Changes for page N95S31B -- NB-IoT Temperature & Humidity Sensor User Manual
Last modified by Mengting Qiu on 2024/04/02 16:44
Summary
-
Page properties (2 modified, 0 added, 0 removed)
-
Attachments (0 modified, 23 added, 0 removed)
- 1657245163077-232.png
- 1657246476176-652.png
- 1657249419225-449.png
- 1657249468462-536.png
- 1657249793983-486.png
- 1657249831934-534.png
- 1657249864775-321.png
- 1657249930215-289.png
- 1657249978444-674.png
- 1657249990869-686.png
- 1657250217799-140.png
- 1657250255956-604.png
- 1657259653666-883.png
- 1657260785982-288.png
- 1657261119050-993.png
- 1657261278785-153.png
- image-20220708101224-1.png
- image-20220708101605-2.png
- image-20220708110657-3.png
- image-20220708111918-4.png
- image-20220708133731-5.png
- image-20220708140453-6.png
- image-20220708141352-7.jpeg
Details
- Page properties
-
- Title
-
... ... @@ -1,1 +1,1 @@ 1 - LSE01-LoRaWAN Soil Moisture & EC Sensor User Manual1 +NSE01 - NB-IoT Soil Moisture & EC Sensor User Manual - Content
-
... ... @@ -3,8 +3,16 @@ 3 3 4 4 5 5 6 -**Contents:** 7 7 7 + 8 + 9 + 10 + 11 + 12 + 13 + 14 +**Table of Contents:** 15 + 8 8 {{toc/}} 9 9 10 10 ... ... @@ -12,62 +12,73 @@ 12 12 13 13 14 14 15 -= 1. Introduction = 23 += 1. Introduction = 16 16 17 -== 1.1 What is LoRaWAN Soil Moisture & EC Sensor == 25 +== 1.1 What is LoRaWAN Soil Moisture & EC Sensor == 18 18 19 19 ((( 20 -The Dragino LSE01 is a (% style="color:#4f81bd" %)**LoRaWAN Soil Moisture & EC Sensor**(%%) for IoT of Agriculture. It is designed to measure the soil moisture of saline-alkali soil and loamy soil. The soil sensor uses FDR method to calculate the soil moisture with the compensation from soil temperature and conductivity. It also has been calibrated in factory for Mineral soil type. 21 -))) 28 + 22 22 23 -((( 24 -It detects (% style="color:#4f81bd" %)**Soil Moisture**(%%), (% style="color:#4f81bd" %)**Soil Temperature**(%%) and (% style="color:#4f81bd" %)**Soil Conductivity**(%%), and uploads the value via wireless to LoRaWAN IoT Server. 25 -))) 30 +Dragino NSE01 is an (% style="color:blue" %)**NB-IOT soil moisture & EC sensor**(%%) for agricultural IoT. Used to measure the soil moisture of saline-alkali soil and loam. The soil sensor uses the FDR method to calculate soil moisture and compensates it with soil temperature and electrical conductivity. It has also been calibrated for mineral soil types at the factory. 26 26 27 -((( 28 -The LoRa wireless technology used in LES01 allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption. 29 -))) 32 +It can detect (% style="color:blue" %)**Soil Moisture, Soil Temperature and Soil Conductivity**(%%), and upload its value to the server wirelessly. 30 30 31 -((( 32 -LES01 is powered by (% style="color:#4f81bd" %)**4000mA or 8500mAh Li-SOCI2 battery**(%%), It is designed for long term use up to 10 years. 33 -))) 34 +The wireless technology used in NSE01 allows the device to send data at a low data rate and reach ultra-long distances, providing ultra-long-distance spread spectrum Communication. 34 34 35 -((( 36 -Each LES01 is pre-load with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect after power on. 36 +NSE01 are powered by (% style="color:blue" %)**8500mAh Li-SOCI2**(%%) batteries, which can be used for up to 5 years. 37 + 38 + 37 37 ))) 38 38 39 - 40 40 [[image:1654503236291-817.png]] 41 41 42 42 43 -[[image:16545 03265560-120.png]]44 +[[image:1657245163077-232.png]] 44 44 45 45 46 46 47 -== 1.2 Features == 48 +== 1.2 Features == 48 48 49 -* LoRaWAN 1.0.3 Class A 50 -* Ultra low power consumption 50 +* NB-IoT Bands: B1/B3/B8/B5/B20/B28 @H-FDD 51 51 * Monitor Soil Moisture 52 52 * Monitor Soil Temperature 53 53 * Monitor Soil Conductivity 54 -* Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865 55 55 * AT Commands to change parameters 56 56 * Uplink on periodically 57 57 * Downlink to change configure 58 58 * IP66 Waterproof Enclosure 59 -* 4000mAh or 8500mAh Battery for long term use 58 +* Ultra-Low Power consumption 59 +* AT Commands to change parameters 60 +* Micro SIM card slot for NB-IoT SIM 61 +* 8500mAh Battery for long term use 60 60 61 61 62 -== 1.3 Specification == 64 +== 1.3 Specification == 63 63 66 + 67 +(% style="color:#037691" %)**Common DC Characteristics:** 68 + 69 +* Supply Voltage: 2.1v ~~ 3.6v 70 +* Operating Temperature: -40 ~~ 85°C 71 + 72 +(% style="color:#037691" %)**NB-IoT Spec:** 73 + 74 +* - B1 @H-FDD: 2100MHz 75 +* - B3 @H-FDD: 1800MHz 76 +* - B8 @H-FDD: 900MHz 77 +* - B5 @H-FDD: 850MHz 78 +* - B20 @H-FDD: 800MHz 79 +* - B28 @H-FDD: 700MHz 80 + 81 +Probe(% style="color:#037691" %)** Specification:** 82 + 64 64 Measure Volume: Base on the centra pin of the probe, a cylinder with 7cm diameter and 10cm height. 65 65 66 -[[image:image-20220 606162220-5.png]]85 +[[image:image-20220708101224-1.png]] 67 67 68 68 69 69 70 -== 1.4 Applications == 89 +== 1.4 Applications == 71 71 72 72 * Smart Agriculture 73 73 ... ... @@ -74,1006 +74,716 @@ 74 74 (% class="wikigeneratedid" id="H200B1.5FirmwareChangelog" %) 75 75 76 76 77 -== 1.5 Firmware Changelog==96 +== 1.5 Pin Definitions == 78 78 79 79 80 - **LSE01v1.0 :** Release99 +[[image:1657246476176-652.png]] 81 81 82 82 83 83 84 -= 2. ConfigureLSE01 to connect toLoRaWANnetwork=103 += 2. Use NSE01 to communicate with IoT Server = 85 85 86 -== 2.1 How it works == 105 +== 2.1 How it works == 87 87 107 + 88 88 ((( 89 -The LSE01 isconfiguredasLoRaWANOTAAClass Amodebydefault.IthasOTAAkeystojoinLoRaWANnetwork.Toconnect a localLoRaWAN network,you need toinputtheOTAAkeysin theLoRaWANserverandpoweronthe LSE0150. It willautomaticallyjointhenetworkviaOTAA and starttosendthesensor value109 +The NSE01 is equipped with a NB-IoT module, the pre-loaded firmware in NSE01 will get environment data from sensors and send the value to local NB-IoT network via the NB-IoT module. The NB-IoT network will forward this value to IoT server via the protocol defined by NSE01. 90 90 ))) 91 91 112 + 92 92 ((( 93 - In case you can’t set the OTAA keys in theLoRaWAN OTAA server,andyouhave tousethe keysfromtheserver, you can [[useAT Commands >>||anchor="H3.200BUsingtheATCommands"]].114 +The diagram below shows the working flow in default firmware of NSE01: 94 94 ))) 95 95 117 +[[image:image-20220708101605-2.png]] 96 96 119 +((( 120 + 121 +))) 97 97 98 -== 2.2 Quick guide to connect to LoRaWAN server (OTAA) == 99 99 100 -Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LG308>>url:http://www.dragino.com/products/lora/item/140-lg308.html]] as a LoRaWAN gateway in this example. 101 101 125 +== 2.2 Configure the NSE01 == 102 102 103 -[[image:1654503992078-669.png]] 104 104 128 +=== 2.2.1 Test Requirement === 105 105 106 -The LG308 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server. 107 107 131 +To use NSE01 in your city, make sure meet below requirements: 108 108 109 -**Step 1**: Create a device in TTN with the OTAA keys from LSE01. 133 +* Your local operator has already distributed a NB-IoT Network there. 134 +* The local NB-IoT network used the band that NSE01 supports. 135 +* Your operator is able to distribute the data received in their NB-IoT network to your IoT server. 110 110 111 -Each LSE01 is shipped with a sticker with the default device EUI as below: 112 - 113 -[[image:image-20220606163732-6.jpeg]] 114 - 115 -You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot: 116 - 117 -**Add APP EUI in the application** 118 - 119 - 120 -[[image:1654504596150-405.png]] 121 - 122 - 123 - 124 -**Add APP KEY and DEV EUI** 125 - 126 -[[image:1654504683289-357.png]] 127 - 128 - 129 - 130 -**Step 2**: Power on LSE01 131 - 132 - 133 -Put a Jumper on JP2 to power on the device. ( The Jumper must be in FLASH position). 134 - 135 -[[image:image-20220606163915-7.png]] 136 - 137 - 138 -**Step 3:** The LSE01 will auto join to the TTN network. After join success, it will start to upload messages to TTN and you can see the messages in the panel. 139 - 140 -[[image:1654504778294-788.png]] 141 - 142 - 143 - 144 -== 2.3 Uplink Payload == 145 - 146 -=== === 147 - 148 -=== 2.3.1 MOD~=0(Default Mode) === 149 - 150 -LSE01 will uplink payload via LoRaWAN with below payload format: 151 - 152 152 ((( 153 - Uplinkpayload includesintotal 11bytes.138 +Below figure shows our testing structure. Here we have NB-IoT network coverage by China Mobile, the band they use is B8. The NSE01 will use CoAP((% style="color:red" %)120.24.4.116:5683)(%%) or raw UDP((% style="color:red" %)120.24.4.116:5601)(%%) or MQTT((% style="color:red" %)120.24.4.116:1883)(%%)or TCP((% style="color:red" %)120.24.4.116:5600)(%%)protocol to send data to the test server 154 154 ))) 155 155 156 -(% border="1" cellspacing="10" style="background-color:#ffffcc; width:500px" %) 157 -|((( 158 -**Size** 159 159 160 -**(bytes)** 161 -)))|**2**|**2**|**2**|**2**|**2**|**1** 162 -|**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|((( 163 -Temperature 142 +[[image:1657249419225-449.png]] 164 164 165 -(Reserve, Ignore now) 166 -)))|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]]|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]]|((( 167 -MOD & Digital Interrupt 168 168 169 -(Optional) 170 -))) 171 171 172 -=== 2. 3.2MOD~=1(Originalvalue)===146 +=== 2.2.2 Insert SIM card === 173 173 174 - Thismodecan get the originalAD valueofistureand original conductivity (with temperaturedrift compensation).148 +Insert the NB-IoT Card get from your provider. 175 175 176 -(% border="1" cellspacing="10" style="background-color:#ffffcc; width:500px" %) 177 -|((( 178 -**Size** 150 +User need to take out the NB-IoT module and insert the SIM card like below: 179 179 180 -**(bytes)** 181 -)))|**2**|**2**|**2**|**2**|**2**|**1** 182 -|**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|((( 183 -Temperature 184 184 185 -(Reserve, Ignore now) 186 -)))|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]](raw)|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]](raw)|((( 187 -MOD & Digital Interrupt 153 +[[image:1657249468462-536.png]] 188 188 189 -(Optional) 190 -))) 191 191 192 -=== 2.3.3 Battery Info === 193 193 194 -((( 195 -Check the battery voltage for LSE01. 196 -))) 157 +=== 2.2.3 Connect USB – TTL to NSE01 to configure it === 197 197 198 198 ((( 199 -Ex1: 0x0B45 = 2885mV 200 -))) 201 - 202 202 ((( 203 -E x2: 0x0B49=2889mV161 +User need to configure NSE01 via serial port to set the (% style="color:blue" %)**Server Address** / **Uplink Topic** (%%)to define where and how-to uplink packets. NSE01 support AT Commands, user can use a USB to TTL adapter to connect to NSE01 and use AT Commands to configure it, as below. 204 204 ))) 205 - 206 - 207 - 208 -=== 2.3.4 Soil Moisture === 209 - 210 -((( 211 -Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil. 212 212 ))) 213 213 214 -((( 215 -For example, if the data you get from the register is __0x05 0xDC__, the moisture content in the soil is 216 -))) 217 217 218 -((( 219 - 220 -))) 166 +**Connection:** 221 221 222 -((( 223 -(% style="color:#4f81bd" %)**05DC(H) = 1500(D) /100 = 15%.** 224 -))) 168 + (% style="background-color:yellow" %)USB TTL GND <~-~-~-~-> GND 225 225 170 + (% style="background-color:yellow" %)USB TTL TXD <~-~-~-~-> UART_RXD 226 226 172 + (% style="background-color:yellow" %)USB TTL RXD <~-~-~-~-> UART_TXD 227 227 228 -=== 2.3.5 Soil Temperature === 229 229 230 -((( 231 - Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is 0x09 0xEC, the temperature content in the soil is 232 -))) 175 +In the PC, use below serial tool settings: 233 233 234 -((( 235 -**Example**: 236 -))) 177 +* Baud: (% style="color:green" %)**9600** 178 +* Data bits:** (% style="color:green" %)8(%%)** 179 +* Stop bits: (% style="color:green" %)**1** 180 +* Parity: (% style="color:green" %)**None** 181 +* Flow Control: (% style="color:green" %)**None** 237 237 238 238 ((( 239 - Ifpayload is0105H:((0x0105&0x8000)>>15===0),temp =0105(H)/100=2.61°C184 +Make sure the switch is in FLASH position, then power on device by connecting the jumper on NSE01. NSE01 will output system info once power on as below, we can enter the (% style="color:green" %)**password: 12345678**(%%) to access AT Command input. 240 240 ))) 241 241 242 -((( 243 -If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C 244 -))) 187 +[[image:image-20220708110657-3.png]] 245 245 189 +(% style="color:red" %)Note: the valid AT Commands can be found at: (%%)[[http:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/]] 246 246 247 247 248 -=== 2.3.6 Soil Conductivity (EC) === 249 249 250 -((( 251 -Obtain (% style="color:#4f81bd" %)**__soluble salt concentration__**(%%) in soil or (% style="color:#4f81bd" %)**__soluble ion concentration in liquid fertilizer__**(%%) or (% style="color:#4f81bd" %)**__planting medium__**(%%). The value range of the register is 0 - 20000(Decimal)( Can be greater than 20000). 252 -))) 193 +=== 2.2.4 Use CoAP protocol to uplink data === 253 253 254 -((( 255 -For example, if the data you get from the register is 0x00 0xC8, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm. 256 -))) 195 +(% style="color:red" %)Note: if you don't have CoAP server, you can refer this link to set up one: (%%)[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/>>http://wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/]] 257 257 258 -((( 259 -Generally, the EC value of irrigation water is less than 800uS / cm. 260 -))) 261 261 262 -((( 263 - 264 -))) 198 +**Use below commands:** 265 265 266 -(( (267 - 268 -)) )200 +* (% style="color:blue" %)**AT+PRO=1** (%%) ~/~/ Set to use CoAP protocol to uplink 201 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5683 ** (%%)~/~/ to set CoAP server address and port 202 +* (% style="color:blue" %)**AT+URI=5,11,"mqtt",11,"coap",12,"0",15,"c=text1",23,"0" ** (%%) ~/~/Set COAP resource path 269 269 270 - ===2.3.7MOD===204 +For parameter description, please refer to AT command set 271 271 272 - Firmwareversion at least v2.1 supports changing mode.206 +[[image:1657249793983-486.png]] 273 273 274 -For example, bytes[10]=90 275 275 276 - mod=(bytes[10]>>7)&0x01=1.209 +After configure the server address and (% style="color:green" %)**reset the device**(%%) (via AT+ATZ ), NSE01 will start to uplink sensor values to CoAP server. 277 277 211 +[[image:1657249831934-534.png]] 278 278 279 -**Downlink Command:** 280 280 281 -If payload = 0x0A00, workmode=0 282 282 283 - If****payload=****0x0A01,workmode=1215 +=== 2.2.5 Use UDP protocol to uplink data(Default protocol) === 284 284 217 +This feature is supported since firmware version v1.0.1 285 285 286 286 287 -=== 2.3.8 Decode payload in The Things Network === 220 +* (% style="color:blue" %)**AT+PRO=2 ** (%%) ~/~/ Set to use UDP protocol to uplink 221 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5601 ** (%%) ~/~/ to set UDP server address and port 222 +* (% style="color:blue" %)**AT+CFM=1 ** (%%) ~/~/If the server does not respond, this command is unnecessary 288 288 289 - While using TTN network, you can add the payload format to decode the payload.224 +[[image:1657249864775-321.png]] 290 290 291 291 292 -[[image:1654 505570700-128.png]]227 +[[image:1657249930215-289.png]] 293 293 294 -((( 295 -The payload decoder function for TTN is here: 296 -))) 297 297 298 -((( 299 -LSE01 TTN Payload Decoder: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Payload_Decoder/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Payload_Decoder/]] 300 -))) 301 301 231 +=== 2.2.6 Use MQTT protocol to uplink data === 302 302 233 +This feature is supported since firmware version v110 303 303 304 -== 2.4 Uplink Interval == 305 305 306 -The LSE01 by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link: [[Change Uplink Interval>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H4.1ChangeUplinkInterval"]] 236 +* (% style="color:blue" %)**AT+PRO=3 ** (%%) ~/~/Set to use MQTT protocol to uplink 237 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,1883 ** (%%) ~/~/Set MQTT server address and port 238 +* (% style="color:blue" %)**AT+CLIENT=CLIENT ** (%%)~/~/Set up the CLIENT of MQTT 239 +* (% style="color:blue" %)**AT+UNAME=UNAME **(%%)~/~/Set the username of MQTT 240 +* (% style="color:blue" %)**AT+PWD=PWD **(%%)~/~/Set the password of MQTT 241 +* (% style="color:blue" %)**AT+PUBTOPIC=NSE01_PUB **(%%)~/~/Set the sending topic of MQTT 242 +* (% style="color:blue" %)**AT+SUBTOPIC=NSE01_SUB **(%%) ~/~/Set the subscription topic of MQTT 307 307 244 +[[image:1657249978444-674.png]] 308 308 309 309 310 - ==2.5 Downlink Payload ==247 +[[image:1657249990869-686.png]] 311 311 312 -By default, LSE50 prints the downlink payload to console port. 313 313 314 -[[image:image-20220606165544-8.png]] 315 - 316 - 317 317 ((( 318 - **Examples:**251 +MQTT protocol has a much higher power consumption compare vs UDP / CoAP protocol. Please check the power analyze document and adjust the uplink period to a suitable interval. 319 319 ))) 320 320 321 -((( 322 - 323 -))) 324 324 325 -* ((( 326 -**Set TDC** 327 -))) 328 328 329 -((( 330 -If the payload=0100003C, it means set the END Node’s TDC to 0x00003C=60(S), while type code is 01. 331 -))) 256 +=== 2.2.7 Use TCP protocol to uplink data === 332 332 333 -((( 334 -Payload: 01 00 00 1E TDC=30S 335 -))) 258 +This feature is supported since firmware version v110 336 336 337 -((( 338 -Payload: 01 00 00 3C TDC=60S 339 -))) 340 340 341 -((( 342 - 343 -))) 261 +* (% style="color:blue" %)**AT+PRO=4 ** (%%) ~/~/ Set to use TCP protocol to uplink 262 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5600 **(%%) ~/~/ to set TCP server address and port 344 344 345 -* ((( 346 -**Reset** 347 -))) 264 +[[image:1657250217799-140.png]] 348 348 349 -((( 350 -If payload = 0x04FF, it will reset the LSE01 351 -))) 352 352 267 +[[image:1657250255956-604.png]] 353 353 354 -* **CFM** 355 355 356 -Downlink Payload: 05000001, Set AT+CFM=1 or 05000000 , set AT+CFM=0 357 357 271 +=== 2.2.8 Change Update Interval === 358 358 273 +User can use below command to change the (% style="color:green" %)**uplink interval**. 359 359 360 - ==2.6ShowDatainDataCake IoT Server==275 +* (% style="color:blue" %)**AT+TDC=600 ** (%%)~/~/ Set Update Interval to 600s 361 361 362 362 ((( 363 - [[DATACAKE>>url:https://datacake.co/]] provides a human friendly interfaceto show the sensordata,once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps:278 +(% style="color:red" %)**NOTE:** 364 364 ))) 365 365 366 366 ((( 367 - 282 +(% style="color:red" %)1. By default, the device will send an uplink message every 1 hour. 368 368 ))) 369 369 370 -((( 371 -**Step 1**: Be sure that your device is programmed and properly connected to the network at this time. 372 -))) 373 373 374 -((( 375 -**Step 2**: To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps: 376 -))) 377 377 287 +== 2.3 Uplink Payload == 378 378 379 - [[image:1654505857935-743.png]]289 +In this mode, uplink payload includes in total 18 bytes 380 380 291 +(% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:510px" %) 292 +|=(% style="width: 50px;" %)((( 293 +**Size(bytes)** 294 +)))|=(% style="width: 50px;" %)**6**|=(% style="width: 25px;" %)2|=(% style="width: 25px;" %)**2**|=(% style="width: 80px;" %)**1**|=(% style="width: 80px;" %)**2**|=(% style="width: 80px;" %)**2**|=(% style="width: 80px;" %)**2**|=(% style="width: 40px;" %)**1** 295 +|(% style="width:97px" %)**Value**|(% style="width:83px" %)[[Device ID>>||anchor="H2.4.1A0A0DeviceID"]]|(% style="width:41px" %)[[Ver>>||anchor="H2.4.2A0VersionInfo"]]|(% style="width:46px" %)[[BAT>>||anchor="H2.4.3A0BatteryInfo"]]|(% style="width:123px" %)[[Signal Strength>>||anchor="H2.4.4A0SignalStrength"]]|(% style="width:108px" %)[[Soil Moisture>>||anchor="H2.4.5A0SoilMoisture"]]|(% style="width:133px" %)[[Soil Temperature>>||anchor="H2.4.6A0SoilTemperature"]]|(% style="width:159px" %)[[Soil Conductivity(EC)>>||anchor="H2.4.7A0SoilConductivity28EC29"]]|(% style="width:80px" %)[[Interrupt>>||anchor="H2.4.8A0DigitalInterrupt"]] 381 381 382 - [[image:1654505874829-548.png]]297 +If we use the MQTT client to subscribe to this MQTT topic, we can see the following information when the NSE01 uplink data. 383 383 384 -Step 3: Create an account or log in Datacake. 385 385 386 - Step 4:Search theLSE01and add DevEUI.300 +[[image:image-20220708111918-4.png]] 387 387 388 388 389 - [[image:1654505905236-553.png]]303 +The payload is ASCII string, representative same HEX: 390 390 305 +0x72403155615900640c7817075e0a8c02f900 where: 391 391 392 -After added, the sensor data arrive TTN, it will also arrive and show in Mydevices. 307 +* Device ID: 0x 724031556159 = 724031556159 308 +* Version: 0x0064=100=1.0.0 393 393 394 -[[image:1654505925508-181.png]] 310 +* BAT: 0x0c78 = 3192 mV = 3.192V 311 +* Singal: 0x17 = 23 312 +* Soil Moisture: 0x075e= 1886 = 18.86 % 313 +* Soil Temperature:0x0a8c =2700=27 °C 314 +* Soil Conductivity(EC) = 0x02f9 =761 uS /cm 315 +* Interrupt: 0x00 = 0 395 395 396 396 318 +== 2.4 Payload Explanation and Sensor Interface == 397 397 398 -== 2.7 Frequency Plans == 399 399 400 - TheLSE01uses OTAA mode and below frequency plans by default.Ifuser want to use it with different frequency plan, please refer the AT command sets.321 +=== 2.4.1 Device ID === 401 401 323 +By default, the Device ID equal to the last 6 bytes of IMEI. 402 402 403 - ===2.7.1EU863-870(EU868)===325 +User can use (% style="color:blue" %)**AT+DEUI**(%%) to set Device ID 404 404 405 - (% style="color:#037691" %)**Uplink:**327 +**Example:** 406 406 407 -8 68.1- SF7BW125to SF12BW125329 +AT+DEUI=A84041F15612 408 408 409 - 868.3-SF7BW125toSF12BW125andSF7BW250331 +The Device ID is stored in a none-erase area, Upgrade the firmware or run AT+FDR won't erase Device ID. 410 410 411 -868.5 - SF7BW125 to SF12BW125 412 412 413 -867.1 - SF7BW125 to SF12BW125 414 414 415 - 867.3- SF7BW125toSF12BW125335 +=== 2.4.2 Version Info === 416 416 417 - 867.5-SF7BW125toSF12BW125337 +Specify the software version: 0x64=100, means firmware version 1.00. 418 418 419 - 867.7-SF7BW125toSF12BW125339 +For example: 0x00 64 : this device is NSE01 with firmware version 1.0.0. 420 420 421 -867.9 - SF7BW125 to SF12BW125 422 422 423 -868.8 - FSK 424 424 343 +=== 2.4.3 Battery Info === 425 425 426 -(% style="color:#037691" %)** Downlink:** 345 +((( 346 +Check the battery voltage for LSE01. 347 +))) 427 427 428 -Uplink channels 1-9 (RX1) 349 +((( 350 +Ex1: 0x0B45 = 2885mV 351 +))) 429 429 430 -869.525 - SF9BW125 (RX2 downlink only) 353 +((( 354 +Ex2: 0x0B49 = 2889mV 355 +))) 431 431 432 432 433 433 434 -=== 2. 7.2US902-928(US915)===359 +=== 2.4.4 Signal Strength === 435 435 436 - UsedinUSA, CanadaandSouth America. Defaultuse CHE=2361 +NB-IoT Network signal Strength. 437 437 438 - (% style="color:#037691"%)**Uplink:**363 +**Ex1: 0x1d = 29** 439 439 440 - 903.9-SF7BW125toSF10BW125365 +(% style="color:blue" %)**0**(%%) -113dBm or less 441 441 442 - 904.1-SF7BW125toSF10BW125367 +(% style="color:blue" %)**1**(%%) -111dBm 443 443 444 - 904.3 -SF7BW125 to SF10BW125369 +(% style="color:blue" %)**2...30**(%%) -109dBm... -53dBm 445 445 446 - 904.5-SF7BW125toSF10BW125371 +(% style="color:blue" %)**31** (%%) -51dBm or greater 447 447 448 -9 04.7-SF7BW125toSF10BW125373 +(% style="color:blue" %)**99** (%%) Not known or not detectable 449 449 450 -904.9 - SF7BW125 to SF10BW125 451 451 452 -905.1 - SF7BW125 to SF10BW125 453 453 454 - 905.3- SF7BW125toSF10BW125377 +=== 2.4.5 Soil Moisture === 455 455 379 +((( 380 +Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil. 381 +))) 456 456 457 -(% style="color:#037691" %)**Downlink:** 383 +((( 384 +For example, if the data you get from the register is **__0x05 0xDC__**, the moisture content in the soil is 385 +))) 458 458 459 -923.3 - SF7BW500 to SF12BW500 387 +((( 388 + 389 +))) 460 460 461 -923.9 - SF7BW500 to SF12BW500 391 +((( 392 +(% style="color:#4f81bd" %)**05DC(H) = 1500(D) /100 = 15%.** 393 +))) 462 462 463 -924.5 - SF7BW500 to SF12BW500 464 464 465 -925.1 - SF7BW500 to SF12BW500 466 466 467 - 925.7-SF7BW500toSF12BW500397 +=== 2.4.6 Soil Temperature === 468 468 469 -926.3 - SF7BW500 to SF12BW500 399 +((( 400 + Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is __**0x09 0xEC**__, the temperature content in the soil is 401 +))) 470 470 471 -926.9 - SF7BW500 to SF12BW500 403 +((( 404 +**Example**: 405 +))) 472 472 473 -927.5 - SF7BW500 to SF12BW500 407 +((( 408 +If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/100 = 2.61 °C 409 +))) 474 474 475 -923.3 - SF12BW500(RX2 downlink only) 411 +((( 412 +If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C 413 +))) 476 476 477 477 478 478 479 -=== 2. 7.3CN470-510(CN470) ===417 +=== 2.4.7 Soil Conductivity (EC) === 480 480 481 -Used in China, Default use CHE=1 419 +((( 420 +Obtain (% style="color:#4f81bd" %)**__soluble salt concentration__**(%%) in soil or (% style="color:#4f81bd" %)**__soluble ion concentration in liquid fertilizer__**(%%) or (% style="color:#4f81bd" %)**__planting medium__**(%%). The value range of the register is 0 - 20000(Decimal)( Can be greater than 20000). 421 +))) 482 482 483 -(% style="color:#037691" %)**Uplink:** 423 +((( 424 +For example, if the data you get from the register is __**0x00 0xC8**__, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm. 425 +))) 484 484 485 -486.3 - SF7BW125 to SF12BW125 427 +((( 428 +Generally, the EC value of irrigation water is less than 800uS / cm. 429 +))) 486 486 487 -486.5 - SF7BW125 to SF12BW125 431 +((( 432 + 433 +))) 488 488 489 -486.7 - SF7BW125 to SF12BW125 435 +((( 436 + 437 +))) 490 490 491 -4 86.9-SF7BW125toSF12BW125439 +=== 2.4.8 Digital Interrupt === 492 492 493 - 487.1-SF7BW125toSF12BW125441 +Digital Interrupt refers to pin (% style="color:blue" %)**GPIO_EXTI**(%%), and there are different trigger methods. When there is a trigger, the NSE01 will send a packet to the server. 494 494 495 - 487.3- SF7BW125 toSF12BW125443 +The command is: 496 496 497 - 487.5-SF7BW125to SF12BW125445 +(% style="color:blue" %)**AT+INTMOD=3 **(%%) ~/~/(more info about INMOD please refer [[**AT Command Manual**>>url:https://www.dragino.com/downloads/downloads/NB-IoT/NBSN95/DRAGINO_NBSN95-NB_AT%20Commands_v1.1.0.pdf]])**.** 498 498 499 -487.7 - SF7BW125 to SF12BW125 500 500 448 +The lower four bits of this data field shows if this packet is generated by interrupt or not. Click here for the hardware and software set up. 501 501 502 -(% style="color:#037691" %)**Downlink:** 503 503 504 - 506.7 - SF7BW125 to SF12BW125451 +Example: 505 505 506 - 506.9-SF7BW125to SF12BW125453 +0x(00): Normal uplink packet. 507 507 508 - 507.1-SF7BW125to SF12BW125455 +0x(01): Interrupt Uplink Packet. 509 509 510 -507.3 - SF7BW125 to SF12BW125 511 511 512 -507.5 - SF7BW125 to SF12BW125 513 513 514 - 507.7- SF7BW125 toSF12BW125459 +=== 2.4.9 +5V Output === 515 515 516 - 507.9-SF7BW125 toSF12BW125461 +NSE01 will enable +5V output before all sampling and disable the +5v after all sampling. 517 517 518 -508.1 - SF7BW125 to SF12BW125 519 519 520 - 505.3- SF12BW125(RX2 downlinkonly)464 +The 5V output time can be controlled by AT Command. 521 521 466 +(% style="color:blue" %)**AT+5VT=1000** 522 522 468 +Means set 5V valid time to have 1000ms. So the real 5V output will actually have 1000ms + sampling time for other sensors. 523 523 524 -=== 2.7.4 AU915-928(AU915) === 525 525 526 -Default use CHE=2 527 527 528 - (% style="color:#037691" %)**Uplink:**472 +== 2.5 Downlink Payload == 529 529 530 - 916.8-SF7BW125toSF12BW125474 +By default, NSE01 prints the downlink payload to console port. 531 531 532 - 917.0- SF7BW125to SF12BW125476 +[[image:image-20220708133731-5.png]] 533 533 534 -917.2 - SF7BW125 to SF12BW125 535 535 536 -917.4 - SF7BW125 to SF12BW125 479 +((( 480 +(% style="color:blue" %)**Examples:** 481 +))) 537 537 538 -917.6 - SF7BW125 to SF12BW125 483 +((( 484 + 485 +))) 539 539 540 -917.8 - SF7BW125 to SF12BW125 487 +* ((( 488 +(% style="color:blue" %)**Set TDC** 489 +))) 541 541 542 -918.0 - SF7BW125 to SF12BW125 491 +((( 492 +If the payload=0100003C, it means set the END Node's TDC to 0x00003C=60(S), while type code is 01. 493 +))) 543 543 544 -918.2 - SF7BW125 to SF12BW125 495 +((( 496 +Payload: 01 00 00 1E TDC=30S 497 +))) 545 545 499 +((( 500 +Payload: 01 00 00 3C TDC=60S 501 +))) 546 546 547 -(% style="color:#037691" %)**Downlink:** 503 +((( 504 + 505 +))) 548 548 549 -923.3 - SF7BW500 to SF12BW500 507 +* ((( 508 +(% style="color:blue" %)**Reset** 509 +))) 550 550 551 -923.9 - SF7BW500 to SF12BW500 511 +((( 512 +If payload = 0x04FF, it will reset the NSE01 513 +))) 552 552 553 -924.5 - SF7BW500 to SF12BW500 554 554 555 - 925.1-SF7BW500toSF12BW500516 +* (% style="color:blue" %)**INTMOD** 556 556 557 - 925.7-SF7BW500 toSF12BW500518 +Downlink Payload: 06000003, Set AT+INTMOD=3 558 558 559 -926.3 - SF7BW500 to SF12BW500 560 560 561 -926.9 - SF7BW500 to SF12BW500 562 562 563 - 927.5-SF7BW500toSF12BW500522 +== 2.6 LED Indicator == 564 564 565 -923.3 - SF12BW500(RX2 downlink only) 524 +((( 525 +The NSE01 has an internal LED which is to show the status of different state. 566 566 567 567 528 +* When power on, NSE01 will detect if sensor probe is connected, if probe detected, LED will blink four times. (no blinks in this step is no probe) 529 +* Then the LED will be on for 1 second means device is boot normally. 530 +* After NSE01 join NB-IoT network. The LED will be ON for 3 seconds. 531 +* For each uplink probe, LED will be on for 500ms. 532 +))) 568 568 569 -=== 2.7.5 AS920-923 & AS923-925 (AS923) === 570 570 571 -(% style="color:#037691" %)**Default Uplink channel:** 572 572 573 -923.2 - SF7BW125 to SF10BW125 574 574 575 - 923.4 - SF7BW125to SF10BW125537 +== 2.7 Installation in Soil == 576 576 539 +__**Measurement the soil surface**__ 577 577 578 - (%style="color:#037691"%)**AdditionalUplinkChannel**:541 +Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting. [[https:~~/~~/img.alicdn.com/imgextra/i3/2005165265/O1CN010rj9Oh1olPsQxrdUK_!!2005165265.jpg>>url:https://img.alicdn.com/imgextra/i3/2005165265/O1CN010rj9Oh1olPsQxrdUK_!!2005165265.jpg]] 579 579 580 - (OTAA mode, channel added by JoinAcceptmessage)543 +[[image:1657259653666-883.png]] 581 581 582 -(% style="color:#037691" %)**AS920~~AS923 for Japan, Malaysia, Singapore**: 583 583 584 -922.2 - SF7BW125 to SF10BW125 546 +((( 547 + 585 585 586 -922.4 - SF7BW125 to SF10BW125 549 +((( 550 +Dig a hole with diameter > 20CM. 551 +))) 587 587 588 -922.6 - SF7BW125 to SF10BW125 553 +((( 554 +Horizontal insert the probe to the soil and fill the hole for long term measurement. 555 +))) 556 +))) 589 589 590 - 922.8 - SF7BW125to SF10BW125558 +[[image:1654506665940-119.png]] 591 591 592 -923.0 - SF7BW125 to SF10BW125 560 +((( 561 + 562 +))) 593 593 594 -922.0 - SF7BW125 to SF10BW125 595 595 565 +== 2.8 Firmware Change Log == 596 596 597 -(% style="color:#037691" %)**AS923 ~~ AS925 for Brunei, Cambodia, Hong Kong, Indonesia, Laos, Taiwan, Thailand, Vietnam**: 598 598 599 - 923.6-SF7BW125toSF10BW125568 +Download URL & Firmware Change log 600 600 601 - 923.8-F7BW125toSF10BW125570 +[[www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/Firmware/]] 602 602 603 -924.0 - SF7BW125 to SF10BW125 604 604 605 - 924.2- SF7BW125toSF10BW125573 +Upgrade Instruction: [[Upgrade_Firmware>>||anchor="H5.1200BHowtoUpgradeFirmware"]] 606 606 607 -924.4 - SF7BW125 to SF10BW125 608 608 609 -924.6 - SF7BW125 to SF10BW125 610 610 577 +== 2.9 Battery Analysis == 611 611 612 - (%style="color:#037691"%)**Downlink:**579 +=== 2.9.1 Battery Type === 613 613 614 -Uplink channels 1-8 (RX1) 615 615 616 - 923.2-SF10BW125 (RX2)582 +The NSE01 battery is a combination of an 8500mAh Li/SOCI2 Battery and a Super Capacitor. The battery is none-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter. 617 617 618 618 585 +The battery is designed to last for several years depends on the actually use environment and update interval. 619 619 620 -=== 2.7.6 KR920-923 (KR920) === 621 621 622 - Default channel:588 +The battery related documents as below: 623 623 624 -922.1 - SF7BW125 to SF12BW125 590 +* [[Battery Dimension>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]] 591 +* [[Lithium-Thionyl Chloride Battery datasheet>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]] 592 +* [[Lithium-ion Battery-Capacitor datasheet>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]] 625 625 626 -922.3 - SF7BW125 to SF12BW125 627 - 628 -922.5 - SF7BW125 to SF12BW125 629 - 630 - 631 -(% style="color:#037691" %)**Uplink: (OTAA mode, channel added by JoinAccept message)** 632 - 633 -922.1 - SF7BW125 to SF12BW125 634 - 635 -922.3 - SF7BW125 to SF12BW125 636 - 637 -922.5 - SF7BW125 to SF12BW125 638 - 639 -922.7 - SF7BW125 to SF12BW125 640 - 641 -922.9 - SF7BW125 to SF12BW125 642 - 643 -923.1 - SF7BW125 to SF12BW125 644 - 645 -923.3 - SF7BW125 to SF12BW125 646 - 647 - 648 -(% style="color:#037691" %)**Downlink:** 649 - 650 -Uplink channels 1-7(RX1) 651 - 652 -921.9 - SF12BW125 (RX2 downlink only; SF12BW125 might be changed to SF9BW125) 653 - 654 - 655 - 656 -=== 2.7.7 IN865-867 (IN865) === 657 - 658 -(% style="color:#037691" %)** Uplink:** 659 - 660 -865.0625 - SF7BW125 to SF12BW125 661 - 662 -865.4025 - SF7BW125 to SF12BW125 663 - 664 -865.9850 - SF7BW125 to SF12BW125 665 - 666 - 667 -(% style="color:#037691" %) **Downlink:** 668 - 669 -Uplink channels 1-3 (RX1) 670 - 671 -866.550 - SF10BW125 (RX2) 672 - 673 - 674 - 675 - 676 -== 2.8 LED Indicator == 677 - 678 -The LSE01 has an internal LED which is to show the status of different state. 679 - 680 -* Blink once when device power on. 681 -* Solid ON for 5 seconds once device successful Join the network. 682 -* Blink once when device transmit a packet. 683 - 684 -== 2.9 Installation in Soil == 685 - 686 -**Measurement the soil surface** 687 - 688 - 689 -[[image:1654506634463-199.png]] 690 - 691 691 ((( 692 -((( 693 -Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting. 595 +[[image:image-20220708140453-6.png]] 694 694 ))) 695 -))) 696 696 697 697 698 -[[image:1654506665940-119.png]] 699 699 700 -((( 701 -Dig a hole with diameter > 20CM. 702 -))) 600 +=== 2.9.2 Power consumption Analyze === 703 703 704 704 ((( 705 - Horizontalinsertthe probeto the soil andfill the holefor longtermmeasurement.603 +Dragino battery powered product are all runs in Low Power mode. We have an update battery calculator which base on the measurement of the real device. User can use this calculator to check the battery life and calculate the battery life if want to use different transmit interval. 706 706 ))) 707 707 708 708 709 -== 2.10 Firmware Change Log == 710 - 711 711 ((( 712 - **Firmware downloadlink:**608 +Instruction to use as below: 713 713 ))) 714 714 715 715 ((( 716 -[[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/ LSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/]]612 +(% style="color:blue" %)**Step 1: **(%%)Downlink the up-to-date DRAGINO_Battery_Life_Prediction_Table.xlsx from: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/]] 717 717 ))) 718 718 719 -((( 720 - 721 -))) 722 722 723 723 ((( 724 - **FirmwareUpgradeMethod: **[[FirmwareUpgradeInstruction>>doc:Main.FirmwareUpgradeInstruction for STM32 baseproducts.WebHome]]617 +(% style="color:blue" %)**Step 2: **(%%) Open it and choose 725 725 ))) 726 726 727 -((( 728 - 620 +* ((( 621 +Product Model 729 729 ))) 730 - 731 -((( 732 -**V1.0.** 623 +* ((( 624 +Uplink Interval 733 733 ))) 626 +* ((( 627 +Working Mode 628 +))) 734 734 735 735 ((( 736 - Release631 +And the Life expectation in difference case will be shown on the right. 737 737 ))) 738 738 634 +[[image:image-20220708141352-7.jpeg]] 739 739 740 -== 2.11 Battery Analysis == 741 741 742 -=== 2.11.1 Battery Type === 743 743 744 -((( 745 -The LSE01 battery is a combination of a 4000mAh Li/SOCI2 Battery and a Super Capacitor. The battery is non-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter. 746 -))) 638 +=== 2.9.3 Battery Note === 747 747 748 748 ((( 749 -The battery is designed to last for more than5 yearsfor theLSN50.641 +The Li-SICO battery is designed for small current / long period application. It is not good to use a high current, short period transmit method. The recommended minimum period for use of this battery is 5 minutes. If you use a shorter period time to transmit LoRa, then the battery life may be decreased. 750 750 ))) 751 751 752 -((( 753 -((( 754 -The battery-related documents are as below: 755 -))) 756 -))) 757 757 758 -* ((( 759 -[[Battery Dimension>>url:http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/&file=LSN50-Battery-Dimension.pdf]], 760 -))) 761 -* ((( 762 -[[Lithium-Thionyl Chloride Battery datasheet>>url:https://www.dragino.com/downloads/downloads/datasheet/Battery/ER26500/ER26500_Datasheet-EN.pdf]], 763 -))) 764 -* ((( 765 -[[Lithium-ion Battery-Capacitor datasheet>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC_1520_datasheet.jpg]], [[Tech Spec>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC1520%20Technical%20Specification20171123.pdf]] 766 -))) 767 767 768 - [[image:image-20220610172436-1.png]]646 +=== 2.9.4 Replace the battery === 769 769 770 - 771 - 772 -=== 2.11.2 Battery Note === 773 - 774 774 ((( 775 -The Li-SICObatteryisdesigned forsmallcurrent/longperiodapplication. Itis notgood to use ahigh current,shortperiodtransmitmethod. Therecommendedminimum periodfor use ofthisbatteryis5minutes.If you useahorterperiodtimeto transmitLoRa, then the battery lifemaybe decreased.649 +The default battery pack of NSE01 includes a ER26500 plus super capacitor. If user can't find this pack locally, they can find ER26500 or equivalence without the SPC1520 capacitor, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes). 776 776 ))) 777 777 778 778 779 779 780 -= ==2.11.3Replacethebattery===654 += 3. Access NB-IoT Module = 781 781 782 782 ((( 783 - If Battery islower than2.7v, user shouldplace thebatteryofLSE01.657 +Users can directly access the AT command set of the NB-IoT module. 784 784 ))) 785 785 786 786 ((( 787 - Youcan changethebatteryintheLSE01.Thetypeofbattery is notlimitedaslongas the outputisbetween3v to3.6v. On themainboard, there isa diode(D1) between the battery andthe main circuit. If you needo usea battery with lessthan 3.3v, pleaseremovethe D1 andshortcut thetwopadsofit sothere won’t be voltageop between battery andmain board.661 +The AT Command set can refer the BC35-G NB-IoT Module AT Command: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=datasheet/other_vendors/BC35-G/>>url:https://www.dragino.com/downloads/index.php?dir=datasheet/other_vendors/BC35-G/]] 788 788 ))) 789 789 790 -((( 791 -The default battery pack of LSE01 includes a ER18505 plus super capacitor. If user can’t find this pack locally, they can find ER18505 or equivalence, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes) 792 -))) 664 +[[image:1657261278785-153.png]] 793 793 794 794 795 795 796 -= 3.Using the AT Commands =668 += 4. Using the AT Commands = 797 797 798 -== 3.1 Access AT Commands ==670 +== 4.1 Access AT Commands == 799 799 672 +See this link for detail: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/]] 800 800 801 -LSE01 supports AT Command set in the stock firmware. You can use a USB to TTL adapter to connect to LSE01 for using AT command, as below. 802 802 803 - [[image:1654501986557-872.png||height="391"width="800"]]675 +AT+<CMD>? : Help on <CMD> 804 804 677 +AT+<CMD> : Run <CMD> 805 805 806 - Orifyouhavebelowboard,usebelowconnection:679 +AT+<CMD>=<value> : Set the value 807 807 681 +AT+<CMD>=? : Get the value 808 808 809 -[[image:1654502005655-729.png||height="503" width="801"]] 810 810 811 - 812 - 813 -In the PC, you need to set the serial baud rate to (% style="color:green" %)**9600**(%%) to access the serial console for LSE01. LSE01 will output system info once power on as below: 814 - 815 - 816 - [[image:1654502050864-459.png||height="564" width="806"]] 817 - 818 - 819 -Below are the available commands, a more detailed AT Command manual can be found at [[AT Command Manual>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/]]: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/]] 820 - 821 - 822 -(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>? **(%%) : Help on <CMD> 823 - 824 -(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD> **(%%) : Run <CMD> 825 - 826 -(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>=<value>**(%%) : Set the value 827 - 828 -(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>=?**(%%) : Get the value 829 - 830 - 831 831 (% style="color:#037691" %)**General Commands**(%%) 832 832 833 - (% style="background-color:#dcdcdc" %)**AT**(%%): Attention686 +AT : Attention 834 834 835 - (% style="background-color:#dcdcdc" %)**AT?**(%%): Short Help688 +AT? : Short Help 836 836 837 - (% style="background-color:#dcdcdc" %)**ATZ**(%%): MCU Reset690 +ATZ : MCU Reset 838 838 839 - (% style="background-color:#dcdcdc" %)**AT+TDC**(%%): Application Data Transmission Interval692 +AT+TDC : Application Data Transmission Interval 840 840 694 +AT+CFG : Print all configurations 841 841 842 - (%style="color:#037691"%)**Keys,IDsand EUIs management**696 +AT+CFGMOD : Working mode selection 843 843 844 - (% style="background-color:#dcdcdc" %)**AT+APPEUI**(%%)ApplicationEUI698 +AT+INTMOD : Set the trigger interrupt mode 845 845 846 - (% style="background-color:#dcdcdc" %)**AT+APPKEY**(%%)ApplicationKey700 +AT+5VT : Set extend the time of 5V power 847 847 848 - (% style="background-color:#dcdcdc" %)**AT+APPSKEY**(%%)Application Session Key702 +AT+PRO : Choose agreement 849 849 850 - (% style="background-color:#dcdcdc" %)**AT+DADDR**(%%)DeviceAddress704 +AT+WEIGRE : Get weight or set weight to 0 851 851 852 - (% style="background-color:#dcdcdc" %)**AT+DEUI**(%%)DeviceEUI706 +AT+WEIGAP : Get or Set the GapValue of weight 853 853 854 - (% style="background-color:#dcdcdc" %)**AT+NWKID**(%%):NetworkID(Youcanenterthiscommandchangeonlyaftersuccessful networkconnection)708 +AT+RXDL : Extend the sending and receiving time 855 855 856 - (% style="background-color:#dcdcdc" %)**AT+NWKSKEY**(%%)NetworkSession KeyJoining and sending dateon LoRa network710 +AT+CNTFAC : Get or set counting parameters 857 857 858 - (% style="background-color:#dcdcdc" %)**AT+CFM**(%%)ConfirmMode712 +AT+SERVADDR : Server Address 859 859 860 -(% style="background-color:#dcdcdc" %)**AT+CFS**(%%) : Confirm Status 861 861 862 -(% style=" background-color:#dcdcdc" %)**AT+JOIN**(%%): JoinLoRa? Network715 +(% style="color:#037691" %)**COAP Management** 863 863 864 - (% style="background-color:#dcdcdc" %)**AT+NJM**(%%)LoRa? Network Join Mode717 +AT+URI : Resource parameters 865 865 866 -(% style="background-color:#dcdcdc" %)**AT+NJS**(%%) : LoRa? Network Join Status 867 867 868 -(% style=" background-color:#dcdcdc" %)**AT+RECV**(%%) :PrintLast Received Data inRaw Format720 +(% style="color:#037691" %)**UDP Management** 869 869 870 - (% style="background-color:#dcdcdc" %)**AT+RECVB**(%%)Print LastReceived DatainBinaryFormat722 +AT+CFM : Upload confirmation mode (only valid for UDP) 871 871 872 -(% style="background-color:#dcdcdc" %)**AT+SEND**(%%) : Send Text Data 873 873 874 -(% style=" background-color:#dcdcdc" %)**AT+SENB**(%%): Send Hexadecimal Data725 +(% style="color:#037691" %)**MQTT Management** 875 875 727 +AT+CLIENT : Get or Set MQTT client 876 876 877 - (%style="color:#037691"%)**LoRaNetworkManagement**729 +AT+UNAME : Get or Set MQTT Username 878 878 879 - (% style="background-color:#dcdcdc" %)**AT+ADR**(%%):AdaptiveRate731 +AT+PWD : Get or Set MQTT password 880 880 881 - (% style="background-color:#dcdcdc" %)**AT+CLASS**(%%):LoRaClass(Currentlyonly supportclassA733 +AT+PUBTOPIC : Get or Set MQTT publish topic 882 882 883 - (% style="background-color:#dcdcdc" %)**AT+DCS**(%%):DutyCycleSetting735 +AT+SUBTOPIC : Get or Set MQTT subscription topic 884 884 885 -(% style="background-color:#dcdcdc" %)**AT+DR**(%%) : Data Rate (Can Only be Modified after ADR=0) 886 886 887 -(% style=" background-color:#dcdcdc" %)**AT+FCD**(%%) : Frame Counter Downlink738 +(% style="color:#037691" %)**Information** 888 888 889 - (% style="background-color:#dcdcdc" %)**AT+FCU**(%%): Frame CounterUplink740 +AT+FDR : Factory Data Reset 890 890 891 - (% style="background-color:#dcdcdc" %)**AT+JN1DL**(%%):JoinAcceptDelay1742 +AT+PWORD : Serial Access Password 892 892 893 -(% style="background-color:#dcdcdc" %)**AT+JN2DL**(%%) : Join Accept Delay2 894 894 895 -(% style="background-color:#dcdcdc" %)**AT+PNM**(%%) : Public Network Mode 896 896 897 - (% style="background-color:#dcdcdc"%)**AT+RX1DL**(%%): Receive Delay1746 += 5. FAQ = 898 898 899 - (% style="background-color:#dcdcdc"%)**AT+RX2DL**(%%): ReceiveDelay2748 +== 5.1 How to Upgrade Firmware == 900 900 901 -(% style="background-color:#dcdcdc" %)**AT+RX2DR**(%%) : Rx2 Window Data Rate 902 902 903 -(% style="background-color:#dcdcdc" %)**AT+RX2FQ**(%%) : Rx2 Window Frequency 904 - 905 -(% style="background-color:#dcdcdc" %)**AT+TXP**(%%) : Transmit Power 906 - 907 -(% style="background-color:#dcdcdc" %)**AT+ MOD**(%%) : Set work mode 908 - 909 - 910 -(% style="color:#037691" %)**Information** 911 - 912 -(% style="background-color:#dcdcdc" %)**AT+RSSI**(%%) : RSSI of the Last Received Packet 913 - 914 -(% style="background-color:#dcdcdc" %)**AT+SNR**(%%) : SNR of the Last Received Packet 915 - 916 -(% style="background-color:#dcdcdc" %)**AT+VER**(%%) : Image Version and Frequency Band 917 - 918 -(% style="background-color:#dcdcdc" %)**AT+FDR**(%%) : Factory Data Reset 919 - 920 -(% style="background-color:#dcdcdc" %)**AT+PORT**(%%) : Application Port 921 - 922 -(% style="background-color:#dcdcdc" %)**AT+CHS**(%%) : Get or Set Frequency (Unit: Hz) for Single Channel Mode 923 - 924 - (% style="background-color:#dcdcdc" %)**AT+CHE**(%%) : Get or Set eight channels mode, Only for US915, AU915, CN470 925 - 926 - 927 -= 4. FAQ = 928 - 929 -== 4.1 How to change the LoRa Frequency Bands/Region? == 930 - 931 931 ((( 932 -You can follow the instructions for [[how to upgrade image>>||anchor="H2.10200BFirmwareChangeLog"]]. 933 -When downloading the images, choose the required image file for download. 752 +User can upgrade the firmware for 1) bug fix, 2) new feature release. 934 934 ))) 935 935 936 936 ((( 937 - 756 +Please see this link for how to upgrade: [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H2.HardwareUpgradeMethodSupportList>>http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H2.HardwareUpgradeMethodSupportList]] 938 938 ))) 939 939 940 940 ((( 941 - Howtosetup LSE01 towork in 8 channel modeBy default,thefrequency bandsUS915,AU915, CN470 work in 72 frequencies.Many gatewaysare8 channelgateways, andin thiscase,theOTAA join timeand uplink scheduleis longandunpredictable while the end nodeis hoppingin 72 frequencies.760 +(% style="color:red" %)Notice, NSE01 and LSE01 share the same mother board. They use the same connection and method to update. 942 942 ))) 943 943 944 -((( 945 - 946 -))) 947 947 948 -((( 949 -You can configure the end node to work in 8 channel mode by using the AT+CHE command. The 500kHz channels are always included for OTAA. 950 -))) 951 951 952 -((( 953 - 954 -))) 765 += 6. Trouble Shooting = 955 955 956 -((( 957 -For example, in **US915** band, the frequency table is as below. By default, the end node will use all channels (0~~71) for OTAA Join process. After the OTAA Join, the end node will use these all channels (0~~71) to send uplink packets. 958 -))) 767 +== 6.1 Connection problem when uploading firmware == 959 959 960 -[[image:image-20220606154726-3.png]] 961 961 962 - 963 -When you use the TTN network, the US915 frequency bands use are: 964 - 965 -* 903.9 - SF7BW125 to SF10BW125 966 -* 904.1 - SF7BW125 to SF10BW125 967 -* 904.3 - SF7BW125 to SF10BW125 968 -* 904.5 - SF7BW125 to SF10BW125 969 -* 904.7 - SF7BW125 to SF10BW125 970 -* 904.9 - SF7BW125 to SF10BW125 971 -* 905.1 - SF7BW125 to SF10BW125 972 -* 905.3 - SF7BW125 to SF10BW125 973 -* 904.6 - SF8BW500 974 - 770 +(% class="wikigeneratedid" %) 975 975 ((( 976 - Becausehe end nodeisnowhopping72 frequency,itmakesitdifficulttheevicestoJointhe TTN networkplink data.solvethisissue,youcanaccess thedeviceviatheATcommandsand run:772 +(% style="font-size:14px" %)**Please see: **(%%)[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H3.3Troubleshooting>>http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H3.3Troubleshooting||style="background-color: rgb(255, 255, 255); font-size: 14px;"]] 977 977 ))) 978 978 979 -(% class="box infomessage" %) 980 -((( 981 -**AT+CHE=2** 982 -))) 983 983 984 -(% class="box infomessage" %) 985 -((( 986 -**ATZ** 987 -))) 988 988 989 -((( 990 -to set the end node to work in 8 channel mode. The device will work in Channel 8-15 & 64-71 for OTAA, and channel 8-15 for Uplink. 991 -))) 777 +== 6.2 AT Command input doesn't work == 992 992 993 993 ((( 994 - 780 +In the case if user can see the console output but can't type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn't send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string. 995 995 ))) 996 996 997 -((( 998 -The **AU915** band is similar. Below are the AU915 Uplink Channels. 999 -))) 1000 1000 1001 -[[image:image-20220606154825-4.png]] 1002 1002 785 += 7. Order Info = 1003 1003 1004 1004 1005 - = 5. TroubleShooting=788 +Part Number**:** (% style="color:#4f81bd" %)**NSE01** 1006 1006 1007 -== 5.1 Why I can’t join TTN in US915 / AU915 bands? == 1008 1008 1009 -It is due to channel mapping. Please see the [[Eight Channel Mode>>doc:Main.LoRaWAN Communication Debug.WebHome||anchor="H2.NoticeofUS9152FCN4702FAU915Frequencyband"]] section above for details. 1010 - 1011 - 1012 -== 5.2 AT Command input doesn’t work == 1013 - 1014 -((( 1015 -In the case if user can see the console output but can’t type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn’t send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string. 1016 -))) 1017 - 1018 - 1019 -== 5.3 Device rejoin in at the second uplink packet == 1020 - 1021 -(% style="color:#4f81bd" %)**Issue describe as below:** 1022 - 1023 -[[image:1654500909990-784.png]] 1024 - 1025 - 1026 -(% style="color:#4f81bd" %)**Cause for this issue:** 1027 - 1028 -((( 1029 -The fuse on LSE01 is not large enough, some of the soil probe require large current up to 5v 800mA, in a short pulse. When this happen, it cause the device reboot so user see rejoin. 1030 -))) 1031 - 1032 - 1033 -(% style="color:#4f81bd" %)**Solution: ** 1034 - 1035 -All new shipped LSE01 after 2020-May-30 will have this to fix. For the customer who see this issue, please bypass the fuse as below: 1036 - 1037 -[[image:1654500929571-736.png||height="458" width="832"]] 1038 - 1039 - 1040 -= 6. Order Info = 1041 - 1042 - 1043 -Part Number**:** (% style="color:#4f81bd" %)**LSE01-XX-YY** 1044 - 1045 - 1046 -(% style="color:#4f81bd" %)**XX**(%%)**:** The default frequency band 1047 - 1048 -* (% style="color:red" %)**AS923**(%%): LoRaWAN AS923 band 1049 -* (% style="color:red" %)**AU915**(%%): LoRaWAN AU915 band 1050 -* (% style="color:red" %)**EU433**(%%): LoRaWAN EU433 band 1051 -* (% style="color:red" %)**EU868**(%%): LoRaWAN EU868 band 1052 -* (% style="color:red" %)**KR920**(%%): LoRaWAN KR920 band 1053 -* (% style="color:red" %)**US915**(%%): LoRaWAN US915 band 1054 -* (% style="color:red" %)**IN865**(%%): LoRaWAN IN865 band 1055 -* (% style="color:red" %)**CN470**(%%): LoRaWAN CN470 band 1056 - 1057 -(% style="color:#4f81bd" %)**YY**(%%)**: **Battery Option 1058 - 1059 -* (% style="color:red" %)**4**(%%): 4000mAh battery 1060 -* (% style="color:red" %)**8**(%%): 8500mAh battery 1061 - 1062 1062 (% class="wikigeneratedid" %) 1063 1063 ((( 1064 1064 1065 1065 ))) 1066 1066 1067 -= 7. Packing Info =796 += 8. Packing Info = 1068 1068 1069 1069 ((( 1070 1070 1071 1071 1072 1072 (% style="color:#037691" %)**Package Includes**: 1073 -))) 1074 1074 1075 -* ((( 1076 -LSE01 LoRaWAN Soil Moisture & EC Sensor x 1 803 + 804 +* NSE01 NB-IoT Soil Moisture & EC Sensor x 1 805 +* External antenna x 1 1077 1077 ))) 1078 1078 1079 1079 ((( ... ... @@ -1080,25 +1080,20 @@ 1080 1080 1081 1081 1082 1082 (% style="color:#037691" %)**Dimension and weight**: 1083 -))) 1084 1084 1085 -* ((( 1086 -Device Size: cm 813 + 814 +* Size: 195 x 125 x 55 mm 815 +* Weight: 420g 1087 1087 ))) 1088 -* ((( 1089 -Device Weight: g 1090 -))) 1091 -* ((( 1092 -Package Size / pcs : cm 1093 -))) 1094 -* ((( 1095 -Weight / pcs : g 1096 1096 818 +((( 1097 1097 820 + 821 + 822 + 1098 1098 ))) 1099 1099 1100 -= 8. Support =825 += 9. Support = 1101 1101 1102 1102 * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule. 1103 1103 * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.com]] 1104 -
- 1657245163077-232.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +81.0 KB - Content
- 1657246476176-652.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +492.6 KB - Content
- 1657249419225-449.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +81.0 KB - Content
- 1657249468462-536.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +483.6 KB - Content
- 1657249793983-486.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +85.8 KB - Content
- 1657249831934-534.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +72.5 KB - Content
- 1657249864775-321.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +87.0 KB - Content
- 1657249930215-289.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +77.3 KB - Content
- 1657249978444-674.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +139.5 KB - Content
- 1657249990869-686.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +96.9 KB - Content
- 1657250217799-140.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +98.7 KB - Content
- 1657250255956-604.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +99.0 KB - Content
- 1657259653666-883.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +344.4 KB - Content
- 1657260785982-288.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +138.2 KB - Content
- 1657261119050-993.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +126.1 KB - Content
- 1657261278785-153.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +126.1 KB - Content
- image-20220708101224-1.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +22.2 KB - Content
- image-20220708101605-2.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +87.5 KB - Content
- image-20220708110657-3.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +251.7 KB - Content
- image-20220708111918-4.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +38.8 KB - Content
- image-20220708133731-5.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +8.7 KB - Content
- image-20220708140453-6.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +132.7 KB - Content
- image-20220708141352-7.jpeg
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +102.7 KB - Content