Last modified by Mengting Qiu on 2024/04/02 16:44

From version 35.3
edited by Xiaoling
on 2022/06/10 17:25
Change comment: There is no comment for this version
To version 65.11
edited by Xiaoling
on 2022/07/08 15:44
Change comment: There is no comment for this version

Summary

Details

Page properties
Title
... ... @@ -1,1 +1,1 @@
1 -LSE01-LoRaWAN Soil Moisture & EC Sensor User Manual
1 +NSE01 - NB-IoT Soil Moisture & EC Sensor User Manual
Content
... ... @@ -3,8 +3,16 @@
3 3  
4 4  
5 5  
6 -**Contents:**
7 7  
7 +
8 +
9 +
10 +
11 +
12 +
13 +
14 +**Table of Contents:**
15 +
8 8  {{toc/}}
9 9  
10 10  
... ... @@ -12,1068 +12,804 @@
12 12  
13 13  
14 14  
15 -= 1. Introduction =
16 16  
17 -== 1.1 ​What is LoRaWAN Soil Moisture & EC Sensor ==
24 += 1.  Introduction =
18 18  
26 +== 1.1 ​ What is LoRaWAN Soil Moisture & EC Sensor ==
27 +
19 19  (((
20 -The Dragino LSE01 is a (% style="color:#4f81bd" %)**LoRaWAN Soil Moisture & EC Sensor**(%%) for IoT of Agriculture. It is designed to measure the soil moisture of saline-alkali soil and loamy soil. The soil sensor uses FDR method to calculate the soil moisture with the compensation from soil temperature and conductivity. It also has been calibrated in factory for Mineral soil type.
21 -)))
29 +
22 22  
23 23  (((
24 -It detects (% style="color:#4f81bd" %)**Soil Moisture**(%%), (% style="color:#4f81bd" %)**Soil Temperature**(%%) and (% style="color:#4f81bd" %)**Soil Conductivity**(%%), and uploads the value via wireless to LoRaWAN IoT Server.
32 +Dragino NSE01 is an (% style="color:blue" %)**NB-IOT soil moisture & EC sensor**(%%) for agricultural IoT. Used to measure the soil moisture of saline-alkali soil and loam. The soil sensor uses the FDR method to calculate soil moisture and compensates it with soil temperature and electrical conductivity. It has also been calibrated for mineral soil types at the factory.
25 25  )))
26 26  
27 27  (((
28 -The LoRa wireless technology used in LES01 allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption.
36 +It can detect (% style="color:blue" %)**Soil Moisture, Soil Temperature and Soil Conductivity**(%%), and upload its value to the server wirelessly.
29 29  )))
30 30  
31 31  (((
32 -LES01 is powered by (% style="color:#4f81bd" %)**4000mA or 8500mAh Li-SOCI2 battery**(%%), It is designed for long term use up to 10 years.
40 +The wireless technology used in NSE01 allows the device to send data at a low data rate and reach ultra-long distances, providing ultra-long-distance spread spectrum Communication.
33 33  )))
34 34  
35 35  (((
36 -Each LES01 is pre-load with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect after power on.
44 +NSE01 are powered by (% style="color:blue" %)**8500mAh Li-SOCI2**(%%) batteries, which can be used for up to 5 years.  
37 37  )))
38 38  
47 +
48 +)))
39 39  
40 40  [[image:1654503236291-817.png]]
41 41  
42 42  
43 -[[image:1654503265560-120.png]]
53 +[[image:1657245163077-232.png]]
44 44  
45 45  
46 46  
47 -== 1.2 ​Features ==
57 +== 1.2 ​ Features ==
48 48  
49 -* LoRaWAN 1.0.3 Class A
50 -* Ultra low power consumption
59 +* NB-IoT Bands: B1/B3/B8/B5/B20/B28 @H-FDD
51 51  * Monitor Soil Moisture
52 52  * Monitor Soil Temperature
53 53  * Monitor Soil Conductivity
54 -* Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865
55 55  * AT Commands to change parameters
56 56  * Uplink on periodically
57 57  * Downlink to change configure
58 58  * IP66 Waterproof Enclosure
59 -* 4000mAh or 8500mAh Battery for long term use
67 +* Ultra-Low Power consumption
68 +* AT Commands to change parameters
69 +* Micro SIM card slot for NB-IoT SIM
70 +* 8500mAh Battery for long term use
60 60  
61 61  
62 -== 1.3 Specification ==
73 +== 1.3  Specification ==
63 63  
64 -Measure Volume: Base on the centra pin of the probe, a cylinder with 7cm diameter and 10cm height.
65 65  
66 -[[image:image-20220606162220-5.png]]
76 +(% style="color:#037691" %)**Common DC Characteristics:**
67 67  
78 +* Supply Voltage: 2.1v ~~ 3.6v
79 +* Operating Temperature: -40 ~~ 85°C
68 68  
81 +(% style="color:#037691" %)**NB-IoT Spec:**
69 69  
70 -== ​1.4 Applications ==
83 +* - B1 @H-FDD: 2100MHz
84 +* - B3 @H-FDD: 1800MHz
85 +* - B8 @H-FDD: 900MHz
86 +* - B5 @H-FDD: 850MHz
87 +* - B20 @H-FDD: 800MHz
88 +* - B28 @H-FDD: 700MHz
71 71  
72 -* Smart Agriculture
90 +Probe(% style="color:#037691" %)** Specification:**
73 73  
74 -(% class="wikigeneratedid" id="H200B1.5FirmwareChangelog" %)
75 -​
92 +Measure Volume: Base on the centra pin of the probe, a cylinder with 7cm diameter and 10cm height.
76 76  
77 -== 1.5 Firmware Change log ==
94 +[[image:image-20220708101224-1.png]]
78 78  
79 79  
80 -**LSE01 v1.0 :**  Release
81 81  
98 +== ​1.4  Applications ==
82 82  
100 +* Smart Agriculture
83 83  
84 -= 2. Configure LSE01 to connect to LoRaWAN network =
102 +(% class="wikigeneratedid" id="H200B1.5FirmwareChangelog" %)
103 +​
85 85  
86 -== 2.1 How it works ==
105 +== 1.5  Pin Definitions ==
87 87  
88 -(((
89 -The LSE01 is configured as LoRaWAN OTAA Class A mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and power on the LSE0150. It will automatically join the network via OTAA and start to send the sensor value
90 -)))
91 91  
92 -(((
93 -In case you can’t set the OTAA keys in the LoRaWAN OTAA server, and you have to use the keys from the server, you can [[use AT Commands >>||anchor="H3.200BUsingtheATCommands"]].
94 -)))
108 +[[image:1657246476176-652.png]]
95 95  
96 96  
97 97  
98 -== 2.2 ​Quick guide to connect to LoRaWAN server (OTAA) ==
112 += 2.  Use NSE01 to communicate with IoT Server =
99 99  
100 -Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LG308>>url:http://www.dragino.com/products/lora/item/140-lg308.html]] as a LoRaWAN gateway in this example.
114 +== 2. How it works ==
101 101  
102 102  
103 -[[image:1654503992078-669.png]]
104 -
105 -
106 -The LG308 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
107 -
108 -
109 -**Step 1**: Create a device in TTN with the OTAA keys from LSE01.
110 -
111 -Each LSE01 is shipped with a sticker with the default device EUI as below:
112 -
113 -[[image:image-20220606163732-6.jpeg]]
114 -
115 -You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot:
116 -
117 -**Add APP EUI in the application**
118 -
119 -
120 -[[image:1654504596150-405.png]]
121 -
122 -
123 -
124 -**Add APP KEY and DEV EUI**
125 -
126 -[[image:1654504683289-357.png]]
127 -
128 -
129 -
130 -**Step 2**: Power on LSE01
131 -
132 -
133 -Put a Jumper on JP2 to power on the device. ( The Jumper must be in FLASH position).
134 -
135 -[[image:image-20220606163915-7.png]]
136 -
137 -
138 -**Step 3:** The LSE01 will auto join to the TTN network. After join success, it will start to upload messages to TTN and you can see the messages in the panel.
139 -
140 -[[image:1654504778294-788.png]]
141 -
142 -
143 -
144 -== 2.3 Uplink Payload ==
145 -
146 -=== ===
147 -
148 -=== 2.3.1 MOD~=0(Default Mode) ===
149 -
150 -LSE01 will uplink payload via LoRaWAN with below payload format: 
151 -
152 152  (((
153 -Uplink payload includes in total 11 bytes.
118 +The NSE01 is equipped with a NB-IoT module, the pre-loaded firmware in NSE01 will get environment data from sensors and send the value to local NB-IoT network via the NB-IoT module.  The NB-IoT network will forward this value to IoT server via the protocol defined by NSE01.
154 154  )))
155 155  
156 -(% border="1" cellspacing="10" style="background-color:#ffffcc; width:500px" %)
157 -|(((
158 -**Size**
159 159  
160 -**(bytes)**
161 -)))|**2**|**2**|**2**|**2**|**2**|**1**
162 -|**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(((
163 -Temperature
164 -
165 -(Reserve, Ignore now)
166 -)))|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]]|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]]|(((
167 -MOD & Digital Interrupt
168 -
169 -(Optional)
122 +(((
123 +The diagram below shows the working flow in default firmware of NSE01:
170 170  )))
171 171  
172 -=== 2.3.2 MOD~=1(Original value) ===
126 +[[image:image-20220708101605-2.png]]
173 173  
174 -This mode can get the original AD value of moisture and original conductivity (with temperature drift compensation).
175 -
176 -(% border="1" cellspacing="10" style="background-color:#ffffcc; width:500px" %)
177 -|(((
178 -**Size**
179 -
180 -**(bytes)**
181 -)))|**2**|**2**|**2**|**2**|**2**|**1**
182 -|**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(((
183 -Temperature
184 -
185 -(Reserve, Ignore now)
186 -)))|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]](raw)|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]](raw)|(((
187 -MOD & Digital Interrupt
188 -
189 -(Optional)
190 -)))
191 -
192 -=== 2.3.3 Battery Info ===
193 -
194 194  (((
195 -Check the battery voltage for LSE01.
129 +
196 196  )))
197 197  
198 -(((
199 -Ex1: 0x0B45 = 2885mV
200 -)))
201 201  
202 -(((
203 -Ex2: 0x0B49 = 2889mV
204 -)))
205 205  
134 +== 2.2 ​ Configure the NSE01 ==
206 206  
207 207  
208 -=== 2.3.4 Soil Moisture ===
137 +=== 2.2.1 Test Requirement ===
209 209  
210 -(((
211 -Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil.
212 -)))
213 213  
214 214  (((
215 -For example, if the data you get from the register is __0x05 0xDC__, the moisture content in the soil is
141 +To use NSE01 in your city, make sure meet below requirements:
216 216  )))
217 217  
218 -(((
219 -
220 -)))
144 +* Your local operator has already distributed a NB-IoT Network there.
145 +* The local NB-IoT network used the band that NSE01 supports.
146 +* Your operator is able to distribute the data received in their NB-IoT network to your IoT server.
221 221  
222 222  (((
223 -(% style="color:#4f81bd" %)**05DC(H) = 1500(D) /100 = 15%.**
149 +Below figure shows our testing structure. Here we have NB-IoT network coverage by China Mobile, the band they use is B8.  The NSE01 will use CoAP((% style="color:red" %)120.24.4.116:5683)(%%) or raw UDP((% style="color:red" %)120.24.4.116:5601)(%%) or MQTT((% style="color:red" %)120.24.4.116:1883)(%%)or TCP((% style="color:red" %)120.24.4.116:5600)(%%)protocol to send data to the test server
224 224  )))
225 225  
226 226  
153 +[[image:1657249419225-449.png]]
227 227  
228 -=== 2.3.5 Soil Temperature ===
229 229  
230 -(((
231 - Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is 0x09 0xEC, the temperature content in the soil is
232 -)))
233 233  
234 -(((
235 -**Example**:
236 -)))
157 +=== 2.2.2 Insert SIM card ===
237 237  
238 238  (((
239 -If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/100 = 2.61 °C
160 +Insert the NB-IoT Card get from your provider.
240 240  )))
241 241  
242 242  (((
243 -If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C
164 +User need to take out the NB-IoT module and insert the SIM card like below:
244 244  )))
245 245  
246 246  
168 +[[image:1657249468462-536.png]]
247 247  
248 -=== 2.3.6 Soil Conductivity (EC) ===
249 249  
250 -(((
251 -Obtain (% style="color:#4f81bd" %)**__soluble salt concentration__**(%%) in soil or (% style="color:#4f81bd" %)**__soluble ion concentration in liquid fertilizer__**(%%) or (% style="color:#4f81bd" %)**__planting medium__**(%%). The value range of the register is 0 - 20000(Decimal)( Can be greater than 20000).
252 -)))
253 253  
254 -(((
255 -For example, if the data you get from the register is 0x00 0xC8, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm.
256 -)))
172 +=== 2.2.3 Connect USB – TTL to NSE01 to configure it ===
257 257  
258 258  (((
259 -Generally, the EC value of irrigation water is less than 800uS / cm.
260 -)))
261 -
262 262  (((
263 -
176 +User need to configure NSE01 via serial port to set the (% style="color:blue" %)**Server Address** / **Uplink Topic** (%%)to define where and how-to uplink packets. NSE01 support AT Commands, user can use a USB to TTL adapter to connect to NSE01 and use AT Commands to configure it, as below.
264 264  )))
265 -
266 -(((
267 -
268 268  )))
269 269  
270 -=== 2.3.7 MOD ===
271 271  
272 -Firmware version at least v2.1 supports changing mode.
181 +**Connection:**
273 273  
274 -For example, bytes[10]=90
183 + (% style="background-color:yellow" %)USB TTL GND <~-~-~-~-> GND
275 275  
276 -mod=(bytes[10]>>7)&0x01=1.
185 + (% style="background-color:yellow" %)USB TTL TXD <~-~-~-~-> UART_RXD
277 277  
187 + (% style="background-color:yellow" %)USB TTL RXD <~-~-~-~-> UART_TXD
278 278  
279 -**Downlink Command:**
280 280  
281 -If payload = 0x0A00, workmode=0
190 +In the PC, use below serial tool settings:
282 282  
283 -If** **payload =** **0x0A01, workmode=1
192 +* Baud:  (% style="color:green" %)**9600**
193 +* Data bits:** (% style="color:green" %)8(%%)**
194 +* Stop bits: (% style="color:green" %)**1**
195 +* Parity:  (% style="color:green" %)**None**
196 +* Flow Control: (% style="color:green" %)**None**
284 284  
198 +(((
199 +Make sure the switch is in FLASH position, then power on device by connecting the jumper on NSE01. NSE01 will output system info once power on as below, we can enter the (% style="color:green" %)**password: 12345678**(%%) to access AT Command input.
200 +)))
285 285  
202 +[[image:image-20220708110657-3.png]]
286 286  
287 -=== 2.3.8 ​Decode payload in The Things Network ===
204 +(% style="color:red" %)Note: the valid AT Commands can be found at: (%%)[[http:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/]]
288 288  
289 -While using TTN network, you can add the payload format to decode the payload.
290 290  
291 291  
292 -[[image:1654505570700-128.png]]
208 +=== 2.2.4 Use CoAP protocol to uplink data ===
293 293  
294 -(((
295 -The payload decoder function for TTN is here:
296 -)))
210 +(% style="color:red" %)Note: if you don't have CoAP server, you can refer this link to set up one: (%%)[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/>>http://wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/]]
297 297  
298 -(((
299 -LSE01 TTN Payload Decoder: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Payload_Decoder/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Payload_Decoder/]]
300 -)))
301 301  
213 +**Use below commands:**
302 302  
215 +* (% style="color:blue" %)**AT+PRO=1**  (%%) ~/~/ Set to use CoAP protocol to uplink
216 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5683   ** (%%)~/~/ to set CoAP server address and port
217 +* (% style="color:blue" %)**AT+URI=5,11,"mqtt",11,"coap",12,"0",15,"c=text1",23,"0" ** (%%) ~/~/Set COAP resource path
303 303  
304 -== 2.4 Uplink Interval ==
219 +For parameter description, please refer to AT command set
305 305  
306 -The LSE01 by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link: [[Change Uplink Interval>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H4.1ChangeUplinkInterval"]]
221 +[[image:1657249793983-486.png]]
307 307  
308 308  
224 +After configure the server address and (% style="color:green" %)**reset the device**(%%) (via AT+ATZ ), NSE01 will start to uplink sensor values to CoAP server.
309 309  
310 -== 2.5 Downlink Payload ==
226 +[[image:1657249831934-534.png]]
311 311  
312 -By default, LSE50 prints the downlink payload to console port.
313 313  
314 -[[image:image-20220606165544-8.png]]
315 315  
230 +=== 2.2.5 Use UDP protocol to uplink data(Default protocol) ===
316 316  
317 -(((
318 -**Examples:**
319 -)))
232 +This feature is supported since firmware version v1.0.1
320 320  
321 -(((
322 -
323 -)))
324 324  
325 -* (((
326 -**Set TDC**
327 -)))
235 +* (% style="color:blue" %)**AT+PRO=2   ** (%%) ~/~/ Set to use UDP protocol to uplink
236 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5601   ** (%%) ~/~/ to set UDP server address and port
237 +* (% style="color:blue" %)**AT+CFM=1       ** (%%) ~/~/If the server does not respond, this command is unnecessary
328 328  
329 -(((
330 -If the payload=0100003C, it means set the END Node’s TDC to 0x00003C=60(S), while type code is 01.
331 -)))
239 +[[image:1657249864775-321.png]]
332 332  
333 -(((
334 -Payload:    01 00 00 1E    TDC=30S
335 -)))
336 336  
337 -(((
338 -Payload:    01 00 00 3C    TDC=60S
339 -)))
242 +[[image:1657249930215-289.png]]
340 340  
341 -(((
342 -
343 -)))
344 344  
345 -* (((
346 -**Reset**
347 -)))
348 348  
349 -(((
350 -If payload = 0x04FF, it will reset the LSE01
351 -)))
246 +=== 2.2.6 Use MQTT protocol to uplink data ===
352 352  
248 +This feature is supported since firmware version v110
353 353  
354 -* **CFM**
355 355  
356 -Downlink Payload: 05000001, Set AT+CFM=1 or 05000000 , set AT+CFM=0
251 +* (% style="color:blue" %)**AT+PRO=3   ** (%%) ~/~/Set to use MQTT protocol to uplink
252 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,1883   ** (%%) ~/~/Set MQTT server address and port
253 +* (% style="color:blue" %)**AT+CLIENT=CLIENT       ** (%%)~/~/Set up the CLIENT of MQTT
254 +* (% style="color:blue" %)**AT+UNAME=UNAME                               **(%%)~/~/Set the username of MQTT
255 +* (% style="color:blue" %)**AT+PWD=PWD                                        **(%%)~/~/Set the password of MQTT
256 +* (% style="color:blue" %)**AT+PUBTOPIC=NSE01_PUB                    **(%%)~/~/Set the sending topic of MQTT
257 +* (% style="color:blue" %)**AT+SUBTOPIC=NSE01_SUB          **(%%) ~/~/Set the subscription topic of MQTT
357 357  
259 +[[image:1657249978444-674.png]]
358 358  
359 359  
360 -== 2.6 ​Show Data in DataCake IoT Server ==
262 +[[image:1657249990869-686.png]]
361 361  
362 -(((
363 -[[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps:
364 -)))
365 365  
366 366  (((
367 -
266 +MQTT protocol has a much higher power consumption compare vs UDP / CoAP protocol. Please check the power analyze document and adjust the uplink period to a suitable interval.
368 368  )))
369 369  
370 -(((
371 -**Step 1**: Be sure that your device is programmed and properly connected to the network at this time.
372 -)))
373 373  
374 -(((
375 -**Step 2**: To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps:
376 -)))
377 377  
271 +=== 2.2.7 Use TCP protocol to uplink data ===
378 378  
379 -[[image:1654505857935-743.png]]
273 +This feature is supported since firmware version v110
380 380  
381 381  
382 -[[image:1654505874829-548.png]]
276 +* (% style="color:blue" %)**AT+PRO=4   ** (%%) ~/~/ Set to use TCP protocol to uplink
277 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5600   **(%%) ~/~/ to set TCP server address and port
383 383  
384 -Step 3: Create an account or log in Datacake.
279 +[[image:1657250217799-140.png]]
385 385  
386 -Step 4: Search the LSE01 and add DevEUI.
387 387  
282 +[[image:1657250255956-604.png]]
388 388  
389 -[[image:1654505905236-553.png]]
390 390  
391 391  
392 -After added, the sensor data arrive TTN, it will also arrive and show in Mydevices.
286 +=== 2.2.8 Change Update Interval ===
393 393  
394 -[[image:1654505925508-181.png]]
288 +User can use below command to change the (% style="color:green" %)**uplink interval**.
395 395  
290 +* (% style="color:blue" %)**AT+TDC=600      ** (%%)~/~/ Set Update Interval to 600s
396 396  
292 +(((
293 +(% style="color:red" %)**NOTE:**
294 +)))
397 397  
398 -== 2.7 Frequency Plans ==
296 +(((
297 +(% style="color:red" %)1. By default, the device will send an uplink message every 1 hour.
298 +)))
399 399  
400 -The LSE01 uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.
401 401  
402 402  
403 -=== 2.7.1 EU863-870 (EU868) ===
302 +== 2.3  Uplink Payload ==
404 404  
405 -(% style="color:#037691" %)** Uplink:**
304 +In this mode, uplink payload includes in total 18 bytes
406 406  
407 -868.1 - SF7BW125 to SF12BW125
306 +(% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:510px" %)
307 +|=(% style="width: 50px;" %)(((
308 +**Size(bytes)**
309 +)))|=(% style="width: 50px;" %)**6**|=(% style="width: 25px;" %)2|=(% style="width: 25px;" %)**2**|=(% style="width: 80px;" %)**1**|=(% style="width: 80px;" %)**2**|=(% style="width: 80px;" %)**2**|=(% style="width: 80px;" %)**2**|=(% style="width: 40px;" %)**1**
310 +|(% style="width:97px" %)**Value**|(% style="width:83px" %)[[Device ID>>||anchor="H2.4.1A0A0DeviceID"]]|(% style="width:41px" %)[[Ver>>||anchor="H2.4.2A0VersionInfo"]]|(% style="width:46px" %)[[BAT>>||anchor="H2.4.3A0BatteryInfo"]]|(% style="width:123px" %)[[Signal Strength>>||anchor="H2.4.4A0SignalStrength"]]|(% style="width:108px" %)[[Soil Moisture>>||anchor="H2.4.5A0SoilMoisture"]]|(% style="width:133px" %)[[Soil Temperature>>||anchor="H2.4.6A0SoilTemperature"]]|(% style="width:159px" %)[[Soil Conductivity(EC)>>||anchor="H2.4.7A0SoilConductivity28EC29"]]|(% style="width:80px" %)[[Interrupt>>||anchor="H2.4.8A0DigitalInterrupt"]]
408 408  
409 -868.3 - SF7BW125 to SF12BW125 and SF7BW250
312 +If we use the MQTT client to subscribe to this MQTT topic, we can see the following information when the NSE01 uplink data.
410 410  
411 -868.5 - SF7BW125 to SF12BW125
412 412  
413 -867.1 - SF7BW125 to SF12BW125
315 +[[image:image-20220708111918-4.png]]
414 414  
415 -867.3 - SF7BW125 to SF12BW125
416 416  
417 -867.5 - SF7BW125 to SF12BW125
318 +The payload is ASCII string, representative same HEX:
418 418  
419 -867.7 - SF7BW125 to SF12BW125
320 +0x72403155615900640c7817075e0a8c02f900 where:
420 420  
421 -867.9 - SF7BW125 to SF12BW125
322 +* Device ID: 0x 724031556159 = 724031556159
323 +* Version: 0x0064=100=1.0.0
422 422  
423 -868.8 - FSK
325 +* BAT: 0x0c78 = 3192 mV = 3.192V
326 +* Singal: 0x17 = 23
327 +* Soil Moisture: 0x075e= 1886 = 18.86  %
328 +* Soil Temperature:0x0a8c =2700=27 °C
329 +* Soil Conductivity(EC) = 0x02f9 =761 uS /cm
330 +* Interrupt: 0x00 = 0
424 424  
425 425  
426 -(% style="color:#037691" %)** Downlink:**
333 +== 2.4  Payload Explanation and Sensor Interface ==
427 427  
428 -Uplink channels 1-9 (RX1)
429 429  
430 -869.525 - SF9BW125 (RX2 downlink only)
336 +=== 2.4.1  Device ID ===
431 431  
338 +By default, the Device ID equal to the last 6 bytes of IMEI.
432 432  
340 +User can use (% style="color:blue" %)**AT+DEUI**(%%) to set Device ID
433 433  
434 -=== 2.7.2 US902-928(US915) ===
342 +**Example:**
435 435  
436 -Used in USA, Canada and South America. Default use CHE=2
344 +AT+DEUI=A84041F15612
437 437  
438 -(% style="color:#037691" %)**Uplink:**
346 +The Device ID is stored in a none-erase area, Upgrade the firmware or run AT+FDR won't erase Device ID.
439 439  
440 -903.9 - SF7BW125 to SF10BW125
441 441  
442 -904.1 - SF7BW125 to SF10BW125
443 443  
444 -904.3 - SF7BW125 to SF10BW125
350 +=== 2.4.2  Version Info ===
445 445  
446 -904.5 - SF7BW125 to SF10BW125
352 +Specify the software version: 0x64=100, means firmware version 1.00.
447 447  
448 -904.7 - SF7BW125 to SF10BW125
354 +For example: 0x00 64 : this device is NSE01 with firmware version 1.0.0.
449 449  
450 -904.9 - SF7BW125 to SF10BW125
451 451  
452 -905.1 - SF7BW125 to SF10BW125
453 453  
454 -905.3 - SF7BW125 to SF10BW125
358 +=== 2.4.3  Battery Info ===
455 455  
360 +(((
361 +Check the battery voltage for LSE01.
362 +)))
456 456  
457 -(% style="color:#037691" %)**Downlink:**
364 +(((
365 +Ex1: 0x0B45 = 2885mV
366 +)))
458 458  
459 -923.3 - SF7BW500 to SF12BW500
368 +(((
369 +Ex2: 0x0B49 = 2889mV
370 +)))
460 460  
461 -923.9 - SF7BW500 to SF12BW500
462 462  
463 -924.5 - SF7BW500 to SF12BW500
464 464  
465 -925.1 - SF7BW500 to SF12BW500
374 +=== 2.4.4  Signal Strength ===
466 466  
467 -925.7 - SF7BW500 to SF12BW500
376 +NB-IoT Network signal Strength.
468 468  
469 -926.3 - SF7BW500 to SF12BW500
378 +**Ex1: 0x1d = 29**
470 470  
471 -926.9 - SF7BW500 to SF12BW500
380 +(% style="color:blue" %)**0**(%%)  -113dBm or less
472 472  
473 -927.5 - SF7BW500 to SF12BW500
382 +(% style="color:blue" %)**1**(%%)  -111dBm
474 474  
475 -923.3 - SF12BW500(RX2 downlink only)
384 +(% style="color:blue" %)**2...30**(%%) -109dBm... -53dBm
476 476  
386 +(% style="color:blue" %)**31**  (%%) -51dBm or greater
477 477  
388 +(% style="color:blue" %)**99**   (%%) Not known or not detectable
478 478  
479 -=== 2.7.3 CN470-510 (CN470) ===
480 480  
481 -Used in China, Default use CHE=1
482 482  
483 -(% style="color:#037691" %)**Uplink:**
392 +=== 2.4.5  Soil Moisture ===
484 484  
485 -486.3 - SF7BW125 to SF12BW125
394 +(((
395 +Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil.
396 +)))
486 486  
487 -486.5 - SF7BW125 to SF12BW125
398 +(((
399 +For example, if the data you get from the register is **__0x05 0xDC__**, the moisture content in the soil is
400 +)))
488 488  
489 -486.7 - SF7BW125 to SF12BW125
402 +(((
403 +
404 +)))
490 490  
491 -486.9 - SF7BW125 to SF12BW125
406 +(((
407 +(% style="color:#4f81bd" %)**05DC(H) = 1500(D) /100 = 15%.**
408 +)))
492 492  
493 -487.1 - SF7BW125 to SF12BW125
494 494  
495 -487.3 - SF7BW125 to SF12BW125
496 496  
497 -487.5 - SF7BW125 to SF12BW125
412 +=== 2.4. Soil Temperature ===
498 498  
499 -487.7 - SF7BW125 to SF12BW125
414 +(((
415 + Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is __**0x09 0xEC**__, the temperature content in the soil is
416 +)))
500 500  
418 +(((
419 +**Example**:
420 +)))
501 501  
502 -(% style="color:#037691" %)**Downlink:**
422 +(((
423 +If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/100 = 2.61 °C
424 +)))
503 503  
504 -506.7 - SF7BW125 to SF12BW125
426 +(((
427 +If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C
428 +)))
505 505  
506 -506.9 - SF7BW125 to SF12BW125
507 507  
508 -507.1 - SF7BW125 to SF12BW125
509 509  
510 -507.3 - SF7BW125 to SF12BW125
432 +=== 2.4.7  Soil Conductivity (EC) ===
511 511  
512 -507.5 - SF7BW125 to SF12BW125
434 +(((
435 +Obtain (% style="color:#4f81bd" %)**__soluble salt concentration__**(%%) in soil or (% style="color:#4f81bd" %)**__soluble ion concentration in liquid fertilizer__**(%%) or (% style="color:#4f81bd" %)**__planting medium__**(%%). The value range of the register is 0 - 20000(Decimal)( Can be greater than 20000).
436 +)))
513 513  
514 -507.7 - SF7BW125 to SF12BW125
438 +(((
439 +For example, if the data you get from the register is __**0x00 0xC8**__, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm.
440 +)))
515 515  
516 -507.9 - SF7BW125 to SF12BW125
442 +(((
443 +Generally, the EC value of irrigation water is less than 800uS / cm.
444 +)))
517 517  
518 -508.1 - SF7BW125 to SF12BW125
446 +(((
447 +
448 +)))
519 519  
520 -505.3 - SF12BW125 (RX2 downlink only)
450 +(((
451 +
452 +)))
521 521  
454 +=== 2.4.8  Digital Interrupt ===
522 522  
456 +Digital Interrupt refers to pin (% style="color:blue" %)**GPIO_EXTI**(%%), and there are different trigger methods. When there is a trigger, the NSE01 will send a packet to the server.
523 523  
524 -=== 2.7.4 AU915-928(AU915) ===
458 +The command is:
525 525  
526 -Default use CHE=2
460 +(% style="color:blue" %)**AT+INTMOD=3 **(%%) ~/~/(more info about INMOD please refer [[**AT Command Manual**>>url:https://www.dragino.com/downloads/downloads/NB-IoT/NBSN95/DRAGINO_NBSN95-NB_AT%20Commands_v1.1.0.pdf]])**.**
527 527  
528 -(% style="color:#037691" %)**Uplink:**
529 529  
530 -916.8 - SF7BW125 to SF12BW125
463 +The lower four bits of this data field shows if this packet is generated by interrupt or not. Click here for the hardware and software set up.
531 531  
532 -917.0 - SF7BW125 to SF12BW125
533 533  
534 -917.2 - SF7BW125 to SF12BW125
466 +Example:
535 535  
536 -917.4 - SF7BW125 to SF12BW125
468 +0x(00): Normal uplink packet.
537 537  
538 -917.6 - SF7BW125 to SF12BW125
470 +0x(01): Interrupt Uplink Packet.
539 539  
540 -917.8 - SF7BW125 to SF12BW125
541 541  
542 -918.0 - SF7BW125 to SF12BW125
543 543  
544 -918.2 - SF7BW125 to SF12BW125
474 +=== 2.4.9  ​+5V Output ===
545 545  
476 +NSE01 will enable +5V output before all sampling and disable the +5v after all sampling. 
546 546  
547 -(% style="color:#037691" %)**Downlink:**
548 548  
549 -923.3 - SF7BW500 to SF12BW500
479 +The 5V output time can be controlled by AT Command.
550 550  
551 -923.9 - SF7BW500 to SF12BW500
481 +(% style="color:blue" %)**AT+5VT=1000**
552 552  
553 -924.5 - SF7BW500 to SF12BW500
483 +Means set 5V valid time to have 1000ms. So the real 5V output will actually have 1000ms + sampling time for other sensors.
554 554  
555 -925.1 - SF7BW500 to SF12BW500
556 556  
557 -925.7 - SF7BW500 to SF12BW500
558 558  
559 -926.3 - SF7BW500 to SF12BW500
487 +== 2.5  Downlink Payload ==
560 560  
561 -926.9 - SF7BW500 to SF12BW500
489 +By default, NSE01 prints the downlink payload to console port.
562 562  
563 -927.5 - SF7BW500 to SF12BW500
491 +[[image:image-20220708133731-5.png]]
564 564  
565 -923.3 - SF12BW500(RX2 downlink only)
566 566  
494 +(((
495 +(% style="color:blue" %)**Examples:**
496 +)))
567 567  
498 +(((
499 +
500 +)))
568 568  
569 -=== 2.7.5 AS920-923 & AS923-925 (AS923) ===
502 +* (((
503 +(% style="color:blue" %)**Set TDC**
504 +)))
570 570  
571 -(% style="color:#037691" %)**Default Uplink channel:**
506 +(((
507 +If the payload=0100003C, it means set the END Node's TDC to 0x00003C=60(S), while type code is 01.
508 +)))
572 572  
573 -923.2 - SF7BW125 to SF10BW125
510 +(((
511 +Payload:    01 00 00 1E    TDC=30S
512 +)))
574 574  
575 -923.4 - SF7BW125 to SF10BW125
514 +(((
515 +Payload:    01 00 00 3C    TDC=60S
516 +)))
576 576  
518 +(((
519 +
520 +)))
577 577  
578 -(% style="color:#037691" %)**Additional Uplink Channel**:
522 +* (((
523 +(% style="color:blue" %)**Reset**
524 +)))
579 579  
580 -(OTAA mode, channel added by JoinAccept message)
526 +(((
527 +If payload = 0x04FF, it will reset the NSE01
528 +)))
581 581  
582 -(% style="color:#037691" %)**AS920~~AS923 for Japan, Malaysia, Singapore**:
583 583  
584 -922.2 - SF7BW125 to SF10BW125
531 +* (% style="color:blue" %)**INTMOD**
585 585  
586 -922.4 - SF7BW125 to SF10BW125
533 +Downlink Payload: 06000003, Set AT+INTMOD=3
587 587  
588 -922.6 - SF7BW125 to SF10BW125
589 589  
590 -922.8 - SF7BW125 to SF10BW125
591 591  
592 -923.0 - SF7BW125 to SF10BW125
537 +== 2. ​LED Indicator ==
593 593  
594 -922.0 - SF7BW125 to SF10BW125
539 +(((
540 +The NSE01 has an internal LED which is to show the status of different state.
595 595  
596 596  
597 -(% style="color:#037691" %)**AS923 ~~ AS925 for Brunei, Cambodia, Hong Kong, Indonesia, Laos, Taiwan, Thailand, Vietnam**:
543 +* When power on, NSE01 will detect if sensor probe is connected, if probe detected, LED will blink four times. (no blinks in this step is no probe)
544 +* Then the LED will be on for 1 second means device is boot normally.
545 +* After NSE01 join NB-IoT network. The LED will be ON for 3 seconds.
546 +* For each uplink probe, LED will be on for 500ms.
547 +)))
598 598  
599 -923.6 - SF7BW125 to SF10BW125
600 600  
601 -923.8 - SF7BW125 to SF10BW125
602 602  
603 -924.0 - SF7BW125 to SF10BW125
604 604  
605 -924.2 - SF7BW125 to SF10BW125
552 +== 2.7  Installation in Soil ==
606 606  
607 -924.4 - SF7BW125 to SF10BW125
554 +__**Measurement the soil surface**__
608 608  
609 -924.6 - SF7BW125 to SF10BW125
556 +Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting. [[https:~~/~~/img.alicdn.com/imgextra/i3/2005165265/O1CN010rj9Oh1olPsQxrdUK_!!2005165265.jpg>>url:https://img.alicdn.com/imgextra/i3/2005165265/O1CN010rj9Oh1olPsQxrdUK_!!2005165265.jpg]]
610 610  
558 +[[image:1657259653666-883.png]] ​
611 611  
612 -(% style="color:#037691" %)** Downlink:**
613 613  
614 -Uplink channels 1-8 (RX1)
561 +(((
562 +
615 615  
616 -923.2 - SF10BW125 (RX2)
564 +(((
565 +Dig a hole with diameter > 20CM.
566 +)))
617 617  
568 +(((
569 +Horizontal insert the probe to the soil and fill the hole for long term measurement.
570 +)))
571 +)))
618 618  
573 +[[image:1654506665940-119.png]]
619 619  
620 -=== 2.7.6 KR920-923 (KR920) ===
575 +(((
576 +
577 +)))
621 621  
622 -Default channel:
623 623  
624 -922.1 - SF7BW125 to SF12BW125
580 +== 2. Firmware Change Log ==
625 625  
626 -922.3 - SF7BW125 to SF12BW125
627 627  
628 -922.5 - SF7BW125 to SF12BW125
583 +Download URL & Firmware Change log
629 629  
585 +[[www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/Firmware/]]
630 630  
631 -(% style="color:#037691" %)**Uplink: (OTAA mode, channel added by JoinAccept message)**
632 632  
633 -922.1 - SF7BW125 to SF12BW125
588 +Upgrade Instruction: [[Upgrade_Firmware>>||anchor="H5.1200BHowtoUpgradeFirmware"]]
634 634  
635 -922.3 - SF7BW125 to SF12BW125
636 636  
637 -922.5 - SF7BW125 to SF12BW125
638 638  
639 -922.7 - SF7BW125 to SF12BW125
592 +== 2. Battery Analysis ==
640 640  
641 -922.9 - SF7BW125 to SF12BW125
594 +=== 2.9.1  ​Battery Type ===
642 642  
643 -923.1 - SF7BW125 to SF12BW125
644 644  
645 -923.3 - SF7BW125 to SF12BW125
597 +The NSE01 battery is a combination of an 8500mAh Li/SOCI2 Battery and a Super Capacitor. The battery is none-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter.
646 646  
647 647  
648 -(% style="color:#037691" %)**Downlink:**
600 +The battery is designed to last for several years depends on the actually use environment and update interval. 
649 649  
650 -Uplink channels 1-7(RX1)
651 651  
652 -921.9 - SF12BW125 (RX2 downlink only; SF12BW125 might be changed to SF9BW125)
603 +The battery related documents as below:
653 653  
605 +* [[Battery Dimension>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]
606 +* [[Lithium-Thionyl Chloride Battery datasheet>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]
607 +* [[Lithium-ion Battery-Capacitor datasheet>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]
654 654  
655 -
656 -=== 2.7.7 IN865-867 (IN865) ===
657 -
658 -(% style="color:#037691" %)** Uplink:**
659 -
660 -865.0625 - SF7BW125 to SF12BW125
661 -
662 -865.4025 - SF7BW125 to SF12BW125
663 -
664 -865.9850 - SF7BW125 to SF12BW125
665 -
666 -
667 -(% style="color:#037691" %) **Downlink:**
668 -
669 -Uplink channels 1-3 (RX1)
670 -
671 -866.550 - SF10BW125 (RX2)
672 -
673 -
674 -
675 -
676 -== 2.8 LED Indicator ==
677 -
678 -The LSE01 has an internal LED which is to show the status of different state.
679 -
680 -* Blink once when device power on.
681 -* Solid ON for 5 seconds once device successful Join the network.
682 -* Blink once when device transmit a packet.
683 -
684 -== 2.9 Installation in Soil ==
685 -
686 -**Measurement the soil surface**
687 -
688 -
689 -[[image:1654506634463-199.png]] ​
690 -
691 691  (((
692 -(((
693 -Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting.
610 +[[image:image-20220708140453-6.png]]
694 694  )))
695 -)))
696 696  
697 697  
698 -[[image:1654506665940-119.png]]
699 699  
700 -(((
701 -Dig a hole with diameter > 20CM.
702 -)))
615 +=== 2.9.2  Power consumption Analyze ===
703 703  
704 704  (((
705 -Horizontal insert the probe to the soil and fill the hole for long term measurement.
618 +Dragino battery powered product are all runs in Low Power mode. We have an update battery calculator which base on the measurement of the real device. User can use this calculator to check the battery life and calculate the battery life if want to use different transmit interval.
706 706  )))
707 707  
708 708  
709 -== 2.10 ​Firmware Change Log ==
710 -
711 711  (((
712 -**Firmware download link:**
623 +Instruction to use as below:
713 713  )))
714 714  
715 715  (((
716 -[[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/]]
627 +(% style="color:blue" %)**Step 1:  **(%%)Downlink the up-to-date DRAGINO_Battery_Life_Prediction_Table.xlsx from: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/]]
717 717  )))
718 718  
719 -(((
720 -
721 -)))
722 722  
723 723  (((
724 -**Firmware Upgrade Method: **[[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome]]
632 +(% style="color:blue" %)**Step 2: **(%%) Open it and choose
725 725  )))
726 726  
727 -(((
728 -
635 +* (((
636 +Product Model
729 729  )))
730 -
731 -(((
732 -**V1.0.**
638 +* (((
639 +Uplink Interval
733 733  )))
641 +* (((
642 +Working Mode
643 +)))
734 734  
735 735  (((
736 -Release
646 +And the Life expectation in difference case will be shown on the right.
737 737  )))
738 738  
649 +[[image:image-20220708141352-7.jpeg]]
739 739  
740 -== 2.11 ​Battery Analysis ==
741 741  
742 -=== 2.11.1 ​Battery Type ===
743 743  
744 -(((
745 -The LSE01 battery is a combination of a 4000mAh Li/SOCI2 Battery and a Super Capacitor. The battery is non-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter.
746 -)))
653 +=== 2.9.3  ​Battery Note ===
747 747  
748 748  (((
749 -The battery is designed to last for more than 5 years for the LSN50.
656 +The Li-SICO battery is designed for small current / long period application. It is not good to use a high current, short period transmit method. The recommended minimum period for use of this battery is 5 minutes. If you use a shorter period time to transmit LoRa, then the battery life may be decreased.
750 750  )))
751 751  
752 -(((
753 -(((
754 -The battery-related documents are as below:
755 -)))
756 -)))
757 757  
758 -* (((
759 -[[Battery Dimension>>url:http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/&file=LSN50-Battery-Dimension.pdf]],
760 -)))
761 -* (((
762 -[[Lithium-Thionyl Chloride Battery  datasheet>>url:https://www.dragino.com/downloads/downloads/datasheet/Battery/ER26500/ER26500_Datasheet-EN.pdf]],
763 -)))
764 -* (((
765 -[[Lithium-ion Battery-Capacitor datasheet>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC_1520_datasheet.jpg]], [[Tech Spec>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC1520%20Technical%20Specification20171123.pdf]]
766 -)))
767 767  
768 - [[image:image-20220610172436-1.png]]
661 +=== 2.9.4  Replace the battery ===
769 769  
770 -
771 -
772 -=== 2.11.2 ​Battery Note ===
773 -
774 774  (((
775 -The Li-SICO battery is designed for small current / long period application. It is not good to use a high current, short period transmit method. The recommended minimum period for use of this battery is 5 minutes. If you use a shorter period time to transmit LoRa, then the battery life may be decreased.
664 +The default battery pack of NSE01 includes a ER26500 plus super capacitor. If user can't find this pack locally, they can find ER26500 or equivalence without the SPC1520 capacitor, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes).
776 776  )))
777 777  
778 778  
779 779  
780 -=== 2.11.3 Replace the battery ===
669 += 3. ​ Access NB-IoT Module =
781 781  
782 782  (((
783 -If Battery is lower than 2.7v, user should replace the battery of LSE01.
672 +Users can directly access the AT command set of the NB-IoT module.
784 784  )))
785 785  
786 786  (((
787 -You can change the battery in the LSE01.The type of battery is not limited as long as the output is between 3v to 3.6v. On the main board, there is a diode (D1) between the battery and the main circuit. If you need to use a battery with less than 3.3v, please remove the D1 and shortcut the two pads of it so there won’t be voltage drop between battery and main board.
676 +The AT Command set can refer the BC35-G NB-IoT Module AT Command: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=datasheet/other_vendors/BC35-G/>>url:https://www.dragino.com/downloads/index.php?dir=datasheet/other_vendors/BC35-G/]] 
788 788  )))
789 789  
790 -(((
791 -The default battery pack of LSE01 includes a ER18505 plus super capacitor. If user can’t find this pack locally, they can find ER18505 or equivalence, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes)
792 -)))
679 +[[image:1657261278785-153.png]]
793 793  
794 794  
795 795  
796 -= 3. Using the AT Commands =
683 += 4.  Using the AT Commands =
797 797  
798 -== 3.1 Access AT Commands ==
685 +== 4.1  Access AT Commands ==
799 799  
687 +See this link for detail: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/]]
800 800  
801 -LSE01 supports AT Command set in the stock firmware. You can use a USB to TTL adapter to connect to LSE01 for using AT command, as below.
802 802  
803 -[[image:1654501986557-872.png||height="391" width="800"]]
690 +AT+<CMD>?  : Help on <CMD>
804 804  
692 +AT+<CMD>         : Run <CMD>
805 805  
806 -Or if you have below board, use below connection:
694 +AT+<CMD>=<value> : Set the value
807 807  
696 +AT+<CMD>=?  : Get the value
808 808  
809 -[[image:1654502005655-729.png||height="503" width="801"]]
810 810  
811 -
812 -
813 -In the PC, you need to set the serial baud rate to (% style="color:green" %)**9600**(%%) to access the serial console for LSE01. LSE01 will output system info once power on as below:
814 -
815 -
816 - [[image:1654502050864-459.png||height="564" width="806"]]
817 -
818 -
819 -Below are the available commands, a more detailed AT Command manual can be found at [[AT Command Manual>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/]]: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/]]
820 -
821 -
822 -(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>? **(%%) : Help on <CMD>
823 -
824 -(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD> **(%%) : Run <CMD>
825 -
826 -(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>=<value>**(%%) : Set the value
827 -
828 -(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>=?**(%%)  : Get the value
829 -
830 -
831 831  (% style="color:#037691" %)**General Commands**(%%)      
832 832  
833 -(% style="background-color:#dcdcdc" %)**AT**(%%)  : Attention       
701 +AT  : Attention       
834 834  
835 -(% style="background-color:#dcdcdc" %)**AT?**(%%)  : Short Help     
703 +AT?  : Short Help     
836 836  
837 -(% style="background-color:#dcdcdc" %)**ATZ**(%%)  : MCU Reset    
705 +ATZ  : MCU Reset    
838 838  
839 -(% style="background-color:#dcdcdc" %)**AT+TDC**(%%)  : Application Data Transmission Interval 
707 +AT+TDC  : Application Data Transmission Interval
840 840  
709 +AT+CFG  : Print all configurations
841 841  
842 -(% style="color:#037691" %)**Keys, IDs and EUIs management**
711 +AT+CFGMOD           : Working mode selection
843 843  
844 -(% style="background-color:#dcdcdc" %)**AT+APPEUI**(%%)              : Application EUI      
713 +AT+INTMOD            : Set the trigger interrupt mode
845 845  
846 -(% style="background-color:#dcdcdc" %)**AT+APPKEY**(%%)              : Application Key     
715 +AT+5VT  : Set extend the time of 5V power  
847 847  
848 -(% style="background-color:#dcdcdc" %)**AT+APPSKEY**(%%)            : Application Session Key
717 +AT+PRO  : Choose agreement
849 849  
850 -(% style="background-color:#dcdcdc" %)**AT+DADDR**(%%)              : Device Address     
719 +AT+WEIGRE  : Get weight or set weight to 0
851 851  
852 -(% style="background-color:#dcdcdc" %)**AT+DEUI**(%%)                   : Device EUI     
721 +AT+WEIGAP  : Get or Set the GapValue of weight
853 853  
854 -(% style="background-color:#dcdcdc" %)**AT+NWKID**(%%)               : Network ID (You can enter this command change only after successful network connection
723 +AT+RXDL  : Extend the sending and receiving time
855 855  
856 -(% style="background-color:#dcdcdc" %)**AT+NWKSKEY**(%%)          : Network Session Key Joining and sending date on LoRa network  
725 +AT+CNTFAC  : Get or set counting parameters
857 857  
858 -(% style="background-color:#dcdcdc" %)**AT+CFM**(%%)  : Confirm Mode       
727 +AT+SERVADDR  : Server Address
859 859  
860 -(% style="background-color:#dcdcdc" %)**AT+CFS**(%%)                     : Confirm Status       
861 861  
862 -(% style="background-color:#dcdcdc" %)**AT+JOIN**(%%)  : Join LoRa? Network       
730 +(% style="color:#037691" %)**COAP Management**      
863 863  
864 -(% style="background-color:#dcdcdc" %)**AT+NJM**(%%)  : LoRa? Network Join Mode    
732 +AT+URI            : Resource parameters
865 865  
866 -(% style="background-color:#dcdcdc" %)**AT+NJS**(%%)                     : LoRa? Network Join Status    
867 867  
868 -(% style="background-color:#dcdcdc" %)**AT+RECV**(%%)                  : Print Last Received Data in Raw Format
735 +(% style="color:#037691" %)**UDP Management**
869 869  
870 -(% style="background-color:#dcdcdc" %)**AT+RECVB**(%%)                : Print Last Received Data in Binary Format      
737 +AT+CFM          : Upload confirmation mode (only valid for UDP)
871 871  
872 -(% style="background-color:#dcdcdc" %)**AT+SEND**(%%)                  : Send Text Data      
873 873  
874 -(% style="background-color:#dcdcdc" %)**AT+SENB**(%%)                  : Send Hexadecimal Data
740 +(% style="color:#037691" %)**MQTT Management**
875 875  
742 +AT+CLIENT               : Get or Set MQTT client
876 876  
877 -(% style="color:#037691" %)**LoRa Network Management**
744 +AT+UNAME  : Get or Set MQTT Username
878 878  
879 -(% style="background-color:#dcdcdc" %)**AT+ADR**(%%)          : Adaptive Rate
746 +AT+PWD                  : Get or Set MQTT password
880 880  
881 -(% style="background-color:#dcdcdc" %)**AT+CLASS**(%%)  : LoRa Class(Currently only support class A
748 +AT+PUBTOPI : Get or Set MQTT publish topic
882 882  
883 -(% style="background-color:#dcdcdc" %)**AT+DCS**(%%)  : Duty Cycle Settin
750 +AT+SUBTOPIC  : Get or Set MQTT subscription topic
884 884  
885 -(% style="background-color:#dcdcdc" %)**AT+DR**(%%)  : Data Rate (Can Only be Modified after ADR=0)     
886 886  
887 -(% style="background-color:#dcdcdc" %)**AT+FCD**(%%)  : Frame Counter Downlink       
753 +(% style="color:#037691" %)**Information**          
888 888  
889 -(% style="background-color:#dcdcdc" %)**AT+FCU**(%%)  : Frame Counter Uplink   
755 +AT+FDR  : Factory Data Reset
890 890  
891 -(% style="background-color:#dcdcdc" %)**AT+JN1DL**(%%)  : Join Accept Delay1
757 +AT+PWOR : Serial Access Password
892 892  
893 -(% style="background-color:#dcdcdc" %)**AT+JN2DL**(%%)  : Join Accept Delay2
894 894  
895 -(% style="background-color:#dcdcdc" %)**AT+PNM**(%%)  : Public Network Mode   
896 896  
897 -(% style="background-color:#dcdcdc" %)**AT+RX1DL**(%%)  : Receive Delay1      
761 += ​5.  FAQ =
898 898  
899 -(% style="background-color:#dcdcdc" %)**AT+RX2DL**(%%)  : Receive Delay2      
763 +== 5.1 How to Upgrade Firmware ==
900 900  
901 -(% style="background-color:#dcdcdc" %)**AT+RX2DR**(%%)  : Rx2 Window Data Rate 
902 902  
903 -(% style="background-color:#dcdcdc" %)**AT+RX2FQ**(%%)  : Rx2 Window Frequency
904 -
905 -(% style="background-color:#dcdcdc" %)**AT+TXP**(%%)  : Transmit Power
906 -
907 -(% style="background-color:#dcdcdc" %)**AT+ MOD**(%%)  : Set work mode
908 -
909 -
910 -(% style="color:#037691" %)**Information** 
911 -
912 -(% style="background-color:#dcdcdc" %)**AT+RSSI**(%%)           : RSSI of the Last Received Packet   
913 -
914 -(% style="background-color:#dcdcdc" %)**AT+SNR**(%%)           : SNR of the Last Received Packet   
915 -
916 -(% style="background-color:#dcdcdc" %)**AT+VER**(%%)           : Image Version and Frequency Band       
917 -
918 -(% style="background-color:#dcdcdc" %)**AT+FDR**(%%)           : Factory Data Reset
919 -
920 -(% style="background-color:#dcdcdc" %)**AT+PORT**(%%)  : Application Port    
921 -
922 -(% style="background-color:#dcdcdc" %)**AT+CHS**(%%)  : Get or Set Frequency (Unit: Hz) for Single Channel Mode
923 -
924 - (% style="background-color:#dcdcdc" %)**AT+CHE**(%%)  : Get or Set eight channels mode, Only for US915, AU915, CN470
925 -
926 -
927 -= ​4. FAQ =
928 -
929 -== 4.1 ​How to change the LoRa Frequency Bands/Region? ==
930 -
931 931  (((
932 -You can follow the instructions for [[how to upgrade image>>||anchor="H2.10200BFirmwareChangeLog"]].
933 -When downloading the images, choose the required image file for download. ​
767 +User can upgrade the firmware for 1) bug fix, 2) new feature release.
934 934  )))
935 935  
936 936  (((
937 -
771 +Please see this link for how to upgrade:  [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H2.HardwareUpgradeMethodSupportList>>http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H2.HardwareUpgradeMethodSupportList]]
938 938  )))
939 939  
940 940  (((
941 -How to set up LSE01 to work in 8 channel mode By default, the frequency bands US915, AU915, CN470 work in 72 frequencies. Many gateways are 8 channel gateways, and in this case, the OTAA join time and uplink schedule is long and unpredictable while the end node is hopping in 72 frequencies.
775 +(% style="color:red" %)Notice, NSE01 and LSE01 share the same mother board. They use the same connection and method to update.
942 942  )))
943 943  
944 -(((
945 -
946 -)))
947 947  
948 -(((
949 -You can configure the end node to work in 8 channel mode by using the AT+CHE command. The 500kHz channels are always included for OTAA.
950 -)))
951 951  
952 -(((
953 -
954 -)))
780 += 6.  Trouble Shooting =
955 955  
956 -(((
957 -For example, in **US915** band, the frequency table is as below. By default, the end node will use all channels (0~~71) for OTAA Join process. After the OTAA Join, the end node will use these all channels (0~~71) to send uplink packets.
958 -)))
782 +== 6.1  ​Connection problem when uploading firmware ==
959 959  
960 -[[image:image-20220606154726-3.png]]
961 961  
962 -
963 -When you use the TTN network, the US915 frequency bands use are:
964 -
965 -* 903.9 - SF7BW125 to SF10BW125
966 -* 904.1 - SF7BW125 to SF10BW125
967 -* 904.3 - SF7BW125 to SF10BW125
968 -* 904.5 - SF7BW125 to SF10BW125
969 -* 904.7 - SF7BW125 to SF10BW125
970 -* 904.9 - SF7BW125 to SF10BW125
971 -* 905.1 - SF7BW125 to SF10BW125
972 -* 905.3 - SF7BW125 to SF10BW125
973 -* 904.6 - SF8BW500
974 -
785 +(% class="wikigeneratedid" %)
975 975  (((
976 -Because the end node is now hopping in 72 frequency, it makes it difficult for the devices to Join the TTN network and uplink data. To solve this issue, you can access the device via the AT commands and run:
787 +(% style="font-size:14px" %)**Please see: **(%%)[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H3.3Troubleshooting>>http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H3.3Troubleshooting||style="background-color: rgb(255, 255, 255); font-size: 14px;"]]
977 977  )))
978 978  
979 -(% class="box infomessage" %)
980 -(((
981 -**AT+CHE=2**
982 -)))
983 983  
984 -(% class="box infomessage" %)
985 -(((
986 -**ATZ**
987 -)))
988 988  
989 -(((
990 -to set the end node to work in 8 channel mode. The device will work in Channel 8-15 & 64-71 for OTAA, and channel 8-15 for Uplink.
991 -)))
792 +== 6.2  AT Command input doesn't work ==
992 992  
993 993  (((
994 -
795 +In the case if user can see the console output but can't type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn't send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.
995 995  )))
996 996  
997 -(((
998 -The **AU915** band is similar. Below are the AU915 Uplink Channels.
999 -)))
1000 1000  
1001 -[[image:image-20220606154825-4.png]]
1002 1002  
800 += 7. ​ Order Info =
1003 1003  
1004 1004  
1005 -= 5. Trouble Shooting =
803 +Part Number**:** (% style="color:#4f81bd" %)**NSE01**
1006 1006  
1007 -== 5.1 ​Why I can’t join TTN in US915 / AU915 bands? ==
1008 1008  
1009 -It is due to channel mapping. Please see the [[Eight Channel Mode>>doc:Main.LoRaWAN Communication Debug.WebHome||anchor="H2.NoticeofUS9152FCN4702FAU915Frequencyband"]] section above for details.
1010 -
1011 -
1012 -== 5.2 AT Command input doesn’t work ==
1013 -
1014 -(((
1015 -In the case if user can see the console output but can’t type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn’t send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.
1016 -)))
1017 -
1018 -
1019 -== 5.3 Device rejoin in at the second uplink packet ==
1020 -
1021 -(% style="color:#4f81bd" %)**Issue describe as below:**
1022 -
1023 -[[image:1654500909990-784.png]]
1024 -
1025 -
1026 -(% style="color:#4f81bd" %)**Cause for this issue:**
1027 -
1028 -(((
1029 -The fuse on LSE01 is not large enough, some of the soil probe require large current up to 5v 800mA, in a short pulse. When this happen, it cause the device reboot so user see rejoin.
1030 -)))
1031 -
1032 -
1033 -(% style="color:#4f81bd" %)**Solution: **
1034 -
1035 -All new shipped LSE01 after 2020-May-30 will have this to fix. For the customer who see this issue, please bypass the fuse as below:
1036 -
1037 -[[image:1654500929571-736.png||height="458" width="832"]]
1038 -
1039 -
1040 -= 6. ​Order Info =
1041 -
1042 -
1043 -Part Number**:** (% style="color:#4f81bd" %)**LSE01-XX-YY**
1044 -
1045 -
1046 -(% style="color:#4f81bd" %)**XX**(%%)**:** The default frequency band
1047 -
1048 -* (% style="color:red" %)**AS923**(%%): LoRaWAN AS923 band
1049 -* (% style="color:red" %)**AU915**(%%): LoRaWAN AU915 band
1050 -* (% style="color:red" %)**EU433**(%%): LoRaWAN EU433 band
1051 -* (% style="color:red" %)**EU868**(%%): LoRaWAN EU868 band
1052 -* (% style="color:red" %)**KR920**(%%): LoRaWAN KR920 band
1053 -* (% style="color:red" %)**US915**(%%): LoRaWAN US915 band
1054 -* (% style="color:red" %)**IN865**(%%):  LoRaWAN IN865 band
1055 -* (% style="color:red" %)**CN470**(%%): LoRaWAN CN470 band
1056 -
1057 -(% style="color:#4f81bd" %)**YY**(%%)**: **Battery Option
1058 -
1059 -* (% style="color:red" %)**4**(%%): 4000mAh battery
1060 -* (% style="color:red" %)**8**(%%): 8500mAh battery
1061 -
1062 1062  (% class="wikigeneratedid" %)
1063 1063  (((
1064 1064  
1065 1065  )))
1066 1066  
1067 -= 7. Packing Info =
811 += 8.  Packing Info =
1068 1068  
1069 1069  (((
1070 1070  
1071 1071  
1072 1072  (% style="color:#037691" %)**Package Includes**:
1073 -)))
1074 1074  
1075 -* (((
1076 -LSE01 LoRaWAN Soil Moisture & EC Sensor x 1
818 +
819 +* NSE01 NB-IoT Soil Moisture & EC Sensor x 1
820 +* External antenna x 1
1077 1077  )))
1078 1078  
1079 1079  (((
... ... @@ -1080,25 +1080,20 @@
1080 1080  
1081 1081  
1082 1082  (% style="color:#037691" %)**Dimension and weight**:
1083 -)))
1084 1084  
1085 -* (((
1086 -Device Size: cm
828 +
829 +* Size: 195 x 125 x 55 mm
830 +* Weight:   420g
1087 1087  )))
1088 -* (((
1089 -Device Weight: g
1090 -)))
1091 -* (((
1092 -Package Size / pcs : cm
1093 -)))
1094 -* (((
1095 -Weight / pcs : g
1096 1096  
833 +(((
1097 1097  
835 +
836 +
837 +
1098 1098  )))
1099 1099  
1100 -= 8. Support =
840 += 9.  Support =
1101 1101  
1102 1102  * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
1103 1103  * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.com]]
1104 -
1657245163077-232.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +81.0 KB
Content
1657246476176-652.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +492.6 KB
Content
1657249419225-449.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +81.0 KB
Content
1657249468462-536.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +483.6 KB
Content
1657249793983-486.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +85.8 KB
Content
1657249831934-534.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +72.5 KB
Content
1657249864775-321.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +87.0 KB
Content
1657249930215-289.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +77.3 KB
Content
1657249978444-674.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +139.5 KB
Content
1657249990869-686.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +96.9 KB
Content
1657250217799-140.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +98.7 KB
Content
1657250255956-604.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +99.0 KB
Content
1657259653666-883.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +344.4 KB
Content
1657260785982-288.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +138.2 KB
Content
1657261119050-993.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +126.1 KB
Content
1657261278785-153.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +126.1 KB
Content
image-20220708101224-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +22.2 KB
Content
image-20220708101605-2.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +87.5 KB
Content
image-20220708110657-3.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +251.7 KB
Content
image-20220708111918-4.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +38.8 KB
Content
image-20220708133731-5.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +8.7 KB
Content
image-20220708140453-6.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +132.7 KB
Content
image-20220708141352-7.jpeg
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +102.7 KB
Content