Changes for page N95S31B -- NB-IoT Temperature & Humidity Sensor User Manual
Last modified by Mengting Qiu on 2024/04/02 16:44
Summary
-
Page properties (2 modified, 0 added, 0 removed)
-
Attachments (0 modified, 24 added, 0 removed)
- 1657245163077-232.png
- 1657246476176-652.png
- 1657249419225-449.png
- 1657249468462-536.png
- 1657249793983-486.png
- 1657249831934-534.png
- 1657249864775-321.png
- 1657249930215-289.png
- 1657249978444-674.png
- 1657249990869-686.png
- 1657250217799-140.png
- 1657250255956-604.png
- 1657259653666-883.png
- 1657260785982-288.png
- 1657261119050-993.png
- 1657261278785-153.png
- 1657271519014-786.png
- image-20220708101224-1.png
- image-20220708101605-2.png
- image-20220708110657-3.png
- image-20220708111918-4.png
- image-20220708133731-5.png
- image-20220708140453-6.png
- image-20220708141352-7.jpeg
Details
- Page properties
-
- Title
-
... ... @@ -1,1 +1,1 @@ 1 - LSE01-LoRaWANSoil Moisture&ECSensor User Manual1 +NDDS75 NB-IoT Distance Detect Sensor User Manual - Content
-
... ... @@ -1,11 +1,9 @@ 1 1 (% style="text-align:center" %) 2 -[[image: image-20220606151504-2.jpeg||height="554" width="554"]]2 +[[image:1657271519014-786.png]] 3 3 4 4 5 5 6 -**Contents:** 7 7 8 -{{toc/}} 9 9 10 10 11 11 ... ... @@ -12,765 +12,713 @@ 12 12 13 13 14 14 15 - =1.Introduction=13 +**Table of Contents:** 16 16 17 -== 1.1 What is LoRaWAN Soil Moisture & EC Sensor == 18 18 19 -((( 20 -The Dragino LSE01 is a (% style="color:#4f81bd" %)**LoRaWAN Soil Moisture & EC Sensor**(%%) for IoT of Agriculture. It is designed to measure the soil moisture of saline-alkali soil and loamy soil. The soil sensor uses FDR method to calculate the soil moisture with the compensation from soil temperature and conductivity. It also has been calibrated in factory for Mineral soil type. 21 -))) 22 22 23 -((( 24 -It detects (% style="color:#4f81bd" %)**Soil Moisture**(%%), (% style="color:#4f81bd" %)**Soil Temperature**(%%) and (% style="color:#4f81bd" %)**Soil Conductivity**(%%), and uploads the value via wireless to LoRaWAN IoT Server. 25 -))) 26 26 27 -((( 28 -The LoRa wireless technology used in LES01 allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption. 29 -))) 30 30 31 -((( 32 -LES01 is powered by (% style="color:#4f81bd" %)**4000mA or 8500mAh Li-SOCI2 battery**(%%), It is designed for long term use up to 10 years. 33 -))) 34 34 35 -((( 36 -Each LES01 is pre-load with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect after power on. 37 -))) 38 38 21 += 1. Introduction = 39 39 40 - [[image:1654503236291-817.png]]23 +== 1.1 What is NDDS75 Distance Detection Sensor == 41 41 25 +((( 26 + 42 42 43 - [[image:1654503265560-120.png]]28 +The Dragino NDDS75 is a **NB-IOT Distance Detection Sensor** for Internet of Things solution. It is used to measure the distance between the sensor and a flat object. The distance detection sensor is a module that uses **ultrasonic sensing technology** for **distance measurement**, and temperature compensation is performed internally to improve the reliability of data. The NDDS75 can be applied to scenarios such as horizontal distance measurement, liquid level measurement, parking management system, object proximity and presence detection, intelligent trash can management system, robot obstacle avoidance, automatic control, sewer, bottom water level monitoring, etc. 44 44 30 +It detects the distance between the measured object and the sensor, and uploads the value via wireless to IoT Server. 45 45 32 +**NarrowBand-Internet of Things (NB-IoT)** is a standards-based low power wide area (LPWA) technology developed to enable a wide range of new IoT devices and services. NB-IoT significantly improves the power consumption of user devices, system capacity and spectrum efficiency, especially in deep coverage. 46 46 47 - ==1.2Features==34 +NDDS75 is powered by 8**500mA Li-SOCI2 battery**; It is designed for long term use up to 5 years*. 48 48 49 -* LoRaWAN 1.0.3 Class A 50 -* Ultra low power consumption 51 -* Monitor Soil Moisture 52 -* Monitor Soil Temperature 53 -* Monitor Soil Conductivity 54 -* Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865 55 -* AT Commands to change parameters 56 -* Uplink on periodically 57 -* Downlink to change configure 58 -* IP66 Waterproof Enclosure 59 -* 4000mAh or 8500mAh Battery for long term use 36 +~* Actually lifetime depends on network coverage and uplink interval and other factors 60 60 61 - 62 -== 1.3 Specification == 63 - 64 -Measure Volume: Base on the centra pin of the probe, a cylinder with 7cm diameter and 10cm height. 65 - 66 -[[image:image-20220606162220-5.png]] 67 - 68 - 69 - 70 -== 1.4 Applications == 71 - 72 -* Smart Agriculture 73 - 74 -(% class="wikigeneratedid" id="H200B1.5FirmwareChangelog" %) 75 - 76 - 77 -== 1.5 Firmware Change log == 78 - 79 - 80 -**LSE01 v1.0 :** Release 81 - 82 - 83 - 84 -= 2. Configure LSE01 to connect to LoRaWAN network = 85 - 86 -== 2.1 How it works == 87 - 88 88 ((( 89 - TheLSE01is configured as LoRaWAN OTAA Class A mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and power on the LSE0150. It will automatically join the network via OTAA and start to send the sensor value39 + 90 90 ))) 91 91 92 -((( 93 -In case you can’t set the OTAA keys in the LoRaWAN OTAA server, and you have to use the keys from the server, you can [[use AT Commands >>||anchor="H3.200BUsingtheATCommands"]]. 42 + 94 94 ))) 95 95 45 +[[image:1654503236291-817.png]] 96 96 97 97 98 - == 2.2 Quickguideto connect to LoRaWAN server (OTAA) ==48 +[[image:1657245163077-232.png]] 99 99 100 -Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LG308>>url:http://www.dragino.com/products/lora/item/140-lg308.html]] as a LoRaWAN gateway in this example. 101 101 102 102 103 - [[image:1654503992078-669.png]]52 +== 1.2 Features == 104 104 54 +* NB-IoT Bands: B1/B3/B8/B5/B20/B28 @H-FDD 55 +* Monitor Soil Moisture 56 +* Monitor Soil Temperature 57 +* Monitor Soil Conductivity 58 +* AT Commands to change parameters 59 +* Uplink on periodically 60 +* Downlink to change configure 61 +* IP66 Waterproof Enclosure 62 +* Ultra-Low Power consumption 63 +* AT Commands to change parameters 64 +* Micro SIM card slot for NB-IoT SIM 65 +* 8500mAh Battery for long term use 105 105 106 -The LG308 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server. 107 107 108 108 109 - **Step1**:Create a devicein TTN with the OTAA keys fromLSE01.69 +== 1.3 Specification == 110 110 111 -Each LSE01 is shipped with a sticker with the default device EUI as below: 112 112 113 - [[image:image-20220606163732-6.jpeg]]72 +(% style="color:#037691" %)**Common DC Characteristics:** 114 114 115 -You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot: 74 +* Supply Voltage: 2.1v ~~ 3.6v 75 +* Operating Temperature: -40 ~~ 85°C 116 116 117 - **AddAPP EUI intheapplication**77 +(% style="color:#037691" %)**NB-IoT Spec:** 118 118 79 +* - B1 @H-FDD: 2100MHz 80 +* - B3 @H-FDD: 1800MHz 81 +* - B8 @H-FDD: 900MHz 82 +* - B5 @H-FDD: 850MHz 83 +* - B20 @H-FDD: 800MHz 84 +* - B28 @H-FDD: 700MHz 119 119 120 - [[image:1654504596150-405.png]]86 +Probe(% style="color:#037691" %)** Specification:** 121 121 88 +Measure Volume: Base on the centra pin of the probe, a cylinder with 7cm diameter and 10cm height. 122 122 90 +[[image:image-20220708101224-1.png]] 123 123 124 -**Add APP KEY and DEV EUI** 125 125 126 -[[image:1654504683289-357.png]] 127 127 94 +== 1.4 Applications == 128 128 96 +* Smart Agriculture 129 129 130 -**Step 2**: Power on LSE01 98 +(% class="wikigeneratedid" id="H200B1.5FirmwareChangelog" %) 99 + 131 131 101 +== 1.5 Pin Definitions == 132 132 133 -Put a Jumper on JP2 to power on the device. ( The Jumper must be in FLASH position). 134 134 135 -[[image: image-20220606163915-7.png]]104 +[[image:1657246476176-652.png]] 136 136 137 137 138 -**Step 3:** The LSE01 will auto join to the TTN network. After join success, it will start to upload messages to TTN and you can see the messages in the panel. 139 139 140 - [[image:1654504778294-788.png]]108 += 2. Use NSE01 to communicate with IoT Server = 141 141 110 +== 2.1 How it works == 142 142 143 143 144 -== 2.3 Uplink Payload == 145 - 146 -=== === 147 - 148 -=== 2.3.1 MOD~=0(Default Mode) === 149 - 150 -LSE01 will uplink payload via LoRaWAN with below payload format: 151 - 152 152 ((( 153 - Uplinkpayload includesin total11bytes.114 +The NSE01 is equipped with a NB-IoT module, the pre-loaded firmware in NSE01 will get environment data from sensors and send the value to local NB-IoT network via the NB-IoT module. The NB-IoT network will forward this value to IoT server via the protocol defined by NSE01. 154 154 ))) 155 155 156 -(% border="1" cellspacing="10" style="background-color:#ffffcc; width:500px" %) 157 -|((( 158 -**Size** 159 159 160 -**(bytes)** 161 -)))|**2**|**2**|**2**|**2**|**2**|**1** 162 -|**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|((( 163 -Temperature 164 - 165 -(Reserve, Ignore now) 166 -)))|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]]|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]]|((( 167 -MOD & Digital Interrupt 168 - 169 -(Optional) 118 +((( 119 +The diagram below shows the working flow in default firmware of NSE01: 170 170 ))) 171 171 172 - === 2.3.2 MOD~=1(Original value) ===122 +[[image:image-20220708101605-2.png]] 173 173 174 -This mode can get the original AD value of moisture and original conductivity (with temperature drift compensation). 175 - 176 -(% border="1" cellspacing="10" style="background-color:#ffffcc; width:500px" %) 177 -|((( 178 -**Size** 179 - 180 -**(bytes)** 181 -)))|**2**|**2**|**2**|**2**|**2**|**1** 182 -|**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|((( 183 -Temperature 184 - 185 -(Reserve, Ignore now) 186 -)))|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]](raw)|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]](raw)|((( 187 -MOD & Digital Interrupt 188 - 189 -(Optional) 190 -))) 191 - 192 -=== 2.3.3 Battery Info === 193 - 194 194 ((( 195 - Checkthe battery voltage for LSE01.125 + 196 196 ))) 197 197 198 -((( 199 -Ex1: 0x0B45 = 2885mV 200 -))) 201 201 202 -((( 203 -Ex2: 0x0B49 = 2889mV 204 -))) 205 205 130 +== 2.2 Configure the NSE01 == 206 206 207 207 208 -=== 2. 3.4SoilMoisture ===133 +=== 2.2.1 Test Requirement === 209 209 210 -((( 211 -Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil. 212 -))) 213 213 214 214 ((( 215 - Forexample,ifthe datayouget fromthe register is __0x05 0xDC__,themoisturecontentin thesoil is137 +To use NSE01 in your city, make sure meet below requirements: 216 216 ))) 217 217 218 - (((219 - 220 - )))140 +* Your local operator has already distributed a NB-IoT Network there. 141 +* The local NB-IoT network used the band that NSE01 supports. 142 +* Your operator is able to distribute the data received in their NB-IoT network to your IoT server. 221 221 222 222 ((( 223 -(% style="color: #4f81bd" %)**05DC(H) = 1500(D)/100= 15%.**145 +Below figure shows our testing structure. Here we have NB-IoT network coverage by China Mobile, the band they use is B8. The NSE01 will use CoAP((% style="color:red" %)120.24.4.116:5683)(%%) or raw UDP((% style="color:red" %)120.24.4.116:5601)(%%) or MQTT((% style="color:red" %)120.24.4.116:1883)(%%)or TCP((% style="color:red" %)120.24.4.116:5600)(%%)protocol to send data to the test server 224 224 ))) 225 225 226 226 149 +[[image:1657249419225-449.png]] 227 227 228 -=== 2.3.5 Soil Temperature === 229 229 230 -((( 231 - Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is 0x09 0xEC, the temperature content in the soil is 232 -))) 233 233 234 -((( 235 -**Example**: 236 -))) 153 +=== 2.2.2 Insert SIM card === 237 237 238 238 ((( 239 -I fpayloadis 0105H: ((0x0105 & 0x8000)>>15 === 0),temp=0105(H)/100 = 2.61 °C156 +Insert the NB-IoT Card get from your provider. 240 240 ))) 241 241 242 242 ((( 243 - IfpayloadisFF7EH:((FF7E&0x8000)>>15===1),temp=(FF7E(H)-FFFF(H))/100=-1.29 °C160 +User need to take out the NB-IoT module and insert the SIM card like below: 244 244 ))) 245 245 246 246 164 +[[image:1657249468462-536.png]] 247 247 248 -=== 2.3.6 Soil Conductivity (EC) === 249 249 250 -((( 251 -Obtain (% style="color:#4f81bd" %)**__soluble salt concentration__**(%%) in soil or (% style="color:#4f81bd" %)**__soluble ion concentration in liquid fertilizer__**(%%) or (% style="color:#4f81bd" %)**__planting medium__**(%%). The value range of the register is 0 - 20000(Decimal)( Can be greater than 20000). 252 -))) 253 253 254 -((( 255 -For example, if the data you get from the register is 0x00 0xC8, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm. 256 -))) 168 +=== 2.2.3 Connect USB – TTL to NSE01 to configure it === 257 257 258 258 ((( 259 -Generally, the EC value of irrigation water is less than 800uS / cm. 260 -))) 261 - 262 262 ((( 263 - 172 +User need to configure NSE01 via serial port to set the (% style="color:blue" %)**Server Address** / **Uplink Topic** (%%)to define where and how-to uplink packets. NSE01 support AT Commands, user can use a USB to TTL adapter to connect to NSE01 and use AT Commands to configure it, as below. 264 264 ))) 265 - 266 -((( 267 - 268 268 ))) 269 269 270 -=== 2.3.7 MOD === 271 271 272 - Firmware versionat least v2.1 supportschanging mode.177 +**Connection:** 273 273 274 - Forexample,bytes[10]=90179 + (% style="background-color:yellow" %)USB TTL GND <~-~-~-~-> GND 275 275 276 - mod=(bytes[10]>>7)&0x01=1.181 + (% style="background-color:yellow" %)USB TTL TXD <~-~-~-~-> UART_RXD 277 277 183 + (% style="background-color:yellow" %)USB TTL RXD <~-~-~-~-> UART_TXD 278 278 279 -**Downlink Command:** 280 280 281 -I fpayload= 0x0A00,workmode=0186 +In the PC, use below serial tool settings: 282 282 283 -If** **payload =** **0x0A01, workmode=1 188 +* Baud: (% style="color:green" %)**9600** 189 +* Data bits:** (% style="color:green" %)8(%%)** 190 +* Stop bits: (% style="color:green" %)**1** 191 +* Parity: (% style="color:green" %)**None** 192 +* Flow Control: (% style="color:green" %)**None** 284 284 285 - 286 - 287 -=== 2.3.8 Decode payload in The Things Network === 288 - 289 -While using TTN network, you can add the payload format to decode the payload. 290 - 291 - 292 -[[image:1654505570700-128.png]] 293 - 294 294 ((( 295 - The payloaddecoderfunction forTTNis here:195 +Make sure the switch is in FLASH position, then power on device by connecting the jumper on NSE01. NSE01 will output system info once power on as below, we can enter the (% style="color:green" %)**password: 12345678**(%%) to access AT Command input. 296 296 ))) 297 297 298 -((( 299 -LSE01 TTN Payload Decoder: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Payload_Decoder/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Payload_Decoder/]] 300 -))) 198 +[[image:image-20220708110657-3.png]] 301 301 302 - 303 - 304 -== 2.4 Uplink Interval == 305 - 306 -The LSE01 by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link: [[Change Uplink Interval>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H4.1ChangeUplinkInterval"]] 307 - 308 - 309 - 310 -== 2.5 Downlink Payload == 311 - 312 -By default, LSE50 prints the downlink payload to console port. 313 - 314 -[[image:image-20220606165544-8.png]] 315 - 316 - 317 317 ((( 318 - **Examples:**201 +(% style="color:red" %)Note: the valid AT Commands can be found at: (%%)[[http:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/]] 319 319 ))) 320 320 321 -((( 322 - 323 -))) 324 324 325 -* ((( 326 -**Set TDC** 327 -))) 328 328 329 -((( 330 -If the payload=0100003C, it means set the END Node’s TDC to 0x00003C=60(S), while type code is 01. 331 -))) 206 +=== 2.2.4 Use CoAP protocol to uplink data === 332 332 333 -((( 334 -Payload: 01 00 00 1E TDC=30S 335 -))) 208 +(% style="color:red" %)Note: if you don't have CoAP server, you can refer this link to set up one: (%%)[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/>>http://wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/]] 336 336 337 -((( 338 -Payload: 01 00 00 3C TDC=60S 339 -))) 340 340 341 -((( 342 - 343 -))) 211 +**Use below commands:** 344 344 345 -* (( (346 -**Reset **347 -)) )213 +* (% style="color:blue" %)**AT+PRO=1** (%%) ~/~/ Set to use CoAP protocol to uplink 214 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5683 ** (%%)~/~/ to set CoAP server address and port 215 +* (% style="color:blue" %)**AT+URI=5,11,"mqtt",11,"coap",12,"0",15,"c=text1",23,"0" ** (%%) ~/~/Set COAP resource path 348 348 349 -((( 350 -If payload = 0x04FF, it will reset the LSE01 351 -))) 217 +For parameter description, please refer to AT command set 352 352 219 +[[image:1657249793983-486.png]] 353 353 354 -* **CFM** 355 355 356 - DownlinkPayload:05000001, Set AT+CFM=1or05000000,setAT+CFM=0222 +After configure the server address and (% style="color:green" %)**reset the device**(%%) (via AT+ATZ ), NSE01 will start to uplink sensor values to CoAP server. 357 357 224 +[[image:1657249831934-534.png]] 358 358 359 359 360 -== 2.6 Show Data in DataCake IoT Server == 361 361 362 -((( 363 -[[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps: 364 -))) 228 +=== 2.2.5 Use UDP protocol to uplink data(Default protocol) === 365 365 366 -((( 367 - 368 -))) 230 +This feature is supported since firmware version v1.0.1 369 369 370 -((( 371 -**Step 1**: Be sure that your device is programmed and properly connected to the network at this time. 372 -))) 373 373 374 -(( (375 -* *Step2**:To configurethe Application toforwarddata to DATACAKEyouwillneedtoadd integration.ToaddtheDATACAKE integration,performthe following steps:376 -)) )233 +* (% style="color:blue" %)**AT+PRO=2 ** (%%) ~/~/ Set to use UDP protocol to uplink 234 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5601 ** (%%) ~/~/ to set UDP server address and port 235 +* (% style="color:blue" %)**AT+CFM=1 ** (%%) ~/~/If the server does not respond, this command is unnecessary 377 377 237 +[[image:1657249864775-321.png]] 378 378 379 -[[image:1654505857935-743.png]] 380 380 240 +[[image:1657249930215-289.png]] 381 381 382 -[[image:1654505874829-548.png]] 383 383 384 -Step 3: Create an account or log in Datacake. 385 385 386 - Step4:SearchtheLSE01 andaddDevEUI.244 +=== 2.2.6 Use MQTT protocol to uplink data === 387 387 246 +This feature is supported since firmware version v110 388 388 389 -[[image:1654505905236-553.png]] 390 390 249 +* (% style="color:blue" %)**AT+PRO=3 ** (%%) ~/~/Set to use MQTT protocol to uplink 250 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,1883 ** (%%) ~/~/Set MQTT server address and port 251 +* (% style="color:blue" %)**AT+CLIENT=CLIENT ** (%%)~/~/Set up the CLIENT of MQTT 252 +* (% style="color:blue" %)**AT+UNAME=UNAME **(%%)~/~/Set the username of MQTT 253 +* (% style="color:blue" %)**AT+PWD=PWD **(%%)~/~/Set the password of MQTT 254 +* (% style="color:blue" %)**AT+PUBTOPIC=NSE01_PUB **(%%)~/~/Set the sending topic of MQTT 255 +* (% style="color:blue" %)**AT+SUBTOPIC=NSE01_SUB **(%%) ~/~/Set the subscription topic of MQTT 391 391 392 - After added, the sensor data arrive TTN, it willalso arriveand show in Mydevices.257 +[[image:1657249978444-674.png]] 393 393 394 -[[image:1654505925508-181.png]] 395 395 260 +[[image:1657249990869-686.png]] 396 396 397 397 398 -== 2.7 Frequency Plans == 263 +((( 264 +MQTT protocol has a much higher power consumption compare vs UDP / CoAP protocol. Please check the power analyze document and adjust the uplink period to a suitable interval. 265 +))) 399 399 400 -The LSE01 uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets. 401 401 402 402 403 -=== 2. 7.1 EU863-870(EU868)===269 +=== 2.2.7 Use TCP protocol to uplink data === 404 404 405 - (%style="color:#037691"%)**Uplink:**271 +This feature is supported since firmware version v110 406 406 407 -868.1 - SF7BW125 to SF12BW125 408 408 409 -868.3 - SF7BW125 to SF12BW125 and SF7BW250 274 +* (% style="color:blue" %)**AT+PRO=4 ** (%%) ~/~/ Set to use TCP protocol to uplink 275 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5600 **(%%) ~/~/ to set TCP server address and port 410 410 411 - 868.5- SF7BW125to SF12BW125277 +[[image:1657250217799-140.png]] 412 412 413 -867.1 - SF7BW125 to SF12BW125 414 414 415 - 867.3 - SF7BW125to SF12BW125280 +[[image:1657250255956-604.png]] 416 416 417 -867.5 - SF7BW125 to SF12BW125 418 418 419 -867.7 - SF7BW125 to SF12BW125 420 420 421 - 867.9-SF7BW125toSF12BW125284 +=== 2.2.8 Change Update Interval === 422 422 423 - 868.8 -FSK286 +User can use below command to change the (% style="color:green" %)**uplink interval**. 424 424 288 +* (% style="color:blue" %)**AT+TDC=600 ** (%%)~/~/ Set Update Interval to 600s 425 425 426 -(% style="color:#037691" %)** Downlink:** 290 +((( 291 +(% style="color:red" %)**NOTE:** 292 +))) 427 427 428 -Uplink channels 1-9 (RX1) 294 +((( 295 +(% style="color:red" %)1. By default, the device will send an uplink message every 1 hour. 296 +))) 429 429 430 -869.525 - SF9BW125 (RX2 downlink only) 431 431 432 432 300 +== 2.3 Uplink Payload == 433 433 434 - ===2.7.2US902-928(US915)===302 +In this mode, uplink payload includes in total 18 bytes 435 435 436 -Used in USA, Canada and South America. Default use CHE=2 304 +(% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:510px" %) 305 +|=(% style="width: 60px;" %)((( 306 +**Size(bytes)** 307 +)))|=(% style="width: 50px;" %)**6**|=(% style="width: 25px;" %)2|=(% style="width: 25px;" %)**2**|=(% style="width: 70px;" %)**1**|=(% style="width: 60px;" %)**2**|=(% style="width: 80px;" %)**2**|=(% style="width: 90px;" %)**2**|=(% style="width: 50px;" %)**1** 308 +|(% style="width:97px" %)**Value**|(% style="width:83px" %)[[Device ID>>||anchor="H2.4.1A0A0DeviceID"]]|(% style="width:41px" %)[[Ver>>||anchor="H2.4.2A0VersionInfo"]]|(% style="width:46px" %)[[BAT>>||anchor="H2.4.3A0BatteryInfo"]]|(% style="width:123px" %)[[Signal Strength>>||anchor="H2.4.4A0SignalStrength"]]|(% style="width:108px" %)[[Soil Moisture>>||anchor="H2.4.5A0SoilMoisture"]]|(% style="width:133px" %)[[Soil Temperature>>||anchor="H2.4.6A0SoilTemperature"]]|(% style="width:159px" %)[[Soil Conductivity(EC)>>||anchor="H2.4.7A0SoilConductivity28EC29"]]|(% style="width:80px" %)[[Interrupt>>||anchor="H2.4.8A0DigitalInterrupt"]] 437 437 438 -(% style="color:#037691" %)**Uplink:** 310 +((( 311 +If we use the MQTT client to subscribe to this MQTT topic, we can see the following information when the NSE01 uplink data. 312 +))) 439 439 440 -903.9 - SF7BW125 to SF10BW125 441 441 442 - 904.1-SF7BW125 to SF10BW125315 +[[image:image-20220708111918-4.png]] 443 443 444 -904.3 - SF7BW125 to SF10BW125 445 445 446 - 904.5-SF7BW125toSF10BW125318 +The payload is ASCII string, representative same HEX: 447 447 448 - 904.7- SF7BW125to SF10BW125320 +0x72403155615900640c7817075e0a8c02f900 where: 449 449 450 -904.9 - SF7BW125 to SF10BW125 322 +* Device ID: 0x 724031556159 = 724031556159 323 +* Version: 0x0064=100=1.0.0 451 451 452 -905.1 - SF7BW125 to SF10BW125 325 +* BAT: 0x0c78 = 3192 mV = 3.192V 326 +* Singal: 0x17 = 23 327 +* Soil Moisture: 0x075e= 1886 = 18.86 % 328 +* Soil Temperature:0x0a8c =2700=27 °C 329 +* Soil Conductivity(EC) = 0x02f9 =761 uS /cm 330 +* Interrupt: 0x00 = 0 453 453 454 -905.3 - SF7BW125 to SF10BW125 455 455 456 456 457 - (%style="color:#037691"%)**Downlink:**334 +== 2.4 Payload Explanation and Sensor Interface == 458 458 459 -923.3 - SF7BW500 to SF12BW500 460 460 461 - 923.9-SF7BW500 to SF12BW500337 +=== 2.4.1 Device ID === 462 462 463 -924.5 - SF7BW500 to SF12BW500 339 +((( 340 +By default, the Device ID equal to the last 6 bytes of IMEI. 341 +))) 464 464 465 -925.1 - SF7BW500 to SF12BW500 343 +((( 344 +User can use (% style="color:blue" %)**AT+DEUI**(%%) to set Device ID 345 +))) 466 466 467 -925.7 - SF7BW500 to SF12BW500 347 +((( 348 +**Example:** 349 +))) 468 468 469 -926.3 - SF7BW500 to SF12BW500 351 +((( 352 +AT+DEUI=A84041F15612 353 +))) 470 470 471 -926.9 - SF7BW500 to SF12BW500 355 +((( 356 +The Device ID is stored in a none-erase area, Upgrade the firmware or run AT+FDR won't erase Device ID. 357 +))) 472 472 473 -927.5 - SF7BW500 to SF12BW500 474 474 475 -923.3 - SF12BW500(RX2 downlink only) 476 476 361 +=== 2.4.2 Version Info === 477 477 363 +((( 364 +Specify the software version: 0x64=100, means firmware version 1.00. 365 +))) 478 478 479 -=== 2.7.3 CN470-510 (CN470) === 367 +((( 368 +For example: 0x00 64 : this device is NSE01 with firmware version 1.0.0. 369 +))) 480 480 481 -Used in China, Default use CHE=1 482 482 483 -(% style="color:#037691" %)**Uplink:** 484 484 485 -4 86.3- SF7BW125toSF12BW125373 +=== 2.4.3 Battery Info === 486 486 487 -486.5 - SF7BW125 to SF12BW125 375 +((( 376 +Check the battery voltage for LSE01. 377 +))) 488 488 489 -486.7 - SF7BW125 to SF12BW125 379 +((( 380 +Ex1: 0x0B45 = 2885mV 381 +))) 490 490 491 -486.9 - SF7BW125 to SF12BW125 383 +((( 384 +Ex2: 0x0B49 = 2889mV 385 +))) 492 492 493 -487.1 - SF7BW125 to SF12BW125 494 494 495 -487.3 - SF7BW125 to SF12BW125 496 496 497 -4 87.5-SF7BW125toSF12BW125389 +=== 2.4.4 Signal Strength === 498 498 499 -487.7 - SF7BW125 to SF12BW125 391 +((( 392 +NB-IoT Network signal Strength. 393 +))) 500 500 395 +((( 396 +**Ex1: 0x1d = 29** 397 +))) 501 501 502 -(% style="color:#037691" %)**Downlink:** 399 +((( 400 +(% style="color:blue" %)**0**(%%) -113dBm or less 401 +))) 503 503 504 -506.7 - SF7BW125 to SF12BW125 403 +((( 404 +(% style="color:blue" %)**1**(%%) -111dBm 405 +))) 505 505 506 -506.9 - SF7BW125 to SF12BW125 407 +((( 408 +(% style="color:blue" %)**2...30**(%%) -109dBm... -53dBm 409 +))) 507 507 508 -507.1 - SF7BW125 to SF12BW125 411 +((( 412 +(% style="color:blue" %)**31** (%%) -51dBm or greater 413 +))) 509 509 510 -507.3 - SF7BW125 to SF12BW125 415 +((( 416 +(% style="color:blue" %)**99** (%%) Not known or not detectable 417 +))) 511 511 512 -507.5 - SF7BW125 to SF12BW125 513 513 514 -507.7 - SF7BW125 to SF12BW125 515 515 516 - 507.9- SF7BW125toSF12BW125421 +=== 2.4.5 Soil Moisture === 517 517 518 -508.1 - SF7BW125 to SF12BW125 423 +((( 424 +((( 425 +Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil. 426 +))) 427 +))) 519 519 520 -505.3 - SF12BW125 (RX2 downlink only) 429 +((( 430 +((( 431 +For example, if the data you get from the register is **__0x05 0xDC__**, the moisture content in the soil is 432 +))) 433 +))) 521 521 435 +((( 436 + 437 +))) 522 522 439 +((( 440 +(% style="color:#4f81bd" %)**05DC(H) = 1500(D) /100 = 15%.** 441 +))) 523 523 524 -=== 2.7.4 AU915-928(AU915) === 525 525 526 -Default use CHE=2 527 527 528 - (% style="color:#037691"%)**Uplink:**445 +=== 2.4.6 Soil Temperature === 529 529 530 -916.8 - SF7BW125 to SF12BW125 447 +((( 448 +Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is __**0x09 0xEC**__, the temperature content in the soil is 449 +))) 531 531 532 -917.0 - SF7BW125 to SF12BW125 451 +((( 452 +**Example**: 453 +))) 533 533 534 -917.2 - SF7BW125 to SF12BW125 455 +((( 456 +If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/100 = 2.61 °C 457 +))) 535 535 536 -917.4 - SF7BW125 to SF12BW125 459 +((( 460 +If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C 461 +))) 537 537 538 -917.6 - SF7BW125 to SF12BW125 539 539 540 -917.8 - SF7BW125 to SF12BW125 541 541 542 - 918.0-SF7BW125toSF12BW125465 +=== 2.4.7 Soil Conductivity (EC) === 543 543 544 -918.2 - SF7BW125 to SF12BW125 467 +((( 468 +Obtain (% style="color:#4f81bd" %)**__soluble salt concentration__**(%%) in soil or (% style="color:#4f81bd" %)**__soluble ion concentration in liquid fertilizer__**(%%) or (% style="color:#4f81bd" %)**__planting medium__**(%%). The value range of the register is 0 - 20000(Decimal)( Can be greater than 20000). 469 +))) 545 545 471 +((( 472 +For example, if the data you get from the register is __**0x00 0xC8**__, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm. 473 +))) 546 546 547 -(% style="color:#037691" %)**Downlink:** 475 +((( 476 +Generally, the EC value of irrigation water is less than 800uS / cm. 477 +))) 548 548 549 -923.3 - SF7BW500 to SF12BW500 479 +((( 480 + 481 +))) 550 550 551 -923.9 - SF7BW500 to SF12BW500 483 +((( 484 + 485 +))) 552 552 553 - 924.5-SF7BW500toSF12BW500487 +=== 2.4.8 Digital Interrupt === 554 554 555 -925.1 - SF7BW500 to SF12BW500 489 +((( 490 +Digital Interrupt refers to pin (% style="color:blue" %)**GPIO_EXTI**(%%), and there are different trigger methods. When there is a trigger, the NSE01 will send a packet to the server. 491 +))) 556 556 557 -925.7 - SF7BW500 to SF12BW500 493 +((( 494 +The command is: 495 +))) 558 558 559 -926.3 - SF7BW500 to SF12BW500 497 +((( 498 +(% style="color:blue" %)**AT+INTMOD=3 **(%%) ~/~/(more info about INMOD please refer [[**AT Command Manual**>>url:https://www.dragino.com/downloads/downloads/NB-IoT/NBSN95/DRAGINO_NBSN95-NB_AT%20Commands_v1.1.0.pdf]])**.** 499 +))) 560 560 561 -926.9 - SF7BW500 to SF12BW500 562 562 563 -927.5 - SF7BW500 to SF12BW500 502 +((( 503 +The lower four bits of this data field shows if this packet is generated by interrupt or not. Click here for the hardware and software set up. 504 +))) 564 564 565 -923.3 - SF12BW500(RX2 downlink only) 566 566 507 +((( 508 +Example: 509 +))) 567 567 511 +((( 512 +0x(00): Normal uplink packet. 513 +))) 568 568 569 -=== 2.7.5 AS920-923 & AS923-925 (AS923) === 515 +((( 516 +0x(01): Interrupt Uplink Packet. 517 +))) 570 570 571 -(% style="color:#037691" %)**Default Uplink channel:** 572 572 573 -923.2 - SF7BW125 to SF10BW125 574 574 575 - 923.4- SF7BW125 toSF10BW125521 +=== 2.4.9 +5V Output === 576 576 523 +((( 524 +NSE01 will enable +5V output before all sampling and disable the +5v after all sampling. 525 +))) 577 577 578 -(% style="color:#037691" %)**Additional Uplink Channel**: 579 579 580 -(OTAA mode, channel added by JoinAccept message) 528 +((( 529 +The 5V output time can be controlled by AT Command. 530 +))) 581 581 582 -(% style="color:#037691" %)**AS920~~AS923 for Japan, Malaysia, Singapore**: 532 +((( 533 +(% style="color:blue" %)**AT+5VT=1000** 534 +))) 583 583 584 -922.2 - SF7BW125 to SF10BW125 536 +((( 537 +Means set 5V valid time to have 1000ms. So the real 5V output will actually have 1000ms + sampling time for other sensors. 538 +))) 585 585 586 -922.4 - SF7BW125 to SF10BW125 587 587 588 -922.6 - SF7BW125 to SF10BW125 589 589 590 - 922.8- SF7BW125toSF10BW125542 +== 2.5 Downlink Payload == 591 591 592 - 923.0-SF7BW125toSF10BW125544 +By default, NSE01 prints the downlink payload to console port. 593 593 594 - 922.0- SF7BW125 to SF10BW125546 +[[image:image-20220708133731-5.png]] 595 595 596 596 597 -(% style="color:#037691" %)**AS923 ~~ AS925 for Brunei, Cambodia, Hong Kong, Indonesia, Laos, Taiwan, Thailand, Vietnam**: 549 +((( 550 +(% style="color:blue" %)**Examples:** 551 +))) 598 598 599 -923.6 - SF7BW125 to SF10BW125 553 +((( 554 + 555 +))) 600 600 601 -923.8 - SF7BW125 to SF10BW125 557 +* ((( 558 +(% style="color:blue" %)**Set TDC** 559 +))) 602 602 603 -924.0 - SF7BW125 to SF10BW125 561 +((( 562 +If the payload=0100003C, it means set the END Node's TDC to 0x00003C=60(S), while type code is 01. 563 +))) 604 604 605 -924.2 - SF7BW125 to SF10BW125 565 +((( 566 +Payload: 01 00 00 1E TDC=30S 567 +))) 606 606 607 -924.4 - SF7BW125 to SF10BW125 569 +((( 570 +Payload: 01 00 00 3C TDC=60S 571 +))) 608 608 609 -924.6 - SF7BW125 to SF10BW125 573 +((( 574 + 575 +))) 610 610 577 +* ((( 578 +(% style="color:blue" %)**Reset** 579 +))) 611 611 612 -(% style="color:#037691" %)** Downlink:** 581 +((( 582 +If payload = 0x04FF, it will reset the NSE01 583 +))) 613 613 614 -Uplink channels 1-8 (RX1) 615 615 616 - 923.2-SF10BW125(RX2)586 +* (% style="color:blue" %)**INTMOD** 617 617 588 +((( 589 +Downlink Payload: 06000003, Set AT+INTMOD=3 590 +))) 618 618 619 619 620 -=== 2.7.6 KR920-923 (KR920) === 621 621 622 -D efaultchannel:594 +== 2.6 LED Indicator == 623 623 624 -922.1 - SF7BW125 to SF12BW125 596 +((( 597 +The NSE01 has an internal LED which is to show the status of different state. 625 625 626 -922.3 - SF7BW125 to SF12BW125 627 627 628 -922.5 - SF7BW125 to SF12BW125 600 +* When power on, NSE01 will detect if sensor probe is connected, if probe detected, LED will blink four times. (no blinks in this step is no probe) 601 +* Then the LED will be on for 1 second means device is boot normally. 602 +* After NSE01 join NB-IoT network. The LED will be ON for 3 seconds. 603 +* For each uplink probe, LED will be on for 500ms. 604 +))) 629 629 630 630 631 -(% style="color:#037691" %)**Uplink: (OTAA mode, channel added by JoinAccept message)** 632 632 633 -922.1 - SF7BW125 to SF12BW125 634 634 635 - 922.3 - SF7BW125to SF12BW125609 +== 2.7 Installation in Soil == 636 636 637 - 922.5- SF7BW125toSF12BW125611 +__**Measurement the soil surface**__ 638 638 639 -922.7 - SF7BW125 to SF12BW125 613 +((( 614 +Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting. [[https:~~/~~/img.alicdn.com/imgextra/i3/2005165265/O1CN010rj9Oh1olPsQxrdUK_!!2005165265.jpg>>url:https://img.alicdn.com/imgextra/i3/2005165265/O1CN010rj9Oh1olPsQxrdUK_!!2005165265.jpg]] 615 +))) 640 640 641 - 922.9 - SF7BW125to SF12BW125617 +[[image:1657259653666-883.png]] 642 642 643 -923.1 - SF7BW125 to SF12BW125 644 644 645 -923.3 - SF7BW125 to SF12BW125 620 +((( 621 + 646 646 623 +((( 624 +Dig a hole with diameter > 20CM. 625 +))) 647 647 648 -(% style="color:#037691" %)**Downlink:** 627 +((( 628 +Horizontal insert the probe to the soil and fill the hole for long term measurement. 629 +))) 630 +))) 649 649 650 - Uplink channels1-7(RX1)632 +[[image:1654506665940-119.png]] 651 651 652 -921.9 - SF12BW125 (RX2 downlink only; SF12BW125 might be changed to SF9BW125) 634 +((( 635 + 636 +))) 653 653 654 654 639 +== 2.8 Firmware Change Log == 655 655 656 -=== 2.7.7 IN865-867 (IN865) === 657 657 658 - (% style="color:#037691"%)**Uplink:**642 +Download URL & Firmware Change log 659 659 660 - 865.0625-F7BW125toSF12BW125644 +[[www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/Firmware/]] 661 661 662 -865.4025 - SF7BW125 to SF12BW125 663 663 664 - 865.9850- SF7BW125toSF12BW125647 +Upgrade Instruction: [[Upgrade_Firmware>>||anchor="H5.1200BHowtoUpgradeFirmware"]] 665 665 666 666 667 -(% style="color:#037691" %) **Downlink:** 668 668 669 - Uplinkchannels1-3 (RX1)651 +== 2.9 Battery Analysis == 670 670 671 - 866.550- SF10BW125(RX2)653 +=== 2.9.1 Battery Type === 672 672 673 673 674 - 675 - 676 -== 2.8 LED Indicator == 677 - 678 -The LSE01 has an internal LED which is to show the status of different state. 679 - 680 -* Blink once when device power on. 681 -* Solid ON for 5 seconds once device successful Join the network. 682 -* Blink once when device transmit a packet. 683 - 684 -== 2.9 Installation in Soil == 685 - 686 -**Measurement the soil surface** 687 - 688 - 689 -[[image:1654506634463-199.png]] 690 - 691 691 ((( 692 -((( 693 -Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting. 657 +The NSE01 battery is a combination of an 8500mAh Li/SOCI2 Battery and a Super Capacitor. The battery is none-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter. 694 694 ))) 695 -))) 696 696 697 697 698 -[[image:1654506665940-119.png]] 699 - 700 700 ((( 701 - Dig aholewithdiameter>20CM.662 +The battery is designed to last for several years depends on the actually use environment and update interval. 702 702 ))) 703 703 704 -((( 705 -Horizontal insert the probe to the soil and fill the hole for long term measurement. 706 -))) 707 707 708 - 709 -== 2.10 Firmware Change Log == 710 - 711 711 ((( 712 - **Firmware downloadlink:**667 +The battery related documents as below: 713 713 ))) 714 714 715 - (((716 -[[ http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/]]717 - )))670 +* [[Battery Dimension>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]] 671 +* [[Lithium-Thionyl Chloride Battery datasheet>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]] 672 +* [[Lithium-ion Battery-Capacitor datasheet>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]] 718 718 719 719 ((( 720 - 675 +[[image:image-20220708140453-6.png]] 721 721 ))) 722 722 723 -((( 724 -**Firmware Upgrade Method: **[[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome]] 725 -))) 726 726 727 -((( 728 - 729 -))) 730 730 731 -((( 732 -**V1.0.** 733 -))) 680 +=== 2.9.2 Power consumption Analyze === 734 734 735 735 ((( 736 - Release683 +Dragino battery powered product are all runs in Low Power mode. We have an update battery calculator which base on the measurement of the real device. User can use this calculator to check the battery life and calculate the battery life if want to use different transmit interval. 737 737 ))) 738 738 739 739 740 -== 2.11 Battery Analysis == 741 - 742 -=== 2.11.1 Battery Type === 743 - 744 744 ((( 745 - The LSE01 battery is a combination of a 4000mAh Li/SOCI2 Battery and a Super Capacitor. The batteryis non-rechargeablebattery type with a lowdischargerate (<2% per year). Thistype ofbattery is commonly used in IoT devices such aswater meter.688 +Instruction to use as below: 746 746 ))) 747 747 748 748 ((( 749 - Thebatterys designedlastforrethan5 years fortheSN50.692 +(% style="color:blue" %)**Step 1: **(%%)Downlink the up-to-date DRAGINO_Battery_Life_Prediction_Table.xlsx from: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/]] 750 750 ))) 751 751 695 + 752 752 ((( 753 -((( 754 -The battery-related documents are as below: 697 +(% style="color:blue" %)**Step 2: **(%%) Open it and choose 755 755 ))) 756 -))) 757 757 758 758 * ((( 759 - [[Battery Dimension>>url:http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/&file=LSN50-Battery-Dimension.pdf]],701 +Product Model 760 760 ))) 761 761 * ((( 762 - [[Lithium-ThionylChloride Battery datasheet>>url:https://www.dragino.com/downloads/downloads/datasheet/Battery/ER26500/ER26500_Datasheet-EN.pdf]],704 +Uplink Interval 763 763 ))) 764 764 * ((( 765 - [[Lithium-ion Battery-Capacitor datasheet>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC_1520_datasheet.jpg]],[[Tech Spec>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC1520%20Technical%20Specification20171123.pdf]]707 +Working Mode 766 766 ))) 767 767 768 - [[image:image-20220610172436-1.png]] 710 +((( 711 +And the Life expectation in difference case will be shown on the right. 712 +))) 769 769 714 +[[image:image-20220708141352-7.jpeg]] 770 770 771 771 772 -=== 2.11.2 Battery Note === 773 773 718 +=== 2.9.3 Battery Note === 719 + 774 774 ((( 775 775 The Li-SICO battery is designed for small current / long period application. It is not good to use a high current, short period transmit method. The recommended minimum period for use of this battery is 5 minutes. If you use a shorter period time to transmit LoRa, then the battery life may be decreased. 776 776 ))) ... ... @@ -777,303 +777,176 @@ 777 777 778 778 779 779 780 -=== 2. 11.3Replace the battery ===726 +=== 2.9.4 Replace the battery === 781 781 782 782 ((( 783 - IfBattery is lower than 2.7v,usershouldreplace the battery ofLSE01.729 +The default battery pack of NSE01 includes a ER26500 plus super capacitor. If user can't find this pack locally, they can find ER26500 or equivalence without the SPC1520 capacitor, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes). 784 784 ))) 785 785 732 + 733 + 734 += 3. Access NB-IoT Module = 735 + 786 786 ((( 787 - You can changethe battery in the LSE01.The type of battery isnot limitedas longas the outputis between 3v to 3.6v. On the main board, there is a diode (D1) between the battery and the maincircuit. If you need to use a battery with lessthan 3.3v, pleaseremovethe D1and shortcut thewopadsofitso therewon’tbe voltage drop between battery andmain board.737 +Users can directly access the AT command set of the NB-IoT module. 788 788 ))) 789 789 790 790 ((( 791 -The defaultbattery packof LSE01 includesa ER18505 plussupercapacitor.Ifusercan’tfind this pack locally, theycan find ER18505orequivalence,whichwillalsoworkinmostcase.The SPC can enlargethebattery lifeforigh frequency use(updateperiod below5minutes)741 +The AT Command set can refer the BC35-G NB-IoT Module AT Command: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=datasheet/other_vendors/BC35-G/>>url:https://www.dragino.com/downloads/index.php?dir=datasheet/other_vendors/BC35-G/]] 792 792 ))) 793 793 744 +[[image:1657261278785-153.png]] 794 794 795 795 796 -= 3. Using the AT Commands = 797 797 798 -= =3.1AccessAT Commands ==748 += 4. Using the AT Commands = 799 799 750 +== 4.1 Access AT Commands == 800 800 801 - LSE01supportsATCommandsetn the stock firmware.Youcanuse a USB toTTLadaptertoconnect to LSE01forusing ATcommand,asbelow.752 +See this link for detail: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/]] 802 802 803 -[[image:1654501986557-872.png||height="391" width="800"]] 804 804 755 +AT+<CMD>? : Help on <CMD> 805 805 806 - Orifyouhavebelowboard,usebelowconnection:757 +AT+<CMD> : Run <CMD> 807 807 759 +AT+<CMD>=<value> : Set the value 808 808 809 - [[image:1654502005655-729.png||height="503"width="801"]]761 +AT+<CMD>=? : Get the value 810 810 811 811 812 - 813 -In the PC, you need to set the serial baud rate to (% style="color:green" %)**9600**(%%) to access the serial console for LSE01. LSE01 will output system info once power on as below: 814 - 815 - 816 - [[image:1654502050864-459.png||height="564" width="806"]] 817 - 818 - 819 -Below are the available commands, a more detailed AT Command manual can be found at [[AT Command Manual>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/]]: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/]] 820 - 821 - 822 -(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>? **(%%) : Help on <CMD> 823 - 824 -(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD> **(%%) : Run <CMD> 825 - 826 -(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>=<value>**(%%) : Set the value 827 - 828 -(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>=?**(%%) : Get the value 829 - 830 - 831 831 (% style="color:#037691" %)**General Commands**(%%) 832 832 833 - (% style="background-color:#dcdcdc" %)**AT**(%%): Attention766 +AT : Attention 834 834 835 - (% style="background-color:#dcdcdc" %)**AT?**(%%): Short Help768 +AT? : Short Help 836 836 837 - (% style="background-color:#dcdcdc" %)**ATZ**(%%): MCU Reset770 +ATZ : MCU Reset 838 838 839 - (% style="background-color:#dcdcdc" %)**AT+TDC**(%%): Application Data Transmission Interval772 +AT+TDC : Application Data Transmission Interval 840 840 774 +AT+CFG : Print all configurations 841 841 842 - (%style="color:#037691"%)**Keys,IDsand EUIs management**776 +AT+CFGMOD : Working mode selection 843 843 844 - (% style="background-color:#dcdcdc" %)**AT+APPEUI**(%%)ApplicationEUI778 +AT+INTMOD : Set the trigger interrupt mode 845 845 846 - (% style="background-color:#dcdcdc" %)**AT+APPKEY**(%%)ApplicationKey780 +AT+5VT : Set extend the time of 5V power 847 847 848 - (% style="background-color:#dcdcdc" %)**AT+APPSKEY**(%%)Application Session Key782 +AT+PRO : Choose agreement 849 849 850 - (% style="background-color:#dcdcdc" %)**AT+DADDR**(%%)DeviceAddress784 +AT+WEIGRE : Get weight or set weight to 0 851 851 852 - (% style="background-color:#dcdcdc" %)**AT+DEUI**(%%)DeviceEUI786 +AT+WEIGAP : Get or Set the GapValue of weight 853 853 854 - (% style="background-color:#dcdcdc" %)**AT+NWKID**(%%):NetworkID(Youcanenterthiscommandchangeonlyaftersuccessful networkconnection)788 +AT+RXDL : Extend the sending and receiving time 855 855 856 - (% style="background-color:#dcdcdc" %)**AT+NWKSKEY**(%%)NetworkSession KeyJoining and sending dateon LoRa network790 +AT+CNTFAC : Get or set counting parameters 857 857 858 - (% style="background-color:#dcdcdc" %)**AT+CFM**(%%)ConfirmMode792 +AT+SERVADDR : Server Address 859 859 860 -(% style="background-color:#dcdcdc" %)**AT+CFS**(%%) : Confirm Status 861 861 862 -(% style=" background-color:#dcdcdc" %)**AT+JOIN**(%%): JoinLoRa? Network795 +(% style="color:#037691" %)**COAP Management** 863 863 864 - (% style="background-color:#dcdcdc" %)**AT+NJM**(%%)LoRa? Network Join Mode797 +AT+URI : Resource parameters 865 865 866 -(% style="background-color:#dcdcdc" %)**AT+NJS**(%%) : LoRa? Network Join Status 867 867 868 -(% style=" background-color:#dcdcdc" %)**AT+RECV**(%%) :PrintLast Received Data inRaw Format800 +(% style="color:#037691" %)**UDP Management** 869 869 870 - (% style="background-color:#dcdcdc" %)**AT+RECVB**(%%)Print LastReceived DatainBinaryFormat802 +AT+CFM : Upload confirmation mode (only valid for UDP) 871 871 872 -(% style="background-color:#dcdcdc" %)**AT+SEND**(%%) : Send Text Data 873 873 874 -(% style=" background-color:#dcdcdc" %)**AT+SENB**(%%): Send Hexadecimal Data805 +(% style="color:#037691" %)**MQTT Management** 875 875 807 +AT+CLIENT : Get or Set MQTT client 876 876 877 - (%style="color:#037691"%)**LoRaNetworkManagement**809 +AT+UNAME : Get or Set MQTT Username 878 878 879 - (% style="background-color:#dcdcdc" %)**AT+ADR**(%%):AdaptiveRate811 +AT+PWD : Get or Set MQTT password 880 880 881 - (% style="background-color:#dcdcdc" %)**AT+CLASS**(%%):LoRaClass(Currentlyonly supportclassA813 +AT+PUBTOPIC : Get or Set MQTT publish topic 882 882 883 - (% style="background-color:#dcdcdc" %)**AT+DCS**(%%):DutyCycleSetting815 +AT+SUBTOPIC : Get or Set MQTT subscription topic 884 884 885 -(% style="background-color:#dcdcdc" %)**AT+DR**(%%) : Data Rate (Can Only be Modified after ADR=0) 886 886 887 -(% style=" background-color:#dcdcdc" %)**AT+FCD**(%%) : Frame Counter Downlink818 +(% style="color:#037691" %)**Information** 888 888 889 - (% style="background-color:#dcdcdc" %)**AT+FCU**(%%): Frame CounterUplink820 +AT+FDR : Factory Data Reset 890 890 891 - (% style="background-color:#dcdcdc" %)**AT+JN1DL**(%%):JoinAcceptDelay1822 +AT+PWORD : Serial Access Password 892 892 893 -(% style="background-color:#dcdcdc" %)**AT+JN2DL**(%%) : Join Accept Delay2 894 894 895 -(% style="background-color:#dcdcdc" %)**AT+PNM**(%%) : Public Network Mode 896 896 897 - (% style="background-color:#dcdcdc"%)**AT+RX1DL**(%%): Receive Delay1826 += 5. FAQ = 898 898 899 - (% style="background-color:#dcdcdc"%)**AT+RX2DL**(%%): ReceiveDelay2828 +== 5.1 How to Upgrade Firmware == 900 900 901 -(% style="background-color:#dcdcdc" %)**AT+RX2DR**(%%) : Rx2 Window Data Rate 902 902 903 -(% style="background-color:#dcdcdc" %)**AT+RX2FQ**(%%) : Rx2 Window Frequency 904 - 905 -(% style="background-color:#dcdcdc" %)**AT+TXP**(%%) : Transmit Power 906 - 907 -(% style="background-color:#dcdcdc" %)**AT+ MOD**(%%) : Set work mode 908 - 909 - 910 -(% style="color:#037691" %)**Information** 911 - 912 -(% style="background-color:#dcdcdc" %)**AT+RSSI**(%%) : RSSI of the Last Received Packet 913 - 914 -(% style="background-color:#dcdcdc" %)**AT+SNR**(%%) : SNR of the Last Received Packet 915 - 916 -(% style="background-color:#dcdcdc" %)**AT+VER**(%%) : Image Version and Frequency Band 917 - 918 -(% style="background-color:#dcdcdc" %)**AT+FDR**(%%) : Factory Data Reset 919 - 920 -(% style="background-color:#dcdcdc" %)**AT+PORT**(%%) : Application Port 921 - 922 -(% style="background-color:#dcdcdc" %)**AT+CHS**(%%) : Get or Set Frequency (Unit: Hz) for Single Channel Mode 923 - 924 - (% style="background-color:#dcdcdc" %)**AT+CHE**(%%) : Get or Set eight channels mode, Only for US915, AU915, CN470 925 - 926 - 927 -= 4. FAQ = 928 - 929 -== 4.1 How to change the LoRa Frequency Bands/Region? == 930 - 931 931 ((( 932 -You can follow the instructions for [[how to upgrade image>>||anchor="H2.10200BFirmwareChangeLog"]]. 933 -When downloading the images, choose the required image file for download. 832 +User can upgrade the firmware for 1) bug fix, 2) new feature release. 934 934 ))) 935 935 936 936 ((( 937 - 836 +Please see this link for how to upgrade: [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H2.HardwareUpgradeMethodSupportList>>http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H2.HardwareUpgradeMethodSupportList]] 938 938 ))) 939 939 940 940 ((( 941 - Howtosetup LSE01 towork in 8 channel modeBy default,thefrequency bandsUS915,AU915, CN470 work in 72 frequencies.Many gatewaysare8 channelgateways, andin thiscase,theOTAA join timeand uplink scheduleis longandunpredictable while the end nodeis hoppingin 72 frequencies.840 +(% style="color:red" %)Notice, NSE01 and LSE01 share the same mother board. They use the same connection and method to update. 942 942 ))) 943 943 944 -((( 945 - 946 -))) 947 947 948 -((( 949 -You can configure the end node to work in 8 channel mode by using the AT+CHE command. The 500kHz channels are always included for OTAA. 950 -))) 951 951 952 -((( 953 - 954 -))) 845 +== 5.2 Can I calibrate NSE01 to different soil types? == 955 955 956 956 ((( 957 - Forexample,in **US915**band,the frequencytablesasbelow. By default,the endnodewilluse all channels(0~~71)forOTAAJoinprocess.AftertheOTAAJoin,theend nodewilluse these allchannels(0~~71)tosenduplinkkets.848 +NSE01 is calibrated for saline-alkali soil and loamy soil. If users want to use it for other soil, they can calibrate the value in the IoT platform base on the value measured by saline-alkali soil and loamy soil. The formula can be found at [[this link>>https://www.dragino.com/downloads/downloads/LoRa_End_Node/LSE01/Calibrate_to_other_Soil_20220605.pdf]]. 958 958 ))) 959 959 960 -[[image:image-20220606154726-3.png]] 961 961 852 += 6. Trouble Shooting = 962 962 963 - Whenyouuse the TTNnetwork,theUS915 frequencybandsuseare:854 +== 6.1 Connection problem when uploading firmware == 964 964 965 -* 903.9 - SF7BW125 to SF10BW125 966 -* 904.1 - SF7BW125 to SF10BW125 967 -* 904.3 - SF7BW125 to SF10BW125 968 -* 904.5 - SF7BW125 to SF10BW125 969 -* 904.7 - SF7BW125 to SF10BW125 970 -* 904.9 - SF7BW125 to SF10BW125 971 -* 905.1 - SF7BW125 to SF10BW125 972 -* 905.3 - SF7BW125 to SF10BW125 973 -* 904.6 - SF8BW500 974 974 975 975 ((( 976 - Becausethendnodeisnow hoppingin72 frequency,itmakesitdifficulttheevicestoJointhe TTN network and uplinkta.Tosolve thisissue, you canccess thedevice viatheAT commandsandrun:858 +**Please see: **[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H3.3Troubleshooting>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H3.3Troubleshooting]] 977 977 ))) 978 978 979 -(% class=" boxinfomessage" %)861 +(% class="wikigeneratedid" %) 980 980 ((( 981 -**AT+CHE=2** 982 -))) 983 - 984 -(% class="box infomessage" %) 985 -((( 986 -**ATZ** 987 -))) 988 - 989 -((( 990 -to set the end node to work in 8 channel mode. The device will work in Channel 8-15 & 64-71 for OTAA, and channel 8-15 for Uplink. 991 -))) 992 - 993 -((( 994 994 995 995 ))) 996 996 997 -((( 998 -The **AU915** band is similar. Below are the AU915 Uplink Channels. 999 -))) 1000 1000 1001 - [[image:image-20220606154825-4.png]]867 +== 6.2 AT Command input doesn't work == 1002 1002 1003 - 1004 - 1005 -= 5. Trouble Shooting = 1006 - 1007 -== 5.1 Why I can’t join TTN in US915 / AU915 bands? == 1008 - 1009 -It is due to channel mapping. Please see the [[Eight Channel Mode>>doc:Main.LoRaWAN Communication Debug.WebHome||anchor="H2.NoticeofUS9152FCN4702FAU915Frequencyband"]] section above for details. 1010 - 1011 - 1012 -== 5.2 AT Command input doesn’t work == 1013 - 1014 1014 ((( 1015 -In the case if user can see the console output but can’t type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn’t send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string. 1016 -))) 870 +In the case if user can see the console output but can't type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn't send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string. 1017 1017 1018 - 1019 -== 5.3 Device rejoin in at the second uplink packet == 1020 - 1021 -(% style="color:#4f81bd" %)**Issue describe as below:** 1022 - 1023 -[[image:1654500909990-784.png]] 1024 - 1025 - 1026 -(% style="color:#4f81bd" %)**Cause for this issue:** 1027 - 1028 -((( 1029 -The fuse on LSE01 is not large enough, some of the soil probe require large current up to 5v 800mA, in a short pulse. When this happen, it cause the device reboot so user see rejoin. 872 + 1030 1030 ))) 1031 1031 1032 1032 1033 - (% style="color:#4f81bd"%)**Solution:**876 += 7. Order Info = 1034 1034 1035 -All new shipped LSE01 after 2020-May-30 will have this to fix. For the customer who see this issue, please bypass the fuse as below: 1036 1036 1037 - [[image:1654500929571-736.png||height="458" width="832"]]879 +Part Number**:** (% style="color:#4f81bd" %)**NSE01** 1038 1038 1039 1039 1040 -= 6. Order Info = 1041 - 1042 - 1043 -Part Number**:** (% style="color:#4f81bd" %)**LSE01-XX-YY** 1044 - 1045 - 1046 -(% style="color:#4f81bd" %)**XX**(%%)**:** The default frequency band 1047 - 1048 -* (% style="color:red" %)**AS923**(%%): LoRaWAN AS923 band 1049 -* (% style="color:red" %)**AU915**(%%): LoRaWAN AU915 band 1050 -* (% style="color:red" %)**EU433**(%%): LoRaWAN EU433 band 1051 -* (% style="color:red" %)**EU868**(%%): LoRaWAN EU868 band 1052 -* (% style="color:red" %)**KR920**(%%): LoRaWAN KR920 band 1053 -* (% style="color:red" %)**US915**(%%): LoRaWAN US915 band 1054 -* (% style="color:red" %)**IN865**(%%): LoRaWAN IN865 band 1055 -* (% style="color:red" %)**CN470**(%%): LoRaWAN CN470 band 1056 - 1057 -(% style="color:#4f81bd" %)**YY**(%%)**: **Battery Option 1058 - 1059 -* (% style="color:red" %)**4**(%%): 4000mAh battery 1060 -* (% style="color:red" %)**8**(%%): 8500mAh battery 1061 - 1062 1062 (% class="wikigeneratedid" %) 1063 1063 ((( 1064 1064 1065 1065 ))) 1066 1066 1067 -= 7. Packing Info =887 += 8. Packing Info = 1068 1068 1069 1069 ((( 1070 1070 1071 1071 1072 1072 (% style="color:#037691" %)**Package Includes**: 1073 -))) 1074 1074 1075 -* (((1076 - LSE01LoRaWAN SoilMoisture& EC Sensorx 1894 +* NSE01 NB-IoT Soil Moisture & EC Sensor x 1 895 +* External antenna x 1 1077 1077 ))) 1078 1078 1079 1079 ((( ... ... @@ -1080,25 +1080,19 @@ 1080 1080 1081 1081 1082 1082 (% style="color:#037691" %)**Dimension and weight**: 1083 -))) 1084 1084 1085 -* (((1086 - DeviceSize:cm903 +* Size: 195 x 125 x 55 mm 904 +* Weight: 420g 1087 1087 ))) 1088 -* ((( 1089 -Device Weight: g 1090 -))) 1091 -* ((( 1092 -Package Size / pcs : cm 1093 -))) 1094 -* ((( 1095 -Weight / pcs : g 1096 1096 907 +((( 1097 1097 909 + 910 + 911 + 1098 1098 ))) 1099 1099 1100 -= 8. Support =914 += 9. Support = 1101 1101 1102 1102 * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule. 1103 1103 * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.com]] 1104 -
- 1657245163077-232.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +81.0 KB - Content
- 1657246476176-652.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +492.6 KB - Content
- 1657249419225-449.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +81.0 KB - Content
- 1657249468462-536.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +483.6 KB - Content
- 1657249793983-486.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +85.8 KB - Content
- 1657249831934-534.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +72.5 KB - Content
- 1657249864775-321.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +87.0 KB - Content
- 1657249930215-289.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +77.3 KB - Content
- 1657249978444-674.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +139.5 KB - Content
- 1657249990869-686.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +96.9 KB - Content
- 1657250217799-140.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +98.7 KB - Content
- 1657250255956-604.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +99.0 KB - Content
- 1657259653666-883.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +344.4 KB - Content
- 1657260785982-288.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +138.2 KB - Content
- 1657261119050-993.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +126.1 KB - Content
- 1657261278785-153.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +126.1 KB - Content
- 1657271519014-786.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +71.5 KB - Content
- image-20220708101224-1.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +22.2 KB - Content
- image-20220708101605-2.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +87.5 KB - Content
- image-20220708110657-3.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +251.7 KB - Content
- image-20220708111918-4.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +38.8 KB - Content
- image-20220708133731-5.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +8.7 KB - Content
- image-20220708140453-6.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +132.7 KB - Content
- image-20220708141352-7.jpeg
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +102.7 KB - Content