* Parity: (% style="color:green" %)**None** 198 +* Flow Control: (% style="color:green" %)**None** 143 143 144 -== 2.3 Uplink Payload == 145 - 146 -=== === 147 - 148 -=== 2.3.1 MOD~=0(Default Mode) === 149 - 150 -LSE01 will uplink payload via LoRaWAN with below payload format: 151 - 152 152 ((( 153 - Uplinkpayloadincludes intotal11bytes.201 +Make sure the switch is in FLASH position, then power on device by connecting the jumper on NDDS75. NDDS75 will output system info once power on as below, we can enter the (% style="color:green" %)**password: 12345678**(%%) to access AT Command input. 154 154 ))) 155 155 156 -(% border="1" cellspacing="10" style="background-color:#ffffcc; width:500px" %) 157 -|((( 158 -**Size** 204 +[[image:1657329814315-101.png]] 159 159 160 -**(bytes)** 161 -)))|**2**|**2**|**2**|**2**|**2**|**1** 162 -|**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|((( 163 -Temperature 164 - 165 -(Reserve, Ignore now) 166 -)))|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]]|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]]|((( 167 -MOD & Digital Interrupt 168 - 169 -(Optional) 206 +((( 207 +(% style="color:red" %)Note: the valid AT Commands can be found at: (%%)[[https:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NDDS75/>>url:https://www.dragino.com/downloads/index.php?dir=NB-IoT/NDDS75/]] 170 170 ))) 171 171 172 -=== 2.3.2 MOD~=1(Original value) === 173 173 174 -This mode can get the original AD value of moisture and original conductivity (with temperature drift compensation). 175 175 176 -(% border="1" cellspacing="10" style="background-color:#ffffcc; width:500px" %) 177 -|((( 178 -**Size** 212 +=== 2.2.4 Use CoAP protocol to uplink data === 179 179 180 -**(bytes)** 181 -)))|**2**|**2**|**2**|**2**|**2**|**1** 182 -|**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|((( 183 -Temperature 214 +(% style="color:red" %)Note: if you don't have CoAP server, you can refer this link to set up one: (%%)[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/>>http://wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/]] 184 184 185 -(Reserve, Ignore now) 186 -)))|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]](raw)|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]](raw)|((( 187 -MOD & Digital Interrupt 188 188 189 -(Optional) 190 -))) 217 +**Use below commands:** 191 191 192 -=== 2.3.3 Battery Info === 219 +* (% style="color:blue" %)**AT+PRO=1** (%%) ~/~/ Set to use CoAP protocol to uplink 220 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5683 ** (%%)~/~/ to set CoAP server address and port 221 +* (% style="color:blue" %)**AT+URI=5,11,"mqtt",11,"coap",12,"0",15,"c=text1",23,"0" ** (%%) ~/~/Set COAP resource path 193 193 194 -((( 195 -Check the battery voltage for LSE01. 196 -))) 223 +For parameter description, please refer to AT command set 197 197 198 -((( 199 -Ex1: 0x0B45 = 2885mV 200 -))) 225 +[[image:1657330452568-615.png]] 201 201 202 -((( 203 -Ex2: 0x0B49 = 2889mV 204 -))) 205 205 228 +After configure the server address and (% style="color:green" %)**reset the device**(%%) (via AT+ATZ ), NDDS75 will start to uplink sensor values to CoAP server. 206 206 230 +[[image:1657330472797-498.png]] 207 207 208 -=== 2.3.4 Soil Moisture === 209 209 210 -((( 211 -Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil. 212 -))) 213 213 214 -((( 215 -For example, if the data you get from the register is __0x05 0xDC__, the moisture content in the soil is 216 -))) 234 +=== 2.2.5 Use UDP protocol to uplink data(Default protocol) === 217 217 218 -((( 219 - 220 -))) 221 221 222 -(( (223 -(% style="color: #4f81bd" %)**05DC(H)=0(D) /100=15%.**224 -)) )237 +* (% style="color:blue" %)**AT+PRO=2 ** (%%) ~/~/ Set to use UDP protocol to uplink 238 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5601 ** (%%) ~/~/ to set UDP server address and port 239 +* (% style="color:blue" %)**AT+CFM=1 ** (%%) ~/~/If the server does not respond, this command is unnecessary 225 225 241 +[[image:1657330501006-241.png]] 226 226 227 227 228 - === 2.3.5 Soil Temperature===244 +[[image:1657330533775-472.png]] 229 229 230 -((( 231 - Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is 0x09 0xEC, the temperature content in the soil is 232 -))) 233 233 234 -((( 235 -**Example**: 236 -))) 237 237 238 -((( 239 -If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/100 = 2.61 °C 240 -))) 248 +=== 2.2.6 Use MQTT protocol to uplink data === 241 241 242 -((( 243 -If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C 244 -))) 245 245 251 +* (% style="color:blue" %)**AT+PRO=3 ** (%%) ~/~/Set to use MQTT protocol to uplink 252 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,1883 ** (%%) ~/~/Set MQTT server address and port 253 +* (% style="color:blue" %)**AT+CLIENT=CLIENT ** (%%)~/~/Set up the CLIENT of MQTT 254 +* (% style="color:blue" %)**AT+UNAME=UNAME **(%%)~/~/Set the username of MQTT 255 +* (% style="color:blue" %)**AT+PWD=PWD **(%%)~/~/Set the password of MQTT 256 +* (% style="color:blue" %)**AT+PUBTOPIC=NDDS75_PUB **(%%)~/~/Set the sending topic of MQTT 257 +* (% style="color:blue" %)**AT+SUBTOPIC=NDDS75_SUB **(%%) ~/~/Set the subscription topic of MQTT 246 246 259 +[[image:1657249978444-674.png]] 247 247 248 -=== 2.3.6 Soil Conductivity (EC) === 249 249 250 -((( 251 -Obtain (% style="color:#4f81bd" %)**__soluble salt concentration__**(%%) in soil or (% style="color:#4f81bd" %)**__soluble ion concentration in liquid fertilizer__**(%%) or (% style="color:#4f81bd" %)**__planting medium__**(%%). The value range of the register is 0 - 20000(Decimal)( Can be greater than 20000). 252 -))) 262 +[[image:1657330723006-866.png]] 253 253 254 -((( 255 -For example, if the data you get from the register is 0x00 0xC8, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm. 256 -))) 257 257 258 258 ((( 259 - Generally,theECvalue ofirrigationwaterislessthan800uS/ cm.266 +MQTT protocol has a much higher power consumption compare vs UDP / CoAP protocol. Please check the power analyze document and adjust the uplink period to a suitable interval. 260 260 ))) 261 261 262 -((( 263 - 264 -))) 265 265 266 -((( 267 - 268 -))) 269 269 270 -=== 2. 3.7MOD===271 +=== 2.2.7 Use TCP protocol to uplink data === 271 271 272 -Firmware version at least v2.1 supports changing mode. 273 273 274 -For example, bytes[10]=90 274 +* (% style="color:blue" %)**AT+PRO=4 ** (%%) ~/~/ Set to use TCP protocol to uplink 275 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5600 **(%%) ~/~/ to set TCP server address and port 275 275 276 -m od=(bytes[10]>>7)&0x01=1.277 +[[image:image-20220709093918-1.png]] 277 277 278 278 279 - **Downlink Command:**280 +[[image:image-20220709093918-2.png]] 280 280 281 -If payload = 0x0A00, workmode=0 282 282 283 -If** **payload =** **0x0A01, workmode=1 284 284 284 +=== 2.2.8 Change Update Interval === 285 285 286 +User can use below command to change the (% style="color:green" %)**uplink interval**. 286 286 287 - ===2.3.8Decode payloadinTheThingsNetwork===288 +* (% style="color:blue" %)**AT+TDC=600 ** (%%)~/~/ Set Update Interval to 600s 288 288 289 -While using TTN network, you can add the payload format to decode the payload. 290 - 291 - 292 -[[image:1654505570700-128.png]] 293 - 294 294 ((( 295 - Thepayload decoder function forTTN is here:291 +(% style="color:red" %)**NOTE:** 296 296 ))) 297 297 298 298 ((( 299 - LSE01TTN Payload Decoder:[[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Payload_Decoder/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Payload_Decoder/]]295 +(% style="color:red" %)1. By default, the device will send an uplink message every 1 hour. 300 300 ))) 301 301 302 302 303 303 304 -== 2. 4UplinkInterval ==300 +== 2.3 Uplink Payload == 305 305 306 - The LSE01 by default uplinkthe sensor data every 20 minutes.User can change this interval by AT Commandor LoRaWAN Downlink Command. Seethis link: [[Change UplinkInterval>>doc:Main.EndDevice AT Commandsand DownlinkCommand.WebHome||anchor="H4.1ChangeUplinkInterval"]]302 +In this mode, uplink payload includes in total 14 bytes 307 307 308 308 305 +(% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:510px" %) 306 +|=(% style="width: 60px;" %)((( 307 +**Size(bytes)** 308 +)))|=(% style="width: 50px;" %)**6**|=(% style="width: 25px;" %)2|=(% style="width: 25px;" %)**2**|=(% style="width: 70px;" %)**1**|=(% style="width: 60px;" %)**2**|=(% style="width: 50px;" %)**1** 309 +|(% style="width:97px" %)**Value**|(% style="width:83px" %)[[Device ID>>||anchor="H2.4.1A0A0DeviceID"]]|(% style="width:41px" %)[[Ver>>||anchor="H2.4.2A0VersionInfo"]]|(% style="width:46px" %)[[BAT>>||anchor="H2.4.3A0BatteryInfo"]]|(% style="width:123px" %)[[Signal Strength>>||anchor="H2.4.4A0SignalStrength"]]|(% style="width:108px" %)[[Distance (unit: mm)>>||anchor="H2.4.5A0SoilMoisture"]]|(% style="width:80px" %)[[Interrupt>>||anchor="H2.4.8A0DigitalInterrupt"]] 309 309 310 -== 2.5 Downlink Payload == 311 +((( 312 +If we use the MQTT client to subscribe to this MQTT topic, we can see the following information when the NDDS751 uplink data. 313 +))) 311 311 312 -By default, LSE50 prints the downlink payload to console port. 313 313 314 -[[image: image-20220606165544-8.png]]316 +[[image:1657331036973-987.png]] 315 315 316 - 317 317 ((( 318 - **Examples:**319 +The payload is ASCII string, representative same HEX: 319 319 ))) 320 320 321 321 ((( 322 - 323 +0x72403155615900640c6c19029200 where: 323 323 ))) 324 324 325 325 * ((( 326 - **SetTDC**327 +Device ID: 0x724031556159 = 724031556159 327 327 ))) 328 - 329 -((( 330 -If the payload=0100003C, it means set the END Node’s TDC to 0x00003C=60(S), while type code is 01. 329 +* ((( 330 +Version: 0x0064=100=1.0.0 331 331 ))) 332 332 333 -((( 334 - Payload:100001ETDC=30S333 +* ((( 334 +BAT: 0x0c6c = 3180 mV = 3.180V 335 335 ))) 336 - 337 -((( 338 -Payload: 01 00 00 3C TDC=60S 336 +* ((( 337 +Signal: 0x19 = 25 339 339 ))) 340 - 341 -((( 342 - 339 +* ((( 340 +Distance: 0x0292= 658 mm 343 343 ))) 344 - 345 345 * ((( 346 - **Reset**343 +Interrupt: 0x00 = 0 347 347 ))) 348 348 349 -((( 350 -If payload = 0x04FF, it will reset the LSE01 351 -))) 352 352 347 +== 2.4 Payload Explanation and Sensor Interface == 353 353 354 -* **CFM** 355 355 356 - DownlinkPayload: 05000001, Set AT+CFM=1 or 05000000 , setAT+CFM=0350 +=== 2.4.1 Device ID === 357 357 352 +((( 353 +By default, the Device ID equal to the last 6 bytes of IMEI. 354 +))) 358 358 359 - 360 -== 2.6 Show Data in DataCake IoT Server == 361 - 362 362 ((( 363 - [[DATACAKE>>url:https://datacake.co/]] providesahumanfriendlyinterfacetoshowthesensor data,once we have data in TTN, we canuse[[DATACAKE>>url:https://datacake.co/]]toconnect to TTN andseethedata inDATACAKE. Below arethe steps:357 +User can use (% style="color:blue" %)**AT+DEUI**(%%) to set Device ID 364 364 ))) 365 365 366 366 ((( 367 - 361 +**Example:** 368 368 ))) 369 369 370 370 ((( 371 - **Step1**: Be sure that your device is programmed and properly connected to the network at this time.365 +AT+DEUI=A84041F15612 372 372 ))) 373 373 374 374 ((( 375 - **Step2**: To configuretheApplicationtoforwarddatatoDATACAKE you willneedtoaddintegration.Toaddthe DATACAKEintegration, performthefollowing steps:369 +The Device ID is stored in a none-erase area, Upgrade the firmware or run **AT+FDR** won't erase Device ID. 376 376 ))) 377 377 378 378 379 -[[image:1654505857935-743.png]] 380 380 374 +=== 2.4.2 Version Info === 381 381 382 -[[image:1654505874829-548.png]] 376 +((( 377 +Specify the software version: 0x64=100, means firmware version 1.00. 378 +))) 383 383 384 -Step 3: Create an account or log in Datacake. 380 +((( 381 +For example: 0x00 64 : this device is NDDS75 with firmware version 1.0.0. 382 +))) 385 385 386 -Step 4: Search the LSE01 and add DevEUI. 387 387 388 388 389 - [[image:1654505905236-553.png]]386 +=== 2.4.3 Battery Info === 390 390 388 +((( 389 +Check the battery voltage for LSE01. 390 +))) 391 391 392 -After added, the sensor data arrive TTN, it will also arrive and show in Mydevices. 392 +((( 393 +Ex1: 0x0B45 = 2885mV 394 +))) 393 393 394 -[[image:1654505925508-181.png]] 396 +((( 397 +Ex2: 0x0B49 = 2889mV 398 +))) 395 395 396 396 397 397 398 -== 2. 7FrequencyPlans==402 +=== 2.4.4 Signal Strength === 399 399 400 -The LSE01 uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets. 404 +((( 405 +NB-IoT Network signal Strength. 406 +))) 401 401 408 +((( 409 +**Ex1: 0x1d = 29** 410 +))) 402 402 403 -=== 2.7.1 EU863-870 (EU868) === 412 +((( 413 +(% style="color:blue" %)**0**(%%) -113dBm or less 414 +))) 404 404 405 -(% style="color:#037691" %)** Uplink:** 416 +((( 417 +(% style="color:blue" %)**1**(%%) -111dBm 418 +))) 406 406 407 -868.1 - SF7BW125 to SF12BW125 420 +((( 421 +(% style="color:blue" %)**2...30**(%%) -109dBm... -53dBm 422 +))) 408 408 409 -868.3 - SF7BW125 to SF12BW125 and SF7BW250 424 +((( 425 +(% style="color:blue" %)**31** (%%) -51dBm or greater 426 +))) 410 410 411 -868.5 - SF7BW125 to SF12BW125 428 +((( 429 +(% style="color:blue" %)**99** (%%) Not known or not detectable 430 +))) 412 412 413 -867.1 - SF7BW125 to SF12BW125 414 414 415 -867.3 - SF7BW125 to SF12BW125 416 416 417 - 867.5-SF7BW125toSF12BW125434 +=== 2.4.5 Soil Moisture === 418 418 419 - 867.7-SF7BW125toSF12BW125436 +Get the distance. Flat object range 280mm - 7500mm. 420 420 421 - 867.9-SF7BW125toSF12BW125438 +For example, if the data you get from the register is **__0x0B 0x05__**, the distance between the sensor and the measured object is 422 422 423 -868.8 - FSK 440 +((( 441 +((( 442 +(% style="color:blue" %)** 0B05(H) = 2821(D) = 2821mm.** 443 +))) 444 +))) 424 424 446 +((( 447 + 448 +))) 425 425 426 -(% style="color:#037691" %)** Downlink:** 450 +((( 451 + 452 +))) 427 427 428 - Uplinkchannels1-9 (RX1)454 +=== 2.4.6 Digital Interrupt === 429 429 430 -869.525 - SF9BW125 (RX2 downlink only) 456 +((( 457 +Digital Interrupt refers to pin (% style="color:blue" %)**GPIO_EXTI**(%%), and there are different trigger methods. When there is a trigger, the NDDS75 will send a packet to the server. 458 +))) 431 431 460 +((( 461 +The command is: 462 +))) 432 432 464 +((( 465 +(% style="color:blue" %)**AT+INTMOD=3 **(%%) ~/~/(more info about INMOD please refer [[**AT Command Manual**>>url:https://www.dragino.com/downloads/downloads/NB-IoT/NBSN95/DRAGINO_NBSN95-NB_AT%20Commands_v1.1.0.pdf]])**.** 466 +))) 433 433 434 -=== 2.7.2 US902-928(US915) === 435 435 436 -Used in USA, Canada and South America. Default use CHE=2 469 +((( 470 +The lower four bits of this data field shows if this packet is generated by interrupt or not. Click here for the hardware and software set up. 471 +))) 437 437 438 -(% style="color:#037691" %)**Uplink:** 439 439 440 -903.9 - SF7BW125 to SF10BW125 474 +((( 475 +Example: 476 +))) 441 441 442 -904.1 - SF7BW125 to SF10BW125 478 +((( 479 +0x(00): Normal uplink packet. 480 +))) 443 443 444 -904.3 - SF7BW125 to SF10BW125 482 +((( 483 +0x(01): Interrupt Uplink Packet. 484 +))) 445 445 446 -904.5 - SF7BW125 to SF10BW125 447 447 448 -904.7 - SF7BW125 to SF10BW125 449 449 450 - 904.9 - SF7BW125 toSF10BW125488 +=== 2.4.7 +5V Output === 451 451 452 -905.1 - SF7BW125 to SF10BW125 490 +((( 491 +NDDS75 will enable +5V output before all sampling and disable the +5v after all sampling. 492 +))) 453 453 454 -905.3 - SF7BW125 to SF10BW125 455 455 495 +((( 496 +The 5V output time can be controlled by AT Command. 497 +))) 456 456 457 -(% style="color:#037691" %)**Downlink:** 499 +((( 500 +(% style="color:blue" %)**AT+5VT=1000** 501 +))) 458 458 459 -923.3 - SF7BW500 to SF12BW500 503 +((( 504 +Means set 5V valid time to have 1000ms. So the real 5V output will actually have 1000ms + sampling time for other sensors. 505 +))) 460 460 461 -923.9 - SF7BW500 to SF12BW500 462 462 463 -924.5 - SF7BW500 to SF12BW500 464 464 465 - 925.1 - SF7BW500toSF12BW500509 +== 2.5 Downlink Payload == 466 466 467 - 925.7-SF7BW500toSF12BW500511 +By default, NSE01 prints the downlink payload to console port. 468 468 469 - 926.3-SF7BW500 to SF12BW500513 +[[image:image-20220708133731-5.png]] 470 470 471 -926.9 - SF7BW500 to SF12BW500 472 472 473 -927.5 - SF7BW500 to SF12BW500 516 +((( 517 +(% style="color:blue" %)**Examples:** 518 +))) 474 474 475 -923.3 - SF12BW500(RX2 downlink only) 520 +((( 521 + 522 +))) 476 476 524 +* ((( 525 +(% style="color:blue" %)**Set TDC** 526 +))) 477 477 528 +((( 529 +If the payload=0100003C, it means set the END Node's TDC to 0x00003C=60(S), while type code is 01. 530 +))) 478 478 479 -=== 2.7.3 CN470-510 (CN470) === 532 +((( 533 +Payload: 01 00 00 1E TDC=30S 534 +))) 480 480 481 -Used in China, Default use CHE=1 536 +((( 537 +Payload: 01 00 00 3C TDC=60S 538 +))) 482 482 483 -(% style="color:#037691" %)**Uplink:** 540 +((( 541 + 542 +))) 484 484 485 -486.3 - SF7BW125 to SF12BW125 544 +* ((( 545 +(% style="color:blue" %)**Reset** 546 +))) 486 486 487 -486.5 - SF7BW125 to SF12BW125 548 +((( 549 +If payload = 0x04FF, it will reset the NSE01 550 +))) 488 488 489 -486.7 - SF7BW125 to SF12BW125 490 490 491 - 486.9-SF7BW125toSF12BW125553 +* (% style="color:blue" %)**INTMOD** 492 492 493 -487.1 - SF7BW125 to SF12BW125 555 +((( 556 +Downlink Payload: 06000003, Set AT+INTMOD=3 557 +))) 494 494 495 -487.3 - SF7BW125 to SF12BW125 496 496 497 -487.5 - SF7BW125 to SF12BW125 498 498 499 - 487.7- SF7BW125toSF12BW125561 +== 2.6 LED Indicator == 500 500 563 +((( 564 +The NSE01 has an internal LED which is to show the status of different state. 501 501 502 -(% style="color:#037691" %)**Downlink:** 503 503 504 -506.7 - SF7BW125 to SF12BW125 567 +* When power on, NSE01 will detect if sensor probe is connected, if probe detected, LED will blink four times. (no blinks in this step is no probe) 568 +* Then the LED will be on for 1 second means device is boot normally. 569 +* After NSE01 join NB-IoT network. The LED will be ON for 3 seconds. 570 +* For each uplink probe, LED will be on for 500ms. 571 +))) 505 505 506 -506.9 - SF7BW125 to SF12BW125 507 507 508 -507.1 - SF7BW125 to SF12BW125 509 509 510 -507.3 - SF7BW125 to SF12BW125 511 511 512 - 507.5- SF7BW125to SF12BW125576 +== 2.7 Installation in Soil == 513 513 514 - 507.7- SF7BW125toSF12BW125578 +__**Measurement the soil surface**__ 515 515 516 -507.9 - SF7BW125 to SF12BW125 580 +((( 581 +Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting. [[https:~~/~~/img.alicdn.com/imgextra/i3/2005165265/O1CN010rj9Oh1olPsQxrdUK_!!2005165265.jpg>>url:https://img.alicdn.com/imgextra/i3/2005165265/O1CN010rj9Oh1olPsQxrdUK_!!2005165265.jpg]] 582 +))) 517 517 518 - 508.1- SF7BW125to SF12BW125584 +[[image:1657259653666-883.png]] 519 519 520 -505.3 - SF12BW125 (RX2 downlink only) 521 521 587 +((( 588 + 522 522 590 +((( 591 +Dig a hole with diameter > 20CM. 592 +))) 523 523 524 -=== 2.7.4 AU915-928(AU915) === 594 +((( 595 +Horizontal insert the probe to the soil and fill the hole for long term measurement. 596 +))) 597 +))) 525 525 526 - Default useCHE=2599 +[[image:1654506665940-119.png]] 527 527 528 -(% style="color:#037691" %)**Uplink:** 601 +((( 602 + 603 +))) 529 529 530 -916.8 - SF7BW125 to SF12BW125 531 531 532 - 917.0- SF7BW125toSF12BW125606 +== 2.8 Firmware Change Log == 533 533 534 -917.2 - SF7BW125 to SF12BW125 535 535 536 - 917.4-SF7BW125toSF12BW125609 +Download URL & Firmware Change log 537 537 538 - 917.6-F7BW125toSF12BW125611 +[[www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/Firmware/]] 539 539 540 -917.8 - SF7BW125 to SF12BW125 541 541 542 - 918.0- SF7BW125toSF12BW125614 +Upgrade Instruction: [[Upgrade_Firmware>>||anchor="H5.1200BHowtoUpgradeFirmware"]] 543 543 544 -918.2 - SF7BW125 to SF12BW125 545 545 546 546 547 - (%style="color:#037691"%)**Downlink:**618 +== 2.9 Battery Analysis == 548 548 549 - 923.3- SF7BW500toSF12BW500620 +=== 2.9.1 Battery Type === 550 550 551 -923.9 - SF7BW500 to SF12BW500 552 552 553 -924.5 - SF7BW500 to SF12BW500 554 - 555 -925.1 - SF7BW500 to SF12BW500 556 - 557 -925.7 - SF7BW500 to SF12BW500 558 - 559 -926.3 - SF7BW500 to SF12BW500 560 - 561 -926.9 - SF7BW500 to SF12BW500 562 - 563 -927.5 - SF7BW500 to SF12BW500 564 - 565 -923.3 - SF12BW500(RX2 downlink only) 566 - 567 - 568 - 569 -=== 2.7.5 AS920-923 & AS923-925 (AS923) === 570 - 571 -(% style="color:#037691" %)**Default Uplink channel:** 572 - 573 -923.2 - SF7BW125 to SF10BW125 574 - 575 -923.4 - SF7BW125 to SF10BW125 576 - 577 - 578 -(% style="color:#037691" %)**Additional Uplink Channel**: 579 - 580 -(OTAA mode, channel added by JoinAccept message) 581 - 582 -(% style="color:#037691" %)**AS920~~AS923 for Japan, Malaysia, Singapore**: 583 - 584 -922.2 - SF7BW125 to SF10BW125 585 - 586 -922.4 - SF7BW125 to SF10BW125 587 - 588 -922.6 - SF7BW125 to SF10BW125 589 - 590 -922.8 - SF7BW125 to SF10BW125 591 - 592 -923.0 - SF7BW125 to SF10BW125 593 - 594 -922.0 - SF7BW125 to SF10BW125 595 - 596 - 597 -(% style="color:#037691" %)**AS923 ~~ AS925 for Brunei, Cambodia, Hong Kong, Indonesia, Laos, Taiwan, Thailand, Vietnam**: 598 - 599 -923.6 - SF7BW125 to SF10BW125 600 - 601 -923.8 - SF7BW125 to SF10BW125 602 - 603 -924.0 - SF7BW125 to SF10BW125 604 - 605 -924.2 - SF7BW125 to SF10BW125 606 - 607 -924.4 - SF7BW125 to SF10BW125 608 - 609 -924.6 - SF7BW125 to SF10BW125 610 - 611 - 612 -(% style="color:#037691" %)** Downlink:** 613 - 614 -Uplink channels 1-8 (RX1) 615 - 616 -923.2 - SF10BW125 (RX2) 617 - 618 - 619 - 620 -=== 2.7.6 KR920-923 (KR920) === 621 - 622 -Default channel: 623 - 624 -922.1 - SF7BW125 to SF12BW125 625 - 626 -922.3 - SF7BW125 to SF12BW125 627 - 628 -922.5 - SF7BW125 to SF12BW125 629 - 630 - 631 -(% style="color:#037691" %)**Uplink: (OTAA mode, channel added by JoinAccept message)** 632 - 633 -922.1 - SF7BW125 to SF12BW125 634 - 635 -922.3 - SF7BW125 to SF12BW125 636 - 637 -922.5 - SF7BW125 to SF12BW125 638 - 639 -922.7 - SF7BW125 to SF12BW125 640 - 641 -922.9 - SF7BW125 to SF12BW125 642 - 643 -923.1 - SF7BW125 to SF12BW125 644 - 645 -923.3 - SF7BW125 to SF12BW125 646 - 647 - 648 -(% style="color:#037691" %)**Downlink:** 649 - 650 -Uplink channels 1-7(RX1) 651 - 652 -921.9 - SF12BW125 (RX2 downlink only; SF12BW125 might be changed to SF9BW125) 653 - 654 - 655 - 656 -=== 2.7.7 IN865-867 (IN865) === 657 - 658 -(% style="color:#037691" %)** Uplink:** 659 - 660 -865.0625 - SF7BW125 to SF12BW125 661 - 662 -865.4025 - SF7BW125 to SF12BW125 663 - 664 -865.9850 - SF7BW125 to SF12BW125 665 - 666 - 667 -(% style="color:#037691" %) **Downlink:** 668 - 669 -Uplink channels 1-3 (RX1) 670 - 671 -866.550 - SF10BW125 (RX2) 672 - 673 - 674 - 675 - 676 -== 2.8 LED Indicator == 677 - 678 -The LSE01 has an internal LED which is to show the status of different state. 679 - 680 -* Blink once when device power on. 681 -* Solid ON for 5 seconds once device successful Join the network. 682 -* Blink once when device transmit a packet. 683 - 684 -== 2.9 Installation in Soil == 685 - 686 -**Measurement the soil surface** 687 - 688 - 689 -[[image:1654506634463-199.png]] 690 - 691 691 ((( 692 -((( 693 -Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting. 624 +The NSE01 battery is a combination of an 8500mAh Li/SOCI2 Battery and a Super Capacitor. The battery is none-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter. 694 694 ))) 695 -))) 696 696 697 697 698 -[[image:1654506665940-119.png]] 699 - 700 700 ((( 701 - Dig aholewithdiameter>20CM.629 +The battery is designed to last for several years depends on the actually use environment and update interval. 702 702 ))) 703 703 704 -((( 705 -Horizontal insert the probe to the soil and fill the hole for long term measurement. 706 -))) 707 707 708 - 709 -== 2.10 Firmware Change Log == 710 - 711 711 ((( 712 - **Firmware downloadlink:**634 +The battery related documents as below: 713 713 ))) 714 714 715 - (((716 -[[ http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/]]717 - )))637 +* [[Battery Dimension>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]] 638 +* [[Lithium-Thionyl Chloride Battery datasheet>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]] 639 +* [[Lithium-ion Battery-Capacitor datasheet>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]] 718 718 719 719 ((( 720 - 642 +[[image:image-20220708140453-6.png]] 721 721 ))) 722 722 723 -((( 724 -**Firmware Upgrade Method: **[[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome]] 725 -))) 726 726 727 -((( 728 - 729 -))) 730 730 731 -((( 732 -**V1.0.** 733 -))) 647 +=== 2.9.2 Power consumption Analyze === 734 734 735 735 ((( 736 - Release650 +Dragino battery powered product are all runs in Low Power mode. We have an update battery calculator which base on the measurement of the real device. User can use this calculator to check the battery life and calculate the battery life if want to use different transmit interval. 737 737 ))) 738 738 739 739 740 -== 2.11 Battery Analysis == 741 - 742 -=== 2.11.1 Battery Type === 743 - 744 744 ((( 745 - The LSE01 battery is a combination of a 4000mAh Li/SOCI2 Battery and a Super Capacitor. The batteryis non-rechargeablebattery type with a lowdischargerate (<2% per year). Thistype ofbattery is commonly used in IoT devices such aswater meter.655 +Instruction to use as below: 746 746 ))) 747 747 748 748 ((( 749 - Thebatterys designedlastforrethan5 years fortheSN50.659 +(% style="color:blue" %)**Step 1: **(%%)Downlink the up-to-date DRAGINO_Battery_Life_Prediction_Table.xlsx from: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/]] 750 750 ))) 751 751 662 + 752 752 ((( 753 -((( 754 -The battery-related documents are as below: 664 +(% style="color:blue" %)**Step 2: **(%%) Open it and choose 755 755 ))) 756 -))) 757 757 758 758 * ((( 759 - [[Battery Dimension>>url:http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/&file=LSN50-Battery-Dimension.pdf]],668 +Product Model 760 760 ))) 761 761 * ((( 762 - [[Lithium-ThionylChloride Battery datasheet>>url:https://www.dragino.com/downloads/downloads/datasheet/Battery/ER26500/ER26500_Datasheet-EN.pdf]],671 +Uplink Interval 763 763 ))) 764 764 * ((( 765 - [[Lithium-ion Battery-Capacitor datasheet>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC_1520_datasheet.jpg]],[[Tech Spec>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC1520%20Technical%20Specification20171123.pdf]]674 +Working Mode 766 766 ))) 767 767 768 - [[image:image-20220610172436-1.png]] 677 +((( 678 +And the Life expectation in difference case will be shown on the right. 679 +))) 769 769 681 +[[image:image-20220708141352-7.jpeg]] 770 770 771 771 772 -=== 2.11.2 Battery Note === 773 773 685 +=== 2.9.3 Battery Note === 686 + 774 774 ((( 775 775 The Li-SICO battery is designed for small current / long period application. It is not good to use a high current, short period transmit method. The recommended minimum period for use of this battery is 5 minutes. If you use a shorter period time to transmit LoRa, then the battery life may be decreased. 776 776 ))) ... ... @@ -777,303 +777,176 @@ 777 777 778 778 779 779 780 -=== 2. 11.3Replace the battery ===693 +=== 2.9.4 Replace the battery === 781 781 782 782 ((( 783 - IfBattery is lower than 2.7v,usershouldreplace the battery ofLSE01.696 +The default battery pack of NSE01 includes a ER26500 plus super capacitor. If user can't find this pack locally, they can find ER26500 or equivalence without the SPC1520 capacitor, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes). 784 784 ))) 785 785 699 + 700 + 701 += 3. Access NB-IoT Module = 702 + 786 786 ((( 787 - You can changethe battery in the LSE01.The type of battery isnot limitedas longas the outputis between 3v to 3.6v. On the main board, there is a diode (D1) between the battery and the maincircuit. If you need to use a battery with lessthan 3.3v, pleaseremovethe D1and shortcut thewopadsofitso therewon’tbe voltage drop between battery andmain board.704 +Users can directly access the AT command set of the NB-IoT module. 788 788 ))) 789 789 790 790 ((( 791 -The defaultbattery packof LSE01 includesa ER18505 plussupercapacitor.Ifusercan’tfind this pack locally, theycan find ER18505orequivalence,whichwillalsoworkinmostcase.The SPC can enlargethebattery lifeforigh frequency use(updateperiod below5minutes)708 +The AT Command set can refer the BC35-G NB-IoT Module AT Command: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=datasheet/other_vendors/BC35-G/>>url:https://www.dragino.com/downloads/index.php?dir=datasheet/other_vendors/BC35-G/]] 792 792 ))) 793 793 711 +[[image:1657261278785-153.png]] 794 794 795 795 796 -= 3. Using the AT Commands = 797 797 798 -= =3.1AccessAT Commands ==715 += 4. Using the AT Commands = 799 799 717 +== 4.1 Access AT Commands == 800 800 801 - LSE01supportsATCommandsetn the stock firmware.Youcanuse a USB toTTLadaptertoconnect to LSE01forusing ATcommand,asbelow.719 +See this link for detail: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/]] 802 802 803 -[[image:1654501986557-872.png||height="391" width="800"]] 804 804 722 +AT+<CMD>? : Help on <CMD> 805 805 806 - Orifyouhavebelowboard,usebelowconnection:724 +AT+<CMD> : Run <CMD> 807 807 726 +AT+<CMD>=<value> : Set the value 808 808 809 - [[image:1654502005655-729.png||height="503"width="801"]]728 +AT+<CMD>=? : Get the value 810 810 811 811 812 - 813 -In the PC, you need to set the serial baud rate to (% style="color:green" %)**9600**(%%) to access the serial console for LSE01. LSE01 will output system info once power on as below: 814 - 815 - 816 - [[image:1654502050864-459.png||height="564" width="806"]] 817 - 818 - 819 -Below are the available commands, a more detailed AT Command manual can be found at [[AT Command Manual>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/]]: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/]] 820 - 821 - 822 -(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>? **(%%) : Help on <CMD> 823 - 824 -(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD> **(%%) : Run <CMD> 825 - 826 -(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>=<value>**(%%) : Set the value 827 - 828 -(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>=?**(%%) : Get the value 829 - 830 - 831 831 (% style="color:#037691" %)**General Commands**(%%) 832 832 833 - (% style="background-color:#dcdcdc" %)**AT**(%%): Attention733 +AT : Attention 834 834 835 - (% style="background-color:#dcdcdc" %)**AT?**(%%): Short Help735 +AT? : Short Help 836 836 837 - (% style="background-color:#dcdcdc" %)**ATZ**(%%): MCU Reset737 +ATZ : MCU Reset 838 838 839 - (% style="background-color:#dcdcdc" %)**AT+TDC**(%%): Application Data Transmission Interval739 +AT+TDC : Application Data Transmission Interval 840 840 741 +AT+CFG : Print all configurations 841 841 842 - (%style="color:#037691"%)**Keys,IDsand EUIs management**743 +AT+CFGMOD : Working mode selection 843 843 844 - (% style="background-color:#dcdcdc" %)**AT+APPEUI**(%%)ApplicationEUI745 +AT+INTMOD : Set the trigger interrupt mode 845 845 846 - (% style="background-color:#dcdcdc" %)**AT+APPKEY**(%%)ApplicationKey747 +AT+5VT : Set extend the time of 5V power 847 847 848 - (% style="background-color:#dcdcdc" %)**AT+APPSKEY**(%%)Application Session Key749 +AT+PRO : Choose agreement 849 849 850 - (% style="background-color:#dcdcdc" %)**AT+DADDR**(%%)DeviceAddress751 +AT+WEIGRE : Get weight or set weight to 0 851 851 852 - (% style="background-color:#dcdcdc" %)**AT+DEUI**(%%)DeviceEUI753 +AT+WEIGAP : Get or Set the GapValue of weight 853 853 854 - (% style="background-color:#dcdcdc" %)**AT+NWKID**(%%):NetworkID(Youcanenterthiscommandchangeonlyaftersuccessful networkconnection)755 +AT+RXDL : Extend the sending and receiving time 855 855 856 - (% style="background-color:#dcdcdc" %)**AT+NWKSKEY**(%%)NetworkSession KeyJoining and sending dateon LoRa network757 +AT+CNTFAC : Get or set counting parameters 857 857 858 - (% style="background-color:#dcdcdc" %)**AT+CFM**(%%)ConfirmMode759 +AT+SERVADDR : Server Address 859 859 860 -(% style="background-color:#dcdcdc" %)**AT+CFS**(%%) : Confirm Status 861 861 862 -(% style=" background-color:#dcdcdc" %)**AT+JOIN**(%%): JoinLoRa? Network762 +(% style="color:#037691" %)**COAP Management** 863 863 864 - (% style="background-color:#dcdcdc" %)**AT+NJM**(%%)LoRa? Network Join Mode764 +AT+URI : Resource parameters 865 865 866 -(% style="background-color:#dcdcdc" %)**AT+NJS**(%%) : LoRa? Network Join Status 867 867 868 -(% style=" background-color:#dcdcdc" %)**AT+RECV**(%%) :PrintLast Received Data inRaw Format767 +(% style="color:#037691" %)**UDP Management** 869 869 870 - (% style="background-color:#dcdcdc" %)**AT+RECVB**(%%)Print LastReceived DatainBinaryFormat769 +AT+CFM : Upload confirmation mode (only valid for UDP) 871 871 872 -(% style="background-color:#dcdcdc" %)**AT+SEND**(%%) : Send Text Data 873 873 874 -(% style=" background-color:#dcdcdc" %)**AT+SENB**(%%): Send Hexadecimal Data772 +(% style="color:#037691" %)**MQTT Management** 875 875 774 +AT+CLIENT : Get or Set MQTT client 876 876 877 - (%style="color:#037691"%)**LoRaNetworkManagement**776 +AT+UNAME : Get or Set MQTT Username 878 878 879 - (% style="background-color:#dcdcdc" %)**AT+ADR**(%%):AdaptiveRate778 +AT+PWD : Get or Set MQTT password 880 880 881 - (% style="background-color:#dcdcdc" %)**AT+CLASS**(%%):LoRaClass(Currentlyonly supportclassA780 +AT+PUBTOPIC : Get or Set MQTT publish topic 882 882 883 - (% style="background-color:#dcdcdc" %)**AT+DCS**(%%):DutyCycleSetting782 +AT+SUBTOPIC : Get or Set MQTT subscription topic 884 884 885 -(% style="background-color:#dcdcdc" %)**AT+DR**(%%) : Data Rate (Can Only be Modified after ADR=0) 886 886 887 -(% style=" background-color:#dcdcdc" %)**AT+FCD**(%%) : Frame Counter Downlink785 +(% style="color:#037691" %)**Information** 888 888 889 - (% style="background-color:#dcdcdc" %)**AT+FCU**(%%): Frame CounterUplink787 +AT+FDR : Factory Data Reset 890 890 891 - (% style="background-color:#dcdcdc" %)**AT+JN1DL**(%%):JoinAcceptDelay1789 +AT+PWORD : Serial Access Password 892 892 893 -(% style="background-color:#dcdcdc" %)**AT+JN2DL**(%%) : Join Accept Delay2 894 894 895 -(% style="background-color:#dcdcdc" %)**AT+PNM**(%%) : Public Network Mode 896 896 897 - (% style="background-color:#dcdcdc"%)**AT+RX1DL**(%%): Receive Delay1793 += 5. FAQ = 898 898 899 - (% style="background-color:#dcdcdc"%)**AT+RX2DL**(%%): ReceiveDelay2795 +== 5.1 How to Upgrade Firmware == 900 900 901 -(% style="background-color:#dcdcdc" %)**AT+RX2DR**(%%) : Rx2 Window Data Rate 902 902 903 -(% style="background-color:#dcdcdc" %)**AT+RX2FQ**(%%) : Rx2 Window Frequency 904 - 905 -(% style="background-color:#dcdcdc" %)**AT+TXP**(%%) : Transmit Power 906 - 907 -(% style="background-color:#dcdcdc" %)**AT+ MOD**(%%) : Set work mode 908 - 909 - 910 -(% style="color:#037691" %)**Information** 911 - 912 -(% style="background-color:#dcdcdc" %)**AT+RSSI**(%%) : RSSI of the Last Received Packet 913 - 914 -(% style="background-color:#dcdcdc" %)**AT+SNR**(%%) : SNR of the Last Received Packet 915 - 916 -(% style="background-color:#dcdcdc" %)**AT+VER**(%%) : Image Version and Frequency Band 917 - 918 -(% style="background-color:#dcdcdc" %)**AT+FDR**(%%) : Factory Data Reset 919 - 920 -(% style="background-color:#dcdcdc" %)**AT+PORT**(%%) : Application Port 921 - 922 -(% style="background-color:#dcdcdc" %)**AT+CHS**(%%) : Get or Set Frequency (Unit: Hz) for Single Channel Mode 923 - 924 - (% style="background-color:#dcdcdc" %)**AT+CHE**(%%) : Get or Set eight channels mode, Only for US915, AU915, CN470 925 - 926 - 927 -= 4. FAQ = 928 - 929 -== 4.1 How to change the LoRa Frequency Bands/Region? == 930 - 931 931 ((( 932 -You can follow the instructions for [[how to upgrade image>>||anchor="H2.10200BFirmwareChangeLog"]]. 933 -When downloading the images, choose the required image file for download. 799 +User can upgrade the firmware for 1) bug fix, 2) new feature release. 934 934 ))) 935 935 936 936 ((( 937 - 803 +Please see this link for how to upgrade: [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H2.HardwareUpgradeMethodSupportList>>http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H2.HardwareUpgradeMethodSupportList]] 938 938 ))) 939 939 940 940 ((( 941 - Howtosetup LSE01 towork in 8 channel modeBy default,thefrequency bandsUS915,AU915, CN470 work in 72 frequencies.Many gatewaysare8 channelgateways, andin thiscase,theOTAA join timeand uplink scheduleis longandunpredictable while the end nodeis hoppingin 72 frequencies.807 +(% style="color:red" %)Notice, NSE01 and LSE01 share the same mother board. They use the same connection and method to update. 942 942 ))) 943 943 944 -((( 945 - 946 -))) 947 947 948 -((( 949 -You can configure the end node to work in 8 channel mode by using the AT+CHE command. The 500kHz channels are always included for OTAA. 950 -))) 951 951 952 -((( 953 - 954 -))) 812 +== 5.2 Can I calibrate NSE01 to different soil types? == 955 955 956 956 ((( 957 - Forexample,in **US915**band,the frequencytablesasbelow. By default,the endnodewilluse all channels(0~~71)forOTAAJoinprocess.AftertheOTAAJoin,theend nodewilluse these allchannels(0~~71)tosenduplinkkets.815 +NSE01 is calibrated for saline-alkali soil and loamy soil. If users want to use it for other soil, they can calibrate the value in the IoT platform base on the value measured by saline-alkali soil and loamy soil. The formula can be found at [[this link>>https://www.dragino.com/downloads/downloads/LoRa_End_Node/LSE01/Calibrate_to_other_Soil_20220605.pdf]]. 958 958 ))) 959 959 960 -[[image:image-20220606154726-3.png]] 961 961 819 += 6. Trouble Shooting = 962 962 963 - Whenyouuse the TTNnetwork,theUS915 frequencybandsuseare:821 +== 6.1 Connection problem when uploading firmware == 964 964 965 -* 903.9 - SF7BW125 to SF10BW125 966 -* 904.1 - SF7BW125 to SF10BW125 967 -* 904.3 - SF7BW125 to SF10BW125 968 -* 904.5 - SF7BW125 to SF10BW125 969 -* 904.7 - SF7BW125 to SF10BW125 970 -* 904.9 - SF7BW125 to SF10BW125 971 -* 905.1 - SF7BW125 to SF10BW125 972 -* 905.3 - SF7BW125 to SF10BW125 973 -* 904.6 - SF8BW500 974 974 975 975 ((( 976 - Becausethendnodeisnow hoppingin72 frequency,itmakesitdifficulttheevicestoJointhe TTN network and uplinkta.Tosolve thisissue, you canccess thedevice viatheAT commandsandrun:825 +**Please see: **[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H3.3Troubleshooting>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H3.3Troubleshooting]] 977 977 ))) 978 978 979 -(% class=" boxinfomessage" %)828 +(% class="wikigeneratedid" %) 980 980 ((( 981 -**AT+CHE=2** 982 -))) 983 - 984 -(% class="box infomessage" %) 985 -((( 986 -**ATZ** 987 -))) 988 - 989 -((( 990 -to set the end node to work in 8 channel mode. The device will work in Channel 8-15 & 64-71 for OTAA, and channel 8-15 for Uplink. 991 -))) 992 - 993 -((( 994 994 995 995 ))) 996 996 997 -((( 998 -The **AU915** band is similar. Below are the AU915 Uplink Channels. 999 -))) 1000 1000 1001 - [[image:image-20220606154825-4.png]]834 +== 6.2 AT Command input doesn't work == 1002 1002 1003 - 1004 - 1005 -= 5. Trouble Shooting = 1006 - 1007 -== 5.1 Why I can’t join TTN in US915 / AU915 bands? == 1008 - 1009 -It is due to channel mapping. Please see the [[Eight Channel Mode>>doc:Main.LoRaWAN Communication Debug.WebHome||anchor="H2.NoticeofUS9152FCN4702FAU915Frequencyband"]] section above for details. 1010 - 1011 - 1012 -== 5.2 AT Command input doesn’t work == 1013 - 1014 1014 ((( 1015 -In the case if user can see the console output but can’t type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn’t send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string. 1016 -))) 837 +In the case if user can see the console output but can't type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn't send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string. 1017 1017 1018 - 1019 -== 5.3 Device rejoin in at the second uplink packet == 1020 - 1021 -(% style="color:#4f81bd" %)**Issue describe as below:** 1022 - 1023 -[[image:1654500909990-784.png]] 1024 - 1025 - 1026 -(% style="color:#4f81bd" %)**Cause for this issue:** 1027 - 1028 -((( 1029 -The fuse on LSE01 is not large enough, some of the soil probe require large current up to 5v 800mA, in a short pulse. When this happen, it cause the device reboot so user see rejoin. 839 + 1030 1030 ))) 1031 1031 1032 1032 1033 - (% style="color:#4f81bd"%)**Solution:**843 += 7. Order Info = 1034 1034 1035 -All new shipped LSE01 after 2020-May-30 will have this to fix. For the customer who see this issue, please bypass the fuse as below: 1036 1036 1037 - [[image:1654500929571-736.png||height="458" width="832"]]846 +Part Number**:** (% style="color:#4f81bd" %)**NSE01** 1038 1038 1039 1039 1040 -= 6. Order Info = 1041 - 1042 - 1043 -Part Number**:** (% style="color:#4f81bd" %)**LSE01-XX-YY** 1044 - 1045 - 1046 -(% style="color:#4f81bd" %)**XX**(%%)**:** The default frequency band 1047 - 1048 -* (% style="color:red" %)**AS923**(%%): LoRaWAN AS923 band 1049 -* (% style="color:red" %)**AU915**(%%): LoRaWAN AU915 band 1050 -* (% style="color:red" %)**EU433**(%%): LoRaWAN EU433 band 1051 -* (% style="color:red" %)**EU868**(%%): LoRaWAN EU868 band 1052 -* (% style="color:red" %)**KR920**(%%): LoRaWAN KR920 band 1053 -* (% style="color:red" %)**US915**(%%): LoRaWAN US915 band 1054 -* (% style="color:red" %)**IN865**(%%): LoRaWAN IN865 band 1055 -* (% style="color:red" %)**CN470**(%%): LoRaWAN CN470 band 1056 - 1057 -(% style="color:#4f81bd" %)**YY**(%%)**: **Battery Option 1058 - 1059 -* (% style="color:red" %)**4**(%%): 4000mAh battery 1060 -* (% style="color:red" %)**8**(%%): 8500mAh battery 1061 - 1062 1062 (% class="wikigeneratedid" %) 1063 1063 ((( 1064 1064 1065 1065 ))) 1066 1066 1067 -= 7. Packing Info =854 += 8. Packing Info = 1068 1068 1069 1069 ((( 1070 1070 1071 1071 1072 1072 (% style="color:#037691" %)**Package Includes**: 1073 -))) 1074 1074 1075 -* (((1076 - LSE01LoRaWAN SoilMoisture& EC Sensorx 1861 +* NSE01 NB-IoT Soil Moisture & EC Sensor x 1 862 +* External antenna x 1 1077 1077 ))) 1078 1078 1079 1079 ((( ... ... @@ -1080,25 +1080,19 @@ 1080 1080 1081 1081 1082 1082 (% style="color:#037691" %)**Dimension and weight**: 1083 -))) 1084 1084 1085 -* (((1086 - DeviceSize:cm870 +* Size: 195 x 125 x 55 mm 871 +* Weight: 420g 1087 1087 ))) 1088 -* ((( 1089 -Device Weight: g 1090 -))) 1091 -* ((( 1092 -Package Size / pcs : cm 1093 -))) 1094 -* ((( 1095 -Weight / pcs : g 1096 1096 874 +((( 1097 1097 876 + 877 + 878 + 1098 1098 ))) 1099 1099 1100 -= 8. Support =881 += 9. Support = 1101 1101 1102 1102 * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule. 1103 1103 * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.com]] 1104 -
- 1657245163077-232.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +81.0 KB - Content
- 1657246476176-652.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +492.6 KB - Content
- 1657249419225-449.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +81.0 KB - Content
- 1657249468462-536.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +483.6 KB - Content
- 1657249793983-486.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +85.8 KB - Content
- 1657249831934-534.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +72.5 KB - Content
- 1657249864775-321.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +87.0 KB - Content
- 1657249930215-289.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +77.3 KB - Content
- 1657249978444-674.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +139.5 KB - Content
- 1657249990869-686.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +96.9 KB - Content
- 1657250217799-140.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +98.7 KB - Content
- 1657250255956-604.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +99.0 KB - Content
- 1657259653666-883.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +344.4 KB - Content
- 1657260785982-288.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +138.2 KB - Content
- 1657261119050-993.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +126.1 KB - Content
- 1657261278785-153.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +126.1 KB - Content
- 1657271519014-786.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +71.5 KB - Content
- 1657327959271-447.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +78.3 KB - Content
- 1657328609906-564.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +492.6 KB - Content
- 1657328659945-416.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +78.8 KB - Content
- 1657328756309-230.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +78.5 KB - Content
- 1657328884227-504.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +483.6 KB - Content
- 1657329814315-101.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +85.3 KB - Content
- 1657330452568-615.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +71.3 KB - Content
- 1657330472797-498.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +68.9 KB - Content
- 1657330501006-241.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +119.2 KB - Content
- 1657330533775-472.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +74.9 KB - Content
- 1657330723006-866.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +74.1 KB - Content
- 1657331036973-987.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +83.8 KB - Content
- image-20220708101224-1.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +22.2 KB - Content
- image-20220708101605-2.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +87.5 KB - Content
- image-20220708110657-3.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +251.7 KB - Content
- image-20220708111918-4.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +38.8 KB - Content
- image-20220708133731-5.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +8.7 KB - Content
- image-20220708140453-6.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +132.7 KB - Content
- image-20220708141352-7.jpeg
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +102.7 KB - Content
- image-20220709084038-1.jpeg
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +72.0 KB - Content
- image-20220709084137-2.jpeg
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +72.0 KB - Content
- image-20220709084207-3.jpeg
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +72.0 KB - Content
- image-20220709084458-4.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +199.5 KB - Content
- image-20220709085040-1.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +200.4 KB - Content
- image-20220709092052-2.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +247.3 KB - Content
- image-20220709093918-1.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +42.2 KB - Content
- image-20220709093918-2.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +61.9 KB - Content