<
From version < 35.26 >
edited by Xiaoling
on 2022/06/25 16:28
To version < 65.10 >
edited by Xiaoling
on 2022/07/08 15:43
>
Change comment: There is no comment for this version

Summary

Details

Page properties
Title
... ... @@ -1,1 +1,1 @@
1 -LSE01-LoRaWAN Soil Moisture & EC Sensor User Manual
1 +NSE01 - NB-IoT Soil Moisture & EC Sensor User Manual
Content
... ... @@ -20,67 +20,82 @@
20 20  
21 21  
22 22  
23 -= 1. Introduction =
24 24  
25 -== 1.1 ​What is LoRaWAN Soil Moisture & EC Sensor ==
24 += 1.  Introduction =
26 26  
26 +== 1.1 ​ What is LoRaWAN Soil Moisture & EC Sensor ==
27 +
27 27  (((
28 28  
29 29  
30 -The Dragino LSE01 is a (% style="color:#4f81bd" %)**LoRaWAN Soil Moisture & EC Sensor**(%%) for IoT of Agriculture. It is designed to measure the soil moisture of saline-alkali soil and loamy soil. The soil sensor uses FDR method to calculate the soil moisture with the compensation from soil temperature and conductivity. It also has been calibrated in factory for Mineral soil type.
31 +(((
32 +Dragino NSE01 is an (% style="color:blue" %)**NB-IOT soil moisture & EC sensor**(%%) for agricultural IoT. Used to measure the soil moisture of saline-alkali soil and loam. The soil sensor uses the FDR method to calculate soil moisture and compensates it with soil temperature and electrical conductivity. It has also been calibrated for mineral soil types at the factory.
31 31  )))
32 32  
33 33  (((
34 -It detects (% style="color:#4f81bd" %)**Soil Moisture**(%%), (% style="color:#4f81bd" %)**Soil Temperature**(%%) and (% style="color:#4f81bd" %)**Soil Conductivity**(%%), and uploads the value via wireless to LoRaWAN IoT Server.
36 +It can detect (% style="color:blue" %)**Soil Moisture, Soil Temperature and Soil Conductivity**(%%), and upload its value to the server wirelessly.
35 35  )))
36 36  
37 37  (((
38 -The LoRa wireless technology used in LES01 allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption.
40 +The wireless technology used in NSE01 allows the device to send data at a low data rate and reach ultra-long distances, providing ultra-long-distance spread spectrum Communication.
39 39  )))
40 40  
41 41  (((
42 -LES01 is powered by (% style="color:#4f81bd" %)**4000mA or 8500mAh Li-SOCI2 battery**(%%), It is designed for long term use up to 10 years.
44 +NSE01 are powered by (% style="color:blue" %)**8500mAh Li-SOCI2**(%%) batteries, which can be used for up to 5 years.  
43 43  )))
44 44  
45 -(((
46 -Each LES01 is pre-load with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect after power on.
47 +
47 47  )))
48 48  
49 -
50 50  [[image:1654503236291-817.png]]
51 51  
52 52  
53 -[[image:1654503265560-120.png]]
53 +[[image:1657245163077-232.png]]
54 54  
55 55  
56 56  
57 -== 1.2 ​Features ==
57 +== 1.2 ​ Features ==
58 58  
59 -* LoRaWAN 1.0.3 Class A
60 -* Ultra low power consumption
59 +* NB-IoT Bands: B1/B3/B8/B5/B20/B28 @H-FDD
61 61  * Monitor Soil Moisture
62 62  * Monitor Soil Temperature
63 63  * Monitor Soil Conductivity
64 -* Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865
65 65  * AT Commands to change parameters
66 66  * Uplink on periodically
67 67  * Downlink to change configure
68 68  * IP66 Waterproof Enclosure
69 -* 4000mAh or 8500mAh Battery for long term use
67 +* Ultra-Low Power consumption
68 +* AT Commands to change parameters
69 +* Micro SIM card slot for NB-IoT SIM
70 +* 8500mAh Battery for long term use
70 70  
71 71  
73 +== 1.3  Specification ==
72 72  
73 73  
76 +(% style="color:#037691" %)**Common DC Characteristics:**
74 74  
75 -== 1.3 Specification ==
78 +* Supply Voltage: 2.1v ~~ 3.6v
79 +* Operating Temperature: -40 ~~ 85°C
76 76  
81 +(% style="color:#037691" %)**NB-IoT Spec:**
82 +
83 +* - B1 @H-FDD: 2100MHz
84 +* - B3 @H-FDD: 1800MHz
85 +* - B8 @H-FDD: 900MHz
86 +* - B5 @H-FDD: 850MHz
87 +* - B20 @H-FDD: 800MHz
88 +* - B28 @H-FDD: 700MHz
89 +
90 +Probe(% style="color:#037691" %)** Specification:**
91 +
77 77  Measure Volume: Base on the centra pin of the probe, a cylinder with 7cm diameter and 10cm height.
78 78  
79 -[[image:image-20220606162220-5.png]]
94 +[[image:image-20220708101224-1.png]]
80 80  
81 81  
82 82  
83 -== ​1.4 Applications ==
98 +== ​1.4  Applications ==
84 84  
85 85  * Smart Agriculture
86 86  
... ... @@ -87,1007 +87,718 @@
87 87  (% class="wikigeneratedid" id="H200B1.5FirmwareChangelog" %)
88 88  ​
89 89  
90 -== 1.5 Firmware Change log ==
105 +== 1.5  Pin Definitions ==
91 91  
92 92  
93 -**LSE01 v1.0 :**  Release
108 +[[image:1657246476176-652.png]]
94 94  
95 95  
96 96  
97 -= 2. Configure LSE01 to connect to LoRaWAN network =
112 += 2.  Use NSE01 to communicate with IoT Server =
98 98  
99 -== 2.1 How it works ==
114 +== 2.1  How it works ==
100 100  
116 +
101 101  (((
102 -The LSE01 is configured as LoRaWAN OTAA Class A mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and power on the LSE0150. It will automatically join the network via OTAA and start to send the sensor value
118 +The NSE01 is equipped with a NB-IoT module, the pre-loaded firmware in NSE01 will get environment data from sensors and send the value to local NB-IoT network via the NB-IoT module The NB-IoT network will forward this value to IoT server via the protocol defined by NSE01.
103 103  )))
104 104  
121 +
105 105  (((
106 -In case you can’t set the OTAA keys in the LoRaWAN OTAA server, and you have to use the keys from the server, you can [[use AT Commands >>||anchor="H3.200BUsingtheATCommands"]].
123 +The diagram below shows the working flow in default firmware of NSE01:
107 107  )))
108 108  
126 +[[image:image-20220708101605-2.png]]
109 109  
128 +(((
129 +
130 +)))
110 110  
111 -== 2.2 ​Quick guide to connect to LoRaWAN server (OTAA) ==
112 112  
113 -Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LG308>>url:http://www.dragino.com/products/lora/item/140-lg308.html]] as a LoRaWAN gateway in this example.
114 114  
134 +== 2.2 ​ Configure the NSE01 ==
115 115  
116 -[[image:1654503992078-669.png]]
117 117  
137 +=== 2.2.1 Test Requirement ===
118 118  
119 -The LG308 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
120 120  
121 -
122 -(% style="color:blue" %)**Step 1**(%%):  Create a device in TTN with the OTAA keys from LSE01.
123 -
124 -Each LSE01 is shipped with a sticker with the default device EUI as below:
125 -
126 -[[image:image-20220606163732-6.jpeg]]
127 -
128 -You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot:
129 -
130 -**Add APP EUI in the application**
131 -
132 -
133 -[[image:1654504596150-405.png]]
134 -
135 -
136 -
137 -**Add APP KEY and DEV EUI**
138 -
139 -[[image:1654504683289-357.png]]
140 -
141 -
142 -
143 -(% style="color:blue" %)**Step 2**(%%): Power on LSE01
144 -
145 -
146 -Put a Jumper on JP2 to power on the device. ( The Jumper must be in FLASH position).
147 -
148 -[[image:image-20220606163915-7.png]]
149 -
150 -
151 -(% style="color:blue" %)**Step 3**(%%)**:** The LSE01 will auto join to the TTN network. After join success, it will start to upload messages to TTN and you can see the messages in the panel.
152 -
153 -[[image:1654504778294-788.png]]
154 -
155 -
156 -
157 -== 2.3 Uplink Payload ==
158 -
159 -
160 -=== 2.3.1 MOD~=0(Default Mode) ===
161 -
162 -LSE01 will uplink payload via LoRaWAN with below payload format: 
163 -
164 164  (((
165 -Uplink payload includes in total 11 bytes.
141 +To use NSE01 in your city, make sure meet below requirements:
166 166  )))
167 167  
168 -(% border="1" cellspacing="10" style="background-color:#ffffcc; width:500px" %)
169 -|(((
170 -**Size**
144 +* Your local operator has already distributed a NB-IoT Network there.
145 +* The local NB-IoT network used the band that NSE01 supports.
146 +* Your operator is able to distribute the data received in their NB-IoT network to your IoT server.
171 171  
172 -**(bytes)**
173 -)))|**2**|**2**|**2**|**2**|**2**|**1**
174 -|**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(((
175 -Temperature
176 -
177 -(Reserve, Ignore now)
178 -)))|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]]|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]]|(((
179 -MOD & Digital Interrupt
180 -
181 -(Optional)
148 +(((
149 +Below figure shows our testing structure. Here we have NB-IoT network coverage by China Mobile, the band they use is B8.  The NSE01 will use CoAP((% style="color:red" %)120.24.4.116:5683)(%%) or raw UDP((% style="color:red" %)120.24.4.116:5601)(%%) or MQTT((% style="color:red" %)120.24.4.116:1883)(%%)or TCP((% style="color:red" %)120.24.4.116:5600)(%%)protocol to send data to the test server
182 182  )))
183 183  
184 184  
153 +[[image:1657249419225-449.png]]
185 185  
186 186  
187 187  
157 +=== 2.2.2 Insert SIM card ===
188 188  
159 +Insert the NB-IoT Card get from your provider.
189 189  
190 -=== 2.3.2 MOD~=1(Original value) ===
161 +User need to take out the NB-IoT module and insert the SIM card like below:
191 191  
192 -This mode can get the original AD value of moisture and original conductivity (with temperature drift compensation).
193 193  
194 -(% border="1" cellspacing="10" style="background-color:#ffffcc; width:500px" %)
195 -|(((
196 -**Size**
164 +[[image:1657249468462-536.png]]
197 197  
198 -**(bytes)**
199 -)))|**2**|**2**|**2**|**2**|**2**|**1**
200 -|**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(((
201 -Temperature
202 202  
203 -(Reserve, Ignore now)
204 -)))|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]](raw)|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]](raw)|(((
205 -MOD & Digital Interrupt
206 206  
207 -(Optional)
208 -)))
168 +=== 2.2.3 Connect USB – TTL to NSE01 to configure it ===
209 209  
210 -=== 2.3.3 Battery Info ===
211 -
212 212  (((
213 -Check the battery voltage for LSE01.
214 -)))
215 -
216 216  (((
217 -Ex1: 0x0B45 = 2885mV
172 +User need to configure NSE01 via serial port to set the (% style="color:blue" %)**Server Address** / **Uplink Topic** (%%)to define where and how-to uplink packets. NSE01 support AT Commands, user can use a USB to TTL adapter to connect to NSE01 and use AT Commands to configure it, as below.
218 218  )))
219 -
220 -(((
221 -Ex2: 0x0B49 = 2889mV
222 222  )))
223 223  
224 224  
177 +**Connection:**
225 225  
226 -=== 2.3.4 Soil Moisture ===
179 + (% style="background-color:yellow" %)USB TTL GND <~-~-~-~-> GND
227 227  
228 -(((
229 -Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil.
230 -)))
181 + (% style="background-color:yellow" %)USB TTL TXD <~-~-~-~-> UART_RXD
231 231  
232 -(((
233 -For example, if the data you get from the register is __0x05 0xDC__, the moisture content in the soil is
234 -)))
183 + (% style="background-color:yellow" %)USB TTL RXD <~-~-~-~-> UART_TXD
235 235  
236 -(((
237 -
238 -)))
239 239  
240 -(((
241 -(% style="color:#4f81bd" %)**05DC(H) = 1500(D) /100 = 15%.**
242 -)))
186 +In the PC, use below serial tool settings:
243 243  
188 +* Baud:  (% style="color:green" %)**9600**
189 +* Data bits:** (% style="color:green" %)8(%%)**
190 +* Stop bits: (% style="color:green" %)**1**
191 +* Parity:  (% style="color:green" %)**None**
192 +* Flow Control: (% style="color:green" %)**None**
244 244  
245 -
246 -=== 2.3.5 Soil Temperature ===
247 -
248 248  (((
249 - Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is 0x09 0xEC, the temperature content in the soil is
195 +Make sure the switch is in FLASH position, then power on device by connecting the jumper on NSE01. NSE01 will output system info once power on as below, we can enter the (% style="color:green" %)**password: 12345678**(%%) to access AT Command input.
250 250  )))
251 251  
252 -(((
253 -**Example**:
254 -)))
198 +[[image:image-20220708110657-3.png]]
255 255  
256 -(((
257 -If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/100 = 2.61 °C
258 -)))
200 +(% style="color:red" %)Note: the valid AT Commands can be found at: (%%)[[http:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/]]
259 259  
260 -(((
261 -If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C
262 -)))
263 263  
264 264  
204 +=== 2.2.4 Use CoAP protocol to uplink data ===
265 265  
266 -=== 2.3.6 Soil Conductivity (EC) ===
206 +(% style="color:red" %)Note: if you don't have CoAP server, you can refer this link to set up one: (%%)[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/>>http://wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/]]
267 267  
268 -(((
269 -Obtain (% style="color:#4f81bd" %)**__soluble salt concentration__**(%%) in soil or (% style="color:#4f81bd" %)**__soluble ion concentration in liquid fertilizer__**(%%) or (% style="color:#4f81bd" %)**__planting medium__**(%%). The value range of the register is 0 - 20000(Decimal)( Can be greater than 20000).
270 -)))
271 271  
272 -(((
273 -For example, if the data you get from the register is 0x00 0xC8, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm.
274 -)))
209 +**Use below commands:**
275 275  
276 -(((
277 -Generally, the EC value of irrigation water is less than 800uS / cm.
278 -)))
211 +* (% style="color:blue" %)**AT+PRO=1**  (%%) ~/~/ Set to use CoAP protocol to uplink
212 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5683   ** (%%)~/~/ to set CoAP server address and port
213 +* (% style="color:blue" %)**AT+URI=5,11,"mqtt",11,"coap",12,"0",15,"c=text1",23,"0" ** (%%) ~/~/Set COAP resource path
279 279  
280 -(((
281 -
282 -)))
215 +For parameter description, please refer to AT command set
283 283  
284 -(((
285 -
286 -)))
217 +[[image:1657249793983-486.png]]
287 287  
288 -=== 2.3.7 MOD ===
289 289  
290 -Firmware version at least v2.1 supports changing mode.
220 +After configure the server address and (% style="color:green" %)**reset the device**(%%) (via AT+ATZ ), NSE01 will start to uplink sensor values to CoAP server.
291 291  
292 -For example, bytes[10]=90
222 +[[image:1657249831934-534.png]]
293 293  
294 -mod=(bytes[10]>>7)&0x01=1.
295 295  
296 296  
297 -**Downlink Command:**
226 +=== 2.2.5 Use UDP protocol to uplink data(Default protocol) ===
298 298  
299 -If payload = 0x0A00, workmode=0
228 +This feature is supported since firmware version v1.0.1
300 300  
301 -If** **payload =** **0x0A01, workmode=1
302 302  
231 +* (% style="color:blue" %)**AT+PRO=2   ** (%%) ~/~/ Set to use UDP protocol to uplink
232 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5601   ** (%%) ~/~/ to set UDP server address and port
233 +* (% style="color:blue" %)**AT+CFM=1       ** (%%) ~/~/If the server does not respond, this command is unnecessary
303 303  
235 +[[image:1657249864775-321.png]]
304 304  
305 -=== 2.3.8 ​Decode payload in The Things Network ===
306 306  
307 -While using TTN network, you can add the payload format to decode the payload.
238 +[[image:1657249930215-289.png]]
308 308  
309 309  
310 -[[image:1654505570700-128.png]]
311 311  
312 -(((
313 -The payload decoder function for TTN is here:
314 -)))
242 +=== 2.2.6 Use MQTT protocol to uplink data ===
315 315  
316 -(((
317 -LSE01 TTN Payload Decoder: [[https:~~/~~/www.dropbox.com/sh/si8icbrjlamxqdb/AAACYwjsxxr5fj_vpqRtrETAa?dl=0>>https://www.dropbox.com/sh/si8icbrjlamxqdb/AAACYwjsxxr5fj_vpqRtrETAa?dl=0]]
318 -)))
244 +This feature is supported since firmware version v110
319 319  
320 320  
321 -== 2.4 Uplink Interval ==
247 +* (% style="color:blue" %)**AT+PRO=3   ** (%%) ~/~/Set to use MQTT protocol to uplink
248 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,1883   ** (%%) ~/~/Set MQTT server address and port
249 +* (% style="color:blue" %)**AT+CLIENT=CLIENT       ** (%%)~/~/Set up the CLIENT of MQTT
250 +* (% style="color:blue" %)**AT+UNAME=UNAME                               **(%%)~/~/Set the username of MQTT
251 +* (% style="color:blue" %)**AT+PWD=PWD                                        **(%%)~/~/Set the password of MQTT
252 +* (% style="color:blue" %)**AT+PUBTOPIC=NSE01_PUB                    **(%%)~/~/Set the sending topic of MQTT
253 +* (% style="color:blue" %)**AT+SUBTOPIC=NSE01_SUB          **(%%) ~/~/Set the subscription topic of MQTT
322 322  
323 -The LSE01 by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link: [[Change Uplink Interval>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H4.1ChangeUplinkInterval"]]
255 +[[image:1657249978444-674.png]]
324 324  
325 325  
258 +[[image:1657249990869-686.png]]
326 326  
327 -== 2.5 Downlink Payload ==
328 328  
329 -By default, LSE50 prints the downlink payload to console port.
330 -
331 -[[image:image-20220606165544-8.png]]
332 -
333 -
334 334  (((
335 -**Examples:**
262 +MQTT protocol has a much higher power consumption compare vs UDP / CoAP protocol. Please check the power analyze document and adjust the uplink period to a suitable interval.
336 336  )))
337 337  
338 -(((
339 -
340 -)))
341 341  
342 -* (((
343 -**Set TDC**
344 -)))
345 345  
346 -(((
347 -If the payload=0100003C, it means set the END Node’s TDC to 0x00003C=60(S), while type code is 01.
348 -)))
267 +=== 2.2.7 Use TCP protocol to uplink data ===
349 349  
350 -(((
351 -Payload:    01 00 00 1E    TDC=30S
352 -)))
269 +This feature is supported since firmware version v110
353 353  
354 -(((
355 -Payload:    01 00 00 3C    TDC=60S
356 -)))
357 357  
358 -(((
359 -
360 -)))
272 +* (% style="color:blue" %)**AT+PRO=4   ** (%%) ~/~/ Set to use TCP protocol to uplink
273 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5600   **(%%) ~/~/ to set TCP server address and port
361 361  
362 -* (((
363 -**Reset**
364 -)))
275 +[[image:1657250217799-140.png]]
365 365  
366 -(((
367 -If payload = 0x04FF, it will reset the LSE01
368 -)))
369 369  
278 +[[image:1657250255956-604.png]]
370 370  
371 -* **CFM**
372 372  
373 -Downlink Payload: 05000001, Set AT+CFM=1 or 05000000 , set AT+CFM=0
374 374  
282 +=== 2.2.8 Change Update Interval ===
375 375  
284 +User can use below command to change the (% style="color:green" %)**uplink interval**.
376 376  
377 -== 2.6 ​Show Data in DataCake IoT Server ==
286 +* (% style="color:blue" %)**AT+TDC=600      ** (%%)~/~/ Set Update Interval to 600s
378 378  
379 379  (((
380 -[[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps:
289 +(% style="color:red" %)**NOTE:**
381 381  )))
382 382  
383 383  (((
384 -
293 +(% style="color:red" %)1. By default, the device will send an uplink message every 1 hour.
385 385  )))
386 386  
387 -(((
388 -(% style="color:blue" %)**Step 1**(%%):  Be sure that your device is programmed and properly connected to the network at this time.
389 -)))
390 390  
391 -(((
392 -(% style="color:blue" %)**Step 2**(%%):  To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps:
393 -)))
394 394  
298 +== 2.3  Uplink Payload ==
395 395  
396 -[[image:1654505857935-743.png]]
300 +In this mode, uplink payload includes in total 18 bytes
397 397  
302 +(% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:510px" %)
303 +|=(% style="width: 50px;" %)(((
304 +**Size(bytes)**
305 +)))|=(% style="width: 50px;" %)**6**|=(% style="width: 25px;" %)2|=(% style="width: 25px;" %)**2**|=(% style="width: 80px;" %)**1**|=(% style="width: 80px;" %)**2**|=(% style="width: 80px;" %)**2**|=(% style="width: 80px;" %)**2**|=(% style="width: 40px;" %)**1**
306 +|(% style="width:97px" %)**Value**|(% style="width:83px" %)[[Device ID>>||anchor="H2.4.1A0A0DeviceID"]]|(% style="width:41px" %)[[Ver>>||anchor="H2.4.2A0VersionInfo"]]|(% style="width:46px" %)[[BAT>>||anchor="H2.4.3A0BatteryInfo"]]|(% style="width:123px" %)[[Signal Strength>>||anchor="H2.4.4A0SignalStrength"]]|(% style="width:108px" %)[[Soil Moisture>>||anchor="H2.4.5A0SoilMoisture"]]|(% style="width:133px" %)[[Soil Temperature>>||anchor="H2.4.6A0SoilTemperature"]]|(% style="width:159px" %)[[Soil Conductivity(EC)>>||anchor="H2.4.7A0SoilConductivity28EC29"]]|(% style="width:80px" %)[[Interrupt>>||anchor="H2.4.8A0DigitalInterrupt"]]
398 398  
399 -[[image:1654505874829-548.png]]
308 +If we use the MQTT client to subscribe to this MQTT topic, we can see the following information when the NSE01 uplink data.
400 400  
401 401  
402 -(% style="color:blue" %)**Step 3**(%%)**:**  Create an account or log in Datacake.
311 +[[image:image-20220708111918-4.png]]
403 403  
404 -(% style="color:blue" %)**Step 4**(%%)**:**  Search the LSE01 and add DevEUI.
405 405  
314 +The payload is ASCII string, representative same HEX:
406 406  
407 -[[image:1654505905236-553.png]]
316 +0x72403155615900640c7817075e0a8c02f900 where:
408 408  
318 +* Device ID: 0x 724031556159 = 724031556159
319 +* Version: 0x0064=100=1.0.0
409 409  
410 -After added, the sensor data arrive TTN, it will also arrive and show in Mydevices.
321 +* BAT: 0x0c78 = 3192 mV = 3.192V
322 +* Singal: 0x17 = 23
323 +* Soil Moisture: 0x075e= 1886 = 18.86  %
324 +* Soil Temperature:0x0a8c =2700=27 °C
325 +* Soil Conductivity(EC) = 0x02f9 =761 uS /cm
326 +* Interrupt: 0x00 = 0
411 411  
412 -[[image:1654505925508-181.png]]
413 413  
329 +== 2.4  Payload Explanation and Sensor Interface ==
414 414  
415 415  
416 -== 2.7 Frequency Plans ==
332 +=== 2.4.1  Device ID ===
417 417  
418 -The LSE01 uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.
334 +By default, the Device ID equal to the last 6 bytes of IMEI.
419 419  
336 +User can use (% style="color:blue" %)**AT+DEUI**(%%) to set Device ID
420 420  
421 -=== 2.7.1 EU863-870 (EU868) ===
338 +**Example:**
422 422  
423 -(% style="color:#037691" %)** Uplink:**
340 +AT+DEUI=A84041F15612
424 424  
425 -868.1 - SF7BW125 to SF12BW125
342 +The Device ID is stored in a none-erase area, Upgrade the firmware or run AT+FDR won't erase Device ID.
426 426  
427 -868.3 - SF7BW125 to SF12BW125 and SF7BW250
428 428  
429 -868.5 - SF7BW125 to SF12BW125
430 430  
431 -867.1 - SF7BW125 to SF12BW125
346 +=== 2.4.2  Version Info ===
432 432  
433 -867.3 - SF7BW125 to SF12BW125
348 +Specify the software version: 0x64=100, means firmware version 1.00.
434 434  
435 -867.5 - SF7BW125 to SF12BW125
350 +For example: 0x00 64 : this device is NSE01 with firmware version 1.0.0.
436 436  
437 -867.7 - SF7BW125 to SF12BW125
438 438  
439 -867.9 - SF7BW125 to SF12BW125
440 440  
441 -868.8 - FSK
354 +=== 2.4.3  Battery Info ===
442 442  
356 +(((
357 +Check the battery voltage for LSE01.
358 +)))
443 443  
444 -(% style="color:#037691" %)** Downlink:**
360 +(((
361 +Ex1: 0x0B45 = 2885mV
362 +)))
445 445  
446 -Uplink channels 1-9 (RX1)
364 +(((
365 +Ex2: 0x0B49 = 2889mV
366 +)))
447 447  
448 -869.525 - SF9BW125 (RX2 downlink only)
449 449  
450 450  
370 +=== 2.4.4  Signal Strength ===
451 451  
452 -=== 2.7.2 US902-928(US915) ===
372 +NB-IoT Network signal Strength.
453 453  
454 -Used in USA, Canada and South America. Default use CHE=2
374 +**Ex1: 0x1d = 29**
455 455  
456 -(% style="color:#037691" %)**Uplink:**
376 +(% style="color:blue" %)**0**(%%)  -113dBm or less
457 457  
458 -903.9 - SF7BW125 to SF10BW125
378 +(% style="color:blue" %)**1**(%%)  -111dBm
459 459  
460 -904.1 - SF7BW125 to SF10BW125
380 +(% style="color:blue" %)**2...30**(%%) -109dBm... -53dBm
461 461  
462 -904.3 - SF7BW125 to SF10BW125
382 +(% style="color:blue" %)**31**  (%%) -51dBm or greater
463 463  
464 -904.5 - SF7BW125 to SF10BW125
384 +(% style="color:blue" %)**99**   (%%) Not known or not detectable
465 465  
466 -904.7 - SF7BW125 to SF10BW125
467 467  
468 -904.9 - SF7BW125 to SF10BW125
469 469  
470 -905.1 - SF7BW125 to SF10BW125
388 +=== 2.4.5  Soil Moisture ===
471 471  
472 -905.3 - SF7BW125 to SF10BW125
390 +(((
391 +Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil.
392 +)))
473 473  
394 +(((
395 +For example, if the data you get from the register is **__0x05 0xDC__**, the moisture content in the soil is
396 +)))
474 474  
475 -(% style="color:#037691" %)**Downlink:**
398 +(((
399 +
400 +)))
476 476  
477 -923.3 - SF7BW500 to SF12BW500
402 +(((
403 +(% style="color:#4f81bd" %)**05DC(H) = 1500(D) /100 = 15%.**
404 +)))
478 478  
479 -923.9 - SF7BW500 to SF12BW500
480 480  
481 -924.5 - SF7BW500 to SF12BW500
482 482  
483 -925.1 - SF7BW500 to SF12BW500
408 +=== 2.4.6  Soil Temperature ===
484 484  
485 -925.7 - SF7BW500 to SF12BW500
410 +(((
411 + Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is __**0x09 0xEC**__, the temperature content in the soil is
412 +)))
486 486  
487 -926.3 - SF7BW500 to SF12BW500
414 +(((
415 +**Example**:
416 +)))
488 488  
489 -926.9 - SF7BW500 to SF12BW500
418 +(((
419 +If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/100 = 2.61 °C
420 +)))
490 490  
491 -927.5 - SF7BW500 to SF12BW500
422 +(((
423 +If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C
424 +)))
492 492  
493 -923.3 - SF12BW500(RX2 downlink only)
494 494  
495 495  
428 +=== 2.4.7  Soil Conductivity (EC) ===
496 496  
497 -=== 2.7.3 CN470-510 (CN470) ===
430 +(((
431 +Obtain (% style="color:#4f81bd" %)**__soluble salt concentration__**(%%) in soil or (% style="color:#4f81bd" %)**__soluble ion concentration in liquid fertilizer__**(%%) or (% style="color:#4f81bd" %)**__planting medium__**(%%). The value range of the register is 0 - 20000(Decimal)( Can be greater than 20000).
432 +)))
498 498  
499 -Used in China, Default use CHE=1
434 +(((
435 +For example, if the data you get from the register is __**0x00 0xC8**__, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm.
436 +)))
500 500  
501 -(% style="color:#037691" %)**Uplink:**
438 +(((
439 +Generally, the EC value of irrigation water is less than 800uS / cm.
440 +)))
502 502  
503 -486.3 - SF7BW125 to SF12BW125
442 +(((
443 +
444 +)))
504 504  
505 -486.5 - SF7BW125 to SF12BW125
446 +(((
447 +
448 +)))
506 506  
507 -486.7 - SF7BW125 to SF12BW125
450 +=== 2.4. Digital Interrupt ===
508 508  
509 -486.9 - SF7BW125 to SF12BW125
452 +Digital Interrupt refers to pin (% style="color:blue" %)**GPIO_EXTI**(%%), and there are different trigger methods. When there is a trigger, the NSE01 will send a packet to the server.
510 510  
511 -487.1 - SF7BW125 to SF12BW125
454 +The command is:
512 512  
513 -487.3 - SF7BW125 to SF12BW125
456 +(% style="color:blue" %)**AT+INTMOD=3 **(%%) ~/~/(more info about INMOD please refer [[**AT Command Manual**>>url:https://www.dragino.com/downloads/downloads/NB-IoT/NBSN95/DRAGINO_NBSN95-NB_AT%20Commands_v1.1.0.pdf]])**.**
514 514  
515 -487.5 - SF7BW125 to SF12BW125
516 516  
517 -487.7 - SF7BW125 to SF12BW125
459 +The lower four bits of this data field shows if this packet is generated by interrupt or not. Click here for the hardware and software set up.
518 518  
519 519  
520 -(% style="color:#037691" %)**Downlink:**
462 +Example:
521 521  
522 -506.7 - SF7BW125 to SF12BW125
464 +0x(00): Normal uplink packet.
523 523  
524 -506.9 - SF7BW125 to SF12BW125
466 +0x(01): Interrupt Uplink Packet.
525 525  
526 -507.1 - SF7BW125 to SF12BW125
527 527  
528 -507.3 - SF7BW125 to SF12BW125
529 529  
530 -507.5 - SF7BW125 to SF12BW125
470 +=== 2.4.9  ​+5V Output ===
531 531  
532 -507.7 - SF7BW125 to SF12BW125
472 +NSE01 will enable +5V output before all sampling and disable the +5v after all sampling. 
533 533  
534 -507.9 - SF7BW125 to SF12BW125
535 535  
536 -508.1 - SF7BW125 to SF12BW125
475 +The 5V output time can be controlled by AT Command.
537 537  
538 -505.3 - SF12BW125 (RX2 downlink only)
477 +(% style="color:blue" %)**AT+5VT=1000**
539 539  
479 +Means set 5V valid time to have 1000ms. So the real 5V output will actually have 1000ms + sampling time for other sensors.
540 540  
541 541  
542 -=== 2.7.4 AU915-928(AU915) ===
543 543  
544 -Default use CHE=2
483 +== 2.5  Downlink Payload ==
545 545  
546 -(% style="color:#037691" %)**Uplink:**
485 +By default, NSE01 prints the downlink payload to console port.
547 547  
548 -916.8 - SF7BW125 to SF12BW125
487 +[[image:image-20220708133731-5.png]]
549 549  
550 -917.0 - SF7BW125 to SF12BW125
551 551  
552 -917.2 - SF7BW125 to SF12BW125
490 +(((
491 +(% style="color:blue" %)**Examples:**
492 +)))
553 553  
554 -917.4 - SF7BW125 to SF12BW125
494 +(((
495 +
496 +)))
555 555  
556 -917.6 - SF7BW125 to SF12BW125
498 +* (((
499 +(% style="color:blue" %)**Set TDC**
500 +)))
557 557  
558 -917.8 - SF7BW125 to SF12BW125
502 +(((
503 +If the payload=0100003C, it means set the END Node's TDC to 0x00003C=60(S), while type code is 01.
504 +)))
559 559  
560 -918.0 - SF7BW125 to SF12BW125
506 +(((
507 +Payload:    01 00 00 1E    TDC=30S
508 +)))
561 561  
562 -918.2 - SF7BW125 to SF12BW125
510 +(((
511 +Payload:    01 00 00 3C    TDC=60S
512 +)))
563 563  
514 +(((
515 +
516 +)))
564 564  
565 -(% style="color:#037691" %)**Downlink:**
518 +* (((
519 +(% style="color:blue" %)**Reset**
520 +)))
566 566  
567 -923.3 - SF7BW500 to SF12BW500
522 +(((
523 +If payload = 0x04FF, it will reset the NSE01
524 +)))
568 568  
569 -923.9 - SF7BW500 to SF12BW500
570 570  
571 -924.5 - SF7BW500 to SF12BW500
527 +* (% style="color:blue" %)**INTMOD**
572 572  
573 -925.1 - SF7BW500 to SF12BW500
529 +Downlink Payload: 06000003, Set AT+INTMOD=3
574 574  
575 -925.7 - SF7BW500 to SF12BW500
576 576  
577 -926.3 - SF7BW500 to SF12BW500
578 578  
579 -926.9 - SF7BW500 to SF12BW500
533 +== 2. ​LED Indicator ==
580 580  
581 -927.5 - SF7BW500 to SF12BW500
535 +(((
536 +The NSE01 has an internal LED which is to show the status of different state.
582 582  
583 -923.3 - SF12BW500(RX2 downlink only)
584 584  
539 +* When power on, NSE01 will detect if sensor probe is connected, if probe detected, LED will blink four times. (no blinks in this step is no probe)
540 +* Then the LED will be on for 1 second means device is boot normally.
541 +* After NSE01 join NB-IoT network. The LED will be ON for 3 seconds.
542 +* For each uplink probe, LED will be on for 500ms.
543 +)))
585 585  
586 586  
587 -=== 2.7.5 AS920-923 & AS923-925 (AS923) ===
588 588  
589 -(% style="color:#037691" %)**Default Uplink channel:**
590 590  
591 -923.2 - SF7BW125 to SF10BW125
548 +== 2.7  Installation in Soil ==
592 592  
593 -923.4 - SF7BW125 to SF10BW125
550 +__**Measurement the soil surface**__
594 594  
552 +Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting. [[https:~~/~~/img.alicdn.com/imgextra/i3/2005165265/O1CN010rj9Oh1olPsQxrdUK_!!2005165265.jpg>>url:https://img.alicdn.com/imgextra/i3/2005165265/O1CN010rj9Oh1olPsQxrdUK_!!2005165265.jpg]]
595 595  
596 -(% style="color:#037691" %)**Additional Uplink Channel**:
554 +[[image:1657259653666-883.png]]
597 597  
598 -(OTAA mode, channel added by JoinAccept message)
599 599  
600 -(% style="color:#037691" %)**AS920~~AS923 for Japan, Malaysia, Singapore**:
557 +(((
558 +
601 601  
602 -922.2 - SF7BW125 to SF10BW125
560 +(((
561 +Dig a hole with diameter > 20CM.
562 +)))
603 603  
604 -922.4 - SF7BW125 to SF10BW125
564 +(((
565 +Horizontal insert the probe to the soil and fill the hole for long term measurement.
566 +)))
567 +)))
605 605  
606 -922.6 - SF7BW125 to SF10BW125
569 +[[image:1654506665940-119.png]]
607 607  
608 -922.8 - SF7BW125 to SF10BW125
571 +(((
572 +
573 +)))
609 609  
610 -923.0 - SF7BW125 to SF10BW125
611 611  
612 -922.0 - SF7BW125 to SF10BW125
576 +== 2. Firmware Change Log ==
613 613  
614 614  
615 -(% style="color:#037691" %)**AS923 ~~ AS925 for Brunei, Cambodia, Hong Kong, Indonesia, Laos, Taiwan, Thailand, Vietnam**:
579 +Download URL & Firmware Change log
616 616  
617 -923.6 - SF7BW125 to SF10BW125
581 +[[www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/Firmware/]]
618 618  
619 -923.8 - SF7BW125 to SF10BW125
620 620  
621 -924.0 - SF7BW125 to SF10BW125
584 +Upgrade Instruction: [[Upgrade_Firmware>>||anchor="H5.1200BHowtoUpgradeFirmware"]]
622 622  
623 -924.2 - SF7BW125 to SF10BW125
624 624  
625 -924.4 - SF7BW125 to SF10BW125
626 626  
627 -924.6 - SF7BW125 to SF10BW125
588 +== 2. Battery Analysis ==
628 628  
590 +=== 2.9.1  ​Battery Type ===
629 629  
630 -(% style="color:#037691" %)** Downlink:**
631 631  
632 -Uplink channels 1-8 (RX1)
593 +The NSE01 battery is a combination of an 8500mAh Li/SOCI2 Battery and a Super Capacitor. The battery is none-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter.
633 633  
634 -923.2 - SF10BW125 (RX2)
635 635  
596 +The battery is designed to last for several years depends on the actually use environment and update interval. 
636 636  
637 637  
638 -=== 2.7.6 KR920-923 (KR920) ===
599 +The battery related documents as below:
639 639  
640 -Default channel:
601 +* [[Battery Dimension>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]
602 +* [[Lithium-Thionyl Chloride Battery datasheet>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]
603 +* [[Lithium-ion Battery-Capacitor datasheet>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]
641 641  
642 -922.1 - SF7BW125 to SF12BW125
643 -
644 -922.3 - SF7BW125 to SF12BW125
645 -
646 -922.5 - SF7BW125 to SF12BW125
647 -
648 -
649 -(% style="color:#037691" %)**Uplink: (OTAA mode, channel added by JoinAccept message)**
650 -
651 -922.1 - SF7BW125 to SF12BW125
652 -
653 -922.3 - SF7BW125 to SF12BW125
654 -
655 -922.5 - SF7BW125 to SF12BW125
656 -
657 -922.7 - SF7BW125 to SF12BW125
658 -
659 -922.9 - SF7BW125 to SF12BW125
660 -
661 -923.1 - SF7BW125 to SF12BW125
662 -
663 -923.3 - SF7BW125 to SF12BW125
664 -
665 -
666 -(% style="color:#037691" %)**Downlink:**
667 -
668 -Uplink channels 1-7(RX1)
669 -
670 -921.9 - SF12BW125 (RX2 downlink only; SF12BW125 might be changed to SF9BW125)
671 -
672 -
673 -
674 -=== 2.7.7 IN865-867 (IN865) ===
675 -
676 -(% style="color:#037691" %)** Uplink:**
677 -
678 -865.0625 - SF7BW125 to SF12BW125
679 -
680 -865.4025 - SF7BW125 to SF12BW125
681 -
682 -865.9850 - SF7BW125 to SF12BW125
683 -
684 -
685 -(% style="color:#037691" %) **Downlink:**
686 -
687 -Uplink channels 1-3 (RX1)
688 -
689 -866.550 - SF10BW125 (RX2)
690 -
691 -
692 -
693 -
694 -== 2.8 LED Indicator ==
695 -
696 -The LSE01 has an internal LED which is to show the status of different state.
697 -
698 -* Blink once when device power on.
699 -* Solid ON for 5 seconds once device successful Join the network.
700 -* Blink once when device transmit a packet.
701 -
702 -== 2.9 Installation in Soil ==
703 -
704 -**Measurement the soil surface**
705 -
706 -
707 -[[image:1654506634463-199.png]] ​
708 -
709 709  (((
710 -(((
711 -Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting.
606 +[[image:image-20220708140453-6.png]]
712 712  )))
713 -)))
714 714  
715 715  
716 716  
717 -[[image:1654506665940-119.png]]
611 +=== 2.9.2  Power consumption Analyze ===
718 718  
719 719  (((
720 -Dig a hole with diameter > 20CM.
614 +Dragino battery powered product are all runs in Low Power mode. We have an update battery calculator which base on the measurement of the real device. User can use this calculator to check the battery life and calculate the battery life if want to use different transmit interval.
721 721  )))
722 722  
723 -(((
724 -Horizontal insert the probe to the soil and fill the hole for long term measurement.
725 -)))
726 726  
727 -
728 -== 2.10 ​Firmware Change Log ==
729 -
730 730  (((
731 -**Firmware download link:**
619 +Instruction to use as below:
732 732  )))
733 733  
734 734  (((
735 -[[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/]]
623 +(% style="color:blue" %)**Step 1:  **(%%)Downlink the up-to-date DRAGINO_Battery_Life_Prediction_Table.xlsx from: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/]]
736 736  )))
737 737  
738 -(((
739 -
740 -)))
741 741  
742 742  (((
743 -**Firmware Upgrade Method: **[[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome]]
628 +(% style="color:blue" %)**Step 2: **(%%) Open it and choose
744 744  )))
745 745  
746 -(((
747 -
631 +* (((
632 +Product Model
748 748  )))
749 -
750 -(((
751 -**V1.0.**
634 +* (((
635 +Uplink Interval
752 752  )))
637 +* (((
638 +Working Mode
639 +)))
753 753  
754 754  (((
755 -Release
642 +And the Life expectation in difference case will be shown on the right.
756 756  )))
757 757  
645 +[[image:image-20220708141352-7.jpeg]]
758 758  
759 -== 2.11 ​Battery Analysis ==
760 760  
761 -=== 2.11.1 ​Battery Type ===
762 762  
763 -(((
764 -The LSE01 battery is a combination of a 4000mAh Li/SOCI2 Battery and a Super Capacitor. The battery is non-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter.
765 -)))
649 +=== 2.9.3  ​Battery Note ===
766 766  
767 767  (((
768 -The battery is designed to last for more than 5 years for the LSN50.
652 +The Li-SICO battery is designed for small current / long period application. It is not good to use a high current, short period transmit method. The recommended minimum period for use of this battery is 5 minutes. If you use a shorter period time to transmit LoRa, then the battery life may be decreased.
769 769  )))
770 770  
771 -(((
772 -(((
773 -The battery-related documents are as below:
774 -)))
775 -)))
776 776  
777 -* (((
778 -[[Battery Dimension>>url:http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/&file=LSN50-Battery-Dimension.pdf]],
779 -)))
780 -* (((
781 -[[Lithium-Thionyl Chloride Battery  datasheet>>url:https://www.dragino.com/downloads/downloads/datasheet/Battery/ER26500/ER26500_Datasheet-EN.pdf]],
782 -)))
783 -* (((
784 -[[Lithium-ion Battery-Capacitor datasheet>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC_1520_datasheet.jpg]], [[Tech Spec>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC1520%20Technical%20Specification20171123.pdf]]
785 -)))
786 786  
787 - [[image:image-20220610172436-1.png]]
657 +=== 2.9.4  Replace the battery ===
788 788  
789 -
790 -
791 -=== 2.11.2 ​Battery Note ===
792 -
793 793  (((
794 -The Li-SICO battery is designed for small current / long period application. It is not good to use a high current, short period transmit method. The recommended minimum period for use of this battery is 5 minutes. If you use a shorter period time to transmit LoRa, then the battery life may be decreased.
660 +The default battery pack of NSE01 includes a ER26500 plus super capacitor. If user can't find this pack locally, they can find ER26500 or equivalence without the SPC1520 capacitor, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes).
795 795  )))
796 796  
797 797  
798 798  
799 -=== 2.11.3 Replace the battery ===
665 += 3. ​ Access NB-IoT Module =
800 800  
801 801  (((
802 -If Battery is lower than 2.7v, user should replace the battery of LSE01.
668 +Users can directly access the AT command set of the NB-IoT module.
803 803  )))
804 804  
805 805  (((
806 -You can change the battery in the LSE01.The type of battery is not limited as long as the output is between 3v to 3.6v. On the main board, there is a diode (D1) between the battery and the main circuit. If you need to use a battery with less than 3.3v, please remove the D1 and shortcut the two pads of it so there won’t be voltage drop between battery and main board.
672 +The AT Command set can refer the BC35-G NB-IoT Module AT Command: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=datasheet/other_vendors/BC35-G/>>url:https://www.dragino.com/downloads/index.php?dir=datasheet/other_vendors/BC35-G/]] 
807 807  )))
808 808  
809 -(((
810 -The default battery pack of LSE01 includes a ER18505 plus super capacitor. If user can’t find this pack locally, they can find ER18505 or equivalence, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes)
811 -)))
675 +[[image:1657261278785-153.png]]
812 812  
813 813  
814 814  
815 -= 3. Using the AT Commands =
679 += 4.  Using the AT Commands =
816 816  
817 -== 3.1 Access AT Commands ==
681 +== 4.1  Access AT Commands ==
818 818  
683 +See this link for detail: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/]]
819 819  
820 -LSE01 supports AT Command set in the stock firmware. You can use a USB to TTL adapter to connect to LSE01 for using AT command, as below.
821 821  
822 -[[image:1654501986557-872.png||height="391" width="800"]]
686 +AT+<CMD>?  : Help on <CMD>
823 823  
688 +AT+<CMD>         : Run <CMD>
824 824  
825 -Or if you have below board, use below connection:
690 +AT+<CMD>=<value> : Set the value
826 826  
692 +AT+<CMD>=?  : Get the value
827 827  
828 -[[image:1654502005655-729.png||height="503" width="801"]]
829 829  
830 -
831 -
832 -In the PC, you need to set the serial baud rate to (% style="color:green" %)**9600**(%%) to access the serial console for LSE01. LSE01 will output system info once power on as below:
833 -
834 -
835 - [[image:1654502050864-459.png||height="564" width="806"]]
836 -
837 -
838 -Below are the available commands, a more detailed AT Command manual can be found at [[AT Command Manual>>https://www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0]]: [[https:~~/~~/www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0>>https://www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0]]
839 -
840 -
841 -(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>? **(%%) : Help on <CMD>
842 -
843 -(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD> **(%%) : Run <CMD>
844 -
845 -(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>=<value>**(%%) : Set the value
846 -
847 -(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>=?**(%%)  : Get the value
848 -
849 -
850 850  (% style="color:#037691" %)**General Commands**(%%)      
851 851  
852 -(% style="background-color:#dcdcdc" %)**AT**(%%)  : Attention       
697 +AT  : Attention       
853 853  
854 -(% style="background-color:#dcdcdc" %)**AT?**(%%)  : Short Help     
699 +AT?  : Short Help     
855 855  
856 -(% style="background-color:#dcdcdc" %)**ATZ**(%%)  : MCU Reset    
701 +ATZ  : MCU Reset    
857 857  
858 -(% style="background-color:#dcdcdc" %)**AT+TDC**(%%)  : Application Data Transmission Interval 
703 +AT+TDC  : Application Data Transmission Interval
859 859  
705 +AT+CFG  : Print all configurations
860 860  
861 -(% style="color:#037691" %)**Keys, IDs and EUIs management**
707 +AT+CFGMOD           : Working mode selection
862 862  
863 -(% style="background-color:#dcdcdc" %)**AT+APPEUI**(%%)              : Application EUI      
709 +AT+INTMOD            : Set the trigger interrupt mode
864 864  
865 -(% style="background-color:#dcdcdc" %)**AT+APPKEY**(%%)              : Application Key     
711 +AT+5VT  : Set extend the time of 5V power  
866 866  
867 -(% style="background-color:#dcdcdc" %)**AT+APPSKEY**(%%)            : Application Session Key
713 +AT+PRO  : Choose agreement
868 868  
869 -(% style="background-color:#dcdcdc" %)**AT+DADDR**(%%)              : Device Address     
715 +AT+WEIGRE  : Get weight or set weight to 0
870 870  
871 -(% style="background-color:#dcdcdc" %)**AT+DEUI**(%%)                   : Device EUI     
717 +AT+WEIGAP  : Get or Set the GapValue of weight
872 872  
873 -(% style="background-color:#dcdcdc" %)**AT+NWKID**(%%)               : Network ID (You can enter this command change only after successful network connection
719 +AT+RXDL  : Extend the sending and receiving time
874 874  
875 -(% style="background-color:#dcdcdc" %)**AT+NWKSKEY**(%%)          : Network Session Key Joining and sending date on LoRa network  
721 +AT+CNTFAC  : Get or set counting parameters
876 876  
877 -(% style="background-color:#dcdcdc" %)**AT+CFM**(%%)  : Confirm Mode       
723 +AT+SERVADDR  : Server Address
878 878  
879 -(% style="background-color:#dcdcdc" %)**AT+CFS**(%%)                     : Confirm Status       
880 880  
881 -(% style="background-color:#dcdcdc" %)**AT+JOIN**(%%)  : Join LoRa? Network       
726 +(% style="color:#037691" %)**COAP Management**      
882 882  
883 -(% style="background-color:#dcdcdc" %)**AT+NJM**(%%)  : LoRa? Network Join Mode    
728 +AT+URI            : Resource parameters
884 884  
885 -(% style="background-color:#dcdcdc" %)**AT+NJS**(%%)                     : LoRa? Network Join Status    
886 886  
887 -(% style="background-color:#dcdcdc" %)**AT+RECV**(%%)                  : Print Last Received Data in Raw Format
731 +(% style="color:#037691" %)**UDP Management**
888 888  
889 -(% style="background-color:#dcdcdc" %)**AT+RECVB**(%%)                : Print Last Received Data in Binary Format      
733 +AT+CFM          : Upload confirmation mode (only valid for UDP)
890 890  
891 -(% style="background-color:#dcdcdc" %)**AT+SEND**(%%)                  : Send Text Data      
892 892  
893 -(% style="background-color:#dcdcdc" %)**AT+SENB**(%%)                  : Send Hexadecimal Data
736 +(% style="color:#037691" %)**MQTT Management**
894 894  
738 +AT+CLIENT               : Get or Set MQTT client
895 895  
896 -(% style="color:#037691" %)**LoRa Network Management**
740 +AT+UNAME  : Get or Set MQTT Username
897 897  
898 -(% style="background-color:#dcdcdc" %)**AT+ADR**(%%)          : Adaptive Rate
742 +AT+PWD                  : Get or Set MQTT password
899 899  
900 -(% style="background-color:#dcdcdc" %)**AT+CLASS**(%%)  : LoRa Class(Currently only support class A
744 +AT+PUBTOPI : Get or Set MQTT publish topic
901 901  
902 -(% style="background-color:#dcdcdc" %)**AT+DCS**(%%)  : Duty Cycle Settin
746 +AT+SUBTOPIC  : Get or Set MQTT subscription topic
903 903  
904 -(% style="background-color:#dcdcdc" %)**AT+DR**(%%)  : Data Rate (Can Only be Modified after ADR=0)     
905 905  
906 -(% style="background-color:#dcdcdc" %)**AT+FCD**(%%)  : Frame Counter Downlink       
749 +(% style="color:#037691" %)**Information**          
907 907  
908 -(% style="background-color:#dcdcdc" %)**AT+FCU**(%%)  : Frame Counter Uplink   
751 +AT+FDR  : Factory Data Reset
909 909  
910 -(% style="background-color:#dcdcdc" %)**AT+JN1DL**(%%)  : Join Accept Delay1
753 +AT+PWOR : Serial Access Password
911 911  
912 -(% style="background-color:#dcdcdc" %)**AT+JN2DL**(%%)  : Join Accept Delay2
913 913  
914 -(% style="background-color:#dcdcdc" %)**AT+PNM**(%%)  : Public Network Mode   
915 915  
916 -(% style="background-color:#dcdcdc" %)**AT+RX1DL**(%%)  : Receive Delay1      
757 += ​5.  FAQ =
917 917  
918 -(% style="background-color:#dcdcdc" %)**AT+RX2DL**(%%)  : Receive Delay2      
759 +== 5.1 How to Upgrade Firmware ==
919 919  
920 -(% style="background-color:#dcdcdc" %)**AT+RX2DR**(%%)  : Rx2 Window Data Rate 
921 921  
922 -(% style="background-color:#dcdcdc" %)**AT+RX2FQ**(%%)  : Rx2 Window Frequency
923 -
924 -(% style="background-color:#dcdcdc" %)**AT+TXP**(%%)  : Transmit Power
925 -
926 -(% style="background-color:#dcdcdc" %)**AT+ MOD**(%%)  : Set work mode
927 -
928 -
929 -(% style="color:#037691" %)**Information** 
930 -
931 -(% style="background-color:#dcdcdc" %)**AT+RSSI**(%%)           : RSSI of the Last Received Packet   
932 -
933 -(% style="background-color:#dcdcdc" %)**AT+SNR**(%%)           : SNR of the Last Received Packet   
934 -
935 -(% style="background-color:#dcdcdc" %)**AT+VER**(%%)           : Image Version and Frequency Band       
936 -
937 -(% style="background-color:#dcdcdc" %)**AT+FDR**(%%)           : Factory Data Reset
938 -
939 -(% style="background-color:#dcdcdc" %)**AT+PORT**(%%)  : Application Port    
940 -
941 -(% style="background-color:#dcdcdc" %)**AT+CHS**(%%)  : Get or Set Frequency (Unit: Hz) for Single Channel Mode
942 -
943 - (% style="background-color:#dcdcdc" %)**AT+CHE**(%%)  : Get or Set eight channels mode, Only for US915, AU915, CN470
944 -
945 -
946 -= ​4. FAQ =
947 -
948 -== 4.1 ​How to change the LoRa Frequency Bands/Region? ==
949 -
950 950  (((
951 -You can follow the instructions for [[how to upgrade image>>||anchor="H2.10200BFirmwareChangeLog"]].
952 -When downloading the images, choose the required image file for download. ​
763 +User can upgrade the firmware for 1) bug fix, 2) new feature release.
953 953  )))
954 954  
955 955  (((
956 -
767 +Please see this link for how to upgrade:  [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H2.HardwareUpgradeMethodSupportList>>http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H2.HardwareUpgradeMethodSupportList]]
957 957  )))
958 958  
959 959  (((
960 -How to set up LSE01 to work in 8 channel mode By default, the frequency bands US915, AU915, CN470 work in 72 frequencies. Many gateways are 8 channel gateways, and in this case, the OTAA join time and uplink schedule is long and unpredictable while the end node is hopping in 72 frequencies.
771 +(% style="color:red" %)Notice, NSE01 and LSE01 share the same mother board. They use the same connection and method to update.
961 961  )))
962 962  
963 -(((
964 -
965 -)))
966 966  
967 -(((
968 -You can configure the end node to work in 8 channel mode by using the AT+CHE command. The 500kHz channels are always included for OTAA.
969 -)))
970 970  
971 -(((
972 -
973 -)))
776 += 6.  Trouble Shooting =
974 974  
975 -(((
976 -For example, in **US915** band, the frequency table is as below. By default, the end node will use all channels (0~~71) for OTAA Join process. After the OTAA Join, the end node will use these all channels (0~~71) to send uplink packets.
977 -)))
778 +== 6.1  ​Connection problem when uploading firmware ==
978 978  
979 -[[image:image-20220606154726-3.png]]
980 980  
981 -
982 -When you use the TTN network, the US915 frequency bands use are:
983 -
984 -* 903.9 - SF7BW125 to SF10BW125
985 -* 904.1 - SF7BW125 to SF10BW125
986 -* 904.3 - SF7BW125 to SF10BW125
987 -* 904.5 - SF7BW125 to SF10BW125
988 -* 904.7 - SF7BW125 to SF10BW125
989 -* 904.9 - SF7BW125 to SF10BW125
990 -* 905.1 - SF7BW125 to SF10BW125
991 -* 905.3 - SF7BW125 to SF10BW125
992 -* 904.6 - SF8BW500
993 -
781 +(% class="wikigeneratedid" %)
994 994  (((
995 -Because the end node is now hopping in 72 frequency, it makes it difficult for the devices to Join the TTN network and uplink data. To solve this issue, you can access the device via the AT commands and run:
996 -
997 -* (% style="color:#037691" %)**AT+CHE=2**
998 -* (% style="color:#037691" %)**ATZ**
783 +(% style="font-size:14px" %)**Please see: **(%%)[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H3.3Troubleshooting>>http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H3.3Troubleshooting||style="background-color: rgb(255, 255, 255); font-size: 14px;"]]
999 999  )))
1000 1000  
1001 -(((
1002 -
1003 1003  
1004 -to set the end node to work in 8 channel mode. The device will work in Channel 8-15 & 64-71 for OTAA, and channel 8-15 for Uplink.
1005 -)))
1006 1006  
1007 -(((
1008 -
1009 -)))
788 +== 6.2  AT Command input doesn't work ==
1010 1010  
1011 1011  (((
1012 -The **AU915** band is similar. Below are the AU915 Uplink Channels.
791 +In the case if user can see the console output but can't type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn't send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.
1013 1013  )))
1014 1014  
1015 -[[image:image-20220606154825-4.png]]
1016 1016  
1017 1017  
796 += 7. ​ Order Info =
1018 1018  
1019 -= 5. Trouble Shooting =
1020 1020  
1021 -== 5.1 ​Why I can’t join TTN in US915 / AU915 bands? ==
799 +Part Number**:** (% style="color:#4f81bd" %)**NSE01**
1022 1022  
1023 -It is due to channel mapping. Please see the [[Eight Channel Mode>>doc:Main.LoRaWAN Communication Debug.WebHome||anchor="H2.NoticeofUS9152FCN4702FAU915Frequencyband"]] section above for details.
1024 1024  
1025 -
1026 -== 5.2 AT Command input doesn’t work ==
1027 -
1028 -(((
1029 -In the case if user can see the console output but can’t type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn’t send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.
1030 -)))
1031 -
1032 -
1033 -== 5.3 Device rejoin in at the second uplink packet ==
1034 -
1035 -(% style="color:#4f81bd" %)**Issue describe as below:**
1036 -
1037 -[[image:1654500909990-784.png]]
1038 -
1039 -
1040 -(% style="color:#4f81bd" %)**Cause for this issue:**
1041 -
1042 -(((
1043 -The fuse on LSE01 is not large enough, some of the soil probe require large current up to 5v 800mA, in a short pulse. When this happen, it cause the device reboot so user see rejoin.
1044 -)))
1045 -
1046 -
1047 -(% style="color:#4f81bd" %)**Solution: **
1048 -
1049 -All new shipped LSE01 after 2020-May-30 will have this to fix. For the customer who see this issue, please bypass the fuse as below:
1050 -
1051 -[[image:1654500929571-736.png||height="458" width="832"]]
1052 -
1053 -
1054 -= 6. ​Order Info =
1055 -
1056 -
1057 -Part Number**:** (% style="color:#4f81bd" %)**LSE01-XX-YY**
1058 -
1059 -
1060 -(% style="color:#4f81bd" %)**XX**(%%)**:** The default frequency band
1061 -
1062 -* (% style="color:red" %)**AS923**(%%): LoRaWAN AS923 band
1063 -* (% style="color:red" %)**AU915**(%%): LoRaWAN AU915 band
1064 -* (% style="color:red" %)**EU433**(%%): LoRaWAN EU433 band
1065 -* (% style="color:red" %)**EU868**(%%): LoRaWAN EU868 band
1066 -* (% style="color:red" %)**KR920**(%%): LoRaWAN KR920 band
1067 -* (% style="color:red" %)**US915**(%%): LoRaWAN US915 band
1068 -* (% style="color:red" %)**IN865**(%%):  LoRaWAN IN865 band
1069 -* (% style="color:red" %)**CN470**(%%): LoRaWAN CN470 band
1070 -
1071 -(% style="color:#4f81bd" %)**YY**(%%)**: **Battery Option
1072 -
1073 -* (% style="color:red" %)**4**(%%): 4000mAh battery
1074 -* (% style="color:red" %)**8**(%%): 8500mAh battery
1075 -
1076 1076  (% class="wikigeneratedid" %)
1077 1077  (((
1078 1078  
1079 1079  )))
1080 1080  
1081 -= 7. Packing Info =
807 += 8.  Packing Info =
1082 1082  
1083 1083  (((
1084 1084  
1085 1085  
1086 1086  (% style="color:#037691" %)**Package Includes**:
1087 -)))
1088 1088  
1089 -* (((
1090 -LSE01 LoRaWAN Soil Moisture & EC Sensor x 1
814 +
815 +* NSE01 NB-IoT Soil Moisture & EC Sensor x 1
816 +* External antenna x 1
1091 1091  )))
1092 1092  
1093 1093  (((
... ... @@ -1094,24 +1094,20 @@
1094 1094  
1095 1095  
1096 1096  (% style="color:#037691" %)**Dimension and weight**:
1097 -)))
1098 1098  
1099 -* (((
1100 -Device Size: cm
824 +
825 +* Size: 195 x 125 x 55 mm
826 +* Weight:   420g
1101 1101  )))
1102 -* (((
1103 -Device Weight: g
1104 -)))
1105 -* (((
1106 -Package Size / pcs : cm
1107 -)))
1108 -* (((
1109 -Weight / pcs : g
1110 1110  
829 +(((
1111 1111  
831 +
832 +
833 +
1112 1112  )))
1113 1113  
1114 -= 8. Support =
836 += 9.  Support =
1115 1115  
1116 1116  * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
1117 1117  * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.com]]
1657245163077-232.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +81.0 KB
Content
1657246476176-652.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +492.6 KB
Content
1657249419225-449.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +81.0 KB
Content
1657249468462-536.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +483.6 KB
Content
1657249793983-486.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +85.8 KB
Content
1657249831934-534.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +72.5 KB
Content
1657249864775-321.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +87.0 KB
Content
1657249930215-289.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +77.3 KB
Content
1657249978444-674.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +139.5 KB
Content
1657249990869-686.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +96.9 KB
Content
1657250217799-140.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +98.7 KB
Content
1657250255956-604.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +99.0 KB
Content
1657259653666-883.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +344.4 KB
Content
1657260785982-288.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +138.2 KB
Content
1657261119050-993.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +126.1 KB
Content
1657261278785-153.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +126.1 KB
Content
image-20220708101224-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +22.2 KB
Content
image-20220708101605-2.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +87.5 KB
Content
image-20220708110657-3.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +251.7 KB
Content
image-20220708111918-4.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +38.8 KB
Content
image-20220708133731-5.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +8.7 KB
Content
image-20220708140453-6.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +132.7 KB
Content
image-20220708141352-7.jpeg
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +102.7 KB
Content
Copyright ©2010-2022 Dragino Technology Co., LTD. All rights reserved
Dragino Wiki v2.0