Changes for page N95S31B -- NB-IoT Temperature & Humidity Sensor User Manual
Last modified by Mengting Qiu on 2024/04/02 16:44
Summary
-
Page properties (2 modified, 0 added, 0 removed)
-
Attachments (0 modified, 30 added, 0 removed)
- 1657245163077-232.png
- 1657246476176-652.png
- 1657249419225-449.png
- 1657249468462-536.png
- 1657249793983-486.png
- 1657249831934-534.png
- 1657249864775-321.png
- 1657249930215-289.png
- 1657249978444-674.png
- 1657249990869-686.png
- 1657250217799-140.png
- 1657250255956-604.png
- 1657259653666-883.png
- 1657260785982-288.png
- 1657261119050-993.png
- 1657261278785-153.png
- 1657271519014-786.png
- 1657327959271-447.png
- image-20220708101224-1.png
- image-20220708101605-2.png
- image-20220708110657-3.png
- image-20220708111918-4.png
- image-20220708133731-5.png
- image-20220708140453-6.png
- image-20220708141352-7.jpeg
- image-20220709084038-1.jpeg
- image-20220709084137-2.jpeg
- image-20220709084207-3.jpeg
- image-20220709084458-4.png
- image-20220709085040-1.png
Details
- Page properties
-
- Title
-
... ... @@ -1,1 +1,1 @@ 1 - LSE01-LoRaWANSoil Moisture&ECSensor User Manual1 +NDDS75 NB-IoT Distance Detect Sensor User Manual - Content
-
... ... @@ -1,19 +1,12 @@ 1 1 (% style="text-align:center" %) 2 -[[image:image-20220 606151504-2.jpeg||height="554" width="554"]]2 +[[image:image-20220709085040-1.png||height="542" width="524"]] 3 3 4 4 5 5 6 6 7 7 8 - 9 - 10 - 11 - 12 - 13 - 14 14 **Table of Contents:** 15 15 16 -{{toc/}} 17 17 18 18 19 19 ... ... @@ -20,776 +20,716 @@ 20 20 21 21 22 22 23 -= 1. Introduction = 16 += 1. Introduction = 24 24 25 -== 1.1 What is LoRaWANoilMoisture&ECSensor ==18 +== 1.1 What is NDDS75 Distance Detection Sensor == 26 26 27 27 ((( 28 28 29 29 30 -The Dragino LSE01 is a (% style="color:#4f81bd" %)**LoRaWAN Soil Moisture & EC Sensor**(%%) for IoT of Agriculture. It is designed to measure the soil moisture of saline-alkali soil and loamy soil. The soil sensor uses FDR method to calculate the soil moisture with the compensation from soil temperature and conductivity. It also has been calibrated in factory for Mineral soil type. 31 -))) 32 - 33 33 ((( 34 -It detects (% style="color:#4f81bd" %)**Soil Moisture**(%%), (% style="color:#4f81bd" %)**Soil Temperature**(%%) and (% style="color:#4f81bd" %)**Soil Conductivity**(%%), and uploads the value via wireless to LoRaWAN IoT Server. 24 +The Dragino NDDS75 is a (% style="color:blue" %)**NB-IoT Distance Detection Sensor**(%%) for Internet of Things solution. It is designed to measure the distance between the sensor and a flat object. The distance detection sensor is a module that uses ultrasonic sensing technology for distance measurement, and temperature compensation is performed internally to improve the reliability of data. 25 +\\The NDDS75 can be applied to scenarios such as horizontal distance measurement, liquid level measurement, parking management system, object proximity and presence detection, intelligent trash can management system, robot obstacle avoidance, automatic control, sewer, bottom water level monitoring, etc. It detects the distance between the measured object and the sensor, and uploads the value via wireless to IoT Server via NB-IoT Network. 26 +\\NarrowBand-Internet of Things (NB-IoT) is a standards-based low power wide area (LPWA) technology developed to enable a wide range of new IoT devices and services. NB-IoT significantly improves the power consumption of user devices, system capacity and spectrum efficiency, especially in deep coverage. 27 +\\NDDS75 supports different uplink methods include (% style="color:blue" %)**TCP, MQTT, UDP and CoAP** (%%)for different application requirement. 28 +\\NDDS75 is powered by (% style="color:blue" %)**8500mAh Li-SOCI2 battery**(%%), It is designed for long term use up to 5 years. (Actually Battery life depends on the use environment, update period & uplink method) 29 +\\To use NDDS75, user needs to check if there is NB-IoT coverage in local area and with the bands NDDS75 supports. If the local operate support it, user needs to get a NB-IoT SIM card from local operator and install NDDS75 to get NB-IoT network connection. 35 35 ))) 36 36 37 -((( 38 -The LoRa wireless technology used in LES01 allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption. 32 + 39 39 ))) 40 40 41 -((( 42 -LES01 is powered by (% style="color:#4f81bd" %)**4000mA or 8500mAh Li-SOCI2 battery**(%%), It is designed for long term use up to 10 years. 43 -))) 44 - 45 -((( 46 -Each LES01 is pre-load with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect after power on. 47 -))) 48 - 49 - 50 50 [[image:1654503236291-817.png]] 51 51 52 52 53 -[[image:165 4503265560-120.png]]38 +[[image:1657327959271-447.png]] 54 54 55 55 56 56 57 -== 1.2 Features == 42 +== 1.2 Features == 58 58 59 -* LoRaWAN 1.0.3 Class A 44 + 45 +* NB-IoT Bands: B1/B3/B8/B5/B20/B28 @H-FDD 60 60 * Ultra low power consumption 61 -* MonitorSoilMoisture62 -* MonitorSoil Temperature63 -* Monitor SoilConductivity64 -* Bands:CN470/EU433/KR920/US915/EU868/AS923/AU915/IN86547 +* Distance Detection by Ultrasonic technology 48 +* Flat object range 280mm - 7500mm 49 +* Accuracy: ±(1cm+S*0.3%) (S: Distance) 50 +* Cable Length: 25cm 65 65 * AT Commands to change parameters 66 66 * Uplink on periodically 67 67 * Downlink to change configure 68 68 * IP66 Waterproof Enclosure 69 -* 4000mAh or 8500mAh Battery for long term use 55 +* Micro SIM card slot for NB-IoT SIM 56 +* 8500mAh Battery for long term use 70 70 71 71 72 72 60 +== 1.3 Specification == 73 73 74 74 75 - ==1.3Specification ==63 +(% style="color:#037691" %)**Common DC Characteristics:** 76 76 77 -Measure Volume: Base on the centra pin of the probe, a cylinder with 7cm diameter and 10cm height. 65 +* Supply Voltage: 2.1v ~~ 3.6v 66 +* Operating Temperature: -40 ~~ 85°C 78 78 79 - [[image:image-20220606162220-5.png]]68 +(% style="color:#037691" %)**NB-IoT Spec:** 80 80 70 +* - B1 @H-FDD: 2100MHz 71 +* - B3 @H-FDD: 1800MHz 72 +* - B8 @H-FDD: 900MHz 73 +* - B5 @H-FDD: 850MHz 74 +* - B20 @H-FDD: 800MHz 75 +* - B28 @H-FDD: 700MHz 81 81 82 82 83 - ==1.4 Applications==78 +(% style="color:#037691" %)**Battery:** 84 84 85 -* Smart Agriculture 80 +* Li/SOCI2 un-chargeable battery 81 +* Capacity: 8500mAh 82 +* Self Discharge: <1% / Year @ 25°C 83 +* Max continuously current: 130mA 84 +* Max boost current: 2A, 1 second 86 86 87 -(% class="wikigeneratedid" id="H200B1.5FirmwareChangelog" %) 88 - 89 89 90 - ==1.5Firmware Change log ==87 +(% style="color:#037691" %)**Power Consumption** 91 91 89 +* STOP Mode: 10uA @ 3.3v 90 +* Max transmit power: 350mA@3.3v 92 92 93 -**LSE01 v1.0 :** Release 94 94 95 95 96 96 97 -= 2.Configure LSE01 toconnect to LoRaWAN network=95 +== 1.4 Applications == 98 98 99 -== 2.1 How it works == 97 +* Smart Buildings & Home Automation 98 +* Logistics and Supply Chain Management 99 +* Smart Metering 100 +* Smart Agriculture 101 +* Smart Cities 102 +* Smart Factory 100 100 101 -((( 102 -The LSE01 is configured as LoRaWAN OTAA Class A mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and power on the LSE0150. It will automatically join the network via OTAA and start to send the sensor value 103 -))) 104 +(% class="wikigeneratedid" id="H200B1.5FirmwareChangelog" %) 105 + 104 104 105 -((( 106 -In case you can’t set the OTAA keys in the LoRaWAN OTAA server, and you have to use the keys from the server, you can [[use AT Commands >>||anchor="H3.200BUsingtheATCommands"]]. 107 -))) 108 108 109 109 109 +== 1.5 Pin Definitions == 110 110 111 -== 2.2 Quick guide to connect to LoRaWAN server (OTAA) == 112 112 113 - Following is an example for how to join the[[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LG308>>url:http://www.dragino.com/products/lora/item/140-lg308.html]]as a LoRaWAN gateway in this example.112 +[[image:1657246476176-652.png]] 114 114 115 115 116 -[[image:1654503992078-669.png]] 117 117 116 += 2. Use NSE01 to communicate with IoT Server = 118 118 119 - TheLG308is already set toconnected to [[TTN network>>url:https://console.cloud.thethings.network/]],sowhat we need to now is configure the TTN server.118 +== 2.1 How it works == 120 120 121 121 122 -(% style="color:blue" %)**Step 1**(%%): Create a device in TTN with the OTAA keys from LSE01. 123 - 124 -Each LSE01 is shipped with a sticker with the default device EUI as below: 125 - 126 -[[image:image-20220606163732-6.jpeg]] 127 - 128 -You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot: 129 - 130 -**Add APP EUI in the application** 131 - 132 - 133 -[[image:1654504596150-405.png]] 134 - 135 - 136 - 137 -**Add APP KEY and DEV EUI** 138 - 139 -[[image:1654504683289-357.png]] 140 - 141 - 142 - 143 -(% style="color:blue" %)**Step 2**(%%): Power on LSE01 144 - 145 - 146 -Put a Jumper on JP2 to power on the device. ( The Jumper must be in FLASH position). 147 - 148 -[[image:image-20220606163915-7.png]] 149 - 150 - 151 -(% style="color:blue" %)**Step 3**(%%)**:** The LSE01 will auto join to the TTN network. After join success, it will start to upload messages to TTN and you can see the messages in the panel. 152 - 153 -[[image:1654504778294-788.png]] 154 - 155 - 156 - 157 -== 2.3 Uplink Payload == 158 - 159 - 160 -=== 2.3.1 MOD~=0(Default Mode) === 161 - 162 -LSE01 will uplink payload via LoRaWAN with below payload format: 163 - 164 164 ((( 165 - Uplinkpayload includesin total11bytes.122 +The NSE01 is equipped with a NB-IoT module, the pre-loaded firmware in NSE01 will get environment data from sensors and send the value to local NB-IoT network via the NB-IoT module. The NB-IoT network will forward this value to IoT server via the protocol defined by NSE01. 166 166 ))) 167 167 168 -(% border="1" cellspacing="10" style="background-color:#ffffcc; width:500px" %) 169 -|((( 170 -**Size** 171 171 172 -**(bytes)** 173 -)))|**2**|**2**|**2**|**2**|**2**|**1** 174 -|**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|((( 175 -Temperature 176 - 177 -(Reserve, Ignore now) 178 -)))|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]]|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]]|((( 179 -MOD & Digital Interrupt 180 - 181 -(Optional) 182 -))) 183 - 184 - 185 - 186 - 187 - 188 - 189 - 190 -=== 2.3.2 MOD~=1(Original value) === 191 - 192 -This mode can get the original AD value of moisture and original conductivity (with temperature drift compensation). 193 - 194 -(% border="1" cellspacing="10" style="background-color:#ffffcc; width:500px" %) 195 -|((( 196 -**Size** 197 - 198 -**(bytes)** 199 -)))|**2**|**2**|**2**|**2**|**2**|**1** 200 -|**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|((( 201 -Temperature 202 - 203 -(Reserve, Ignore now) 204 -)))|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]](raw)|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]](raw)|((( 205 -MOD & Digital Interrupt 206 - 207 -(Optional) 208 -))) 209 - 210 -=== 2.3.3 Battery Info === 211 - 212 212 ((( 213 - CheckthebatteryvoltageforLSE01.127 +The diagram below shows the working flow in default firmware of NSE01: 214 214 ))) 215 215 216 -((( 217 -Ex1: 0x0B45 = 2885mV 218 -))) 130 +[[image:image-20220708101605-2.png]] 219 219 220 220 ((( 221 -Ex2: 0x0B49 = 2889mV 222 -))) 223 - 224 - 225 - 226 -=== 2.3.4 Soil Moisture === 227 - 228 -((( 229 -Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil. 230 -))) 231 - 232 -((( 233 -For example, if the data you get from the register is __0x05 0xDC__, the moisture content in the soil is 234 -))) 235 - 236 -((( 237 237 238 238 ))) 239 239 240 -((( 241 -(% style="color:#4f81bd" %)**05DC(H) = 1500(D) /100 = 15%.** 242 -))) 243 243 244 244 138 +== 2.2 Configure the NSE01 == 245 245 246 -=== 2.3.5 Soil Temperature === 247 247 248 -((( 249 - Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is 0x09 0xEC, the temperature content in the soil is 250 -))) 141 +=== 2.2.1 Test Requirement === 251 251 252 -((( 253 -**Example**: 254 -))) 255 255 256 256 ((( 257 - If payloadis 0105H:((0x0105&0x8000)>>15===0),temp=0105(H)/100 = 2.61 °C145 +To use NSE01 in your city, make sure meet below requirements: 258 258 ))) 259 259 260 - (((261 - IfpayloadisFF7EH:((FF7E& 0x8000)>>15 ===1),temp=(FF7E(H)-FFFF(H))/100 = -1.29°C262 - )))148 +* Your local operator has already distributed a NB-IoT Network there. 149 +* The local NB-IoT network used the band that NSE01 supports. 150 +* Your operator is able to distribute the data received in their NB-IoT network to your IoT server. 263 263 264 - 265 - 266 -=== 2.3.6 Soil Conductivity (EC) === 267 - 268 268 ((( 269 - Obtain (% style="color:#4f81bd"%)**__solublesalt concentration__**(%%)in soilor(% style="color:#4f81bd" %)**__solubleionconcentrationinliquid fertilizer__**(%%) or (% style="color:#4f81bd" %)**__planting medium__**(%%).Thevaluerangeof theregisteris0-20000(Decimal)(Canbegreaterthan20000).153 +Below figure shows our testing structure. Here we have NB-IoT network coverage by China Mobile, the band they use is B8. The NSE01 will use CoAP((% style="color:red" %)120.24.4.116:5683)(%%) or raw UDP((% style="color:red" %)120.24.4.116:5601)(%%) or MQTT((% style="color:red" %)120.24.4.116:1883)(%%)or TCP((% style="color:red" %)120.24.4.116:5600)(%%)protocol to send data to the test server 270 270 ))) 271 271 272 -((( 273 -For example, if the data you get from the register is 0x00 0xC8, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm. 274 -))) 275 275 276 -((( 277 -Generally, the EC value of irrigation water is less than 800uS / cm. 278 -))) 157 +[[image:1657249419225-449.png]] 279 279 280 -((( 281 - 282 -))) 283 283 284 -((( 285 - 286 -))) 287 287 288 -=== 2. 3.7MOD===161 +=== 2.2.2 Insert SIM card === 289 289 290 -Firmware version at least v2.1 supports changing mode. 291 - 292 -For example, bytes[10]=90 293 - 294 -mod=(bytes[10]>>7)&0x01=1. 295 - 296 - 297 -**Downlink Command:** 298 - 299 -If payload = 0x0A00, workmode=0 300 - 301 -If** **payload =** **0x0A01, workmode=1 302 - 303 - 304 - 305 -=== 2.3.8 Decode payload in The Things Network === 306 - 307 -While using TTN network, you can add the payload format to decode the payload. 308 - 309 - 310 -[[image:1654505570700-128.png]] 311 - 312 312 ((( 313 - ThepayloaddecoderfunctionforTTNis here:164 +Insert the NB-IoT Card get from your provider. 314 314 ))) 315 315 316 316 ((( 317 - LSE01TTNPayloadDecoder:[[https:~~/~~/www.dropbox.com/sh/si8icbrjlamxqdb/AAACYwjsxxr5fj_vpqRtrETAa?dl=0>>https://www.dropbox.com/sh/si8icbrjlamxqdb/AAACYwjsxxr5fj_vpqRtrETAa?dl=0]]168 +User need to take out the NB-IoT module and insert the SIM card like below: 318 318 ))) 319 319 320 320 321 - ==2.4Uplink Interval ==172 +[[image:1657249468462-536.png]] 322 322 323 -The LSE01 by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link: [[Change Uplink Interval>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H4.1ChangeUplinkInterval"]] 324 324 325 325 176 +=== 2.2.3 Connect USB – TTL to NSE01 to configure it === 326 326 327 -== 2.5 Downlink Payload == 328 - 329 -By default, LSE50 prints the downlink payload to console port. 330 - 331 -[[image:image-20220606165544-8.png]] 332 - 333 - 334 334 ((( 335 -**Examples:** 336 -))) 337 - 338 338 ((( 339 - 180 +User need to configure NSE01 via serial port to set the (% style="color:blue" %)**Server Address** / **Uplink Topic** (%%)to define where and how-to uplink packets. NSE01 support AT Commands, user can use a USB to TTL adapter to connect to NSE01 and use AT Commands to configure it, as below. 340 340 ))) 341 - 342 -* ((( 343 -**Set TDC** 344 344 ))) 345 345 346 -((( 347 -If the payload=0100003C, it means set the END Node’s TDC to 0x00003C=60(S), while type code is 01. 348 -))) 349 349 350 -((( 351 -Payload: 01 00 00 1E TDC=30S 352 -))) 185 +**Connection:** 353 353 354 -((( 355 -Payload: 01 00 00 3C TDC=60S 356 -))) 187 + (% style="background-color:yellow" %)USB TTL GND <~-~-~-~-> GND 357 357 358 -((( 359 - 360 -))) 189 + (% style="background-color:yellow" %)USB TTL TXD <~-~-~-~-> UART_RXD 361 361 362 -* ((( 363 -**Reset** 364 -))) 191 + (% style="background-color:yellow" %)USB TTL RXD <~-~-~-~-> UART_TXD 365 365 366 -((( 367 -If payload = 0x04FF, it will reset the LSE01 368 -))) 369 369 194 +In the PC, use below serial tool settings: 370 370 371 -* **CFM** 196 +* Baud: (% style="color:green" %)**9600** 197 +* Data bits:** (% style="color:green" %)8(%%)** 198 +* Stop bits: (% style="color:green" %)**1** 199 +* Parity: (% style="color:green" %)**None** 200 +* Flow Control: (% style="color:green" %)**None** 372 372 373 -Downlink Payload: 05000001, Set AT+CFM=1 or 05000000 , set AT+CFM=0 374 - 375 - 376 - 377 -== 2.6 Show Data in DataCake IoT Server == 378 - 379 379 ((( 380 - [[DATACAKE>>url:https://datacake.co/]]providesahumanfriendly interfacetoshow thesensordata,once wehavedatain TTN, we canuse[[DATACAKE>>url:https://datacake.co/]] toconnectto TTNandseethedatain DATACAKE.Belowarethesteps:203 +Make sure the switch is in FLASH position, then power on device by connecting the jumper on NSE01. NSE01 will output system info once power on as below, we can enter the (% style="color:green" %)**password: 12345678**(%%) to access AT Command input. 381 381 ))) 382 382 383 -((( 384 - 385 -))) 206 +[[image:image-20220708110657-3.png]] 386 386 387 387 ((( 388 -(% style="color: blue" %)**Step 1**(%%):Be surethat your deviceisprogrammed and properlyconnectedtothe networkat thistime.209 +(% style="color:red" %)Note: the valid AT Commands can be found at: (%%)[[http:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/]] 389 389 ))) 390 390 391 -((( 392 -(% style="color:blue" %)**Step 2**(%%): To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps: 393 -))) 394 394 395 395 396 - [[image:1654505857935-743.png]]214 +=== 2.2.4 Use CoAP protocol to uplink data === 397 397 216 +(% style="color:red" %)Note: if you don't have CoAP server, you can refer this link to set up one: (%%)[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/>>http://wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/]] 398 398 399 -[[image:1654505874829-548.png]] 400 400 219 +**Use below commands:** 401 401 402 -(% style="color:blue" %)**Step 3**(%%)**:** Create an account or log in Datacake. 221 +* (% style="color:blue" %)**AT+PRO=1** (%%) ~/~/ Set to use CoAP protocol to uplink 222 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5683 ** (%%)~/~/ to set CoAP server address and port 223 +* (% style="color:blue" %)**AT+URI=5,11,"mqtt",11,"coap",12,"0",15,"c=text1",23,"0" ** (%%) ~/~/Set COAP resource path 403 403 404 - (%style="color:blue"%)**Step4**(%%)**:** SearchtheLSE01andadd DevEUI.225 +For parameter description, please refer to AT command set 405 405 227 +[[image:1657249793983-486.png]] 406 406 407 -[[image:1654505905236-553.png]] 408 408 230 +After configure the server address and (% style="color:green" %)**reset the device**(%%) (via AT+ATZ ), NSE01 will start to uplink sensor values to CoAP server. 409 409 410 - After added, the sensor data arrive TTN, it willalso arriveand show in Mydevices.232 +[[image:1657249831934-534.png]] 411 411 412 -[[image:1654505925508-181.png]] 413 413 414 414 236 +=== 2.2.5 Use UDP protocol to uplink data(Default protocol) === 415 415 416 - ==2.7 FrequencyPlans==238 +This feature is supported since firmware version v1.0.1 417 417 418 -The LSE01 uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets. 419 419 241 +* (% style="color:blue" %)**AT+PRO=2 ** (%%) ~/~/ Set to use UDP protocol to uplink 242 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5601 ** (%%) ~/~/ to set UDP server address and port 243 +* (% style="color:blue" %)**AT+CFM=1 ** (%%) ~/~/If the server does not respond, this command is unnecessary 420 420 421 - === 2.7.1EU863-870 (EU868) ===245 +[[image:1657249864775-321.png]] 422 422 423 -(% style="color:#037691" %)** Uplink:** 424 424 425 - 868.1- SF7BW125 to SF12BW125248 +[[image:1657249930215-289.png]] 426 426 427 -868.3 - SF7BW125 to SF12BW125 and SF7BW250 428 428 429 -868.5 - SF7BW125 to SF12BW125 430 430 431 - 867.1-SF7BW125toSF12BW125252 +=== 2.2.6 Use MQTT protocol to uplink data === 432 432 433 - 867.3-SF7BW125toSF12BW125254 +This feature is supported since firmware version v110 434 434 435 -867.5 - SF7BW125 to SF12BW125 436 436 437 -867.7 - SF7BW125 to SF12BW125 257 +* (% style="color:blue" %)**AT+PRO=3 ** (%%) ~/~/Set to use MQTT protocol to uplink 258 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,1883 ** (%%) ~/~/Set MQTT server address and port 259 +* (% style="color:blue" %)**AT+CLIENT=CLIENT ** (%%)~/~/Set up the CLIENT of MQTT 260 +* (% style="color:blue" %)**AT+UNAME=UNAME **(%%)~/~/Set the username of MQTT 261 +* (% style="color:blue" %)**AT+PWD=PWD **(%%)~/~/Set the password of MQTT 262 +* (% style="color:blue" %)**AT+PUBTOPIC=NSE01_PUB **(%%)~/~/Set the sending topic of MQTT 263 +* (% style="color:blue" %)**AT+SUBTOPIC=NSE01_SUB **(%%) ~/~/Set the subscription topic of MQTT 438 438 439 - 867.9SF7BW125 to SF12BW125265 +[[image:1657249978444-674.png]] 440 440 441 -868.8 - FSK 442 442 268 +[[image:1657249990869-686.png]] 443 443 444 -(% style="color:#037691" %)** Downlink:** 445 445 446 -Uplink channels 1-9 (RX1) 271 +((( 272 +MQTT protocol has a much higher power consumption compare vs UDP / CoAP protocol. Please check the power analyze document and adjust the uplink period to a suitable interval. 273 +))) 447 447 448 -869.525 - SF9BW125 (RX2 downlink only) 449 449 450 450 277 +=== 2.2.7 Use TCP protocol to uplink data === 451 451 452 - ===2.7.2US902-928(US915)===279 +This feature is supported since firmware version v110 453 453 454 -Used in USA, Canada and South America. Default use CHE=2 455 455 456 -(% style="color:#037691" %)**Uplink:** 282 +* (% style="color:blue" %)**AT+PRO=4 ** (%%) ~/~/ Set to use TCP protocol to uplink 283 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5600 **(%%) ~/~/ to set TCP server address and port 457 457 458 - 903.9 - SF7BW125to SF10BW125285 +[[image:1657250217799-140.png]] 459 459 460 -904.1 - SF7BW125 to SF10BW125 461 461 462 - 904.3 - SF7BW125to SF10BW125288 +[[image:1657250255956-604.png]] 463 463 464 -904.5 - SF7BW125 to SF10BW125 465 465 466 -904.7 - SF7BW125 to SF10BW125 467 467 468 - 904.9-SF7BW125toSF10BW125292 +=== 2.2.8 Change Update Interval === 469 469 470 - 905.1-SF7BW125toSF10BW125294 +User can use below command to change the (% style="color:green" %)**uplink interval**. 471 471 472 - 905.3-SF7BW125toSF10BW125296 +* (% style="color:blue" %)**AT+TDC=600 ** (%%)~/~/ Set Update Interval to 600s 473 473 298 +((( 299 +(% style="color:red" %)**NOTE:** 300 +))) 474 474 475 -(% style="color:#037691" %)**Downlink:** 302 +((( 303 +(% style="color:red" %)1. By default, the device will send an uplink message every 1 hour. 304 +))) 476 476 477 -923.3 - SF7BW500 to SF12BW500 478 478 479 -923.9 - SF7BW500 to SF12BW500 480 480 481 - 924.5-SF7BW500 toSF12BW500308 +== 2.3 Uplink Payload == 482 482 483 - 925.1-SF7BW500toSF12BW500310 +In this mode, uplink payload includes in total 18 bytes 484 484 485 -925.7 - SF7BW500 to SF12BW500 312 +(% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:510px" %) 313 +|=(% style="width: 60px;" %)((( 314 +**Size(bytes)** 315 +)))|=(% style="width: 50px;" %)**6**|=(% style="width: 25px;" %)2|=(% style="width: 25px;" %)**2**|=(% style="width: 70px;" %)**1**|=(% style="width: 60px;" %)**2**|=(% style="width: 80px;" %)**2**|=(% style="width: 90px;" %)**2**|=(% style="width: 50px;" %)**1** 316 +|(% style="width:97px" %)**Value**|(% style="width:83px" %)[[Device ID>>||anchor="H2.4.1A0A0DeviceID"]]|(% style="width:41px" %)[[Ver>>||anchor="H2.4.2A0VersionInfo"]]|(% style="width:46px" %)[[BAT>>||anchor="H2.4.3A0BatteryInfo"]]|(% style="width:123px" %)[[Signal Strength>>||anchor="H2.4.4A0SignalStrength"]]|(% style="width:108px" %)[[Soil Moisture>>||anchor="H2.4.5A0SoilMoisture"]]|(% style="width:133px" %)[[Soil Temperature>>||anchor="H2.4.6A0SoilTemperature"]]|(% style="width:159px" %)[[Soil Conductivity(EC)>>||anchor="H2.4.7A0SoilConductivity28EC29"]]|(% style="width:80px" %)[[Interrupt>>||anchor="H2.4.8A0DigitalInterrupt"]] 486 486 487 -926.3 - SF7BW500 to SF12BW500 318 +((( 319 +If we use the MQTT client to subscribe to this MQTT topic, we can see the following information when the NSE01 uplink data. 320 +))) 488 488 489 -926.9 - SF7BW500 to SF12BW500 490 490 491 - 927.5-SF7BW500 to SF12BW500323 +[[image:image-20220708111918-4.png]] 492 492 493 -923.3 - SF12BW500(RX2 downlink only) 494 494 326 +The payload is ASCII string, representative same HEX: 495 495 328 +0x72403155615900640c7817075e0a8c02f900 where: 496 496 497 -=== 2.7.3 CN470-510 (CN470) === 330 +* Device ID: 0x 724031556159 = 724031556159 331 +* Version: 0x0064=100=1.0.0 498 498 499 -Used in China, Default use CHE=1 333 +* BAT: 0x0c78 = 3192 mV = 3.192V 334 +* Singal: 0x17 = 23 335 +* Soil Moisture: 0x075e= 1886 = 18.86 % 336 +* Soil Temperature:0x0a8c =2700=27 °C 337 +* Soil Conductivity(EC) = 0x02f9 =761 uS /cm 338 +* Interrupt: 0x00 = 0 500 500 501 - (%style="color:#037691"%)**Uplink:**340 +== 2.4 Payload Explanation and Sensor Interface == 502 502 503 -486.3 - SF7BW125 to SF12BW125 504 504 505 -4 86.5 - SF7BW125toSF12BW125343 +=== 2.4.1 Device ID === 506 506 507 -486.7 - SF7BW125 to SF12BW125 345 +((( 346 +By default, the Device ID equal to the last 6 bytes of IMEI. 347 +))) 508 508 509 -486.9 - SF7BW125 to SF12BW125 349 +((( 350 +User can use (% style="color:blue" %)**AT+DEUI**(%%) to set Device ID 351 +))) 510 510 511 -487.1 - SF7BW125 to SF12BW125 353 +((( 354 +**Example:** 355 +))) 512 512 513 -487.3 - SF7BW125 to SF12BW125 357 +((( 358 +AT+DEUI=A84041F15612 359 +))) 514 514 515 -487.5 - SF7BW125 to SF12BW125 361 +((( 362 +The Device ID is stored in a none-erase area, Upgrade the firmware or run AT+FDR won't erase Device ID. 363 +))) 516 516 517 -487.7 - SF7BW125 to SF12BW125 518 518 519 519 520 - (%style="color:#037691" %)**Downlink:**367 +=== 2.4.2 Version Info === 521 521 522 -506.7 - SF7BW125 to SF12BW125 369 +((( 370 +Specify the software version: 0x64=100, means firmware version 1.00. 371 +))) 523 523 524 -506.9 - SF7BW125 to SF12BW125 373 +((( 374 +For example: 0x00 64 : this device is NSE01 with firmware version 1.0.0. 375 +))) 525 525 526 -507.1 - SF7BW125 to SF12BW125 527 527 528 -507.3 - SF7BW125 to SF12BW125 529 529 530 - 507.5- SF7BW125toSF12BW125379 +=== 2.4.3 Battery Info === 531 531 532 -507.7 - SF7BW125 to SF12BW125 381 +((( 382 +Check the battery voltage for LSE01. 383 +))) 533 533 534 -507.9 - SF7BW125 to SF12BW125 385 +((( 386 +Ex1: 0x0B45 = 2885mV 387 +))) 535 535 536 -508.1 - SF7BW125 to SF12BW125 389 +((( 390 +Ex2: 0x0B49 = 2889mV 391 +))) 537 537 538 -505.3 - SF12BW125 (RX2 downlink only) 539 539 540 540 395 +=== 2.4.4 Signal Strength === 541 541 542 -=== 2.7.4 AU915-928(AU915) === 397 +((( 398 +NB-IoT Network signal Strength. 399 +))) 543 543 544 -Default use CHE=2 401 +((( 402 +**Ex1: 0x1d = 29** 403 +))) 545 545 546 -(% style="color:#037691" %)**Uplink:** 405 +((( 406 +(% style="color:blue" %)**0**(%%) -113dBm or less 407 +))) 547 547 548 -916.8 - SF7BW125 to SF12BW125 409 +((( 410 +(% style="color:blue" %)**1**(%%) -111dBm 411 +))) 549 549 550 -917.0 - SF7BW125 to SF12BW125 413 +((( 414 +(% style="color:blue" %)**2...30**(%%) -109dBm... -53dBm 415 +))) 551 551 552 -917.2 - SF7BW125 to SF12BW125 417 +((( 418 +(% style="color:blue" %)**31** (%%) -51dBm or greater 419 +))) 553 553 554 -917.4 - SF7BW125 to SF12BW125 421 +((( 422 +(% style="color:blue" %)**99** (%%) Not known or not detectable 423 +))) 555 555 556 -917.6 - SF7BW125 to SF12BW125 557 557 558 -917.8 - SF7BW125 to SF12BW125 559 559 560 - 918.0- SF7BW125toSF12BW125427 +=== 2.4.5 Soil Moisture === 561 561 562 -918.2 - SF7BW125 to SF12BW125 429 +((( 430 +((( 431 +Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil. 432 +))) 433 +))) 563 563 435 +((( 436 +((( 437 +For example, if the data you get from the register is **__0x05 0xDC__**, the moisture content in the soil is 438 +))) 439 +))) 564 564 565 -(% style="color:#037691" %)**Downlink:** 441 +((( 442 + 443 +))) 566 566 567 -923.3 - SF7BW500 to SF12BW500 445 +((( 446 +(% style="color:#4f81bd" %)**05DC(H) = 1500(D) /100 = 15%.** 447 +))) 568 568 569 -923.9 - SF7BW500 to SF12BW500 570 570 571 -924.5 - SF7BW500 to SF12BW500 572 572 573 - 925.1-SF7BW500toSF12BW500451 +=== 2.4.6 Soil Temperature === 574 574 575 -925.7 - SF7BW500 to SF12BW500 453 +((( 454 +Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is __**0x09 0xEC**__, the temperature content in the soil is 455 +))) 576 576 577 -926.3 - SF7BW500 to SF12BW500 457 +((( 458 +**Example**: 459 +))) 578 578 579 -926.9 - SF7BW500 to SF12BW500 461 +((( 462 +If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/100 = 2.61 °C 463 +))) 580 580 581 -927.5 - SF7BW500 to SF12BW500 465 +((( 466 +If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C 467 +))) 582 582 583 -923.3 - SF12BW500(RX2 downlink only) 584 584 585 585 471 +=== 2.4.7 Soil Conductivity (EC) === 586 586 587 -=== 2.7.5 AS920-923 & AS923-925 (AS923) === 473 +((( 474 +Obtain (% style="color:#4f81bd" %)**__soluble salt concentration__**(%%) in soil or (% style="color:#4f81bd" %)**__soluble ion concentration in liquid fertilizer__**(%%) or (% style="color:#4f81bd" %)**__planting medium__**(%%). The value range of the register is 0 - 20000(Decimal)( Can be greater than 20000). 475 +))) 588 588 589 -(% style="color:#037691" %)**Default Uplink channel:** 477 +((( 478 +For example, if the data you get from the register is __**0x00 0xC8**__, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm. 479 +))) 590 590 591 -923.2 - SF7BW125 to SF10BW125 481 +((( 482 +Generally, the EC value of irrigation water is less than 800uS / cm. 483 +))) 592 592 593 -923.4 - SF7BW125 to SF10BW125 485 +((( 486 + 487 +))) 594 594 489 +((( 490 + 491 +))) 595 595 596 - (% style="color:#037691"%)**AdditionalUplink Channel**:493 +=== 2.4.8 Digital Interrupt === 597 597 598 -(OTAA mode, channel added by JoinAccept message) 495 +((( 496 +Digital Interrupt refers to pin (% style="color:blue" %)**GPIO_EXTI**(%%), and there are different trigger methods. When there is a trigger, the NSE01 will send a packet to the server. 497 +))) 599 599 600 -(% style="color:#037691" %)**AS920~~AS923 for Japan, Malaysia, Singapore**: 499 +((( 500 +The command is: 501 +))) 601 601 602 -922.2 - SF7BW125 to SF10BW125 503 +((( 504 +(% style="color:blue" %)**AT+INTMOD=3 **(%%) ~/~/(more info about INMOD please refer [[**AT Command Manual**>>url:https://www.dragino.com/downloads/downloads/NB-IoT/NBSN95/DRAGINO_NBSN95-NB_AT%20Commands_v1.1.0.pdf]])**.** 505 +))) 603 603 604 -922.4 - SF7BW125 to SF10BW125 605 605 606 -922.6 - SF7BW125 to SF10BW125 508 +((( 509 +The lower four bits of this data field shows if this packet is generated by interrupt or not. Click here for the hardware and software set up. 510 +))) 607 607 608 -922.8 - SF7BW125 to SF10BW125 609 609 610 -923.0 - SF7BW125 to SF10BW125 513 +((( 514 +Example: 515 +))) 611 611 612 -922.0 - SF7BW125 to SF10BW125 517 +((( 518 +0x(00): Normal uplink packet. 519 +))) 613 613 521 +((( 522 +0x(01): Interrupt Uplink Packet. 523 +))) 614 614 615 -(% style="color:#037691" %)**AS923 ~~ AS925 for Brunei, Cambodia, Hong Kong, Indonesia, Laos, Taiwan, Thailand, Vietnam**: 616 616 617 -923.6 - SF7BW125 to SF10BW125 618 618 619 - 923.8- SF7BW125 toSF10BW125527 +=== 2.4.9 +5V Output === 620 620 621 -924.0 - SF7BW125 to SF10BW125 529 +((( 530 +NSE01 will enable +5V output before all sampling and disable the +5v after all sampling. 531 +))) 622 622 623 -924.2 - SF7BW125 to SF10BW125 624 624 625 -924.4 - SF7BW125 to SF10BW125 534 +((( 535 +The 5V output time can be controlled by AT Command. 536 +))) 626 626 627 -924.6 - SF7BW125 to SF10BW125 538 +((( 539 +(% style="color:blue" %)**AT+5VT=1000** 540 +))) 628 628 542 +((( 543 +Means set 5V valid time to have 1000ms. So the real 5V output will actually have 1000ms + sampling time for other sensors. 544 +))) 629 629 630 -(% style="color:#037691" %)** Downlink:** 631 631 632 -Uplink channels 1-8 (RX1) 633 633 634 - 923.2-SF10BW125(RX2)548 +== 2.5 Downlink Payload == 635 635 550 +By default, NSE01 prints the downlink payload to console port. 636 636 552 +[[image:image-20220708133731-5.png]] 637 637 638 -=== 2.7.6 KR920-923 (KR920) === 639 639 640 -Default channel: 555 +((( 556 +(% style="color:blue" %)**Examples:** 557 +))) 641 641 642 -922.1 - SF7BW125 to SF12BW125 559 +((( 560 + 561 +))) 643 643 644 -922.3 - SF7BW125 to SF12BW125 563 +* ((( 564 +(% style="color:blue" %)**Set TDC** 565 +))) 645 645 646 -922.5 - SF7BW125 to SF12BW125 567 +((( 568 +If the payload=0100003C, it means set the END Node's TDC to 0x00003C=60(S), while type code is 01. 569 +))) 647 647 571 +((( 572 +Payload: 01 00 00 1E TDC=30S 573 +))) 648 648 649 -(% style="color:#037691" %)**Uplink: (OTAA mode, channel added by JoinAccept message)** 575 +((( 576 +Payload: 01 00 00 3C TDC=60S 577 +))) 650 650 651 -922.1 - SF7BW125 to SF12BW125 579 +((( 580 + 581 +))) 652 652 653 -922.3 - SF7BW125 to SF12BW125 583 +* ((( 584 +(% style="color:blue" %)**Reset** 585 +))) 654 654 655 -922.5 - SF7BW125 to SF12BW125 587 +((( 588 +If payload = 0x04FF, it will reset the NSE01 589 +))) 656 656 657 -922.7 - SF7BW125 to SF12BW125 658 658 659 - 922.9-SF7BW125toSF12BW125592 +* (% style="color:blue" %)**INTMOD** 660 660 661 -923.1 - SF7BW125 to SF12BW125 594 +((( 595 +Downlink Payload: 06000003, Set AT+INTMOD=3 596 +))) 662 662 663 -923.3 - SF7BW125 to SF12BW125 664 664 665 665 666 - (% style="color:#037691"%)**Downlink:**600 +== 2.6 LED Indicator == 667 667 668 -Uplink channels 1-7(RX1) 602 +((( 603 +The NSE01 has an internal LED which is to show the status of different state. 669 669 670 -921.9 - SF12BW125 (RX2 downlink only; SF12BW125 might be changed to SF9BW125) 671 671 606 +* When power on, NSE01 will detect if sensor probe is connected, if probe detected, LED will blink four times. (no blinks in this step is no probe) 607 +* Then the LED will be on for 1 second means device is boot normally. 608 +* After NSE01 join NB-IoT network. The LED will be ON for 3 seconds. 609 +* For each uplink probe, LED will be on for 500ms. 610 +))) 672 672 673 673 674 -=== 2.7.7 IN865-867 (IN865) === 675 675 676 -(% style="color:#037691" %)** Uplink:** 677 677 678 - 865.0625- SF7BW125to SF12BW125615 +== 2.7 Installation in Soil == 679 679 680 - 865.4025- SF7BW125toSF12BW125617 +__**Measurement the soil surface**__ 681 681 682 -865.9850 - SF7BW125 to SF12BW125 619 +((( 620 +Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting. [[https:~~/~~/img.alicdn.com/imgextra/i3/2005165265/O1CN010rj9Oh1olPsQxrdUK_!!2005165265.jpg>>url:https://img.alicdn.com/imgextra/i3/2005165265/O1CN010rj9Oh1olPsQxrdUK_!!2005165265.jpg]] 621 +))) 683 683 623 +[[image:1657259653666-883.png]] 684 684 685 -(% style="color:#037691" %) **Downlink:** 686 686 687 -Uplink channels 1-3 (RX1) 626 +((( 627 + 688 688 689 -866.550 - SF10BW125 (RX2) 629 +((( 630 +Dig a hole with diameter > 20CM. 631 +))) 690 690 633 +((( 634 +Horizontal insert the probe to the soil and fill the hole for long term measurement. 635 +))) 636 +))) 691 691 638 +[[image:1654506665940-119.png]] 692 692 640 +((( 641 + 642 +))) 693 693 694 -== 2.8 LED Indicator == 695 695 696 - TheLSE01has aninternal LEDwhich is to show the status of differentstate.645 +== 2.8 Firmware Change Log == 697 697 698 -* Blink once when device power on. 699 -* Solid ON for 5 seconds once device successful Join the network. 700 -* Blink once when device transmit a packet. 701 701 702 - == 2.9 InstallationinSoil==648 +Download URL & Firmware Change log 703 703 704 - **Measurementhe soilurface**650 +[[www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/Firmware/]] 705 705 706 706 707 -[[ima ge:1654506634463-199.png]]653 +Upgrade Instruction: [[Upgrade_Firmware>>||anchor="H5.1200BHowtoUpgradeFirmware"]] 708 708 709 -((( 710 -((( 711 -Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting. 712 -))) 713 -))) 714 714 715 715 657 +== 2.9 Battery Analysis == 716 716 717 - [[image:1654506665940-119.png]]659 +=== 2.9.1 Battery Type === 718 718 719 -((( 720 -Dig a hole with diameter > 20CM. 721 -))) 722 722 723 723 ((( 724 - Horizontalinserttheprobe tothesoilandfilltheholeforlongtermmeasurement.663 +The NSE01 battery is a combination of an 8500mAh Li/SOCI2 Battery and a Super Capacitor. The battery is none-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter. 725 725 ))) 726 726 727 727 728 -== 2.10 Firmware Change Log == 729 - 730 730 ((( 731 - **Firmware downloadlink:**668 +The battery is designed to last for several years depends on the actually use environment and update interval. 732 732 ))) 733 733 734 -((( 735 -[[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/]] 736 -))) 737 737 738 738 ((( 739 - 673 +The battery related documents as below: 740 740 ))) 741 741 742 - (((743 -* *FirmwareUpgrade Method: **[[FirmwareUpgradeInstruction>>doc:Main.Firmware Upgrade Instructionfor STM32 baseoducts.WebHome]]744 - )))676 +* [[Battery Dimension>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]] 677 +* [[Lithium-Thionyl Chloride Battery datasheet>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]] 678 +* [[Lithium-ion Battery-Capacitor datasheet>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]] 745 745 746 746 ((( 747 - 681 +[[image:image-20220708140453-6.png]] 748 748 ))) 749 749 750 -((( 751 -**V1.0.** 752 -))) 753 753 685 + 686 +=== 2.9.2 Power consumption Analyze === 687 + 754 754 ((( 755 - Release689 +Dragino battery powered product are all runs in Low Power mode. We have an update battery calculator which base on the measurement of the real device. User can use this calculator to check the battery life and calculate the battery life if want to use different transmit interval. 756 756 ))) 757 757 758 758 759 -== 2.11 Battery Analysis == 760 - 761 -=== 2.11.1 Battery Type === 762 - 763 763 ((( 764 - The LSE01 battery is a combination of a 4000mAh Li/SOCI2 Battery and a Super Capacitor. The batteryis non-rechargeablebattery type with a lowdischargerate (<2% per year). Thistype ofbattery is commonly used in IoT devices such aswater meter.694 +Instruction to use as below: 765 765 ))) 766 766 767 767 ((( 768 - Thebatterys designedlastforrethan5 years fortheSN50.698 +(% style="color:blue" %)**Step 1: **(%%)Downlink the up-to-date DRAGINO_Battery_Life_Prediction_Table.xlsx from: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/]] 769 769 ))) 770 770 701 + 771 771 ((( 772 -((( 773 -The battery-related documents are as below: 703 +(% style="color:blue" %)**Step 2: **(%%) Open it and choose 774 774 ))) 775 -))) 776 776 777 777 * ((( 778 - [[Battery Dimension>>url:http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/&file=LSN50-Battery-Dimension.pdf]],707 +Product Model 779 779 ))) 780 780 * ((( 781 - [[Lithium-ThionylChloride Battery datasheet>>url:https://www.dragino.com/downloads/downloads/datasheet/Battery/ER26500/ER26500_Datasheet-EN.pdf]],710 +Uplink Interval 782 782 ))) 783 783 * ((( 784 - [[Lithium-ion Battery-Capacitor datasheet>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC_1520_datasheet.jpg]],[[Tech Spec>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC1520%20Technical%20Specification20171123.pdf]]713 +Working Mode 785 785 ))) 786 786 787 - [[image:image-20220610172436-1.png]] 716 +((( 717 +And the Life expectation in difference case will be shown on the right. 718 +))) 788 788 720 +[[image:image-20220708141352-7.jpeg]] 789 789 790 790 791 -=== 2.11.2 Battery Note === 792 792 724 +=== 2.9.3 Battery Note === 725 + 793 793 ((( 794 794 The Li-SICO battery is designed for small current / long period application. It is not good to use a high current, short period transmit method. The recommended minimum period for use of this battery is 5 minutes. If you use a shorter period time to transmit LoRa, then the battery life may be decreased. 795 795 ))) ... ... @@ -796,298 +796,176 @@ 796 796 797 797 798 798 799 -=== 2. 11.3Replace the battery ===732 +=== 2.9.4 Replace the battery === 800 800 801 801 ((( 802 - IfBattery is lower than 2.7v,usershouldreplace the battery ofLSE01.735 +The default battery pack of NSE01 includes a ER26500 plus super capacitor. If user can't find this pack locally, they can find ER26500 or equivalence without the SPC1520 capacitor, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes). 803 803 ))) 804 804 738 + 739 + 740 += 3. Access NB-IoT Module = 741 + 805 805 ((( 806 - You can changethe battery in the LSE01.The type of battery isnot limitedas longas the outputis between 3v to 3.6v. On the main board, there is a diode (D1) between the battery and the maincircuit. If you need to use a battery with lessthan 3.3v, pleaseremovethe D1and shortcut thewopadsofitso therewon’tbe voltage drop between battery andmain board.743 +Users can directly access the AT command set of the NB-IoT module. 807 807 ))) 808 808 809 809 ((( 810 -The defaultbattery packof LSE01 includesa ER18505 plussupercapacitor.Ifusercan’tfind this pack locally, theycan find ER18505orequivalence,whichwillalsoworkinmostcase.The SPC can enlargethebattery lifeforigh frequency use(updateperiod below5minutes)747 +The AT Command set can refer the BC35-G NB-IoT Module AT Command: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=datasheet/other_vendors/BC35-G/>>url:https://www.dragino.com/downloads/index.php?dir=datasheet/other_vendors/BC35-G/]] 811 811 ))) 812 812 750 +[[image:1657261278785-153.png]] 813 813 814 814 815 -= 3. Using the AT Commands = 816 816 817 -= =3.1AccessAT Commands ==754 += 4. Using the AT Commands = 818 818 756 +== 4.1 Access AT Commands == 819 819 820 - LSE01supportsATCommandsetn the stock firmware.Youcanuse a USB toTTLadaptertoconnect to LSE01forusing ATcommand,asbelow.758 +See this link for detail: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/]] 821 821 822 -[[image:1654501986557-872.png||height="391" width="800"]] 823 823 761 +AT+<CMD>? : Help on <CMD> 824 824 825 - Orifyouhavebelowboard,usebelowconnection:763 +AT+<CMD> : Run <CMD> 826 826 765 +AT+<CMD>=<value> : Set the value 827 827 828 - [[image:1654502005655-729.png||height="503"width="801"]]767 +AT+<CMD>=? : Get the value 829 829 830 830 831 - 832 -In the PC, you need to set the serial baud rate to (% style="color:green" %)**9600**(%%) to access the serial console for LSE01. LSE01 will output system info once power on as below: 833 - 834 - 835 - [[image:1654502050864-459.png||height="564" width="806"]] 836 - 837 - 838 -Below are the available commands, a more detailed AT Command manual can be found at [[AT Command Manual>>https://www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0]]: [[https:~~/~~/www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0>>https://www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0]] 839 - 840 - 841 -(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>? **(%%) : Help on <CMD> 842 - 843 -(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD> **(%%) : Run <CMD> 844 - 845 -(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>=<value>**(%%) : Set the value 846 - 847 -(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>=?**(%%) : Get the value 848 - 849 - 850 850 (% style="color:#037691" %)**General Commands**(%%) 851 851 852 - (% style="background-color:#dcdcdc" %)**AT**(%%): Attention772 +AT : Attention 853 853 854 - (% style="background-color:#dcdcdc" %)**AT?**(%%): Short Help774 +AT? : Short Help 855 855 856 - (% style="background-color:#dcdcdc" %)**ATZ**(%%): MCU Reset776 +ATZ : MCU Reset 857 857 858 - (% style="background-color:#dcdcdc" %)**AT+TDC**(%%): Application Data Transmission Interval778 +AT+TDC : Application Data Transmission Interval 859 859 780 +AT+CFG : Print all configurations 860 860 861 - (%style="color:#037691"%)**Keys,IDsand EUIs management**782 +AT+CFGMOD : Working mode selection 862 862 863 - (% style="background-color:#dcdcdc" %)**AT+APPEUI**(%%)ApplicationEUI784 +AT+INTMOD : Set the trigger interrupt mode 864 864 865 - (% style="background-color:#dcdcdc" %)**AT+APPKEY**(%%)ApplicationKey786 +AT+5VT : Set extend the time of 5V power 866 866 867 - (% style="background-color:#dcdcdc" %)**AT+APPSKEY**(%%)Application Session Key788 +AT+PRO : Choose agreement 868 868 869 - (% style="background-color:#dcdcdc" %)**AT+DADDR**(%%)DeviceAddress790 +AT+WEIGRE : Get weight or set weight to 0 870 870 871 - (% style="background-color:#dcdcdc" %)**AT+DEUI**(%%)DeviceEUI792 +AT+WEIGAP : Get or Set the GapValue of weight 872 872 873 - (% style="background-color:#dcdcdc" %)**AT+NWKID**(%%):NetworkID(Youcanenterthiscommandchangeonlyaftersuccessful networkconnection)794 +AT+RXDL : Extend the sending and receiving time 874 874 875 - (% style="background-color:#dcdcdc" %)**AT+NWKSKEY**(%%)NetworkSession KeyJoining and sending dateon LoRa network796 +AT+CNTFAC : Get or set counting parameters 876 876 877 - (% style="background-color:#dcdcdc" %)**AT+CFM**(%%)ConfirmMode798 +AT+SERVADDR : Server Address 878 878 879 -(% style="background-color:#dcdcdc" %)**AT+CFS**(%%) : Confirm Status 880 880 881 -(% style=" background-color:#dcdcdc" %)**AT+JOIN**(%%): JoinLoRa? Network801 +(% style="color:#037691" %)**COAP Management** 882 882 883 - (% style="background-color:#dcdcdc" %)**AT+NJM**(%%)LoRa? Network Join Mode803 +AT+URI : Resource parameters 884 884 885 -(% style="background-color:#dcdcdc" %)**AT+NJS**(%%) : LoRa? Network Join Status 886 886 887 -(% style=" background-color:#dcdcdc" %)**AT+RECV**(%%) :PrintLast Received Data inRaw Format806 +(% style="color:#037691" %)**UDP Management** 888 888 889 - (% style="background-color:#dcdcdc" %)**AT+RECVB**(%%)Print LastReceived DatainBinaryFormat808 +AT+CFM : Upload confirmation mode (only valid for UDP) 890 890 891 -(% style="background-color:#dcdcdc" %)**AT+SEND**(%%) : Send Text Data 892 892 893 -(% style=" background-color:#dcdcdc" %)**AT+SENB**(%%): Send Hexadecimal Data811 +(% style="color:#037691" %)**MQTT Management** 894 894 813 +AT+CLIENT : Get or Set MQTT client 895 895 896 - (%style="color:#037691"%)**LoRaNetworkManagement**815 +AT+UNAME : Get or Set MQTT Username 897 897 898 - (% style="background-color:#dcdcdc" %)**AT+ADR**(%%):AdaptiveRate817 +AT+PWD : Get or Set MQTT password 899 899 900 - (% style="background-color:#dcdcdc" %)**AT+CLASS**(%%):LoRaClass(Currentlyonly supportclassA819 +AT+PUBTOPIC : Get or Set MQTT publish topic 901 901 902 - (% style="background-color:#dcdcdc" %)**AT+DCS**(%%):DutyCycleSetting821 +AT+SUBTOPIC : Get or Set MQTT subscription topic 903 903 904 -(% style="background-color:#dcdcdc" %)**AT+DR**(%%) : Data Rate (Can Only be Modified after ADR=0) 905 905 906 -(% style=" background-color:#dcdcdc" %)**AT+FCD**(%%) : Frame Counter Downlink824 +(% style="color:#037691" %)**Information** 907 907 908 - (% style="background-color:#dcdcdc" %)**AT+FCU**(%%): Frame CounterUplink826 +AT+FDR : Factory Data Reset 909 909 910 - (% style="background-color:#dcdcdc" %)**AT+JN1DL**(%%):JoinAcceptDelay1828 +AT+PWORD : Serial Access Password 911 911 912 -(% style="background-color:#dcdcdc" %)**AT+JN2DL**(%%) : Join Accept Delay2 913 913 914 -(% style="background-color:#dcdcdc" %)**AT+PNM**(%%) : Public Network Mode 915 915 916 - (% style="background-color:#dcdcdc"%)**AT+RX1DL**(%%): Receive Delay1832 += 5. FAQ = 917 917 918 - (% style="background-color:#dcdcdc"%)**AT+RX2DL**(%%): ReceiveDelay2834 +== 5.1 How to Upgrade Firmware == 919 919 920 -(% style="background-color:#dcdcdc" %)**AT+RX2DR**(%%) : Rx2 Window Data Rate 921 921 922 -(% style="background-color:#dcdcdc" %)**AT+RX2FQ**(%%) : Rx2 Window Frequency 923 - 924 -(% style="background-color:#dcdcdc" %)**AT+TXP**(%%) : Transmit Power 925 - 926 -(% style="background-color:#dcdcdc" %)**AT+ MOD**(%%) : Set work mode 927 - 928 - 929 -(% style="color:#037691" %)**Information** 930 - 931 -(% style="background-color:#dcdcdc" %)**AT+RSSI**(%%) : RSSI of the Last Received Packet 932 - 933 -(% style="background-color:#dcdcdc" %)**AT+SNR**(%%) : SNR of the Last Received Packet 934 - 935 -(% style="background-color:#dcdcdc" %)**AT+VER**(%%) : Image Version and Frequency Band 936 - 937 -(% style="background-color:#dcdcdc" %)**AT+FDR**(%%) : Factory Data Reset 938 - 939 -(% style="background-color:#dcdcdc" %)**AT+PORT**(%%) : Application Port 940 - 941 -(% style="background-color:#dcdcdc" %)**AT+CHS**(%%) : Get or Set Frequency (Unit: Hz) for Single Channel Mode 942 - 943 - (% style="background-color:#dcdcdc" %)**AT+CHE**(%%) : Get or Set eight channels mode, Only for US915, AU915, CN470 944 - 945 - 946 -= 4. FAQ = 947 - 948 -== 4.1 How to change the LoRa Frequency Bands/Region? == 949 - 950 950 ((( 951 -You can follow the instructions for [[how to upgrade image>>||anchor="H2.10200BFirmwareChangeLog"]]. 952 -When downloading the images, choose the required image file for download. 838 +User can upgrade the firmware for 1) bug fix, 2) new feature release. 953 953 ))) 954 954 955 955 ((( 956 - 842 +Please see this link for how to upgrade: [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H2.HardwareUpgradeMethodSupportList>>http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H2.HardwareUpgradeMethodSupportList]] 957 957 ))) 958 958 959 959 ((( 960 - Howtosetup LSE01 towork in 8 channel modeBy default,thefrequency bandsUS915,AU915, CN470 work in 72 frequencies.Many gatewaysare8 channelgateways, andin thiscase,theOTAA join timeand uplink scheduleis longandunpredictable while the end nodeis hoppingin 72 frequencies.846 +(% style="color:red" %)Notice, NSE01 and LSE01 share the same mother board. They use the same connection and method to update. 961 961 ))) 962 962 963 -((( 964 - 965 -))) 966 966 967 -((( 968 -You can configure the end node to work in 8 channel mode by using the AT+CHE command. The 500kHz channels are always included for OTAA. 969 -))) 970 970 971 -((( 972 - 973 -))) 851 +== 5.2 Can I calibrate NSE01 to different soil types? == 974 974 975 975 ((( 976 - Forexample,in **US915**band,the frequencytablesasbelow. By default,the endnodewilluse all channels(0~~71)forOTAAJoinprocess.AftertheOTAAJoin,theend nodewilluse these allchannels(0~~71)tosenduplinkkets.854 +NSE01 is calibrated for saline-alkali soil and loamy soil. If users want to use it for other soil, they can calibrate the value in the IoT platform base on the value measured by saline-alkali soil and loamy soil. The formula can be found at [[this link>>https://www.dragino.com/downloads/downloads/LoRa_End_Node/LSE01/Calibrate_to_other_Soil_20220605.pdf]]. 977 977 ))) 978 978 979 -[[image:image-20220606154726-3.png]] 980 980 858 += 6. Trouble Shooting = 981 981 982 - Whenyouuse the TTNnetwork,theUS915 frequencybandsuseare:860 +== 6.1 Connection problem when uploading firmware == 983 983 984 -* 903.9 - SF7BW125 to SF10BW125 985 -* 904.1 - SF7BW125 to SF10BW125 986 -* 904.3 - SF7BW125 to SF10BW125 987 -* 904.5 - SF7BW125 to SF10BW125 988 -* 904.7 - SF7BW125 to SF10BW125 989 -* 904.9 - SF7BW125 to SF10BW125 990 -* 905.1 - SF7BW125 to SF10BW125 991 -* 905.3 - SF7BW125 to SF10BW125 992 -* 904.6 - SF8BW500 993 993 994 994 ((( 995 -Because the end node is now hopping in 72 frequency, it makes it difficult for the devices to Join the TTN network and uplink data. To solve this issue, you can access the device via the AT commands and run: 996 - 997 -* (% style="color:#037691" %)**AT+CHE=2** 998 -* (% style="color:#037691" %)**ATZ** 864 +**Please see: **[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H3.3Troubleshooting>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H3.3Troubleshooting]] 999 999 ))) 1000 1000 867 +(% class="wikigeneratedid" %) 1001 1001 ((( 1002 1002 1003 - 1004 -to set the end node to work in 8 channel mode. The device will work in Channel 8-15 & 64-71 for OTAA, and channel 8-15 for Uplink. 1005 1005 ))) 1006 1006 1007 -((( 1008 - 1009 -))) 1010 1010 1011 -((( 1012 -The **AU915** band is similar. Below are the AU915 Uplink Channels. 1013 -))) 873 +== 6.2 AT Command input doesn't work == 1014 1014 1015 -[[image:image-20220606154825-4.png]] 1016 - 1017 - 1018 - 1019 -= 5. Trouble Shooting = 1020 - 1021 -== 5.1 Why I can’t join TTN in US915 / AU915 bands? == 1022 - 1023 -It is due to channel mapping. Please see the [[Eight Channel Mode>>doc:Main.LoRaWAN Communication Debug.WebHome||anchor="H2.NoticeofUS9152FCN4702FAU915Frequencyband"]] section above for details. 1024 - 1025 - 1026 -== 5.2 AT Command input doesn’t work == 1027 - 1028 1028 ((( 1029 -In the case if user can see the console output but can’t type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn’t send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string. 1030 -))) 876 +In the case if user can see the console output but can't type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn't send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string. 1031 1031 1032 - 1033 -== 5.3 Device rejoin in at the second uplink packet == 1034 - 1035 -(% style="color:#4f81bd" %)**Issue describe as below:** 1036 - 1037 -[[image:1654500909990-784.png]] 1038 - 1039 - 1040 -(% style="color:#4f81bd" %)**Cause for this issue:** 1041 - 1042 -((( 1043 -The fuse on LSE01 is not large enough, some of the soil probe require large current up to 5v 800mA, in a short pulse. When this happen, it cause the device reboot so user see rejoin. 878 + 1044 1044 ))) 1045 1045 1046 1046 1047 - (% style="color:#4f81bd"%)**Solution:**882 += 7. Order Info = 1048 1048 1049 -All new shipped LSE01 after 2020-May-30 will have this to fix. For the customer who see this issue, please bypass the fuse as below: 1050 1050 1051 - [[image:1654500929571-736.png||height="458" width="832"]]885 +Part Number**:** (% style="color:#4f81bd" %)**NSE01** 1052 1052 1053 1053 1054 -= 6. Order Info = 1055 - 1056 - 1057 -Part Number**:** (% style="color:#4f81bd" %)**LSE01-XX-YY** 1058 - 1059 - 1060 -(% style="color:#4f81bd" %)**XX**(%%)**:** The default frequency band 1061 - 1062 -* (% style="color:red" %)**AS923**(%%): LoRaWAN AS923 band 1063 -* (% style="color:red" %)**AU915**(%%): LoRaWAN AU915 band 1064 -* (% style="color:red" %)**EU433**(%%): LoRaWAN EU433 band 1065 -* (% style="color:red" %)**EU868**(%%): LoRaWAN EU868 band 1066 -* (% style="color:red" %)**KR920**(%%): LoRaWAN KR920 band 1067 -* (% style="color:red" %)**US915**(%%): LoRaWAN US915 band 1068 -* (% style="color:red" %)**IN865**(%%): LoRaWAN IN865 band 1069 -* (% style="color:red" %)**CN470**(%%): LoRaWAN CN470 band 1070 - 1071 -(% style="color:#4f81bd" %)**YY**(%%)**: **Battery Option 1072 - 1073 -* (% style="color:red" %)**4**(%%): 4000mAh battery 1074 -* (% style="color:red" %)**8**(%%): 8500mAh battery 1075 - 1076 1076 (% class="wikigeneratedid" %) 1077 1077 ((( 1078 1078 1079 1079 ))) 1080 1080 1081 -= 7. Packing Info =893 += 8. Packing Info = 1082 1082 1083 1083 ((( 1084 1084 1085 1085 1086 1086 (% style="color:#037691" %)**Package Includes**: 1087 -))) 1088 1088 1089 -* (((1090 - LSE01LoRaWAN SoilMoisture& EC Sensorx 1900 +* NSE01 NB-IoT Soil Moisture & EC Sensor x 1 901 +* External antenna x 1 1091 1091 ))) 1092 1092 1093 1093 ((( ... ... @@ -1094,24 +1094,19 @@ 1094 1094 1095 1095 1096 1096 (% style="color:#037691" %)**Dimension and weight**: 1097 -))) 1098 1098 1099 -* (((1100 - DeviceSize:cm909 +* Size: 195 x 125 x 55 mm 910 +* Weight: 420g 1101 1101 ))) 1102 -* ((( 1103 -Device Weight: g 1104 -))) 1105 -* ((( 1106 -Package Size / pcs : cm 1107 -))) 1108 -* ((( 1109 -Weight / pcs : g 1110 1110 913 +((( 1111 1111 915 + 916 + 917 + 1112 1112 ))) 1113 1113 1114 -= 8. Support =920 += 9. Support = 1115 1115 1116 1116 * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule. 1117 1117 * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.com]]
- 1657245163077-232.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +81.0 KB - Content
- 1657246476176-652.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +492.6 KB - Content
- 1657249419225-449.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +81.0 KB - Content
- 1657249468462-536.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +483.6 KB - Content
- 1657249793983-486.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +85.8 KB - Content
- 1657249831934-534.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +72.5 KB - Content
- 1657249864775-321.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +87.0 KB - Content
- 1657249930215-289.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +77.3 KB - Content
- 1657249978444-674.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +139.5 KB - Content
- 1657249990869-686.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +96.9 KB - Content
- 1657250217799-140.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +98.7 KB - Content
- 1657250255956-604.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +99.0 KB - Content
- 1657259653666-883.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +344.4 KB - Content
- 1657260785982-288.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +138.2 KB - Content
- 1657261119050-993.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +126.1 KB - Content
- 1657261278785-153.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +126.1 KB - Content
- 1657271519014-786.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +71.5 KB - Content
- 1657327959271-447.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +78.3 KB - Content
- image-20220708101224-1.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +22.2 KB - Content
- image-20220708101605-2.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +87.5 KB - Content
- image-20220708110657-3.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +251.7 KB - Content
- image-20220708111918-4.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +38.8 KB - Content
- image-20220708133731-5.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +8.7 KB - Content
- image-20220708140453-6.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +132.7 KB - Content
- image-20220708141352-7.jpeg
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +102.7 KB - Content
- image-20220709084038-1.jpeg
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +72.0 KB - Content
- image-20220709084137-2.jpeg
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +72.0 KB - Content
- image-20220709084207-3.jpeg
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +72.0 KB - Content
- image-20220709084458-4.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +199.5 KB - Content
- image-20220709085040-1.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +200.4 KB - Content