<
From version < 35.26 >
edited by Xiaoling
on 2022/06/25 16:28
To version < 68.2 >
edited by Xiaoling
on 2022/07/09 08:41
>
Change comment: There is no comment for this version

Summary

Details

Page properties
Title
... ... @@ -1,1 +1,1 @@
1 -LSE01-LoRaWAN Soil Moisture & EC Sensor User Manual
1 +NDDS75 NB-IoT Distance Detect Sensor User Manual
Content
... ... @@ -1,5 +1,4 @@
1 -(% style="text-align:center" %)
2 -[[image:image-20220606151504-2.jpeg||height="554" width="554"]]
1 +[[image:image-20220709084038-1.jpeg||height="575" width="575"]]
3 3  
4 4  
5 5  
... ... @@ -9,11 +9,8 @@
9 9  
10 10  
11 11  
12 -
13 -
14 14  **Table of Contents:**
15 15  
16 -{{toc/}}
17 17  
18 18  
19 19  
... ... @@ -20,67 +20,73 @@
20 20  
21 21  
22 22  
23 -= 1. Introduction =
19 += 1.  Introduction =
24 24  
25 -== 1.1 ​What is LoRaWAN Soil Moisture & EC Sensor ==
21 +== 1.1 ​ What is NDDS75 Distance Detection Sensor ==
26 26  
27 27  (((
28 28  
29 29  
30 -The Dragino LSE01 is a (% style="color:#4f81bd" %)**LoRaWAN Soil Moisture & EC Sensor**(%%) for IoT of Agriculture. It is designed to measure the soil moisture of saline-alkali soil and loamy soil. The soil sensor uses FDR method to calculate the soil moisture with the compensation from soil temperature and conductivity. It also has been calibrated in factory for Mineral soil type.
31 -)))
32 -
33 33  (((
34 -It detects (% style="color:#4f81bd" %)**Soil Moisture**(%%), (% style="color:#4f81bd" %)**Soil Temperature**(%%) and (% style="color:#4f81bd" %)**Soil Conductivity**(%%), and uploads the value via wireless to LoRaWAN IoT Server.
27 +The Dragino NDDS75 is a (% style="color:blue" %)**NB-IoT Distance Detection Sensor**(%%) for Internet of Things solution. It is designed to measure the distance between the sensor and a flat object. The distance detection sensor is a module that uses ultrasonic sensing technology for distance measurement, and temperature compensation is performed internally to improve the reliability of data.
28 +\\The NDDS75 can be applied to scenarios such as horizontal distance measurement, liquid level measurement, parking management system, object proximity and presence detection, intelligent trash can management system, robot obstacle avoidance, automatic control, sewer, bottom water level monitoring, etc. It detects the distance between the measured object and the sensor, and uploads the value via wireless to IoT Server via NB-IoT Network.
29 +\\NarrowBand-Internet of Things (NB-IoT) is a standards-based low power wide area (LPWA) technology developed to enable a wide range of new IoT devices and services. NB-IoT significantly improves the power consumption of user devices, system capacity and spectrum efficiency, especially in deep coverage.
30 +\\NDDS75 supports different uplink methods include (% style="color:blue" %)**TCP, MQTT, UDP and CoAP** (%%)for different application requirement.
31 +\\NDDS75 is powered by (% style="color:blue" %)**8500mAh Li-SOCI2 battery**(%%), It is designed for long term use up to 5 years. (Actually Battery life depends on the use environment, update period & uplink method)
32 +\\To use NDDS75, user needs to check if there is NB-IoT coverage in local area and with the bands NDDS75 supports. If the local operate support it, user needs to get a NB-IoT SIM card from local operator and install NDDS75 to get NB-IoT network connection.
35 35  )))
36 36  
37 -(((
38 -The LoRa wireless technology used in LES01 allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption.
35 +
39 39  )))
40 40  
41 -(((
42 -LES01 is powered by (% style="color:#4f81bd" %)**4000mA or 8500mAh Li-SOCI2 battery**(%%), It is designed for long term use up to 10 years.
43 -)))
44 -
45 -(((
46 -Each LES01 is pre-load with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect after power on.
47 -)))
48 -
49 -
50 50  [[image:1654503236291-817.png]]
51 51  
52 52  
53 -[[image:1654503265560-120.png]]
41 +[[image:1657245163077-232.png]]
54 54  
55 55  
56 56  
57 -== 1.2 ​Features ==
45 +== 1.2 ​ Features ==
58 58  
59 -* LoRaWAN 1.0.3 Class A
60 -* Ultra low power consumption
47 +* NB-IoT Bands: B1/B3/B8/B5/B20/B28 @H-FDD
61 61  * Monitor Soil Moisture
62 62  * Monitor Soil Temperature
63 63  * Monitor Soil Conductivity
64 -* Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865
65 65  * AT Commands to change parameters
66 66  * Uplink on periodically
67 67  * Downlink to change configure
68 68  * IP66 Waterproof Enclosure
69 -* 4000mAh or 8500mAh Battery for long term use
55 +* Ultra-Low Power consumption
56 +* AT Commands to change parameters
57 +* Micro SIM card slot for NB-IoT SIM
58 +* 8500mAh Battery for long term use
70 70  
60 +== 1.3  Specification ==
71 71  
72 72  
63 +(% style="color:#037691" %)**Common DC Characteristics:**
73 73  
65 +* Supply Voltage: 2.1v ~~ 3.6v
66 +* Operating Temperature: -40 ~~ 85°C
74 74  
75 -== 1.3 Specification ==
68 +(% style="color:#037691" %)**NB-IoT Spec:**
76 76  
70 +* - B1 @H-FDD: 2100MHz
71 +* - B3 @H-FDD: 1800MHz
72 +* - B8 @H-FDD: 900MHz
73 +* - B5 @H-FDD: 850MHz
74 +* - B20 @H-FDD: 800MHz
75 +* - B28 @H-FDD: 700MHz
76 +
77 +Probe(% style="color:#037691" %)** Specification:**
78 +
77 77  Measure Volume: Base on the centra pin of the probe, a cylinder with 7cm diameter and 10cm height.
78 78  
79 -[[image:image-20220606162220-5.png]]
81 +[[image:image-20220708101224-1.png]]
80 80  
81 81  
82 82  
83 -== ​1.4 Applications ==
85 +== ​1.4  Applications ==
84 84  
85 85  * Smart Agriculture
86 86  
... ... @@ -87,709 +87,623 @@
87 87  (% class="wikigeneratedid" id="H200B1.5FirmwareChangelog" %)
88 88  ​
89 89  
90 -== 1.5 Firmware Change log ==
92 +== 1.5  Pin Definitions ==
91 91  
92 92  
93 -**LSE01 v1.0 :**  Release
95 +[[image:1657246476176-652.png]]
94 94  
95 95  
96 96  
97 -= 2. Configure LSE01 to connect to LoRaWAN network =
99 += 2.  Use NSE01 to communicate with IoT Server =
98 98  
99 -== 2.1 How it works ==
101 +== 2.1  How it works ==
100 100  
103 +
101 101  (((
102 -The LSE01 is configured as LoRaWAN OTAA Class A mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and power on the LSE0150. It will automatically join the network via OTAA and start to send the sensor value
105 +The NSE01 is equipped with a NB-IoT module, the pre-loaded firmware in NSE01 will get environment data from sensors and send the value to local NB-IoT network via the NB-IoT module The NB-IoT network will forward this value to IoT server via the protocol defined by NSE01.
103 103  )))
104 104  
108 +
105 105  (((
106 -In case you can’t set the OTAA keys in the LoRaWAN OTAA server, and you have to use the keys from the server, you can [[use AT Commands >>||anchor="H3.200BUsingtheATCommands"]].
110 +The diagram below shows the working flow in default firmware of NSE01:
107 107  )))
108 108  
113 +[[image:image-20220708101605-2.png]]
109 109  
115 +(((
116 +
117 +)))
110 110  
111 -== 2.2 ​Quick guide to connect to LoRaWAN server (OTAA) ==
112 112  
113 -Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LG308>>url:http://www.dragino.com/products/lora/item/140-lg308.html]] as a LoRaWAN gateway in this example.
114 114  
121 +== 2.2 ​ Configure the NSE01 ==
115 115  
116 -[[image:1654503992078-669.png]]
117 117  
124 +=== 2.2.1 Test Requirement ===
118 118  
119 -The LG308 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
120 120  
127 +(((
128 +To use NSE01 in your city, make sure meet below requirements:
129 +)))
121 121  
122 -(% style="color:blue" %)**Step 1**(%%):  Create a device in TTN with the OTAA keys from LSE01.
131 +* Your local operator has already distributed a NB-IoT Network there.
132 +* The local NB-IoT network used the band that NSE01 supports.
133 +* Your operator is able to distribute the data received in their NB-IoT network to your IoT server.
123 123  
124 -Each LSE01 is shipped with a sticker with the default device EUI as below:
135 +(((
136 +Below figure shows our testing structure. Here we have NB-IoT network coverage by China Mobile, the band they use is B8.  The NSE01 will use CoAP((% style="color:red" %)120.24.4.116:5683)(%%) or raw UDP((% style="color:red" %)120.24.4.116:5601)(%%) or MQTT((% style="color:red" %)120.24.4.116:1883)(%%)or TCP((% style="color:red" %)120.24.4.116:5600)(%%)protocol to send data to the test server
137 +)))
125 125  
126 -[[image:image-20220606163732-6.jpeg]]
127 127  
128 -You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot:
140 +[[image:1657249419225-449.png]]
129 129  
130 -**Add APP EUI in the application**
131 131  
132 132  
133 -[[image:1654504596150-405.png]]
144 +=== 2.2.2 Insert SIM card ===
134 134  
146 +(((
147 +Insert the NB-IoT Card get from your provider.
148 +)))
135 135  
150 +(((
151 +User need to take out the NB-IoT module and insert the SIM card like below:
152 +)))
136 136  
137 -**Add APP KEY and DEV EUI**
138 138  
139 -[[image:1654504683289-357.png]]
155 +[[image:1657249468462-536.png]]
140 140  
141 141  
142 142  
143 -(% style="color:blue" %)**Step 2**(%%): Power on LSE01
159 +=== 2.2.3 Connect USB TTL to NSE01 to configure it ===
144 144  
161 +(((
162 +(((
163 +User need to configure NSE01 via serial port to set the (% style="color:blue" %)**Server Address** / **Uplink Topic** (%%)to define where and how-to uplink packets. NSE01 support AT Commands, user can use a USB to TTL adapter to connect to NSE01 and use AT Commands to configure it, as below.
164 +)))
165 +)))
145 145  
146 -Put a Jumper on JP2 to power on the device. ( The Jumper must be in FLASH position).
147 147  
148 -[[image:image-20220606163915-7.png]]
168 +**Connection:**
149 149  
170 + (% style="background-color:yellow" %)USB TTL GND <~-~-~-~-> GND
150 150  
151 -(% style="color:blue" %)**Step 3**(%%)**:** The LSE01 will auto join to the TTN network. After join success, it will start to upload messages to TTN and you can see the messages in the panel.
172 + (% style="background-color:yellow" %)USB TTL TXD <~-~-~-~-> UART_RXD
152 152  
153 -[[image:1654504778294-788.png]]
174 + (% style="background-color:yellow" %)USB TTL RXD <~-~-~-~-> UART_TXD
154 154  
155 155  
177 +In the PC, use below serial tool settings:
156 156  
157 -== 2.3 Uplink Payload ==
179 +* Baud:  (% style="color:green" %)**9600**
180 +* Data bits:** (% style="color:green" %)8(%%)**
181 +* Stop bits: (% style="color:green" %)**1**
182 +* Parity:  (% style="color:green" %)**None**
183 +* Flow Control: (% style="color:green" %)**None**
158 158  
185 +(((
186 +Make sure the switch is in FLASH position, then power on device by connecting the jumper on NSE01. NSE01 will output system info once power on as below, we can enter the (% style="color:green" %)**password: 12345678**(%%) to access AT Command input.
187 +)))
159 159  
160 -=== 2.3.1 MOD~=0(Default Mode) ===
189 +[[image:image-20220708110657-3.png]]
161 161  
162 -LSE01 will uplink payload via LoRaWAN with below payload format: 
163 -
164 164  (((
165 -Uplink payload includes in total 11 bytes.
192 +(% style="color:red" %)Note: the valid AT Commands can be found at: (%%)[[http:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/]]
166 166  )))
167 167  
168 -(% border="1" cellspacing="10" style="background-color:#ffffcc; width:500px" %)
169 -|(((
170 -**Size**
171 171  
172 -**(bytes)**
173 -)))|**2**|**2**|**2**|**2**|**2**|**1**
174 -|**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(((
175 -Temperature
176 176  
177 -(Reserve, Ignore now)
178 -)))|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]]|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]]|(((
179 -MOD & Digital Interrupt
197 +=== 2.2.4 Use CoAP protocol to uplink data ===
180 180  
181 -(Optional)
182 -)))
199 +(% style="color:red" %)Note: if you don't have CoAP server, you can refer this link to set up one: (%%)[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/>>http://wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/]]
183 183  
184 184  
202 +**Use below commands:**
185 185  
204 +* (% style="color:blue" %)**AT+PRO=1**  (%%) ~/~/ Set to use CoAP protocol to uplink
205 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5683   ** (%%)~/~/ to set CoAP server address and port
206 +* (% style="color:blue" %)**AT+URI=5,11,"mqtt",11,"coap",12,"0",15,"c=text1",23,"0" ** (%%) ~/~/Set COAP resource path
186 186  
208 +For parameter description, please refer to AT command set
187 187  
210 +[[image:1657249793983-486.png]]
188 188  
189 189  
190 -=== 2.3.2 MOD~=1(Original value) ===
213 +After configure the server address and (% style="color:green" %)**reset the device**(%%) (via AT+ATZ ), NSE01 will start to uplink sensor values to CoAP server.
191 191  
192 -This mode can get the original AD value of moisture and original conductivity (with temperature drift compensation).
215 +[[image:1657249831934-534.png]]
193 193  
194 -(% border="1" cellspacing="10" style="background-color:#ffffcc; width:500px" %)
195 -|(((
196 -**Size**
197 197  
198 -**(bytes)**
199 -)))|**2**|**2**|**2**|**2**|**2**|**1**
200 -|**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(((
201 -Temperature
202 202  
203 -(Reserve, Ignore now)
204 -)))|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]](raw)|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]](raw)|(((
205 -MOD & Digital Interrupt
219 +=== 2.2.5 Use UDP protocol to uplink data(Default protocol) ===
206 206  
207 -(Optional)
208 -)))
221 +This feature is supported since firmware version v1.0.1
209 209  
210 -=== 2.3.3 Battery Info ===
211 211  
212 -(((
213 -Check the battery voltage for LSE01.
214 -)))
224 +* (% style="color:blue" %)**AT+PRO=2   ** (%%) ~/~/ Set to use UDP protocol to uplink
225 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5601   ** (%%) ~/~/ to set UDP server address and port
226 +* (% style="color:blue" %)**AT+CFM=1       ** (%%) ~/~/If the server does not respond, this command is unnecessary
215 215  
216 -(((
217 -Ex1: 0x0B45 = 2885mV
218 -)))
228 +[[image:1657249864775-321.png]]
219 219  
220 -(((
221 -Ex2: 0x0B49 = 2889mV
222 -)))
223 223  
231 +[[image:1657249930215-289.png]]
224 224  
225 225  
226 -=== 2.3.4 Soil Moisture ===
227 227  
228 -(((
229 -Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil.
230 -)))
235 +=== 2.2.6 Use MQTT protocol to uplink data ===
231 231  
232 -(((
233 -For example, if the data you get from the register is __0x05 0xDC__, the moisture content in the soil is
234 -)))
237 +This feature is supported since firmware version v110
235 235  
236 -(((
237 -
238 -)))
239 239  
240 -(((
241 -(% style="color:#4f81bd" %)**05DC(H) = 1500(D) /100 = 15%.**
242 -)))
240 +* (% style="color:blue" %)**AT+PRO=3   ** (%%) ~/~/Set to use MQTT protocol to uplink
241 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,1883   ** (%%) ~/~/Set MQTT server address and port
242 +* (% style="color:blue" %)**AT+CLIENT=CLIENT       ** (%%)~/~/Set up the CLIENT of MQTT
243 +* (% style="color:blue" %)**AT+UNAME=UNAME                               **(%%)~/~/Set the username of MQTT
244 +* (% style="color:blue" %)**AT+PWD=PWD                                        **(%%)~/~/Set the password of MQTT
245 +* (% style="color:blue" %)**AT+PUBTOPIC=NSE01_PUB                    **(%%)~/~/Set the sending topic of MQTT
246 +* (% style="color:blue" %)**AT+SUBTOPIC=NSE01_SUB          **(%%) ~/~/Set the subscription topic of MQTT
243 243  
248 +[[image:1657249978444-674.png]]
244 244  
245 245  
246 -=== 2.3.5 Soil Temperature ===
251 +[[image:1657249990869-686.png]]
247 247  
248 -(((
249 - Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is 0x09 0xEC, the temperature content in the soil is
250 -)))
251 251  
252 252  (((
253 -**Example**:
255 +MQTT protocol has a much higher power consumption compare vs UDP / CoAP protocol. Please check the power analyze document and adjust the uplink period to a suitable interval.
254 254  )))
255 255  
256 -(((
257 -If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/100 = 2.61 °C
258 -)))
259 259  
260 -(((
261 -If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C
262 -)))
263 263  
260 +=== 2.2.7 Use TCP protocol to uplink data ===
264 264  
262 +This feature is supported since firmware version v110
265 265  
266 -=== 2.3.6 Soil Conductivity (EC) ===
267 267  
268 -(((
269 -Obtain (% style="color:#4f81bd" %)**__soluble salt concentration__**(%%) in soil or (% style="color:#4f81bd" %)**__soluble ion concentration in liquid fertilizer__**(%%) or (% style="color:#4f81bd" %)**__planting medium__**(%%). The value range of the register is 0 - 20000(Decimal)( Can be greater than 20000).
270 -)))
265 +* (% style="color:blue" %)**AT+PRO=4   ** (%%) ~/~/ Set to use TCP protocol to uplink
266 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5600   **(%%) ~/~/ to set TCP server address and port
271 271  
272 -(((
273 -For example, if the data you get from the register is 0x00 0xC8, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm.
274 -)))
268 +[[image:1657250217799-140.png]]
275 275  
276 -(((
277 -Generally, the EC value of irrigation water is less than 800uS / cm.
278 -)))
279 279  
280 -(((
281 -
282 -)))
271 +[[image:1657250255956-604.png]]
283 283  
284 -(((
285 -
286 -)))
287 287  
288 -=== 2.3.7 MOD ===
289 289  
290 -Firmware version at least v2.1 supports changing mode.
275 +=== 2.2.8 Change Update Interval ===
291 291  
292 -For example, bytes[10]=90
277 +User can use below command to change the (% style="color:green" %)**uplink interval**.
293 293  
294 -mod=(bytes[10]>>7)&0x01=1.
279 +* (% style="color:blue" %)**AT+TDC=600      ** (%%)~/~/ Set Update Interval to 600s
295 295  
281 +(((
282 +(% style="color:red" %)**NOTE:**
283 +)))
296 296  
297 -**Downlink Command:**
285 +(((
286 +(% style="color:red" %)1. By default, the device will send an uplink message every 1 hour.
287 +)))
298 298  
299 -If payload = 0x0A00, workmode=0
300 300  
301 -If** **payload =** **0x0A01, workmode=1
302 302  
291 +== 2.3  Uplink Payload ==
303 303  
293 +In this mode, uplink payload includes in total 18 bytes
304 304  
305 -=== 2.3.8 ​Decode payload in The Things Network ===
295 +(% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:510px" %)
296 +|=(% style="width: 60px;" %)(((
297 +**Size(bytes)**
298 +)))|=(% style="width: 50px;" %)**6**|=(% style="width: 25px;" %)2|=(% style="width: 25px;" %)**2**|=(% style="width: 70px;" %)**1**|=(% style="width: 60px;" %)**2**|=(% style="width: 80px;" %)**2**|=(% style="width: 90px;" %)**2**|=(% style="width: 50px;" %)**1**
299 +|(% style="width:97px" %)**Value**|(% style="width:83px" %)[[Device ID>>||anchor="H2.4.1A0A0DeviceID"]]|(% style="width:41px" %)[[Ver>>||anchor="H2.4.2A0VersionInfo"]]|(% style="width:46px" %)[[BAT>>||anchor="H2.4.3A0BatteryInfo"]]|(% style="width:123px" %)[[Signal Strength>>||anchor="H2.4.4A0SignalStrength"]]|(% style="width:108px" %)[[Soil Moisture>>||anchor="H2.4.5A0SoilMoisture"]]|(% style="width:133px" %)[[Soil Temperature>>||anchor="H2.4.6A0SoilTemperature"]]|(% style="width:159px" %)[[Soil Conductivity(EC)>>||anchor="H2.4.7A0SoilConductivity28EC29"]]|(% style="width:80px" %)[[Interrupt>>||anchor="H2.4.8A0DigitalInterrupt"]]
306 306  
307 -While using TTN network, you can add the payload format to decode the payload.
308 -
309 -
310 -[[image:1654505570700-128.png]]
311 -
312 312  (((
313 -The payload decoder function for TTN is here:
302 +If we use the MQTT client to subscribe to this MQTT topic, we can see the following information when the NSE01 uplink data.
314 314  )))
315 315  
316 -(((
317 -LSE01 TTN Payload Decoder: [[https:~~/~~/www.dropbox.com/sh/si8icbrjlamxqdb/AAACYwjsxxr5fj_vpqRtrETAa?dl=0>>https://www.dropbox.com/sh/si8icbrjlamxqdb/AAACYwjsxxr5fj_vpqRtrETAa?dl=0]]
318 -)))
319 319  
306 +[[image:image-20220708111918-4.png]]
320 320  
321 -== 2.4 Uplink Interval ==
322 322  
323 -The LSE01 by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link: [[Change Uplink Interval>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H4.1ChangeUplinkInterval"]]
309 +The payload is ASCII string, representative same HEX:
324 324  
311 +0x72403155615900640c7817075e0a8c02f900 where:
325 325  
313 +* Device ID: 0x 724031556159 = 724031556159
314 +* Version: 0x0064=100=1.0.0
326 326  
327 -== 2.5 Downlink Payload ==
316 +* BAT: 0x0c78 = 3192 mV = 3.192V
317 +* Singal: 0x17 = 23
318 +* Soil Moisture: 0x075e= 1886 = 18.86  %
319 +* Soil Temperature:0x0a8c =2700=27 °C
320 +* Soil Conductivity(EC) = 0x02f9 =761 uS /cm
321 +* Interrupt: 0x00 = 0
328 328  
329 -By default, LSE50 prints the downlink payload to console port.
323 +== 2.4  Payload Explanation and Sensor Interface ==
330 330  
331 -[[image:image-20220606165544-8.png]]
332 332  
326 +=== 2.4.1  Device ID ===
333 333  
334 334  (((
335 -**Examples:**
329 +By default, the Device ID equal to the last 6 bytes of IMEI.
336 336  )))
337 337  
338 338  (((
339 -
333 +User can use (% style="color:blue" %)**AT+DEUI**(%%) to set Device ID
340 340  )))
341 341  
342 -* (((
343 -**Set TDC**
336 +(((
337 +**Example:**
344 344  )))
345 345  
346 346  (((
347 -If the payload=0100003C, it means set the END Node’s TDC to 0x00003C=60(S), while type code is 01.
341 +AT+DEUI=A84041F15612
348 348  )))
349 349  
350 350  (((
351 -Payload:    01 00 00 1E    TDC=30S
345 +The Device ID is stored in a none-erase area, Upgrade the firmware or run AT+FDR won't erase Device ID.
352 352  )))
353 353  
348 +
349 +
350 +=== 2.4.2  Version Info ===
351 +
354 354  (((
355 -Payload:    01 00 00 3C    TDC=60S
353 +Specify the software version: 0x64=100, means firmware version 1.00.
356 356  )))
357 357  
358 358  (((
359 -
357 +For example: 0x00 64 : this device is NSE01 with firmware version 1.0.0.
360 360  )))
361 361  
362 -* (((
363 -**Reset**
360 +
361 +
362 +=== 2.4.3  Battery Info ===
363 +
364 +(((
365 +Check the battery voltage for LSE01.
364 364  )))
365 365  
366 366  (((
367 -If payload = 0x04FF, it will reset the LSE01
369 +Ex1: 0x0B45 = 2885mV
368 368  )))
369 369  
372 +(((
373 +Ex2: 0x0B49 = 2889mV
374 +)))
370 370  
371 -* **CFM**
372 372  
373 -Downlink Payload: 05000001, Set AT+CFM=1 or 05000000 , set AT+CFM=0
374 374  
378 +=== 2.4.4  Signal Strength ===
375 375  
380 +(((
381 +NB-IoT Network signal Strength.
382 +)))
376 376  
377 -== 2.6 ​Show Data in DataCake IoT Server ==
384 +(((
385 +**Ex1: 0x1d = 29**
386 +)))
378 378  
379 379  (((
380 -[[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps:
389 +(% style="color:blue" %)**0**(%%)  -113dBm or less
381 381  )))
382 382  
383 383  (((
384 -
393 +(% style="color:blue" %)**1**(%%)  -111dBm
385 385  )))
386 386  
387 387  (((
388 -(% style="color:blue" %)**Step 1**(%%) Be sure that your device is programmed and properly connected to the network at this time.
397 +(% style="color:blue" %)**2...30**(%%) -109dBm... -53dBm
389 389  )))
390 390  
391 391  (((
392 -(% style="color:blue" %)**Step 2**(%%) To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps:
401 +(% style="color:blue" %)**31**  (%%) -51dBm or greater
393 393  )))
394 394  
404 +(((
405 +(% style="color:blue" %)**99**   (%%) Not known or not detectable
406 +)))
395 395  
396 -[[image:1654505857935-743.png]]
397 397  
398 398  
399 -[[image:1654505874829-548.png]]
410 +=== 2.4.5  Soil Moisture ===
400 400  
412 +(((
413 +(((
414 +Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil.
415 +)))
416 +)))
401 401  
402 -(% style="color:blue" %)**Step 3**(%%)**:**  Create an account or log in Datacake.
418 +(((
419 +(((
420 +For example, if the data you get from the register is **__0x05 0xDC__**, the moisture content in the soil is
421 +)))
422 +)))
403 403  
404 -(% style="color:blue" %)**Step 4**(%%)**:**  Search the LSE01 and add DevEUI.
424 +(((
425 +
426 +)))
405 405  
428 +(((
429 +(% style="color:#4f81bd" %)**05DC(H) = 1500(D) /100 = 15%.**
430 +)))
406 406  
407 -[[image:1654505905236-553.png]]
408 408  
409 409  
410 -After added, the sensor data arrive TTN, it will also arrive and show in Mydevices.
434 +=== 2.4.6  Soil Temperature ===
411 411  
412 -[[image:1654505925508-181.png]]
436 +(((
437 +Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is __**0x09 0xEC**__, the temperature content in the soil is
438 +)))
413 413  
440 +(((
441 +**Example**:
442 +)))
414 414  
444 +(((
445 +If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/100 = 2.61 °C
446 +)))
415 415  
416 -== 2.7 Frequency Plans ==
448 +(((
449 +If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C
450 +)))
417 417  
418 -The LSE01 uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.
419 419  
420 420  
421 -=== 2.7.1 EU863-870 (EU868) ===
454 +=== 2.4.7  Soil Conductivity (EC) ===
422 422  
423 -(% style="color:#037691" %)** Uplink:**
456 +(((
457 +Obtain (% style="color:#4f81bd" %)**__soluble salt concentration__**(%%) in soil or (% style="color:#4f81bd" %)**__soluble ion concentration in liquid fertilizer__**(%%) or (% style="color:#4f81bd" %)**__planting medium__**(%%). The value range of the register is 0 - 20000(Decimal)( Can be greater than 20000).
458 +)))
424 424  
425 -868.1 - SF7BW125 to SF12BW125
460 +(((
461 +For example, if the data you get from the register is __**0x00 0xC8**__, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm.
462 +)))
426 426  
427 -868.3 - SF7BW125 to SF12BW125 and SF7BW250
464 +(((
465 +Generally, the EC value of irrigation water is less than 800uS / cm.
466 +)))
428 428  
429 -868.5 - SF7BW125 to SF12BW125
468 +(((
469 +
470 +)))
430 430  
431 -867.1 - SF7BW125 to SF12BW125
472 +(((
473 +
474 +)))
432 432  
433 -867.3 - SF7BW125 to SF12BW125
476 +=== 2.4.8  Digital Interrupt ===
434 434  
435 -867.5 - SF7BW125 to SF12BW125
478 +(((
479 +Digital Interrupt refers to pin (% style="color:blue" %)**GPIO_EXTI**(%%), and there are different trigger methods. When there is a trigger, the NSE01 will send a packet to the server.
480 +)))
436 436  
437 -867.7 - SF7BW125 to SF12BW125
482 +(((
483 +The command is:
484 +)))
438 438  
439 -867.9 - SF7BW125 to SF12BW125
486 +(((
487 +(% style="color:blue" %)**AT+INTMOD=3 **(%%) ~/~/(more info about INMOD please refer [[**AT Command Manual**>>url:https://www.dragino.com/downloads/downloads/NB-IoT/NBSN95/DRAGINO_NBSN95-NB_AT%20Commands_v1.1.0.pdf]])**.**
488 +)))
440 440  
441 -868.8 - FSK
442 442  
491 +(((
492 +The lower four bits of this data field shows if this packet is generated by interrupt or not. Click here for the hardware and software set up.
493 +)))
443 443  
444 -(% style="color:#037691" %)** Downlink:**
445 445  
446 -Uplink channels 1-9 (RX1)
496 +(((
497 +Example:
498 +)))
447 447  
448 -869.525 - SF9BW125 (RX2 downlink only)
500 +(((
501 +0x(00): Normal uplink packet.
502 +)))
449 449  
504 +(((
505 +0x(01): Interrupt Uplink Packet.
506 +)))
450 450  
451 451  
452 -=== 2.7.2 US902-928(US915) ===
453 453  
454 -Used in USA, Canada and South America. Default use CHE=2
510 +=== 2.4.9  ​+5V Output ===
455 455  
456 -(% style="color:#037691" %)**Uplink:**
512 +(((
513 +NSE01 will enable +5V output before all sampling and disable the +5v after all sampling. 
514 +)))
457 457  
458 -903.9 - SF7BW125 to SF10BW125
459 459  
460 -904.1 - SF7BW125 to SF10BW125
517 +(((
518 +The 5V output time can be controlled by AT Command.
519 +)))
461 461  
462 -904.3 - SF7BW125 to SF10BW125
521 +(((
522 +(% style="color:blue" %)**AT+5VT=1000**
523 +)))
463 463  
464 -904.5 - SF7BW125 to SF10BW125
525 +(((
526 +Means set 5V valid time to have 1000ms. So the real 5V output will actually have 1000ms + sampling time for other sensors.
527 +)))
465 465  
466 -904.7 - SF7BW125 to SF10BW125
467 467  
468 -904.9 - SF7BW125 to SF10BW125
469 469  
470 -905.1 - SF7BW125 to SF10BW125
531 +== 2.5  Downlink Payload ==
471 471  
472 -905.3 - SF7BW125 to SF10BW125
533 +By default, NSE01 prints the downlink payload to console port.
473 473  
535 +[[image:image-20220708133731-5.png]]
474 474  
475 -(% style="color:#037691" %)**Downlink:**
476 476  
477 -923.3 - SF7BW500 to SF12BW500
538 +(((
539 +(% style="color:blue" %)**Examples:**
540 +)))
478 478  
479 -923.9 - SF7BW500 to SF12BW500
542 +(((
543 +
544 +)))
480 480  
481 -924.5 - SF7BW500 to SF12BW500
546 +* (((
547 +(% style="color:blue" %)**Set TDC**
548 +)))
482 482  
483 -925.1 - SF7BW500 to SF12BW500
550 +(((
551 +If the payload=0100003C, it means set the END Node's TDC to 0x00003C=60(S), while type code is 01.
552 +)))
484 484  
485 -925.7 - SF7BW500 to SF12BW500
554 +(((
555 +Payload:    01 00 00 1E    TDC=30S
556 +)))
486 486  
487 -926.3 - SF7BW500 to SF12BW500
558 +(((
559 +Payload:    01 00 00 3C    TDC=60S
560 +)))
488 488  
489 -926.9 - SF7BW500 to SF12BW500
562 +(((
563 +
564 +)))
490 490  
491 -927.5 - SF7BW500 to SF12BW500
566 +* (((
567 +(% style="color:blue" %)**Reset**
568 +)))
492 492  
493 -923.3 - SF12BW500(RX2 downlink only)
570 +(((
571 +If payload = 0x04FF, it will reset the NSE01
572 +)))
494 494  
495 495  
575 +* (% style="color:blue" %)**INTMOD**
496 496  
497 -=== 2.7.3 CN470-510 (CN470) ===
577 +(((
578 +Downlink Payload: 06000003, Set AT+INTMOD=3
579 +)))
498 498  
499 -Used in China, Default use CHE=1
500 500  
501 -(% style="color:#037691" %)**Uplink:**
502 502  
503 -486.3 - SF7BW125 to SF12BW125
583 +== 2.6  ​LED Indicator ==
504 504  
505 -486.5 - SF7BW125 to SF12BW125
585 +(((
586 +The NSE01 has an internal LED which is to show the status of different state.
506 506  
507 -486.7 - SF7BW125 to SF12BW125
508 508  
509 -486.9 - SF7BW125 to SF12BW125
589 +* When power on, NSE01 will detect if sensor probe is connected, if probe detected, LED will blink four times. (no blinks in this step is no probe)
590 +* Then the LED will be on for 1 second means device is boot normally.
591 +* After NSE01 join NB-IoT network. The LED will be ON for 3 seconds.
592 +* For each uplink probe, LED will be on for 500ms.
593 +)))
510 510  
511 -487.1 - SF7BW125 to SF12BW125
512 512  
513 -487.3 - SF7BW125 to SF12BW125
514 514  
515 -487.5 - SF7BW125 to SF12BW125
516 516  
517 -487.7 - SF7BW125 to SF12BW125
598 +== 2.7  Installation in Soil ==
518 518  
600 +__**Measurement the soil surface**__
519 519  
520 -(% style="color:#037691" %)**Downlink:**
602 +(((
603 +Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting. [[https:~~/~~/img.alicdn.com/imgextra/i3/2005165265/O1CN010rj9Oh1olPsQxrdUK_!!2005165265.jpg>>url:https://img.alicdn.com/imgextra/i3/2005165265/O1CN010rj9Oh1olPsQxrdUK_!!2005165265.jpg]]
604 +)))
521 521  
522 -506.7 - SF7BW125 to SF12BW125
606 +[[image:1657259653666-883.png]] ​
523 523  
524 -506.9 - SF7BW125 to SF12BW125
525 525  
526 -507.1 - SF7BW125 to SF12BW125
609 +(((
610 +
527 527  
528 -507.3 - SF7BW125 to SF12BW125
612 +(((
613 +Dig a hole with diameter > 20CM.
614 +)))
529 529  
530 -507.5 - SF7BW125 to SF12BW125
616 +(((
617 +Horizontal insert the probe to the soil and fill the hole for long term measurement.
618 +)))
619 +)))
531 531  
532 -507.7 - SF7BW125 to SF12BW125
621 +[[image:1654506665940-119.png]]
533 533  
534 -507.9 - SF7BW125 to SF12BW125
623 +(((
624 +
625 +)))
535 535  
536 -508.1 - SF7BW125 to SF12BW125
537 537  
538 -505.3 - SF12BW125 (RX2 downlink only)
628 +== 2.8  ​Firmware Change Log ==
539 539  
540 540  
631 +Download URL & Firmware Change log
541 541  
542 -=== 2.7.4 AU915-928(AU915) ===
633 +[[www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/Firmware/]]
543 543  
544 -Default use CHE=2
545 545  
546 -(% style="color:#037691" %)**Uplink:**
636 +Upgrade Instruction: [[Upgrade_Firmware>>||anchor="H5.1200BHowtoUpgradeFirmware"]]
547 547  
548 -916.8 - SF7BW125 to SF12BW125
549 549  
550 -917.0 - SF7BW125 to SF12BW125
551 551  
552 -917.2 - SF7BW125 to SF12BW125
640 +== 2.9  ​Battery Analysis ==
553 553  
554 -917.4 - SF7BW125 to SF12BW125
642 +=== 2.9.1  ​Battery Type ===
555 555  
556 -917.6 - SF7BW125 to SF12BW125
557 557  
558 -917.8 - SF7BW125 to SF12BW125
559 -
560 -918.0 - SF7BW125 to SF12BW125
561 -
562 -918.2 - SF7BW125 to SF12BW125
563 -
564 -
565 -(% style="color:#037691" %)**Downlink:**
566 -
567 -923.3 - SF7BW500 to SF12BW500
568 -
569 -923.9 - SF7BW500 to SF12BW500
570 -
571 -924.5 - SF7BW500 to SF12BW500
572 -
573 -925.1 - SF7BW500 to SF12BW500
574 -
575 -925.7 - SF7BW500 to SF12BW500
576 -
577 -926.3 - SF7BW500 to SF12BW500
578 -
579 -926.9 - SF7BW500 to SF12BW500
580 -
581 -927.5 - SF7BW500 to SF12BW500
582 -
583 -923.3 - SF12BW500(RX2 downlink only)
584 -
585 -
586 -
587 -=== 2.7.5 AS920-923 & AS923-925 (AS923) ===
588 -
589 -(% style="color:#037691" %)**Default Uplink channel:**
590 -
591 -923.2 - SF7BW125 to SF10BW125
592 -
593 -923.4 - SF7BW125 to SF10BW125
594 -
595 -
596 -(% style="color:#037691" %)**Additional Uplink Channel**:
597 -
598 -(OTAA mode, channel added by JoinAccept message)
599 -
600 -(% style="color:#037691" %)**AS920~~AS923 for Japan, Malaysia, Singapore**:
601 -
602 -922.2 - SF7BW125 to SF10BW125
603 -
604 -922.4 - SF7BW125 to SF10BW125
605 -
606 -922.6 - SF7BW125 to SF10BW125
607 -
608 -922.8 - SF7BW125 to SF10BW125
609 -
610 -923.0 - SF7BW125 to SF10BW125
611 -
612 -922.0 - SF7BW125 to SF10BW125
613 -
614 -
615 -(% style="color:#037691" %)**AS923 ~~ AS925 for Brunei, Cambodia, Hong Kong, Indonesia, Laos, Taiwan, Thailand, Vietnam**:
616 -
617 -923.6 - SF7BW125 to SF10BW125
618 -
619 -923.8 - SF7BW125 to SF10BW125
620 -
621 -924.0 - SF7BW125 to SF10BW125
622 -
623 -924.2 - SF7BW125 to SF10BW125
624 -
625 -924.4 - SF7BW125 to SF10BW125
626 -
627 -924.6 - SF7BW125 to SF10BW125
628 -
629 -
630 -(% style="color:#037691" %)** Downlink:**
631 -
632 -Uplink channels 1-8 (RX1)
633 -
634 -923.2 - SF10BW125 (RX2)
635 -
636 -
637 -
638 -=== 2.7.6 KR920-923 (KR920) ===
639 -
640 -Default channel:
641 -
642 -922.1 - SF7BW125 to SF12BW125
643 -
644 -922.3 - SF7BW125 to SF12BW125
645 -
646 -922.5 - SF7BW125 to SF12BW125
647 -
648 -
649 -(% style="color:#037691" %)**Uplink: (OTAA mode, channel added by JoinAccept message)**
650 -
651 -922.1 - SF7BW125 to SF12BW125
652 -
653 -922.3 - SF7BW125 to SF12BW125
654 -
655 -922.5 - SF7BW125 to SF12BW125
656 -
657 -922.7 - SF7BW125 to SF12BW125
658 -
659 -922.9 - SF7BW125 to SF12BW125
660 -
661 -923.1 - SF7BW125 to SF12BW125
662 -
663 -923.3 - SF7BW125 to SF12BW125
664 -
665 -
666 -(% style="color:#037691" %)**Downlink:**
667 -
668 -Uplink channels 1-7(RX1)
669 -
670 -921.9 - SF12BW125 (RX2 downlink only; SF12BW125 might be changed to SF9BW125)
671 -
672 -
673 -
674 -=== 2.7.7 IN865-867 (IN865) ===
675 -
676 -(% style="color:#037691" %)** Uplink:**
677 -
678 -865.0625 - SF7BW125 to SF12BW125
679 -
680 -865.4025 - SF7BW125 to SF12BW125
681 -
682 -865.9850 - SF7BW125 to SF12BW125
683 -
684 -
685 -(% style="color:#037691" %) **Downlink:**
686 -
687 -Uplink channels 1-3 (RX1)
688 -
689 -866.550 - SF10BW125 (RX2)
690 -
691 -
692 -
693 -
694 -== 2.8 LED Indicator ==
695 -
696 -The LSE01 has an internal LED which is to show the status of different state.
697 -
698 -* Blink once when device power on.
699 -* Solid ON for 5 seconds once device successful Join the network.
700 -* Blink once when device transmit a packet.
701 -
702 -== 2.9 Installation in Soil ==
703 -
704 -**Measurement the soil surface**
705 -
706 -
707 -[[image:1654506634463-199.png]] ​
708 -
709 709  (((
710 -(((
711 -Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting.
646 +The NSE01 battery is a combination of an 8500mAh Li/SOCI2 Battery and a Super Capacitor. The battery is none-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter.
712 712  )))
713 -)))
714 714  
715 715  
716 -
717 -[[image:1654506665940-119.png]]
718 -
719 719  (((
720 -Dig a hole with diameter > 20CM.
651 +The battery is designed to last for several years depends on the actually use environment and update interval. 
721 721  )))
722 722  
723 -(((
724 -Horizontal insert the probe to the soil and fill the hole for long term measurement.
725 -)))
726 726  
727 -
728 -== 2.10 ​Firmware Change Log ==
729 -
730 730  (((
731 -**Firmware download link:**
656 +The battery related documents as below:
732 732  )))
733 733  
734 -(((
735 -[[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/]]
736 -)))
659 +* [[Battery Dimension>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]
660 +* [[Lithium-Thionyl Chloride Battery datasheet>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]
661 +* [[Lithium-ion Battery-Capacitor datasheet>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]
737 737  
738 738  (((
739 -
664 +[[image:image-20220708140453-6.png]]
740 740  )))
741 741  
742 -(((
743 -**Firmware Upgrade Method: **[[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome]]
744 -)))
745 745  
746 -(((
747 -
748 -)))
749 749  
750 -(((
751 -**V1.0.**
752 -)))
669 +=== 2.9.2  Power consumption Analyze ===
753 753  
754 754  (((
755 -Release
672 +Dragino battery powered product are all runs in Low Power mode. We have an update battery calculator which base on the measurement of the real device. User can use this calculator to check the battery life and calculate the battery life if want to use different transmit interval.
756 756  )))
757 757  
758 758  
759 -== 2.11 ​Battery Analysis ==
760 -
761 -=== 2.11.1 ​Battery Type ===
762 -
763 763  (((
764 -The LSE01 battery is a combination of a 4000mAh Li/SOCI2 Battery and a Super Capacitor. The battery is non-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter.
677 +Instruction to use as below:
765 765  )))
766 766  
767 767  (((
768 -The battery is designed to last for more than 5 years for the LSN50.
681 +(% style="color:blue" %)**Step 1:  **(%%)Downlink the up-to-date DRAGINO_Battery_Life_Prediction_Table.xlsx from: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/]]
769 769  )))
770 770  
684 +
771 771  (((
772 -(((
773 -The battery-related documents are as below:
686 +(% style="color:blue" %)**Step 2: **(%%) Open it and choose
774 774  )))
775 -)))
776 776  
777 777  * (((
778 -[[Battery Dimension>>url:http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/&file=LSN50-Battery-Dimension.pdf]],
690 +Product Model
779 779  )))
780 780  * (((
781 -[[Lithium-Thionyl Chloride Battery  datasheet>>url:https://www.dragino.com/downloads/downloads/datasheet/Battery/ER26500/ER26500_Datasheet-EN.pdf]],
693 +Uplink Interval
782 782  )))
783 783  * (((
784 -[[Lithium-ion Battery-Capacitor datasheet>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC_1520_datasheet.jpg]], [[Tech Spec>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC1520%20Technical%20Specification20171123.pdf]]
696 +Working Mode
785 785  )))
786 786  
787 - [[image:image-20220610172436-1.png]]
699 +(((
700 +And the Life expectation in difference case will be shown on the right.
701 +)))
788 788  
703 +[[image:image-20220708141352-7.jpeg]]
789 789  
790 790  
791 -=== 2.11.2 ​Battery Note ===
792 792  
707 +=== 2.9.3  ​Battery Note ===
708 +
793 793  (((
794 794  The Li-SICO battery is designed for small current / long period application. It is not good to use a high current, short period transmit method. The recommended minimum period for use of this battery is 5 minutes. If you use a shorter period time to transmit LoRa, then the battery life may be decreased.
795 795  )))
... ... @@ -796,298 +796,176 @@
796 796  
797 797  
798 798  
799 -=== 2.11.3 Replace the battery ===
715 +=== 2.9. Replace the battery ===
800 800  
801 801  (((
802 -If Battery is lower than 2.7v, user should replace the battery of LSE01.
718 +The default battery pack of NSE01 includes a ER26500 plus super capacitor. If user can't find this pack locally, they can find ER26500 or equivalence without the SPC1520 capacitor, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes).
803 803  )))
804 804  
721 +
722 +
723 += 3. ​ Access NB-IoT Module =
724 +
805 805  (((
806 -You can change the battery in the LSE01.The type of battery is not limited as long as the output is between 3v to 3.6v. On the main board, there is a diode (D1) between the battery and the main circuit. If you need to use a battery with less than 3.3v, please remove the D1 and shortcut the two pads of it so there won’t be voltage drop between battery and main board.
726 +Users can directly access the AT command set of the NB-IoT module.
807 807  )))
808 808  
809 809  (((
810 -The default battery pack of LSE01 includes a ER18505 plus super capacitor. If user can’t find this pack locally, they can find ER18505 or equivalence, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes)
730 +The AT Command set can refer the BC35-G NB-IoT Module AT Command: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=datasheet/other_vendors/BC35-G/>>url:https://www.dragino.com/downloads/index.php?dir=datasheet/other_vendors/BC35-G/]] 
811 811  )))
812 812  
733 +[[image:1657261278785-153.png]]
813 813  
814 814  
815 -= 3. ​Using the AT Commands =
816 816  
817 -== 3.1 Access AT Commands ==
737 += 4.  Using the AT Commands =
818 818  
739 +== 4.1  Access AT Commands ==
819 819  
820 -LSE01 supports AT Command set in the stock firmware. You can use a USB to TTL adapter to connect to LSE01 for using AT command, as below.
741 +See this link for detail: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/]]
821 821  
822 -[[image:1654501986557-872.png||height="391" width="800"]]
823 823  
744 +AT+<CMD>?  : Help on <CMD>
824 824  
825 -Or if you have below board, use below connection:
746 +AT+<CMD>         : Run <CMD>
826 826  
748 +AT+<CMD>=<value> : Set the value
827 827  
828 -[[image:1654502005655-729.png||height="503" width="801"]]
750 +AT+<CMD>=?  : Get the value
829 829  
830 830  
831 -
832 -In the PC, you need to set the serial baud rate to (% style="color:green" %)**9600**(%%) to access the serial console for LSE01. LSE01 will output system info once power on as below:
833 -
834 -
835 - [[image:1654502050864-459.png||height="564" width="806"]]
836 -
837 -
838 -Below are the available commands, a more detailed AT Command manual can be found at [[AT Command Manual>>https://www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0]]: [[https:~~/~~/www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0>>https://www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0]]
839 -
840 -
841 -(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>? **(%%) : Help on <CMD>
842 -
843 -(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD> **(%%) : Run <CMD>
844 -
845 -(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>=<value>**(%%) : Set the value
846 -
847 -(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>=?**(%%)  : Get the value
848 -
849 -
850 850  (% style="color:#037691" %)**General Commands**(%%)      
851 851  
852 -(% style="background-color:#dcdcdc" %)**AT**(%%)  : Attention       
755 +AT  : Attention       
853 853  
854 -(% style="background-color:#dcdcdc" %)**AT?**(%%)  : Short Help     
757 +AT?  : Short Help     
855 855  
856 -(% style="background-color:#dcdcdc" %)**ATZ**(%%)  : MCU Reset    
759 +ATZ  : MCU Reset    
857 857  
858 -(% style="background-color:#dcdcdc" %)**AT+TDC**(%%)  : Application Data Transmission Interval 
761 +AT+TDC  : Application Data Transmission Interval
859 859  
763 +AT+CFG  : Print all configurations
860 860  
861 -(% style="color:#037691" %)**Keys, IDs and EUIs management**
765 +AT+CFGMOD           : Working mode selection
862 862  
863 -(% style="background-color:#dcdcdc" %)**AT+APPEUI**(%%)              : Application EUI      
767 +AT+INTMOD            : Set the trigger interrupt mode
864 864  
865 -(% style="background-color:#dcdcdc" %)**AT+APPKEY**(%%)              : Application Key     
769 +AT+5VT  : Set extend the time of 5V power  
866 866  
867 -(% style="background-color:#dcdcdc" %)**AT+APPSKEY**(%%)            : Application Session Key
771 +AT+PRO  : Choose agreement
868 868  
869 -(% style="background-color:#dcdcdc" %)**AT+DADDR**(%%)              : Device Address     
773 +AT+WEIGRE  : Get weight or set weight to 0
870 870  
871 -(% style="background-color:#dcdcdc" %)**AT+DEUI**(%%)                   : Device EUI     
775 +AT+WEIGAP  : Get or Set the GapValue of weight
872 872  
873 -(% style="background-color:#dcdcdc" %)**AT+NWKID**(%%)               : Network ID (You can enter this command change only after successful network connection
777 +AT+RXDL  : Extend the sending and receiving time
874 874  
875 -(% style="background-color:#dcdcdc" %)**AT+NWKSKEY**(%%)          : Network Session Key Joining and sending date on LoRa network  
779 +AT+CNTFAC  : Get or set counting parameters
876 876  
877 -(% style="background-color:#dcdcdc" %)**AT+CFM**(%%)  : Confirm Mode       
781 +AT+SERVADDR  : Server Address
878 878  
879 -(% style="background-color:#dcdcdc" %)**AT+CFS**(%%)                     : Confirm Status       
880 880  
881 -(% style="background-color:#dcdcdc" %)**AT+JOIN**(%%)  : Join LoRa? Network       
784 +(% style="color:#037691" %)**COAP Management**      
882 882  
883 -(% style="background-color:#dcdcdc" %)**AT+NJM**(%%)  : LoRa? Network Join Mode    
786 +AT+URI            : Resource parameters
884 884  
885 -(% style="background-color:#dcdcdc" %)**AT+NJS**(%%)                     : LoRa? Network Join Status    
886 886  
887 -(% style="background-color:#dcdcdc" %)**AT+RECV**(%%)                  : Print Last Received Data in Raw Format
789 +(% style="color:#037691" %)**UDP Management**
888 888  
889 -(% style="background-color:#dcdcdc" %)**AT+RECVB**(%%)                : Print Last Received Data in Binary Format      
791 +AT+CFM          : Upload confirmation mode (only valid for UDP)
890 890  
891 -(% style="background-color:#dcdcdc" %)**AT+SEND**(%%)                  : Send Text Data      
892 892  
893 -(% style="background-color:#dcdcdc" %)**AT+SENB**(%%)                  : Send Hexadecimal Data
794 +(% style="color:#037691" %)**MQTT Management**
894 894  
796 +AT+CLIENT               : Get or Set MQTT client
895 895  
896 -(% style="color:#037691" %)**LoRa Network Management**
798 +AT+UNAME  : Get or Set MQTT Username
897 897  
898 -(% style="background-color:#dcdcdc" %)**AT+ADR**(%%)          : Adaptive Rate
800 +AT+PWD                  : Get or Set MQTT password
899 899  
900 -(% style="background-color:#dcdcdc" %)**AT+CLASS**(%%)  : LoRa Class(Currently only support class A
802 +AT+PUBTOPI : Get or Set MQTT publish topic
901 901  
902 -(% style="background-color:#dcdcdc" %)**AT+DCS**(%%)  : Duty Cycle Settin
804 +AT+SUBTOPIC  : Get or Set MQTT subscription topic
903 903  
904 -(% style="background-color:#dcdcdc" %)**AT+DR**(%%)  : Data Rate (Can Only be Modified after ADR=0)     
905 905  
906 -(% style="background-color:#dcdcdc" %)**AT+FCD**(%%)  : Frame Counter Downlink       
807 +(% style="color:#037691" %)**Information**          
907 907  
908 -(% style="background-color:#dcdcdc" %)**AT+FCU**(%%)  : Frame Counter Uplink   
809 +AT+FDR  : Factory Data Reset
909 909  
910 -(% style="background-color:#dcdcdc" %)**AT+JN1DL**(%%)  : Join Accept Delay1
811 +AT+PWOR : Serial Access Password
911 911  
912 -(% style="background-color:#dcdcdc" %)**AT+JN2DL**(%%)  : Join Accept Delay2
913 913  
914 -(% style="background-color:#dcdcdc" %)**AT+PNM**(%%)  : Public Network Mode   
915 915  
916 -(% style="background-color:#dcdcdc" %)**AT+RX1DL**(%%)  : Receive Delay1      
815 += ​5.  FAQ =
917 917  
918 -(% style="background-color:#dcdcdc" %)**AT+RX2DL**(%%)  : Receive Delay2      
817 +== 5.1 How to Upgrade Firmware ==
919 919  
920 -(% style="background-color:#dcdcdc" %)**AT+RX2DR**(%%)  : Rx2 Window Data Rate 
921 921  
922 -(% style="background-color:#dcdcdc" %)**AT+RX2FQ**(%%)  : Rx2 Window Frequency
923 -
924 -(% style="background-color:#dcdcdc" %)**AT+TXP**(%%)  : Transmit Power
925 -
926 -(% style="background-color:#dcdcdc" %)**AT+ MOD**(%%)  : Set work mode
927 -
928 -
929 -(% style="color:#037691" %)**Information** 
930 -
931 -(% style="background-color:#dcdcdc" %)**AT+RSSI**(%%)           : RSSI of the Last Received Packet   
932 -
933 -(% style="background-color:#dcdcdc" %)**AT+SNR**(%%)           : SNR of the Last Received Packet   
934 -
935 -(% style="background-color:#dcdcdc" %)**AT+VER**(%%)           : Image Version and Frequency Band       
936 -
937 -(% style="background-color:#dcdcdc" %)**AT+FDR**(%%)           : Factory Data Reset
938 -
939 -(% style="background-color:#dcdcdc" %)**AT+PORT**(%%)  : Application Port    
940 -
941 -(% style="background-color:#dcdcdc" %)**AT+CHS**(%%)  : Get or Set Frequency (Unit: Hz) for Single Channel Mode
942 -
943 - (% style="background-color:#dcdcdc" %)**AT+CHE**(%%)  : Get or Set eight channels mode, Only for US915, AU915, CN470
944 -
945 -
946 -= ​4. FAQ =
947 -
948 -== 4.1 ​How to change the LoRa Frequency Bands/Region? ==
949 -
950 950  (((
951 -You can follow the instructions for [[how to upgrade image>>||anchor="H2.10200BFirmwareChangeLog"]].
952 -When downloading the images, choose the required image file for download. ​
821 +User can upgrade the firmware for 1) bug fix, 2) new feature release.
953 953  )))
954 954  
955 955  (((
956 -
825 +Please see this link for how to upgrade:  [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H2.HardwareUpgradeMethodSupportList>>http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H2.HardwareUpgradeMethodSupportList]]
957 957  )))
958 958  
959 959  (((
960 -How to set up LSE01 to work in 8 channel mode By default, the frequency bands US915, AU915, CN470 work in 72 frequencies. Many gateways are 8 channel gateways, and in this case, the OTAA join time and uplink schedule is long and unpredictable while the end node is hopping in 72 frequencies.
829 +(% style="color:red" %)Notice, NSE01 and LSE01 share the same mother board. They use the same connection and method to update.
961 961  )))
962 962  
963 -(((
964 -
965 -)))
966 966  
967 -(((
968 -You can configure the end node to work in 8 channel mode by using the AT+CHE command. The 500kHz channels are always included for OTAA.
969 -)))
970 970  
971 -(((
972 -
973 -)))
834 +== 5.2  Can I calibrate NSE01 to different soil types? ==
974 974  
975 975  (((
976 -For example, in **US915** band, the frequency table is as below. By default, the end node will use all channels (0~~71) for OTAA Join process. After the OTAA Join, the end node will use these all channels (0~~71) to send uplink packets.
837 +NSE01 is calibrated for saline-alkali soil and loamy soil. If users want to use it for other soil, they can calibrate the value in the IoT platform base on the value measured by saline-alkali soil and loamy soil. The formula can be found at [[this link>>https://www.dragino.com/downloads/downloads/LoRa_End_Node/LSE01/Calibrate_to_other_Soil_20220605.pdf]].
977 977  )))
978 978  
979 -[[image:image-20220606154726-3.png]]
980 980  
841 += 6.  Trouble Shooting =
981 981  
982 -When you use the TTN network, the US915 frequency bands use are:
843 +== 6.1  ​Connection problem when uploading firmware ==
983 983  
984 -* 903.9 - SF7BW125 to SF10BW125
985 -* 904.1 - SF7BW125 to SF10BW125
986 -* 904.3 - SF7BW125 to SF10BW125
987 -* 904.5 - SF7BW125 to SF10BW125
988 -* 904.7 - SF7BW125 to SF10BW125
989 -* 904.9 - SF7BW125 to SF10BW125
990 -* 905.1 - SF7BW125 to SF10BW125
991 -* 905.3 - SF7BW125 to SF10BW125
992 -* 904.6 - SF8BW500
993 993  
994 994  (((
995 -Because the end node is now hopping in 72 frequency, it makes it difficult for the devices to Join the TTN network and uplink data. To solve this issue, you can access the device via the AT commands and run:
996 -
997 -* (% style="color:#037691" %)**AT+CHE=2**
998 -* (% style="color:#037691" %)**ATZ**
847 +**Please see: **[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H3.3Troubleshooting>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H3.3Troubleshooting]]
999 999  )))
1000 1000  
850 +(% class="wikigeneratedid" %)
1001 1001  (((
1002 1002  
1003 -
1004 -to set the end node to work in 8 channel mode. The device will work in Channel 8-15 & 64-71 for OTAA, and channel 8-15 for Uplink.
1005 1005  )))
1006 1006  
1007 -(((
1008 -
1009 -)))
1010 1010  
1011 -(((
1012 -The **AU915** band is similar. Below are the AU915 Uplink Channels.
1013 -)))
856 +== 6.2  AT Command input doesn't work ==
1014 1014  
1015 -[[image:image-20220606154825-4.png]]
1016 -
1017 -
1018 -
1019 -= 5. Trouble Shooting =
1020 -
1021 -== 5.1 ​Why I can’t join TTN in US915 / AU915 bands? ==
1022 -
1023 -It is due to channel mapping. Please see the [[Eight Channel Mode>>doc:Main.LoRaWAN Communication Debug.WebHome||anchor="H2.NoticeofUS9152FCN4702FAU915Frequencyband"]] section above for details.
1024 -
1025 -
1026 -== 5.2 AT Command input doesn’t work ==
1027 -
1028 1028  (((
1029 -In the case if user can see the console output but can’t type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn’t send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.
1030 -)))
859 +In the case if user can see the console output but can't type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn't send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.
1031 1031  
1032 -
1033 -== 5.3 Device rejoin in at the second uplink packet ==
1034 -
1035 -(% style="color:#4f81bd" %)**Issue describe as below:**
1036 -
1037 -[[image:1654500909990-784.png]]
1038 -
1039 -
1040 -(% style="color:#4f81bd" %)**Cause for this issue:**
1041 -
1042 -(((
1043 -The fuse on LSE01 is not large enough, some of the soil probe require large current up to 5v 800mA, in a short pulse. When this happen, it cause the device reboot so user see rejoin.
861 +
1044 1044  )))
1045 1045  
1046 1046  
1047 -(% style="color:#4f81bd" %)**Solution: **
865 += 7. ​ Order Info =
1048 1048  
1049 -All new shipped LSE01 after 2020-May-30 will have this to fix. For the customer who see this issue, please bypass the fuse as below:
1050 1050  
1051 -[[image:1654500929571-736.png||height="458" width="832"]]
868 +Part Number**:** (% style="color:#4f81bd" %)**NSE01**
1052 1052  
1053 1053  
1054 -= 6. ​Order Info =
1055 -
1056 -
1057 -Part Number**:** (% style="color:#4f81bd" %)**LSE01-XX-YY**
1058 -
1059 -
1060 -(% style="color:#4f81bd" %)**XX**(%%)**:** The default frequency band
1061 -
1062 -* (% style="color:red" %)**AS923**(%%): LoRaWAN AS923 band
1063 -* (% style="color:red" %)**AU915**(%%): LoRaWAN AU915 band
1064 -* (% style="color:red" %)**EU433**(%%): LoRaWAN EU433 band
1065 -* (% style="color:red" %)**EU868**(%%): LoRaWAN EU868 band
1066 -* (% style="color:red" %)**KR920**(%%): LoRaWAN KR920 band
1067 -* (% style="color:red" %)**US915**(%%): LoRaWAN US915 band
1068 -* (% style="color:red" %)**IN865**(%%):  LoRaWAN IN865 band
1069 -* (% style="color:red" %)**CN470**(%%): LoRaWAN CN470 band
1070 -
1071 -(% style="color:#4f81bd" %)**YY**(%%)**: **Battery Option
1072 -
1073 -* (% style="color:red" %)**4**(%%): 4000mAh battery
1074 -* (% style="color:red" %)**8**(%%): 8500mAh battery
1075 -
1076 1076  (% class="wikigeneratedid" %)
1077 1077  (((
1078 1078  
1079 1079  )))
1080 1080  
1081 -= 7. Packing Info =
876 += 8.  Packing Info =
1082 1082  
1083 1083  (((
1084 1084  
1085 1085  
1086 1086  (% style="color:#037691" %)**Package Includes**:
1087 -)))
1088 1088  
1089 -* (((
1090 -LSE01 LoRaWAN Soil Moisture & EC Sensor x 1
883 +* NSE01 NB-IoT Soil Moisture & EC Sensor x 1
884 +* External antenna x 1
1091 1091  )))
1092 1092  
1093 1093  (((
... ... @@ -1094,24 +1094,19 @@
1094 1094  
1095 1095  
1096 1096  (% style="color:#037691" %)**Dimension and weight**:
1097 -)))
1098 1098  
1099 -* (((
1100 -Device Size: cm
892 +* Size: 195 x 125 x 55 mm
893 +* Weight:   420g
1101 1101  )))
1102 -* (((
1103 -Device Weight: g
1104 -)))
1105 -* (((
1106 -Package Size / pcs : cm
1107 -)))
1108 -* (((
1109 -Weight / pcs : g
1110 1110  
896 +(((
1111 1111  
898 +
899 +
900 +
1112 1112  )))
1113 1113  
1114 -= 8. Support =
903 += 9.  Support =
1115 1115  
1116 1116  * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
1117 1117  * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.com]]
1657245163077-232.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +81.0 KB
Content
1657246476176-652.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +492.6 KB
Content
1657249419225-449.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +81.0 KB
Content
1657249468462-536.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +483.6 KB
Content
1657249793983-486.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +85.8 KB
Content
1657249831934-534.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +72.5 KB
Content
1657249864775-321.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +87.0 KB
Content
1657249930215-289.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +77.3 KB
Content
1657249978444-674.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +139.5 KB
Content
1657249990869-686.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +96.9 KB
Content
1657250217799-140.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +98.7 KB
Content
1657250255956-604.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +99.0 KB
Content
1657259653666-883.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +344.4 KB
Content
1657260785982-288.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +138.2 KB
Content
1657261119050-993.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +126.1 KB
Content
1657261278785-153.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +126.1 KB
Content
1657271519014-786.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +71.5 KB
Content
image-20220708101224-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +22.2 KB
Content
image-20220708101605-2.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +87.5 KB
Content
image-20220708110657-3.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +251.7 KB
Content
image-20220708111918-4.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +38.8 KB
Content
image-20220708133731-5.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +8.7 KB
Content
image-20220708140453-6.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +132.7 KB
Content
image-20220708141352-7.jpeg
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +102.7 KB
Content
image-20220709084038-1.jpeg
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +72.0 KB
Content
Copyright ©2010-2022 Dragino Technology Co., LTD. All rights reserved
Dragino Wiki v2.0