Last modified by Mengting Qiu on 2024/04/02 16:44

From version 35.3
edited by Xiaoling
on 2022/06/10 17:25
Change comment: There is no comment for this version
To version 62.2
edited by Xiaoling
on 2022/07/08 14:14
Change comment: There is no comment for this version

Summary

Details

Page properties
Title
... ... @@ -1,1 +1,1 @@
1 -LSE01-LoRaWAN Soil Moisture & EC Sensor User Manual
1 +NSE01 - NB-IoT Soil Moisture & EC Sensor User Manual
Content
... ... @@ -3,9 +3,7 @@
3 3  
4 4  
5 5  
6 -**Contents:**
7 7  
8 -{{toc/}}
9 9  
10 10  
11 11  
... ... @@ -12,62 +12,81 @@
12 12  
13 13  
14 14  
15 -= 1. Introduction =
16 16  
17 -== 1.1 ​What is LoRaWAN Soil Moisture & EC Sensor ==
14 +**Table of Contents:**
18 18  
19 -(((
20 -The Dragino LSE01 is a (% style="color:#4f81bd" %)**LoRaWAN Soil Moisture & EC Sensor**(%%) for IoT of Agriculture. It is designed to measure the soil moisture of saline-alkali soil and loamy soil. The soil sensor uses FDR method to calculate the soil moisture with the compensation from soil temperature and conductivity. It also has been calibrated in factory for Mineral soil type.
21 -)))
22 22  
23 -(((
24 -It detects (% style="color:#4f81bd" %)**Soil Moisture**(%%), (% style="color:#4f81bd" %)**Soil Temperature**(%%) and (% style="color:#4f81bd" %)**Soil Conductivity**(%%), and uploads the value via wireless to LoRaWAN IoT Server.
25 -)))
26 26  
27 -(((
28 -The LoRa wireless technology used in LES01 allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption.
29 -)))
30 30  
31 -(((
32 -LES01 is powered by (% style="color:#4f81bd" %)**4000mA or 8500mAh Li-SOCI2 battery**(%%), It is designed for long term use up to 10 years.
33 -)))
34 34  
20 +
21 += 1.  Introduction =
22 +
23 +== 1.1 ​ What is LoRaWAN Soil Moisture & EC Sensor ==
24 +
35 35  (((
36 -Each LES01 is pre-load with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect after power on.
37 -)))
26 +
38 38  
28 +Dragino NSE01 is an (% style="color:blue" %)**NB-IOT soil moisture & EC sensor**(%%) for agricultural IoT. Used to measure the soil moisture of saline-alkali soil and loam. The soil sensor uses the FDR method to calculate soil moisture and compensates it with soil temperature and electrical conductivity. It has also been calibrated for mineral soil types at the factory.
39 39  
30 +It can detect (% style="color:blue" %)**Soil Moisture, Soil Temperature and Soil Conductivity**(%%), and upload its value to the server wirelessly.
31 +
32 +The wireless technology used in NSE01 allows the device to send data at a low data rate and reach ultra-long distances, providing ultra-long-distance spread spectrum Communication.
33 +
34 +NSE01 are powered by (% style="color:blue" %)**8500mAh Li-SOCI2**(%%) batteries, which can be used for up to 5 years.  
35 +
36 +
37 +)))
38 +
40 40  [[image:1654503236291-817.png]]
41 41  
42 42  
43 -[[image:1654503265560-120.png]]
42 +[[image:1657245163077-232.png]]
44 44  
45 45  
46 46  
47 47  == 1.2 ​Features ==
48 48  
49 -* LoRaWAN 1.0.3 Class A
50 -* Ultra low power consumption
48 +
49 +* NB-IoT Bands: B1/B3/B8/B5/B20/B28 @H-FDD
51 51  * Monitor Soil Moisture
52 52  * Monitor Soil Temperature
53 53  * Monitor Soil Conductivity
54 -* Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865
55 55  * AT Commands to change parameters
56 56  * Uplink on periodically
57 57  * Downlink to change configure
58 58  * IP66 Waterproof Enclosure
59 -* 4000mAh or 8500mAh Battery for long term use
57 +* Ultra-Low Power consumption
58 +* AT Commands to change parameters
59 +* Micro SIM card slot for NB-IoT SIM
60 +* 8500mAh Battery for long term use
60 60  
62 +== 1.3  Specification ==
61 61  
62 -== 1.3 Specification ==
63 63  
65 +(% style="color:#037691" %)**Common DC Characteristics:**
66 +
67 +* Supply Voltage: 2.1v ~~ 3.6v
68 +* Operating Temperature: -40 ~~ 85°C
69 +
70 +(% style="color:#037691" %)**NB-IoT Spec:**
71 +
72 +* - B1 @H-FDD: 2100MHz
73 +* - B3 @H-FDD: 1800MHz
74 +* - B8 @H-FDD: 900MHz
75 +* - B5 @H-FDD: 850MHz
76 +* - B20 @H-FDD: 800MHz
77 +* - B28 @H-FDD: 700MHz
78 +
79 +(% style="color:#037691" %)**Probe Specification:**
80 +
64 64  Measure Volume: Base on the centra pin of the probe, a cylinder with 7cm diameter and 10cm height.
65 65  
66 -[[image:image-20220606162220-5.png]]
83 +[[image:image-20220708101224-1.png]]
67 67  
68 68  
69 69  
70 -== ​1.4 Applications ==
87 +== ​1.4  Applications ==
71 71  
72 72  * Smart Agriculture
73 73  
... ... @@ -74,725 +74,551 @@
74 74  (% class="wikigeneratedid" id="H200B1.5FirmwareChangelog" %)
75 75  ​
76 76  
77 -== 1.5 Firmware Change log ==
94 +== 1.5  Pin Definitions ==
78 78  
79 79  
80 -**LSE01 v1.0 :**  Release
97 +[[image:1657246476176-652.png]]
81 81  
82 82  
83 83  
84 -= 2. Configure LSE01 to connect to LoRaWAN network =
101 += 2.  Use NSE01 to communicate with IoT Server =
85 85  
86 -== 2.1 How it works ==
103 +== 2.1  How it works ==
87 87  
105 +
88 88  (((
89 -The LSE01 is configured as LoRaWAN OTAA Class A mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and power on the LSE0150. It will automatically join the network via OTAA and start to send the sensor value
107 +The NSE01 is equipped with a NB-IoT module, the pre-loaded firmware in NSE01 will get environment data from sensors and send the value to local NB-IoT network via the NB-IoT module The NB-IoT network will forward this value to IoT server via the protocol defined by NSE01.
90 90  )))
91 91  
110 +
92 92  (((
93 -In case you can’t set the OTAA keys in the LoRaWAN OTAA server, and you have to use the keys from the server, you can [[use AT Commands >>||anchor="H3.200BUsingtheATCommands"]].
112 +The diagram below shows the working flow in default firmware of NSE01:
94 94  )))
95 95  
115 +[[image:image-20220708101605-2.png]]
96 96  
117 +(((
118 +
119 +)))
97 97  
98 -== 2.2 ​Quick guide to connect to LoRaWAN server (OTAA) ==
99 99  
100 -Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LG308>>url:http://www.dragino.com/products/lora/item/140-lg308.html]] as a LoRaWAN gateway in this example.
101 101  
123 +== 2.2 ​ Configure the NSE01 ==
102 102  
103 -[[image:1654503992078-669.png]]
104 104  
126 +=== 2.2.1 Test Requirement ===
105 105  
106 -The LG308 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
107 107  
129 +To use NSE01 in your city, make sure meet below requirements:
108 108  
109 -**Step 1**: Create a device in TTN with the OTAA keys from LSE01.
131 +* Your local operator has already distributed a NB-IoT Network there.
132 +* The local NB-IoT network used the band that NSE01 supports.
133 +* Your operator is able to distribute the data received in their NB-IoT network to your IoT server.
110 110  
111 -Each LSE01 is shipped with a sticker with the default device EUI as below:
112 -
113 -[[image:image-20220606163732-6.jpeg]]
114 -
115 -You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot:
116 -
117 -**Add APP EUI in the application**
118 -
119 -
120 -[[image:1654504596150-405.png]]
121 -
122 -
123 -
124 -**Add APP KEY and DEV EUI**
125 -
126 -[[image:1654504683289-357.png]]
127 -
128 -
129 -
130 -**Step 2**: Power on LSE01
131 -
132 -
133 -Put a Jumper on JP2 to power on the device. ( The Jumper must be in FLASH position).
134 -
135 -[[image:image-20220606163915-7.png]]
136 -
137 -
138 -**Step 3:** The LSE01 will auto join to the TTN network. After join success, it will start to upload messages to TTN and you can see the messages in the panel.
139 -
140 -[[image:1654504778294-788.png]]
141 -
142 -
143 -
144 -== 2.3 Uplink Payload ==
145 -
146 -=== ===
147 -
148 -=== 2.3.1 MOD~=0(Default Mode) ===
149 -
150 -LSE01 will uplink payload via LoRaWAN with below payload format: 
151 -
152 152  (((
153 -Uplink payload includes in total 11 bytes.
136 +Below figure shows our testing structure. Here we have NB-IoT network coverage by China Mobile, the band they use is B8.  The NSE01 will use CoAP((% style="color:red" %)120.24.4.116:5683)(%%) or raw UDP((% style="color:red" %)120.24.4.116:5601)(%%) or MQTT((% style="color:red" %)120.24.4.116:1883)(%%)or TCP((% style="color:red" %)120.24.4.116:5600)(%%)protocol to send data to the test server
154 154  )))
155 155  
156 -(% border="1" cellspacing="10" style="background-color:#ffffcc; width:500px" %)
157 -|(((
158 -**Size**
159 159  
160 -**(bytes)**
161 -)))|**2**|**2**|**2**|**2**|**2**|**1**
162 -|**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(((
163 -Temperature
140 +[[image:1657249419225-449.png]]
164 164  
165 -(Reserve, Ignore now)
166 -)))|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]]|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]]|(((
167 -MOD & Digital Interrupt
168 168  
169 -(Optional)
170 -)))
171 171  
172 -=== 2.3.2 MOD~=1(Original value) ===
144 +=== 2.2.2 Insert SIM card ===
173 173  
174 -This mode can get the original AD value of moisture and original conductivity (with temperature drift compensation).
146 +Insert the NB-IoT Card get from your provider.
175 175  
176 -(% border="1" cellspacing="10" style="background-color:#ffffcc; width:500px" %)
177 -|(((
178 -**Size**
148 +User need to take out the NB-IoT module and insert the SIM card like below:
179 179  
180 -**(bytes)**
181 -)))|**2**|**2**|**2**|**2**|**2**|**1**
182 -|**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(((
183 -Temperature
184 184  
185 -(Reserve, Ignore now)
186 -)))|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]](raw)|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]](raw)|(((
187 -MOD & Digital Interrupt
151 +[[image:1657249468462-536.png]]
188 188  
189 -(Optional)
190 -)))
191 191  
192 -=== 2.3.3 Battery Info ===
193 193  
194 -(((
195 -Check the battery voltage for LSE01.
196 -)))
155 +=== 2.2.3 Connect USB – TTL to NSE01 to configure it ===
197 197  
198 198  (((
199 -Ex1: 0x0B45 = 2885mV
200 -)))
201 -
202 202  (((
203 -Ex2: 0x0B49 = 2889mV
159 +User need to configure NSE01 via serial port to set the (% style="color:blue" %)**Server Address** / **Uplink Topic** (%%)to define where and how-to uplink packets. NSE01 support AT Commands, user can use a USB to TTL adapter to connect to NSE01 and use AT Commands to configure it, as below.
204 204  )))
205 -
206 -
207 -
208 -=== 2.3.4 Soil Moisture ===
209 -
210 -(((
211 -Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil.
212 212  )))
213 213  
214 -(((
215 -For example, if the data you get from the register is __0x05 0xDC__, the moisture content in the soil is
216 -)))
217 217  
218 -(((
219 -
220 -)))
164 +**Connection:**
221 221  
222 -(((
223 -(% style="color:#4f81bd" %)**05DC(H) = 1500(D) /100 = 15%.**
224 -)))
166 + (% style="background-color:yellow" %)USB TTL GND <~-~-~-~-> GND
225 225  
168 + (% style="background-color:yellow" %)USB TTL TXD <~-~-~-~-> UART_RXD
226 226  
170 + (% style="background-color:yellow" %)USB TTL RXD <~-~-~-~-> UART_TXD
227 227  
228 -=== 2.3.5 Soil Temperature ===
229 229  
230 -(((
231 - Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is 0x09 0xEC, the temperature content in the soil is
232 -)))
173 +In the PC, use below serial tool settings:
233 233  
234 -(((
235 -**Example**:
236 -)))
175 +* Baud:  (% style="color:green" %)**9600**
176 +* Data bits:** (% style="color:green" %)8(%%)**
177 +* Stop bits: (% style="color:green" %)**1**
178 +* Parity:  (% style="color:green" %)**None**
179 +* Flow Control: (% style="color:green" %)**None**
237 237  
238 238  (((
239 -If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/100 = 2.61 °C
182 +Make sure the switch is in FLASH position, then power on device by connecting the jumper on NSE01. NSE01 will output system info once power on as below, we can enter the (% style="color:green" %)**password: 12345678**(%%) to access AT Command input.
240 240  )))
241 241  
242 -(((
243 -If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C
244 -)))
185 +[[image:image-20220708110657-3.png]]
245 245  
187 +(% style="color:red" %)Note: the valid AT Commands can be found at: (%%)[[http:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/]]
246 246  
247 247  
248 -=== 2.3.6 Soil Conductivity (EC) ===
249 249  
250 -(((
251 -Obtain (% style="color:#4f81bd" %)**__soluble salt concentration__**(%%) in soil or (% style="color:#4f81bd" %)**__soluble ion concentration in liquid fertilizer__**(%%) or (% style="color:#4f81bd" %)**__planting medium__**(%%). The value range of the register is 0 - 20000(Decimal)( Can be greater than 20000).
252 -)))
191 +=== 2.2.4 Use CoAP protocol to uplink data ===
253 253  
254 -(((
255 -For example, if the data you get from the register is 0x00 0xC8, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm.
256 -)))
193 +(% style="color:red" %)Note: if you don't have CoAP server, you can refer this link to set up one: (%%)[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/>>http://wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/]]
257 257  
258 -(((
259 -Generally, the EC value of irrigation water is less than 800uS / cm.
260 -)))
261 261  
262 -(((
263 -
264 -)))
196 +**Use below commands:**
265 265  
266 -(((
267 -
268 -)))
198 +* (% style="color:blue" %)**AT+PRO=1**  (%%) ~/~/ Set to use CoAP protocol to uplink
199 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5683   ** (%%)~/~/ to set CoAP server address and port
200 +* (% style="color:blue" %)**AT+URI=5,11,"mqtt",11,"coap",12,"0",15,"c=text1",23,"0" ** (%%) ~/~/Set COAP resource path
269 269  
270 -=== 2.3.7 MOD ===
202 +For parameter description, please refer to AT command set
271 271  
272 -Firmware version at least v2.1 supports changing mode.
204 +[[image:1657249793983-486.png]]
273 273  
274 -For example, bytes[10]=90
275 275  
276 -mod=(bytes[10]>>7)&0x01=1.
207 +After configure the server address and (% style="color:green" %)**reset the device**(%%) (via AT+ATZ ), NSE01 will start to uplink sensor values to CoAP server.
277 277  
209 +[[image:1657249831934-534.png]]
278 278  
279 -**Downlink Command:**
280 280  
281 -If payload = 0x0A00, workmode=0
282 282  
283 -If** **payload =** **0x0A01, workmode=1
213 +=== 2.2.5 Use UDP protocol to uplink data(Default protocol) ===
284 284  
215 +This feature is supported since firmware version v1.0.1
285 285  
286 286  
287 -=== 2.3.8 ​Decode payload in The Things Network ===
218 +* (% style="color:blue" %)**AT+PRO=2   ** (%%) ~/~/ Set to use UDP protocol to uplink
219 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5601   ** (%%) ~/~/ to set UDP server address and port
220 +* (% style="color:blue" %)**AT+CFM=1       ** (%%) ~/~/If the server does not respond, this command is unnecessary
288 288  
289 -While using TTN network, you can add the payload format to decode the payload.
222 +[[image:1657249864775-321.png]]
290 290  
291 291  
292 -[[image:1654505570700-128.png]]
225 +[[image:1657249930215-289.png]]
293 293  
294 -(((
295 -The payload decoder function for TTN is here:
296 -)))
297 297  
298 -(((
299 -LSE01 TTN Payload Decoder: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Payload_Decoder/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Payload_Decoder/]]
300 -)))
301 301  
229 +=== 2.2.6 Use MQTT protocol to uplink data ===
302 302  
231 +This feature is supported since firmware version v110
303 303  
304 -== 2.4 Uplink Interval ==
305 305  
306 -The LSE01 by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link: [[Change Uplink Interval>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H4.1ChangeUplinkInterval"]]
234 +* (% style="color:blue" %)**AT+PRO=3   ** (%%) ~/~/Set to use MQTT protocol to uplink
235 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,1883   ** (%%) ~/~/Set MQTT server address and port
236 +* (% style="color:blue" %)**AT+CLIENT=CLIENT       ** (%%)~/~/Set up the CLIENT of MQTT
237 +* (% style="color:blue" %)**AT+UNAME=UNAME                               **(%%)~/~/Set the username of MQTT
238 +* (% style="color:blue" %)**AT+PWD=PWD                                        **(%%)~/~/Set the password of MQTT
239 +* (% style="color:blue" %)**AT+PUBTOPIC=NSE01_PUB                    **(%%)~/~/Set the sending topic of MQTT
240 +* (% style="color:blue" %)**AT+SUBTOPIC=NSE01_SUB          **(%%) ~/~/Set the subscription topic of MQTT
307 307  
242 +[[image:1657249978444-674.png]]
308 308  
309 309  
310 -== 2.5 Downlink Payload ==
245 +[[image:1657249990869-686.png]]
311 311  
312 -By default, LSE50 prints the downlink payload to console port.
313 313  
314 -[[image:image-20220606165544-8.png]]
315 -
316 -
317 317  (((
318 -**Examples:**
249 +MQTT protocol has a much higher power consumption compare vs UDP / CoAP protocol. Please check the power analyze document and adjust the uplink period to a suitable interval.
319 319  )))
320 320  
321 -(((
322 -
323 -)))
324 324  
325 -* (((
326 -**Set TDC**
327 -)))
328 328  
329 -(((
330 -If the payload=0100003C, it means set the END Node’s TDC to 0x00003C=60(S), while type code is 01.
331 -)))
254 +=== 2.2.7 Use TCP protocol to uplink data ===
332 332  
333 -(((
334 -Payload:    01 00 00 1E    TDC=30S
335 -)))
256 +This feature is supported since firmware version v110
336 336  
337 -(((
338 -Payload:    01 00 00 3C    TDC=60S
339 -)))
340 340  
341 -(((
342 -
343 -)))
259 +* (% style="color:blue" %)**AT+PRO=4   ** (%%) ~/~/ Set to use TCP protocol to uplink
260 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5600   **(%%) ~/~/ to set TCP server address and port
344 344  
345 -* (((
346 -**Reset**
347 -)))
262 +[[image:1657250217799-140.png]]
348 348  
349 -(((
350 -If payload = 0x04FF, it will reset the LSE01
351 -)))
352 352  
265 +[[image:1657250255956-604.png]]
353 353  
354 -* **CFM**
355 355  
356 -Downlink Payload: 05000001, Set AT+CFM=1 or 05000000 , set AT+CFM=0
357 357  
269 +=== 2.2.8 Change Update Interval ===
358 358  
271 +User can use below command to change the (% style="color:green" %)**uplink interval**.
359 359  
360 -== 2.6 ​Show Data in DataCake IoT Server ==
273 +* (% style="color:blue" %)**AT+TDC=600      ** (%%)~/~/ Set Update Interval to 600s
361 361  
362 362  (((
363 -[[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps:
276 +(% style="color:red" %)**NOTE:**
364 364  )))
365 365  
366 366  (((
367 -
280 +(% style="color:red" %)1. By default, the device will send an uplink message every 1 hour.
368 368  )))
369 369  
370 -(((
371 -**Step 1**: Be sure that your device is programmed and properly connected to the network at this time.
372 -)))
373 373  
374 -(((
375 -**Step 2**: To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps:
376 -)))
377 377  
285 +== 2.3  Uplink Payload ==
378 378  
379 -[[image:1654505857935-743.png]]
287 +In this mode, uplink payload includes in total 18 bytes
380 380  
289 +(% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:510px" %)
290 +|=(% style="width: 50px;" %)(((
291 +**Size(bytes)**
292 +)))|=(% style="width: 50px;" %)**6**|=(% style="width: 25px;" %)2|=(% style="width: 25px;" %)**2**|=(% style="width: 80px;" %)**1**|=(% style="width: 80px;" %)**2**|=(% style="width: 80px;" %)**2**|=(% style="width: 80px;" %)**2**|=(% style="width: 40px;" %)**1**
293 +|(% style="width:97px" %)**Value**|(% style="width:83px" %)[[Device ID>>||anchor="H"]]|(% style="width:41px" %)[[Ver>>||anchor="H"]]|(% style="width:46px" %)[[BAT>>||anchor="H"]]|(% style="width:123px" %)[[Signal Strength>>||anchor="H"]]|(% style="width:108px" %)[[Soil Moisture>>||anchor="H"]]|(% style="width:133px" %)[[Soil Temperature>>||anchor="H"]]|(% style="width:159px" %)[[Soil Conductivity(EC)>>||anchor="H"]]|(% style="width:80px" %)[[Interrupt>>||anchor="H"]]
381 381  
382 -[[image:1654505874829-548.png]]
295 +If we use the MQTT client to subscribe to this MQTT topic, we can see the following information when the NSE01 uplink data.
383 383  
384 -Step 3: Create an account or log in Datacake.
385 385  
386 -Step 4: Search the LSE01 and add DevEUI.
298 +[[image:image-20220708111918-4.png]]
387 387  
388 388  
389 -[[image:1654505905236-553.png]]
301 +The payload is ASCII string, representative same HEX:
390 390  
303 +0x72403155615900640c7817075e0a8c02f900 where:
391 391  
392 -After added, the sensor data arrive TTN, it will also arrive and show in Mydevices.
305 +* Device ID: 0x 724031556159 = 724031556159
306 +* Version: 0x0064=100=1.0.0
393 393  
394 -[[image:1654505925508-181.png]]
308 +* BAT: 0x0c78 = 3192 mV = 3.192V
309 +* Singal: 0x17 = 23
310 +* Soil Moisture: 0x075e= 1886 = 18.86  %
311 +* Soil Temperature:0x0a8c =2700=27 °C
312 +* Soil Conductivity(EC) = 0x02f9 =761 uS /cm
313 +* Interrupt: 0x00 = 0
395 395  
315 +== 2.4  Payload Explanation and Sensor Interface ==
396 396  
397 397  
398 -== 2.7 Frequency Plans ==
318 +=== 2.4.1  Device ID ===
399 399  
400 -The LSE01 uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.
320 +By default, the Device ID equal to the last 6 bytes of IMEI.
401 401  
322 +User can use (% style="color:blue" %)**AT+DEUI**(%%) to set Device ID
402 402  
403 -=== 2.7.1 EU863-870 (EU868) ===
324 +**Example:**
404 404  
405 -(% style="color:#037691" %)** Uplink:**
326 +AT+DEUI=A84041F15612
406 406  
407 -868.1 - SF7BW125 to SF12BW125
328 +The Device ID is stored in a none-erase area, Upgrade the firmware or run AT+FDR won't erase Device ID.
408 408  
409 -868.3 - SF7BW125 to SF12BW125 and SF7BW250
410 410  
411 -868.5 - SF7BW125 to SF12BW125
412 412  
413 -867.1 - SF7BW125 to SF12BW125
332 +=== 2.4.2  Version Info ===
414 414  
415 -867.3 - SF7BW125 to SF12BW125
334 +Specify the software version: 0x64=100, means firmware version 1.00.
416 416  
417 -867.5 - SF7BW125 to SF12BW125
336 +For example: 0x00 64 : this device is NSE01 with firmware version 1.0.0.
418 418  
419 -867.7 - SF7BW125 to SF12BW125
420 420  
421 -867.9 - SF7BW125 to SF12BW125
422 422  
423 -868.8 - FSK
340 +=== 2.4.3  Battery Info ===
424 424  
342 +(((
343 +Check the battery voltage for LSE01.
344 +)))
425 425  
426 -(% style="color:#037691" %)** Downlink:**
346 +(((
347 +Ex1: 0x0B45 = 2885mV
348 +)))
427 427  
428 -Uplink channels 1-9 (RX1)
350 +(((
351 +Ex2: 0x0B49 = 2889mV
352 +)))
429 429  
430 -869.525 - SF9BW125 (RX2 downlink only)
431 431  
432 432  
356 +=== 2.4.4  Signal Strength ===
433 433  
434 -=== 2.7.2 US902-928(US915) ===
358 +NB-IoT Network signal Strength.
435 435  
436 -Used in USA, Canada and South America. Default use CHE=2
360 +**Ex1: 0x1d = 29**
437 437  
438 -(% style="color:#037691" %)**Uplink:**
362 +(% style="color:blue" %)**0**(%%)  -113dBm or less
439 439  
440 -903.9 - SF7BW125 to SF10BW125
364 +(% style="color:blue" %)**1**(%%)  -111dBm
441 441  
442 -904.1 - SF7BW125 to SF10BW125
366 +(% style="color:blue" %)**2...30**(%%) -109dBm... -53dBm
443 443  
444 -904.3 - SF7BW125 to SF10BW125
368 +(% style="color:blue" %)**31**  (%%) -51dBm or greater
445 445  
446 -904.5 - SF7BW125 to SF10BW125
370 +(% style="color:blue" %)**99**   (%%) Not known or not detectable
447 447  
448 -904.7 - SF7BW125 to SF10BW125
449 449  
450 -904.9 - SF7BW125 to SF10BW125
451 451  
452 -905.1 - SF7BW125 to SF10BW125
374 +=== 2.4.5  Soil Moisture ===
453 453  
454 -905.3 - SF7BW125 to SF10BW125
376 +(((
377 +Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil.
378 +)))
455 455  
380 +(((
381 +For example, if the data you get from the register is **__0x05 0xDC__**, the moisture content in the soil is
382 +)))
456 456  
457 -(% style="color:#037691" %)**Downlink:**
384 +(((
385 +
386 +)))
458 458  
459 -923.3 - SF7BW500 to SF12BW500
388 +(((
389 +(% style="color:#4f81bd" %)**05DC(H) = 1500(D) /100 = 15%.**
390 +)))
460 460  
461 -923.9 - SF7BW500 to SF12BW500
462 462  
463 -924.5 - SF7BW500 to SF12BW500
464 464  
465 -925.1 - SF7BW500 to SF12BW500
394 +=== 2.4.6  Soil Temperature ===
466 466  
467 -925.7 - SF7BW500 to SF12BW500
396 +(((
397 + Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is __**0x09 0xEC**__, the temperature content in the soil is
398 +)))
468 468  
469 -926.3 - SF7BW500 to SF12BW500
400 +(((
401 +**Example**:
402 +)))
470 470  
471 -926.9 - SF7BW500 to SF12BW500
404 +(((
405 +If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/100 = 2.61 °C
406 +)))
472 472  
473 -927.5 - SF7BW500 to SF12BW500
408 +(((
409 +If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C
410 +)))
474 474  
475 -923.3 - SF12BW500(RX2 downlink only)
476 476  
477 477  
414 +=== 2.4.7  Soil Conductivity (EC) ===
478 478  
479 -=== 2.7.3 CN470-510 (CN470) ===
416 +(((
417 +Obtain (% style="color:#4f81bd" %)**__soluble salt concentration__**(%%) in soil or (% style="color:#4f81bd" %)**__soluble ion concentration in liquid fertilizer__**(%%) or (% style="color:#4f81bd" %)**__planting medium__**(%%). The value range of the register is 0 - 20000(Decimal)( Can be greater than 20000).
418 +)))
480 480  
481 -Used in China, Default use CHE=1
420 +(((
421 +For example, if the data you get from the register is __**0x00 0xC8**__, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm.
422 +)))
482 482  
483 -(% style="color:#037691" %)**Uplink:**
424 +(((
425 +Generally, the EC value of irrigation water is less than 800uS / cm.
426 +)))
484 484  
485 -486.3 - SF7BW125 to SF12BW125
428 +(((
429 +
430 +)))
486 486  
487 -486.5 - SF7BW125 to SF12BW125
432 +(((
433 +
434 +)))
488 488  
489 -486.7 - SF7BW125 to SF12BW125
436 +=== 2.4. Digital Interrupt ===
490 490  
491 -486.9 - SF7BW125 to SF12BW125
438 +Digital Interrupt refers to pin (% style="color:blue" %)**GPIO_EXTI**(%%), and there are different trigger methods. When there is a trigger, the NSE01 will send a packet to the server.
492 492  
493 -487.1 - SF7BW125 to SF12BW125
440 +The command is:
494 494  
495 -487.3 - SF7BW125 to SF12BW125
442 +(% style="color:blue" %)**AT+INTMOD=3 **(%%) ~/~/(more info about INMOD please refer [[**AT Command Manual**>>url:https://www.dragino.com/downloads/downloads/NB-IoT/NBSN95/DRAGINO_NBSN95-NB_AT%20Commands_v1.1.0.pdf]])**.**
496 496  
497 -487.5 - SF7BW125 to SF12BW125
498 498  
499 -487.7 - SF7BW125 to SF12BW125
445 +The lower four bits of this data field shows if this packet is generated by interrupt or not. [[Click here>>||anchor="H"]] for the hardware and software set up.
500 500  
501 501  
502 -(% style="color:#037691" %)**Downlink:**
448 +Example:
503 503  
504 -506.7 - SF7BW125 to SF12BW125
450 +0x(00): Normal uplink packet.
505 505  
506 -506.9 - SF7BW125 to SF12BW125
452 +0x(01): Interrupt Uplink Packet.
507 507  
508 -507.1 - SF7BW125 to SF12BW125
509 509  
510 -507.3 - SF7BW125 to SF12BW125
511 511  
512 -507.5 - SF7BW125 to SF12BW125
456 +=== 2.4.9  ​+5V Output ===
513 513  
514 -507.7 - SF7BW125 to SF12BW125
458 +NSE01 will enable +5V output before all sampling and disable the +5v after all sampling. 
515 515  
516 -507.9 - SF7BW125 to SF12BW125
517 517  
518 -508.1 - SF7BW125 to SF12BW125
461 +The 5V output time can be controlled by AT Command.
519 519  
520 -505.3 - SF12BW125 (RX2 downlink only)
463 +(% style="color:blue" %)**AT+5VT=1000**
521 521  
465 +Means set 5V valid time to have 1000ms. So the real 5V output will actually have 1000ms + sampling time for other sensors.
522 522  
523 523  
524 -=== 2.7.4 AU915-928(AU915) ===
525 525  
526 -Default use CHE=2
469 +== 2.5  Downlink Payload ==
527 527  
528 -(% style="color:#037691" %)**Uplink:**
471 +By default, NSE01 prints the downlink payload to console port.
529 529  
530 -916.8 - SF7BW125 to SF12BW125
473 +[[image:image-20220708133731-5.png]]
531 531  
532 -917.0 - SF7BW125 to SF12BW125
533 533  
534 -917.2 - SF7BW125 to SF12BW125
535 535  
536 -917.4 - SF7BW125 to SF12BW125
477 +(((
478 +(% style="color:blue" %)**Examples:**
479 +)))
537 537  
538 -917.6 - SF7BW125 to SF12BW125
481 +(((
482 +
483 +)))
539 539  
540 -917.8 - SF7BW125 to SF12BW125
485 +* (((
486 +(% style="color:blue" %)**Set TDC**
487 +)))
541 541  
542 -918.0 - SF7BW125 to SF12BW125
489 +(((
490 +If the payload=0100003C, it means set the END Node's TDC to 0x00003C=60(S), while type code is 01.
491 +)))
543 543  
544 -918.2 - SF7BW125 to SF12BW125
493 +(((
494 +Payload:    01 00 00 1E    TDC=30S
495 +)))
545 545  
497 +(((
498 +Payload:    01 00 00 3C    TDC=60S
499 +)))
546 546  
547 -(% style="color:#037691" %)**Downlink:**
501 +(((
502 +
503 +)))
548 548  
549 -923.3 - SF7BW500 to SF12BW500
505 +* (((
506 +(% style="color:blue" %)**Reset**
507 +)))
550 550  
551 -923.9 - SF7BW500 to SF12BW500
509 +(((
510 +If payload = 0x04FF, it will reset the NSE01
511 +)))
552 552  
553 -924.5 - SF7BW500 to SF12BW500
554 554  
555 -925.1 - SF7BW500 to SF12BW500
514 +* (% style="color:blue" %)**INTMOD**
556 556  
557 -925.7 - SF7BW500 to SF12BW500
516 +Downlink Payload: 06000003, Set AT+INTMOD=3
558 558  
559 -926.3 - SF7BW500 to SF12BW500
560 560  
561 -926.9 - SF7BW500 to SF12BW500
562 562  
563 -927.5 - SF7BW500 to SF12BW500
520 +== 2. ​LED Indicator ==
564 564  
565 -923.3 - SF12BW500(RX2 downlink only)
522 +(((
523 +The NSE01 has an internal LED which is to show the status of different state.
566 566  
567 567  
526 +* When power on, NSE01 will detect if sensor probe is connected, if probe detected, LED will blink four times. (no blinks in this step is no probe)
527 +* Then the LED will be on for 1 second means device is boot normally.
528 +* After NSE01 join NB-IoT network. The LED will be ON for 3 seconds.
529 +* For each uplink probe, LED will be on for 500ms.
530 +)))
568 568  
569 -=== 2.7.5 AS920-923 & AS923-925 (AS923) ===
570 570  
571 -(% style="color:#037691" %)**Default Uplink channel:**
572 572  
573 -923.2 - SF7BW125 to SF10BW125
574 574  
575 -923.4 - SF7BW125 to SF10BW125
535 +== 2.7  Installation in Soil ==
576 576  
537 +__**Measurement the soil surface**__
577 577  
578 -(% style="color:#037691" %)**Additional Uplink Channel**:
539 +Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting. [[https:~~/~~/img.alicdn.com/imgextra/i3/2005165265/O1CN010rj9Oh1olPsQxrdUK_!!2005165265.jpg>>url:https://img.alicdn.com/imgextra/i3/2005165265/O1CN010rj9Oh1olPsQxrdUK_!!2005165265.jpg]]
579 579  
580 -(OTAA mode, channel added by JoinAccept message)
541 +[[image:1657259653666-883.png]] ​
581 581  
582 -(% style="color:#037691" %)**AS920~~AS923 for Japan, Malaysia, Singapore**:
583 583  
584 -922.2 - SF7BW125 to SF10BW125
544 +(((
545 +
585 585  
586 -922.4 - SF7BW125 to SF10BW125
547 +(((
548 +Dig a hole with diameter > 20CM.
549 +)))
587 587  
588 -922.6 - SF7BW125 to SF10BW125
551 +(((
552 +Horizontal insert the probe to the soil and fill the hole for long term measurement.
553 +)))
554 +)))
589 589  
590 -922.8 - SF7BW125 to SF10BW125
556 +[[image:1654506665940-119.png]]
591 591  
592 -923.0 - SF7BW125 to SF10BW125
558 +(((
559 +
560 +)))
593 593  
594 -922.0 - SF7BW125 to SF10BW125
595 595  
563 +== 2.8  ​Firmware Change Log ==
596 596  
597 -(% style="color:#037691" %)**AS923 ~~ AS925 for Brunei, Cambodia, Hong Kong, Indonesia, Laos, Taiwan, Thailand, Vietnam**:
598 598  
599 -923.6 - SF7BW125 to SF10BW125
566 +Download URL & Firmware Change log
600 600  
601 -923.8 - SF7BW125 to SF10BW125
568 +[[www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/Firmware/]]
602 602  
603 -924.0 - SF7BW125 to SF10BW125
604 604  
605 -924.2 - SF7BW125 to SF10BW125
571 +Upgrade Instruction: [[Upgrade_Firmware>>||anchor="H"]]
606 606  
607 -924.4 - SF7BW125 to SF10BW125
608 608  
609 -924.6 - SF7BW125 to SF10BW125
610 610  
575 +== 2.9  ​Battery Analysis ==
611 611  
612 -(% style="color:#037691" %)** Downlink:**
577 +=== 2.9.1  ​Battery Type ===
613 613  
614 -Uplink channels 1-8 (RX1)
615 615  
616 -923.2 - SF10BW125 (RX2)
580 +The NSE01 battery is a combination of an 8500mAh Li/SOCI2 Battery and a Super Capacitor. The battery is none-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter.
617 617  
618 618  
583 +The battery is designed to last for several years depends on the actually use environment and update interval.
619 619  
620 -=== 2.7.6 KR920-923 (KR920) ===
621 621  
622 -Default channel:
586 +The battery related documents as below:
623 623  
624 -922.1 - SF7BW125 to SF12BW125
588 +* [[Battery Dimension>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]
589 +* [[Lithium-Thionyl Chloride Battery>>url:http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]][[ datasheet>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]
590 +* [[Lithium-ion Battery-Capacitor datasheet>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]
625 625  
626 -922.3 - SF7BW125 to SF12BW125
627 -
628 -922.5 - SF7BW125 to SF12BW125
629 -
630 -
631 -(% style="color:#037691" %)**Uplink: (OTAA mode, channel added by JoinAccept message)**
632 -
633 -922.1 - SF7BW125 to SF12BW125
634 -
635 -922.3 - SF7BW125 to SF12BW125
636 -
637 -922.5 - SF7BW125 to SF12BW125
638 -
639 -922.7 - SF7BW125 to SF12BW125
640 -
641 -922.9 - SF7BW125 to SF12BW125
642 -
643 -923.1 - SF7BW125 to SF12BW125
644 -
645 -923.3 - SF7BW125 to SF12BW125
646 -
647 -
648 -(% style="color:#037691" %)**Downlink:**
649 -
650 -Uplink channels 1-7(RX1)
651 -
652 -921.9 - SF12BW125 (RX2 downlink only; SF12BW125 might be changed to SF9BW125)
653 -
654 -
655 -
656 -=== 2.7.7 IN865-867 (IN865) ===
657 -
658 -(% style="color:#037691" %)** Uplink:**
659 -
660 -865.0625 - SF7BW125 to SF12BW125
661 -
662 -865.4025 - SF7BW125 to SF12BW125
663 -
664 -865.9850 - SF7BW125 to SF12BW125
665 -
666 -
667 -(% style="color:#037691" %) **Downlink:**
668 -
669 -Uplink channels 1-3 (RX1)
670 -
671 -866.550 - SF10BW125 (RX2)
672 -
673 -
674 -
675 -
676 -== 2.8 LED Indicator ==
677 -
678 -The LSE01 has an internal LED which is to show the status of different state.
679 -
680 -* Blink once when device power on.
681 -* Solid ON for 5 seconds once device successful Join the network.
682 -* Blink once when device transmit a packet.
683 -
684 -== 2.9 Installation in Soil ==
685 -
686 -**Measurement the soil surface**
687 -
688 -
689 -[[image:1654506634463-199.png]] ​
690 -
691 691  (((
692 -(((
693 -Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting.
593 +[[image:image-20220708140453-6.png]]
694 694  )))
695 -)))
696 696  
697 697  
698 -[[image:1654506665940-119.png]]
699 699  
700 -(((
701 -Dig a hole with diameter > 20CM.
702 -)))
598 +=== 2.9.2  Power consumption Analyze ===
703 703  
704 -(((
705 -Horizontal insert the probe to the soil and fill the hole for long term measurement.
706 -)))
600 +Dragino battery powered product are all runs in Low Power mode. We have an update battery calculator which base on the measurement of the real device. User can use this calculator to check the battery life and calculate the battery life if want to use different transmit interval.
707 707  
708 708  
709 -== 2.10 ​Firmware Change Log ==
603 +Instruction to use as below:
710 710  
711 -(((
712 -**Firmware download link:**
713 -)))
714 714  
715 -(((
716 -[[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/]]
717 -)))
606 +Step 1: Downlink the up-to-date DRAGINO_Battery_Life_Prediction_Table.xlsx from:
718 718  
719 -(((
720 -
721 -)))
608 +[[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/]]
722 722  
723 -(((
724 -**Firmware Upgrade Method: **[[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome]]
725 -)))
726 726  
727 -(((
728 -
729 -)))
611 +Step 2: Open it and choose
730 730  
731 -(((
732 -**V1.0.**
733 -)))
613 +* Product Model
614 +* Uplink Interval
615 +* Working Mode
734 734  
735 -(((
736 -Release
737 -)))
617 +And the Life expectation in difference case will be shown on the right.
738 738  
619 +[[image:image-20220708141352-7.jpeg]]
739 739  
740 -== 2.11 ​Battery Analysis ==
741 741  
742 -=== 2.11.1 ​Battery Type ===
743 743  
744 -(((
745 -The LSE01 battery is a combination of a 4000mAh Li/SOCI2 Battery and a Super Capacitor. The battery is non-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter.
746 -)))
623 +=== 2.9.3  ​Battery Note ===
747 747  
748 748  (((
749 -The battery is designed to last for more than 5 years for the LSN50.
750 -)))
751 -
752 -(((
753 -(((
754 -The battery-related documents are as below:
755 -)))
756 -)))
757 -
758 -* (((
759 -[[Battery Dimension>>url:http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/&file=LSN50-Battery-Dimension.pdf]],
760 -)))
761 -* (((
762 -[[Lithium-Thionyl Chloride Battery  datasheet>>url:https://www.dragino.com/downloads/downloads/datasheet/Battery/ER26500/ER26500_Datasheet-EN.pdf]],
763 -)))
764 -* (((
765 -[[Lithium-ion Battery-Capacitor datasheet>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC_1520_datasheet.jpg]], [[Tech Spec>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC1520%20Technical%20Specification20171123.pdf]]
766 -)))
767 -
768 - [[image:image-20220610172436-1.png]]
769 -
770 -
771 -
772 -=== 2.11.2 ​Battery Note ===
773 -
774 -(((
775 775  The Li-SICO battery is designed for small current / long period application. It is not good to use a high current, short period transmit method. The recommended minimum period for use of this battery is 5 minutes. If you use a shorter period time to transmit LoRa, then the battery life may be decreased.
776 776  )))
777 777  
778 778  
779 779  
780 -=== 2.11.3 Replace the battery ===
631 +=== 2.9. Replace the battery ===
781 781  
782 782  (((
783 -If Battery is lower than 2.7v, user should replace the battery of LSE01.
634 +The default battery pack of NSE01 includes a ER26500 plus super capacitor. If user can't find this pack locally, they can find ER26500 or equivalence without the SPC1520 capacitor, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes).
784 784  )))
785 785  
786 -(((
787 -You can change the battery in the LSE01.The type of battery is not limited as long as the output is between 3v to 3.6v. On the main board, there is a diode (D1) between the battery and the main circuit. If you need to use a battery with less than 3.3v, please remove the D1 and shortcut the two pads of it so there won’t be voltage drop between battery and main board.
788 -)))
789 789  
790 -(((
791 -The default battery pack of LSE01 includes a ER18505 plus super capacitor. If user can’t find this pack locally, they can find ER18505 or equivalence, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes)
792 -)))
793 793  
794 -
795 -
796 796  = 3. ​Using the AT Commands =
797 797  
798 798  == 3.1 Access AT Commands ==
... ... @@ -816,7 +816,7 @@
816 816   [[image:1654502050864-459.png||height="564" width="806"]]
817 817  
818 818  
819 -Below are the available commands, a more detailed AT Command manual can be found at [[AT Command Manual>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/]]: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/]]
662 +Below are the available commands, a more detailed AT Command manual can be found at [[AT Command Manual>>https://www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0]]: [[https:~~/~~/www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0>>https://www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0]]
820 820  
821 821  
822 822  (% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>? **(%%) : Help on <CMD>
... ... @@ -974,19 +974,14 @@
974 974  
975 975  (((
976 976  Because the end node is now hopping in 72 frequency, it makes it difficult for the devices to Join the TTN network and uplink data. To solve this issue, you can access the device via the AT commands and run:
977 -)))
978 978  
979 -(% class="box infomessage" %)
980 -(((
981 -**AT+CHE=2**
821 +* (% style="color:#037691" %)**AT+CHE=2**
822 +* (% style="color:#037691" %)**ATZ**
982 982  )))
983 983  
984 -(% class="box infomessage" %)
985 985  (((
986 -**ATZ**
987 -)))
826 +
988 988  
989 -(((
990 990  to set the end node to work in 8 channel mode. The device will work in Channel 8-15 & 64-71 for OTAA, and channel 8-15 for Uplink.
991 991  )))
992 992  
... ... @@ -1001,18 +1001,22 @@
1001 1001  [[image:image-20220606154825-4.png]]
1002 1002  
1003 1003  
842 +== 4.2 ​Can I calibrate LSE01 to different soil types? ==
1004 1004  
844 +LSE01 is calibrated for saline-alkali soil and loamy soil. If users want to use it for other soil, they can calibrate the value in the IoT platform base on the value measured by saline-alkali soil and loamy soil. The formula can be found at [[this link>>https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/&file=Calibrate_to_other_Soil_20220605.pdf]].
845 +
846 +
1005 1005  = 5. Trouble Shooting =
1006 1006  
1007 -== 5.1 ​Why I cant join TTN in US915 / AU915 bands? ==
849 +== 5.1 ​Why I can't join TTN in US915 / AU915 bands? ==
1008 1008  
1009 -It is due to channel mapping. Please see the [[Eight Channel Mode>>doc:Main.LoRaWAN Communication Debug.WebHome||anchor="H2.NoticeofUS9152FCN4702FAU915Frequencyband"]] section above for details.
851 +It is due to channel mapping. Please see the [[Eight Channel Mode>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H7.19EightChannelMode"]] section above for details.
1010 1010  
1011 1011  
1012 -== 5.2 AT Command input doesnt work ==
854 +== 5.2 AT Command input doesn't work ==
1013 1013  
1014 1014  (((
1015 -In the case if user can see the console output but cant type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesnt send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.
857 +In the case if user can see the console output but can't type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn't send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.
1016 1016  )))
1017 1017  
1018 1018  
... ... @@ -1101,4 +1101,3 @@
1101 1101  
1102 1102  * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
1103 1103  * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.com]]
1104 -
1657245163077-232.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +81.0 KB
Content
1657246476176-652.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +492.6 KB
Content
1657249419225-449.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +81.0 KB
Content
1657249468462-536.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +483.6 KB
Content
1657249793983-486.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +85.8 KB
Content
1657249831934-534.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +72.5 KB
Content
1657249864775-321.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +87.0 KB
Content
1657249930215-289.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +77.3 KB
Content
1657249978444-674.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +139.5 KB
Content
1657249990869-686.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +96.9 KB
Content
1657250217799-140.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +98.7 KB
Content
1657250255956-604.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +99.0 KB
Content
1657259653666-883.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +344.4 KB
Content
1657260785982-288.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +138.2 KB
Content
image-20220708101224-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +22.2 KB
Content
image-20220708101605-2.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +87.5 KB
Content
image-20220708110657-3.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +251.7 KB
Content
image-20220708111918-4.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +38.8 KB
Content
image-20220708133731-5.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +8.7 KB
Content
image-20220708140453-6.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +132.7 KB
Content
image-20220708141352-7.jpeg
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +102.7 KB
Content