Changes for page N95S31B -- NB-IoT Temperature & Humidity Sensor User Manual
Last modified by Mengting Qiu on 2024/04/02 16:44
Summary
-
Page properties (2 modified, 0 added, 0 removed)
-
Attachments (0 modified, 32 added, 0 removed)
- 1657245163077-232.png
- 1657246476176-652.png
- 1657249419225-449.png
- 1657249468462-536.png
- 1657249793983-486.png
- 1657249831934-534.png
- 1657249864775-321.png
- 1657249930215-289.png
- 1657249978444-674.png
- 1657249990869-686.png
- 1657250217799-140.png
- 1657250255956-604.png
- 1657259653666-883.png
- 1657260785982-288.png
- 1657261119050-993.png
- 1657261278785-153.png
- 1657271519014-786.png
- 1657327959271-447.png
- 1657328609906-564.png
- 1657328659945-416.png
- image-20220708101224-1.png
- image-20220708101605-2.png
- image-20220708110657-3.png
- image-20220708111918-4.png
- image-20220708133731-5.png
- image-20220708140453-6.png
- image-20220708141352-7.jpeg
- image-20220709084038-1.jpeg
- image-20220709084137-2.jpeg
- image-20220709084207-3.jpeg
- image-20220709084458-4.png
- image-20220709085040-1.png
Details
- Page properties
-
- Title
-
... ... @@ -1,1 +1,1 @@ 1 - LSE01-LoRaWANSoil Moisture&ECSensor User Manual1 +NDDS75 NB-IoT Distance Detect Sensor User Manual - Content
-
... ... @@ -1,19 +1,12 @@ 1 1 (% style="text-align:center" %) 2 -[[image:image-20220 606151504-2.jpeg||height="554" width="554"]]2 +[[image:image-20220709085040-1.png||height="542" width="524"]] 3 3 4 4 5 5 6 6 7 7 8 - 9 - 10 - 11 - 12 - 13 - 14 14 **Table of Contents:** 15 15 16 -{{toc/}} 17 17 18 18 19 19 ... ... @@ -20,772 +20,720 @@ 20 20 21 21 22 22 23 -= 1. Introduction = 16 += 1. Introduction = 24 24 25 -== 1.1 What is LoRaWANoilMoisture&ECSensor ==18 +== 1.1 What is NDDS75 Distance Detection Sensor == 26 26 27 27 ((( 28 28 29 29 30 -The Dragino LSE01 is a (% style="color:#4f81bd" %)**LoRaWAN Soil Moisture & EC Sensor**(%%) for IoT of Agriculture. It is designed to measure the soil moisture of saline-alkali soil and loamy soil. The soil sensor uses FDR method to calculate the soil moisture with the compensation from soil temperature and conductivity. It also has been calibrated in factory for Mineral soil type. 31 -))) 32 - 33 33 ((( 34 -It detects (% style="color:#4f81bd" %)**Soil Moisture**(%%), (% style="color:#4f81bd" %)**Soil Temperature**(%%) and (% style="color:#4f81bd" %)**Soil Conductivity**(%%), and uploads the value via wireless to LoRaWAN IoT Server. 24 +The Dragino NDDS75 is a (% style="color:blue" %)**NB-IoT Distance Detection Sensor**(%%) for Internet of Things solution. It is designed to measure the distance between the sensor and a flat object. The distance detection sensor is a module that uses ultrasonic sensing technology for distance measurement, and temperature compensation is performed internally to improve the reliability of data. 25 +\\The NDDS75 can be applied to scenarios such as horizontal distance measurement, liquid level measurement, parking management system, object proximity and presence detection, intelligent trash can management system, robot obstacle avoidance, automatic control, sewer, bottom water level monitoring, etc. It detects the distance between the measured object and the sensor, and uploads the value via wireless to IoT Server via NB-IoT Network. 26 +\\NarrowBand-Internet of Things (NB-IoT) is a standards-based low power wide area (LPWA) technology developed to enable a wide range of new IoT devices and services. NB-IoT significantly improves the power consumption of user devices, system capacity and spectrum efficiency, especially in deep coverage. 27 +\\NDDS75 supports different uplink methods include (% style="color:blue" %)**TCP, MQTT, UDP and CoAP** (%%)for different application requirement. 28 +\\NDDS75 is powered by (% style="color:blue" %)**8500mAh Li-SOCI2 battery**(%%), It is designed for long term use up to 5 years. (Actually Battery life depends on the use environment, update period & uplink method) 29 +\\To use NDDS75, user needs to check if there is NB-IoT coverage in local area and with the bands NDDS75 supports. If the local operate support it, user needs to get a NB-IoT SIM card from local operator and install NDDS75 to get NB-IoT network connection. 35 35 ))) 36 36 37 -((( 38 -The LoRa wireless technology used in LES01 allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption. 32 + 39 39 ))) 40 40 41 -((( 42 -LES01 is powered by (% style="color:#4f81bd" %)**4000mA or 8500mAh Li-SOCI2 battery**(%%), It is designed for long term use up to 10 years. 43 -))) 44 - 45 -((( 46 -Each LES01 is pre-load with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect after power on. 47 -))) 48 - 49 - 50 50 [[image:1654503236291-817.png]] 51 51 52 52 53 -[[image:165 4503265560-120.png]]38 +[[image:1657327959271-447.png]] 54 54 55 55 56 56 57 -== 1.2 Features == 42 +== 1.2 Features == 58 58 59 -* LoRaWAN 1.0.3 Class A 44 + 45 +* NB-IoT Bands: B1/B3/B8/B5/B20/B28 @H-FDD 60 60 * Ultra low power consumption 61 -* MonitorSoilMoisture62 -* MonitorSoil Temperature63 -* Monitor SoilConductivity64 -* Bands:CN470/EU433/KR920/US915/EU868/AS923/AU915/IN86547 +* Distance Detection by Ultrasonic technology 48 +* Flat object range 280mm - 7500mm 49 +* Accuracy: ±(1cm+S*0.3%) (S: Distance) 50 +* Cable Length: 25cm 65 65 * AT Commands to change parameters 66 66 * Uplink on periodically 67 67 * Downlink to change configure 68 68 * IP66 Waterproof Enclosure 69 -* 4000mAh or 8500mAh Battery for long term use 55 +* Micro SIM card slot for NB-IoT SIM 56 +* 8500mAh Battery for long term use 70 70 71 71 72 72 60 +== 1.3 Specification == 73 73 74 74 63 +(% style="color:#037691" %)**Common DC Characteristics:** 75 75 76 -== 1.3 Specification == 65 +* Supply Voltage: 2.1v ~~ 3.6v 66 +* Operating Temperature: -40 ~~ 85°C 77 77 78 - MeasureVolume: Base ontheentra pinof the probe, a cylinderwith7cm diameter and10cmheight.68 +(% style="color:#037691" %)**NB-IoT Spec:** 79 79 80 -[[image:image-20220606162220-5.png]] 70 +* - B1 @H-FDD: 2100MHz 71 +* - B3 @H-FDD: 1800MHz 72 +* - B8 @H-FDD: 900MHz 73 +* - B5 @H-FDD: 850MHz 74 +* - B20 @H-FDD: 800MHz 75 +* - B28 @H-FDD: 700MHz 81 81 82 82 78 +(% style="color:#037691" %)**Battery:** 83 83 84 -== 1.4 Applications == 80 +* Li/SOCI2 un-chargeable battery 81 +* Capacity: 8500mAh 82 +* Self Discharge: <1% / Year @ 25°C 83 +* Max continuously current: 130mA 84 +* Max boost current: 2A, 1 second 85 85 86 -* Smart Agriculture 87 87 88 -(% class="wikigeneratedid" id="H200B1.5FirmwareChangelog" %) 89 - 87 +(% style="color:#037691" %)**Power Consumption** 90 90 91 -== 1.5 Firmware Change log == 89 +* STOP Mode: 10uA @ 3.3v 90 +* Max transmit power: 350mA@3.3v 92 92 93 93 94 -**LSE01 v1.0 :** Release 95 95 96 96 95 +== 1.4 Applications == 97 97 98 -= 2. Configure LSE01 to connect to LoRaWAN network = 97 +* Smart Buildings & Home Automation 98 +* Logistics and Supply Chain Management 99 +* Smart Metering 100 +* Smart Agriculture 101 +* Smart Cities 102 +* Smart Factory 99 99 100 -== 2.1 How it works == 104 +(% class="wikigeneratedid" id="H200B1.5FirmwareChangelog" %) 105 + 101 101 102 -((( 103 -The LSE01 is configured as LoRaWAN OTAA Class A mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and power on the LSE0150. It will automatically join the network via OTAA and start to send the sensor value 104 -))) 105 105 106 -((( 107 -In case you can’t set the OTAA keys in the LoRaWAN OTAA server, and you have to use the keys from the server, you can [[use AT Commands >>||anchor="H3.200BUsingtheATCommands"]]. 108 -))) 109 109 109 +== 1.5 Pin Definitions == 110 110 111 111 112 - == 2.2 Quickguideto connect to LoRaWAN server (OTAA) ==112 +[[image:1657328609906-564.png]] 113 113 114 -Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LG308>>url:http://www.dragino.com/products/lora/item/140-lg308.html]] as a LoRaWAN gateway in this example. 115 115 116 116 117 -[[image:1654503992078-669.png]] 118 118 117 += 2. Use NSE01 to communicate with IoT Server = 119 119 120 - TheLG308is already set toconnected to [[TTN network>>url:https://console.cloud.thethings.network/]],sowhat we need to now is configure the TTN server.119 +== 2.1 How it works == 121 121 122 - 123 -(% style="color:blue" %)**Step 1**(%%): Create a device in TTN with the OTAA keys from LSE01. 124 - 125 -Each LSE01 is shipped with a sticker with the default device EUI as below: 126 - 127 -[[image:image-20220606163732-6.jpeg]] 128 - 129 -You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot: 130 - 131 -**Add APP EUI in the application** 132 - 133 - 134 -[[image:1654504596150-405.png]] 135 - 136 - 137 - 138 -**Add APP KEY and DEV EUI** 139 - 140 -[[image:1654504683289-357.png]] 141 - 142 - 143 - 144 -(% style="color:blue" %)**Step 2**(%%): Power on LSE01 145 - 146 - 147 -Put a Jumper on JP2 to power on the device. ( The Jumper must be in FLASH position). 148 - 149 -[[image:image-20220606163915-7.png]] 150 - 151 - 152 -(% style="color:blue" %)**Step 3**(%%)**:** The LSE01 will auto join to the TTN network. After join success, it will start to upload messages to TTN and you can see the messages in the panel. 153 - 154 -[[image:1654504778294-788.png]] 155 - 156 - 157 - 158 -== 2.3 Uplink Payload == 159 - 160 - 161 -=== 2.3.1 MOD~=0(Default Mode) === 162 - 163 -LSE01 will uplink payload via LoRaWAN with below payload format: 164 - 165 165 ((( 166 - Uplinkpayload includesin total11bytes.122 +The NDDS75 is equipped with a NB-IoT module, the pre-loaded firmware in NDDS75 will get environment data from sensors and send the value to local NB-IoT network via the NB-IoT module. The NB-IoT network will forward this value to IoT server via the protocol defined by NDDS75. 167 167 ))) 168 168 169 -(% border="1" cellspacing="10" style="background-color:#ffffcc; width:500px" %) 170 -|((( 171 -**Size** 172 172 173 -**(bytes)** 174 -)))|**2**|**2**|**2**|**2**|**2**|**1** 175 -|**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|((( 176 -Temperature 177 - 178 -(Reserve, Ignore now) 179 -)))|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]]|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]]|((( 180 -MOD & Digital Interrupt 181 - 182 -(Optional) 183 -))) 184 - 185 -=== 2.3.2 MOD~=1(Original value) === 186 - 187 -This mode can get the original AD value of moisture and original conductivity (with temperature drift compensation). 188 - 189 -(% border="1" cellspacing="10" style="background-color:#ffffcc; width:500px" %) 190 -|((( 191 -**Size** 192 - 193 -**(bytes)** 194 -)))|**2**|**2**|**2**|**2**|**2**|**1** 195 -|**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|((( 196 -Temperature 197 - 198 -(Reserve, Ignore now) 199 -)))|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]](raw)|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]](raw)|((( 200 -MOD & Digital Interrupt 201 - 202 -(Optional) 203 -))) 204 - 205 -=== 2.3.3 Battery Info === 206 - 207 207 ((( 208 - CheckthebatteryvoltageforLSE01.127 +The diagram below shows the working flow in default firmware of NDDS75: 209 209 ))) 210 210 211 211 ((( 212 - Ex1:0x0B45 = 2885mV131 + 213 213 ))) 214 214 215 -((( 216 -Ex2: 0x0B49 = 2889mV 217 -))) 134 +[[image:1657328659945-416.png]] 218 218 219 - 220 - 221 -=== 2.3.4 Soil Moisture === 222 - 223 223 ((( 224 -Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil. 225 -))) 226 - 227 -((( 228 -For example, if the data you get from the register is __0x05 0xDC__, the moisture content in the soil is 229 -))) 230 - 231 -((( 232 232 233 233 ))) 234 234 235 -((( 236 -(% style="color:#4f81bd" %)**05DC(H) = 1500(D) /100 = 15%.** 237 -))) 238 238 239 239 142 +== 2.2 Configure the NSE01 == 240 240 241 -=== 2.3.5 Soil Temperature === 242 242 243 -((( 244 - Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is 0x09 0xEC, the temperature content in the soil is 245 -))) 145 +=== 2.2.1 Test Requirement === 246 246 247 -((( 248 -**Example**: 249 -))) 250 250 251 251 ((( 252 - If payloadis 0105H:((0x0105&0x8000)>>15===0),temp=0105(H)/100 = 2.61 °C149 +To use NSE01 in your city, make sure meet below requirements: 253 253 ))) 254 254 255 - (((256 - IfpayloadisFF7EH:((FF7E& 0x8000)>>15 ===1),temp=(FF7E(H)-FFFF(H))/100 = -1.29°C257 - )))152 +* Your local operator has already distributed a NB-IoT Network there. 153 +* The local NB-IoT network used the band that NSE01 supports. 154 +* Your operator is able to distribute the data received in their NB-IoT network to your IoT server. 258 258 259 - 260 - 261 -=== 2.3.6 Soil Conductivity (EC) === 262 - 263 263 ((( 264 - Obtain (% style="color:#4f81bd"%)**__solublesalt concentration__**(%%)in soilor(% style="color:#4f81bd" %)**__solubleionconcentrationinliquid fertilizer__**(%%) or (% style="color:#4f81bd" %)**__planting medium__**(%%).Thevaluerangeof theregisteris0-20000(Decimal)(Canbegreaterthan20000).157 +Below figure shows our testing structure. Here we have NB-IoT network coverage by China Mobile, the band they use is B8. The NSE01 will use CoAP((% style="color:red" %)120.24.4.116:5683)(%%) or raw UDP((% style="color:red" %)120.24.4.116:5601)(%%) or MQTT((% style="color:red" %)120.24.4.116:1883)(%%)or TCP((% style="color:red" %)120.24.4.116:5600)(%%)protocol to send data to the test server 265 265 ))) 266 266 267 -((( 268 -For example, if the data you get from the register is 0x00 0xC8, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm. 269 -))) 270 270 271 -((( 272 -Generally, the EC value of irrigation water is less than 800uS / cm. 273 -))) 161 +[[image:1657249419225-449.png]] 274 274 275 -((( 276 - 277 -))) 278 278 279 -((( 280 - 281 -))) 282 282 283 -=== 2. 3.7MOD===165 +=== 2.2.2 Insert SIM card === 284 284 285 -Firmware version at least v2.1 supports changing mode. 286 - 287 -For example, bytes[10]=90 288 - 289 -mod=(bytes[10]>>7)&0x01=1. 290 - 291 - 292 -**Downlink Command:** 293 - 294 -If payload = 0x0A00, workmode=0 295 - 296 -If** **payload =** **0x0A01, workmode=1 297 - 298 - 299 - 300 -=== 2.3.8 Decode payload in The Things Network === 301 - 302 -While using TTN network, you can add the payload format to decode the payload. 303 - 304 - 305 -[[image:1654505570700-128.png]] 306 - 307 307 ((( 308 - ThepayloaddecoderfunctionforTTNis here:168 +Insert the NB-IoT Card get from your provider. 309 309 ))) 310 310 311 311 ((( 312 - LSE01TTNPayloadDecoder:[[https:~~/~~/www.dropbox.com/sh/si8icbrjlamxqdb/AAACYwjsxxr5fj_vpqRtrETAa?dl=0>>https://www.dropbox.com/sh/si8icbrjlamxqdb/AAACYwjsxxr5fj_vpqRtrETAa?dl=0]]172 +User need to take out the NB-IoT module and insert the SIM card like below: 313 313 ))) 314 314 315 315 316 - ==2.4Uplink Interval ==176 +[[image:1657249468462-536.png]] 317 317 318 -The LSE01 by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link: [[Change Uplink Interval>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H4.1ChangeUplinkInterval"]] 319 319 320 320 180 +=== 2.2.3 Connect USB – TTL to NSE01 to configure it === 321 321 322 -== 2.5 Downlink Payload == 323 - 324 -By default, LSE50 prints the downlink payload to console port. 325 - 326 -[[image:image-20220606165544-8.png]] 327 - 328 - 329 329 ((( 330 -**Examples:** 331 -))) 332 - 333 333 ((( 334 - 184 +User need to configure NSE01 via serial port to set the (% style="color:blue" %)**Server Address** / **Uplink Topic** (%%)to define where and how-to uplink packets. NSE01 support AT Commands, user can use a USB to TTL adapter to connect to NSE01 and use AT Commands to configure it, as below. 335 335 ))) 336 - 337 -* ((( 338 -**Set TDC** 339 339 ))) 340 340 341 -((( 342 -If the payload=0100003C, it means set the END Node’s TDC to 0x00003C=60(S), while type code is 01. 343 -))) 344 344 345 -((( 346 -Payload: 01 00 00 1E TDC=30S 347 -))) 189 +**Connection:** 348 348 349 -((( 350 -Payload: 01 00 00 3C TDC=60S 351 -))) 191 + (% style="background-color:yellow" %)USB TTL GND <~-~-~-~-> GND 352 352 353 -((( 354 - 355 -))) 193 + (% style="background-color:yellow" %)USB TTL TXD <~-~-~-~-> UART_RXD 356 356 357 -* ((( 358 -**Reset** 359 -))) 195 + (% style="background-color:yellow" %)USB TTL RXD <~-~-~-~-> UART_TXD 360 360 361 -((( 362 -If payload = 0x04FF, it will reset the LSE01 363 -))) 364 364 198 +In the PC, use below serial tool settings: 365 365 366 -* **CFM** 200 +* Baud: (% style="color:green" %)**9600** 201 +* Data bits:** (% style="color:green" %)8(%%)** 202 +* Stop bits: (% style="color:green" %)**1** 203 +* Parity: (% style="color:green" %)**None** 204 +* Flow Control: (% style="color:green" %)**None** 367 367 368 -Downlink Payload: 05000001, Set AT+CFM=1 or 05000000 , set AT+CFM=0 369 - 370 - 371 - 372 -== 2.6 Show Data in DataCake IoT Server == 373 - 374 374 ((( 375 - [[DATACAKE>>url:https://datacake.co/]]providesahumanfriendly interfacetoshow thesensordata,once wehavedatain TTN, we canuse[[DATACAKE>>url:https://datacake.co/]] toconnectto TTNandseethedatain DATACAKE.Belowarethesteps:207 +Make sure the switch is in FLASH position, then power on device by connecting the jumper on NSE01. NSE01 will output system info once power on as below, we can enter the (% style="color:green" %)**password: 12345678**(%%) to access AT Command input. 376 376 ))) 377 377 378 -((( 379 - 380 -))) 210 +[[image:image-20220708110657-3.png]] 381 381 382 382 ((( 383 -(% style="color: blue" %)**Step 1**(%%):Be surethat your deviceisprogrammed and properlyconnectedtothe networkat thistime.213 +(% style="color:red" %)Note: the valid AT Commands can be found at: (%%)[[http:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/]] 384 384 ))) 385 385 386 -((( 387 -(% style="color:blue" %)**Step 2**(%%): To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps: 388 -))) 389 389 390 390 391 - [[image:1654505857935-743.png]]218 +=== 2.2.4 Use CoAP protocol to uplink data === 392 392 220 +(% style="color:red" %)Note: if you don't have CoAP server, you can refer this link to set up one: (%%)[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/>>http://wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/]] 393 393 394 -[[image:1654505874829-548.png]] 395 395 223 +**Use below commands:** 396 396 397 -(% style="color:blue" %)**Step 3**(%%)**:** Create an account or log in Datacake. 225 +* (% style="color:blue" %)**AT+PRO=1** (%%) ~/~/ Set to use CoAP protocol to uplink 226 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5683 ** (%%)~/~/ to set CoAP server address and port 227 +* (% style="color:blue" %)**AT+URI=5,11,"mqtt",11,"coap",12,"0",15,"c=text1",23,"0" ** (%%) ~/~/Set COAP resource path 398 398 399 - (%style="color:blue"%)**Step4**(%%)**:** SearchtheLSE01andadd DevEUI.229 +For parameter description, please refer to AT command set 400 400 231 +[[image:1657249793983-486.png]] 401 401 402 -[[image:1654505905236-553.png]] 403 403 234 +After configure the server address and (% style="color:green" %)**reset the device**(%%) (via AT+ATZ ), NSE01 will start to uplink sensor values to CoAP server. 404 404 405 - After added, the sensor data arrive TTN, it willalso arriveand show in Mydevices.236 +[[image:1657249831934-534.png]] 406 406 407 -[[image:1654505925508-181.png]] 408 408 409 409 240 +=== 2.2.5 Use UDP protocol to uplink data(Default protocol) === 410 410 411 - ==2.7 FrequencyPlans==242 +This feature is supported since firmware version v1.0.1 412 412 413 -The LSE01 uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets. 414 414 245 +* (% style="color:blue" %)**AT+PRO=2 ** (%%) ~/~/ Set to use UDP protocol to uplink 246 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5601 ** (%%) ~/~/ to set UDP server address and port 247 +* (% style="color:blue" %)**AT+CFM=1 ** (%%) ~/~/If the server does not respond, this command is unnecessary 415 415 416 - === 2.7.1EU863-870 (EU868) ===249 +[[image:1657249864775-321.png]] 417 417 418 -(% style="color:#037691" %)** Uplink:** 419 419 420 - 868.1- SF7BW125 to SF12BW125252 +[[image:1657249930215-289.png]] 421 421 422 -868.3 - SF7BW125 to SF12BW125 and SF7BW250 423 423 424 -868.5 - SF7BW125 to SF12BW125 425 425 426 - 867.1-SF7BW125toSF12BW125256 +=== 2.2.6 Use MQTT protocol to uplink data === 427 427 428 - 867.3-SF7BW125toSF12BW125258 +This feature is supported since firmware version v110 429 429 430 -867.5 - SF7BW125 to SF12BW125 431 431 432 -867.7 - SF7BW125 to SF12BW125 261 +* (% style="color:blue" %)**AT+PRO=3 ** (%%) ~/~/Set to use MQTT protocol to uplink 262 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,1883 ** (%%) ~/~/Set MQTT server address and port 263 +* (% style="color:blue" %)**AT+CLIENT=CLIENT ** (%%)~/~/Set up the CLIENT of MQTT 264 +* (% style="color:blue" %)**AT+UNAME=UNAME **(%%)~/~/Set the username of MQTT 265 +* (% style="color:blue" %)**AT+PWD=PWD **(%%)~/~/Set the password of MQTT 266 +* (% style="color:blue" %)**AT+PUBTOPIC=NSE01_PUB **(%%)~/~/Set the sending topic of MQTT 267 +* (% style="color:blue" %)**AT+SUBTOPIC=NSE01_SUB **(%%) ~/~/Set the subscription topic of MQTT 433 433 434 - 867.9SF7BW125 to SF12BW125269 +[[image:1657249978444-674.png]] 435 435 436 -868.8 - FSK 437 437 272 +[[image:1657249990869-686.png]] 438 438 439 -(% style="color:#037691" %)** Downlink:** 440 440 441 -Uplink channels 1-9 (RX1) 275 +((( 276 +MQTT protocol has a much higher power consumption compare vs UDP / CoAP protocol. Please check the power analyze document and adjust the uplink period to a suitable interval. 277 +))) 442 442 443 -869.525 - SF9BW125 (RX2 downlink only) 444 444 445 445 281 +=== 2.2.7 Use TCP protocol to uplink data === 446 446 447 - ===2.7.2US902-928(US915)===283 +This feature is supported since firmware version v110 448 448 449 -Used in USA, Canada and South America. Default use CHE=2 450 450 451 -(% style="color:#037691" %)**Uplink:** 286 +* (% style="color:blue" %)**AT+PRO=4 ** (%%) ~/~/ Set to use TCP protocol to uplink 287 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5600 **(%%) ~/~/ to set TCP server address and port 452 452 453 - 903.9 - SF7BW125to SF10BW125289 +[[image:1657250217799-140.png]] 454 454 455 -904.1 - SF7BW125 to SF10BW125 456 456 457 - 904.3 - SF7BW125to SF10BW125292 +[[image:1657250255956-604.png]] 458 458 459 -904.5 - SF7BW125 to SF10BW125 460 460 461 -904.7 - SF7BW125 to SF10BW125 462 462 463 - 904.9-SF7BW125toSF10BW125296 +=== 2.2.8 Change Update Interval === 464 464 465 - 905.1-SF7BW125toSF10BW125298 +User can use below command to change the (% style="color:green" %)**uplink interval**. 466 466 467 - 905.3-SF7BW125toSF10BW125300 +* (% style="color:blue" %)**AT+TDC=600 ** (%%)~/~/ Set Update Interval to 600s 468 468 302 +((( 303 +(% style="color:red" %)**NOTE:** 304 +))) 469 469 470 -(% style="color:#037691" %)**Downlink:** 306 +((( 307 +(% style="color:red" %)1. By default, the device will send an uplink message every 1 hour. 308 +))) 471 471 472 -923.3 - SF7BW500 to SF12BW500 473 473 474 -923.9 - SF7BW500 to SF12BW500 475 475 476 - 924.5-SF7BW500 toSF12BW500312 +== 2.3 Uplink Payload == 477 477 478 - 925.1-SF7BW500toSF12BW500314 +In this mode, uplink payload includes in total 18 bytes 479 479 480 -925.7 - SF7BW500 to SF12BW500 316 +(% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:510px" %) 317 +|=(% style="width: 60px;" %)((( 318 +**Size(bytes)** 319 +)))|=(% style="width: 50px;" %)**6**|=(% style="width: 25px;" %)2|=(% style="width: 25px;" %)**2**|=(% style="width: 70px;" %)**1**|=(% style="width: 60px;" %)**2**|=(% style="width: 80px;" %)**2**|=(% style="width: 90px;" %)**2**|=(% style="width: 50px;" %)**1** 320 +|(% style="width:97px" %)**Value**|(% style="width:83px" %)[[Device ID>>||anchor="H2.4.1A0A0DeviceID"]]|(% style="width:41px" %)[[Ver>>||anchor="H2.4.2A0VersionInfo"]]|(% style="width:46px" %)[[BAT>>||anchor="H2.4.3A0BatteryInfo"]]|(% style="width:123px" %)[[Signal Strength>>||anchor="H2.4.4A0SignalStrength"]]|(% style="width:108px" %)[[Soil Moisture>>||anchor="H2.4.5A0SoilMoisture"]]|(% style="width:133px" %)[[Soil Temperature>>||anchor="H2.4.6A0SoilTemperature"]]|(% style="width:159px" %)[[Soil Conductivity(EC)>>||anchor="H2.4.7A0SoilConductivity28EC29"]]|(% style="width:80px" %)[[Interrupt>>||anchor="H2.4.8A0DigitalInterrupt"]] 481 481 482 -926.3 - SF7BW500 to SF12BW500 322 +((( 323 +If we use the MQTT client to subscribe to this MQTT topic, we can see the following information when the NSE01 uplink data. 324 +))) 483 483 484 -926.9 - SF7BW500 to SF12BW500 485 485 486 - 927.5-SF7BW500 to SF12BW500327 +[[image:image-20220708111918-4.png]] 487 487 488 -923.3 - SF12BW500(RX2 downlink only) 489 489 330 +The payload is ASCII string, representative same HEX: 490 490 332 +0x72403155615900640c7817075e0a8c02f900 where: 491 491 492 -=== 2.7.3 CN470-510 (CN470) === 334 +* Device ID: 0x 724031556159 = 724031556159 335 +* Version: 0x0064=100=1.0.0 493 493 494 -Used in China, Default use CHE=1 337 +* BAT: 0x0c78 = 3192 mV = 3.192V 338 +* Singal: 0x17 = 23 339 +* Soil Moisture: 0x075e= 1886 = 18.86 % 340 +* Soil Temperature:0x0a8c =2700=27 °C 341 +* Soil Conductivity(EC) = 0x02f9 =761 uS /cm 342 +* Interrupt: 0x00 = 0 495 495 496 - (%style="color:#037691"%)**Uplink:**344 +== 2.4 Payload Explanation and Sensor Interface == 497 497 498 -486.3 - SF7BW125 to SF12BW125 499 499 500 -4 86.5 - SF7BW125toSF12BW125347 +=== 2.4.1 Device ID === 501 501 502 -486.7 - SF7BW125 to SF12BW125 349 +((( 350 +By default, the Device ID equal to the last 6 bytes of IMEI. 351 +))) 503 503 504 -486.9 - SF7BW125 to SF12BW125 353 +((( 354 +User can use (% style="color:blue" %)**AT+DEUI**(%%) to set Device ID 355 +))) 505 505 506 -487.1 - SF7BW125 to SF12BW125 357 +((( 358 +**Example:** 359 +))) 507 507 508 -487.3 - SF7BW125 to SF12BW125 361 +((( 362 +AT+DEUI=A84041F15612 363 +))) 509 509 510 -487.5 - SF7BW125 to SF12BW125 365 +((( 366 +The Device ID is stored in a none-erase area, Upgrade the firmware or run AT+FDR won't erase Device ID. 367 +))) 511 511 512 -487.7 - SF7BW125 to SF12BW125 513 513 514 514 515 - (%style="color:#037691" %)**Downlink:**371 +=== 2.4.2 Version Info === 516 516 517 -506.7 - SF7BW125 to SF12BW125 373 +((( 374 +Specify the software version: 0x64=100, means firmware version 1.00. 375 +))) 518 518 519 -506.9 - SF7BW125 to SF12BW125 377 +((( 378 +For example: 0x00 64 : this device is NSE01 with firmware version 1.0.0. 379 +))) 520 520 521 -507.1 - SF7BW125 to SF12BW125 522 522 523 -507.3 - SF7BW125 to SF12BW125 524 524 525 - 507.5- SF7BW125toSF12BW125383 +=== 2.4.3 Battery Info === 526 526 527 -507.7 - SF7BW125 to SF12BW125 385 +((( 386 +Check the battery voltage for LSE01. 387 +))) 528 528 529 -507.9 - SF7BW125 to SF12BW125 389 +((( 390 +Ex1: 0x0B45 = 2885mV 391 +))) 530 530 531 -508.1 - SF7BW125 to SF12BW125 393 +((( 394 +Ex2: 0x0B49 = 2889mV 395 +))) 532 532 533 -505.3 - SF12BW125 (RX2 downlink only) 534 534 535 535 399 +=== 2.4.4 Signal Strength === 536 536 537 -=== 2.7.4 AU915-928(AU915) === 401 +((( 402 +NB-IoT Network signal Strength. 403 +))) 538 538 539 -Default use CHE=2 405 +((( 406 +**Ex1: 0x1d = 29** 407 +))) 540 540 541 -(% style="color:#037691" %)**Uplink:** 409 +((( 410 +(% style="color:blue" %)**0**(%%) -113dBm or less 411 +))) 542 542 543 -916.8 - SF7BW125 to SF12BW125 413 +((( 414 +(% style="color:blue" %)**1**(%%) -111dBm 415 +))) 544 544 545 -917.0 - SF7BW125 to SF12BW125 417 +((( 418 +(% style="color:blue" %)**2...30**(%%) -109dBm... -53dBm 419 +))) 546 546 547 -917.2 - SF7BW125 to SF12BW125 421 +((( 422 +(% style="color:blue" %)**31** (%%) -51dBm or greater 423 +))) 548 548 549 -917.4 - SF7BW125 to SF12BW125 425 +((( 426 +(% style="color:blue" %)**99** (%%) Not known or not detectable 427 +))) 550 550 551 -917.6 - SF7BW125 to SF12BW125 552 552 553 -917.8 - SF7BW125 to SF12BW125 554 554 555 - 918.0- SF7BW125toSF12BW125431 +=== 2.4.5 Soil Moisture === 556 556 557 -918.2 - SF7BW125 to SF12BW125 433 +((( 434 +((( 435 +Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil. 436 +))) 437 +))) 558 558 439 +((( 440 +((( 441 +For example, if the data you get from the register is **__0x05 0xDC__**, the moisture content in the soil is 442 +))) 443 +))) 559 559 560 -(% style="color:#037691" %)**Downlink:** 445 +((( 446 + 447 +))) 561 561 562 -923.3 - SF7BW500 to SF12BW500 449 +((( 450 +(% style="color:#4f81bd" %)**05DC(H) = 1500(D) /100 = 15%.** 451 +))) 563 563 564 -923.9 - SF7BW500 to SF12BW500 565 565 566 -924.5 - SF7BW500 to SF12BW500 567 567 568 - 925.1-SF7BW500toSF12BW500455 +=== 2.4.6 Soil Temperature === 569 569 570 -925.7 - SF7BW500 to SF12BW500 457 +((( 458 +Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is __**0x09 0xEC**__, the temperature content in the soil is 459 +))) 571 571 572 -926.3 - SF7BW500 to SF12BW500 461 +((( 462 +**Example**: 463 +))) 573 573 574 -926.9 - SF7BW500 to SF12BW500 465 +((( 466 +If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/100 = 2.61 °C 467 +))) 575 575 576 -927.5 - SF7BW500 to SF12BW500 469 +((( 470 +If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C 471 +))) 577 577 578 -923.3 - SF12BW500(RX2 downlink only) 579 579 580 580 475 +=== 2.4.7 Soil Conductivity (EC) === 581 581 582 -=== 2.7.5 AS920-923 & AS923-925 (AS923) === 477 +((( 478 +Obtain (% style="color:#4f81bd" %)**__soluble salt concentration__**(%%) in soil or (% style="color:#4f81bd" %)**__soluble ion concentration in liquid fertilizer__**(%%) or (% style="color:#4f81bd" %)**__planting medium__**(%%). The value range of the register is 0 - 20000(Decimal)( Can be greater than 20000). 479 +))) 583 583 584 -(% style="color:#037691" %)**Default Uplink channel:** 481 +((( 482 +For example, if the data you get from the register is __**0x00 0xC8**__, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm. 483 +))) 585 585 586 -923.2 - SF7BW125 to SF10BW125 485 +((( 486 +Generally, the EC value of irrigation water is less than 800uS / cm. 487 +))) 587 587 588 -923.4 - SF7BW125 to SF10BW125 489 +((( 490 + 491 +))) 589 589 493 +((( 494 + 495 +))) 590 590 591 - (% style="color:#037691"%)**AdditionalUplink Channel**:497 +=== 2.4.8 Digital Interrupt === 592 592 593 -(OTAA mode, channel added by JoinAccept message) 499 +((( 500 +Digital Interrupt refers to pin (% style="color:blue" %)**GPIO_EXTI**(%%), and there are different trigger methods. When there is a trigger, the NSE01 will send a packet to the server. 501 +))) 594 594 595 -(% style="color:#037691" %)**AS920~~AS923 for Japan, Malaysia, Singapore**: 503 +((( 504 +The command is: 505 +))) 596 596 597 -922.2 - SF7BW125 to SF10BW125 507 +((( 508 +(% style="color:blue" %)**AT+INTMOD=3 **(%%) ~/~/(more info about INMOD please refer [[**AT Command Manual**>>url:https://www.dragino.com/downloads/downloads/NB-IoT/NBSN95/DRAGINO_NBSN95-NB_AT%20Commands_v1.1.0.pdf]])**.** 509 +))) 598 598 599 -922.4 - SF7BW125 to SF10BW125 600 600 601 -922.6 - SF7BW125 to SF10BW125 512 +((( 513 +The lower four bits of this data field shows if this packet is generated by interrupt or not. Click here for the hardware and software set up. 514 +))) 602 602 603 -922.8 - SF7BW125 to SF10BW125 604 604 605 -923.0 - SF7BW125 to SF10BW125 517 +((( 518 +Example: 519 +))) 606 606 607 -922.0 - SF7BW125 to SF10BW125 521 +((( 522 +0x(00): Normal uplink packet. 523 +))) 608 608 525 +((( 526 +0x(01): Interrupt Uplink Packet. 527 +))) 609 609 610 -(% style="color:#037691" %)**AS923 ~~ AS925 for Brunei, Cambodia, Hong Kong, Indonesia, Laos, Taiwan, Thailand, Vietnam**: 611 611 612 -923.6 - SF7BW125 to SF10BW125 613 613 614 - 923.8- SF7BW125 toSF10BW125531 +=== 2.4.9 +5V Output === 615 615 616 -924.0 - SF7BW125 to SF10BW125 533 +((( 534 +NSE01 will enable +5V output before all sampling and disable the +5v after all sampling. 535 +))) 617 617 618 -924.2 - SF7BW125 to SF10BW125 619 619 620 -924.4 - SF7BW125 to SF10BW125 538 +((( 539 +The 5V output time can be controlled by AT Command. 540 +))) 621 621 622 -924.6 - SF7BW125 to SF10BW125 542 +((( 543 +(% style="color:blue" %)**AT+5VT=1000** 544 +))) 623 623 546 +((( 547 +Means set 5V valid time to have 1000ms. So the real 5V output will actually have 1000ms + sampling time for other sensors. 548 +))) 624 624 625 -(% style="color:#037691" %)** Downlink:** 626 626 627 -Uplink channels 1-8 (RX1) 628 628 629 - 923.2-SF10BW125(RX2)552 +== 2.5 Downlink Payload == 630 630 554 +By default, NSE01 prints the downlink payload to console port. 631 631 556 +[[image:image-20220708133731-5.png]] 632 632 633 -=== 2.7.6 KR920-923 (KR920) === 634 634 635 -Default channel: 559 +((( 560 +(% style="color:blue" %)**Examples:** 561 +))) 636 636 637 -922.1 - SF7BW125 to SF12BW125 563 +((( 564 + 565 +))) 638 638 639 -922.3 - SF7BW125 to SF12BW125 567 +* ((( 568 +(% style="color:blue" %)**Set TDC** 569 +))) 640 640 641 -922.5 - SF7BW125 to SF12BW125 571 +((( 572 +If the payload=0100003C, it means set the END Node's TDC to 0x00003C=60(S), while type code is 01. 573 +))) 642 642 575 +((( 576 +Payload: 01 00 00 1E TDC=30S 577 +))) 643 643 644 -(% style="color:#037691" %)**Uplink: (OTAA mode, channel added by JoinAccept message)** 579 +((( 580 +Payload: 01 00 00 3C TDC=60S 581 +))) 645 645 646 -922.1 - SF7BW125 to SF12BW125 583 +((( 584 + 585 +))) 647 647 648 -922.3 - SF7BW125 to SF12BW125 587 +* ((( 588 +(% style="color:blue" %)**Reset** 589 +))) 649 649 650 -922.5 - SF7BW125 to SF12BW125 591 +((( 592 +If payload = 0x04FF, it will reset the NSE01 593 +))) 651 651 652 -922.7 - SF7BW125 to SF12BW125 653 653 654 - 922.9-SF7BW125toSF12BW125596 +* (% style="color:blue" %)**INTMOD** 655 655 656 -923.1 - SF7BW125 to SF12BW125 598 +((( 599 +Downlink Payload: 06000003, Set AT+INTMOD=3 600 +))) 657 657 658 -923.3 - SF7BW125 to SF12BW125 659 659 660 660 661 - (% style="color:#037691"%)**Downlink:**604 +== 2.6 LED Indicator == 662 662 663 -Uplink channels 1-7(RX1) 606 +((( 607 +The NSE01 has an internal LED which is to show the status of different state. 664 664 665 -921.9 - SF12BW125 (RX2 downlink only; SF12BW125 might be changed to SF9BW125) 666 666 610 +* When power on, NSE01 will detect if sensor probe is connected, if probe detected, LED will blink four times. (no blinks in this step is no probe) 611 +* Then the LED will be on for 1 second means device is boot normally. 612 +* After NSE01 join NB-IoT network. The LED will be ON for 3 seconds. 613 +* For each uplink probe, LED will be on for 500ms. 614 +))) 667 667 668 668 669 -=== 2.7.7 IN865-867 (IN865) === 670 670 671 -(% style="color:#037691" %)** Uplink:** 672 672 673 - 865.0625- SF7BW125to SF12BW125619 +== 2.7 Installation in Soil == 674 674 675 - 865.4025- SF7BW125toSF12BW125621 +__**Measurement the soil surface**__ 676 676 677 -865.9850 - SF7BW125 to SF12BW125 623 +((( 624 +Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting. [[https:~~/~~/img.alicdn.com/imgextra/i3/2005165265/O1CN010rj9Oh1olPsQxrdUK_!!2005165265.jpg>>url:https://img.alicdn.com/imgextra/i3/2005165265/O1CN010rj9Oh1olPsQxrdUK_!!2005165265.jpg]] 625 +))) 678 678 627 +[[image:1657259653666-883.png]] 679 679 680 -(% style="color:#037691" %) **Downlink:** 681 681 682 -Uplink channels 1-3 (RX1) 630 +((( 631 + 683 683 684 -866.550 - SF10BW125 (RX2) 633 +((( 634 +Dig a hole with diameter > 20CM. 635 +))) 685 685 637 +((( 638 +Horizontal insert the probe to the soil and fill the hole for long term measurement. 639 +))) 640 +))) 686 686 642 +[[image:1654506665940-119.png]] 687 687 644 +((( 645 + 646 +))) 688 688 689 -== 2.8 LED Indicator == 690 690 691 - TheLSE01has aninternal LEDwhich is to show the status of differentstate.649 +== 2.8 Firmware Change Log == 692 692 693 -* Blink once when device power on. 694 -* Solid ON for 5 seconds once device successful Join the network. 695 -* Blink once when device transmit a packet. 696 696 652 +Download URL & Firmware Change log 697 697 698 - == 2.9 InstallationSoil==654 +[[www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/Firmware/]] 699 699 700 -**Measurement the soil surface** 701 701 657 +Upgrade Instruction: [[Upgrade_Firmware>>||anchor="H5.1200BHowtoUpgradeFirmware"]] 702 702 703 -[[image:1654506634463-199.png]] 704 704 705 -((( 706 -((( 707 -Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting. 708 -))) 709 -))) 710 710 661 +== 2.9 Battery Analysis == 711 711 663 +=== 2.9.1 Battery Type === 712 712 713 -[[image:1654506665940-119.png]] 714 714 715 715 ((( 716 - Diga hole with diameter>20CM.667 +The NSE01 battery is a combination of an 8500mAh Li/SOCI2 Battery and a Super Capacitor. The battery is none-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter. 717 717 ))) 718 718 670 + 719 719 ((( 720 - Horizontalinserttheprobe to thesoil andfilltheholeforlong termmeasurement.672 +The battery is designed to last for several years depends on the actually use environment and update interval. 721 721 ))) 722 722 723 723 724 -== 2.10 Firmware Change Log == 725 - 726 726 ((( 727 - **Firmware downloadlink:**677 +The battery related documents as below: 728 728 ))) 729 729 730 - (((731 -[[ http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/]]732 - )))680 +* [[Battery Dimension>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]] 681 +* [[Lithium-Thionyl Chloride Battery datasheet>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]] 682 +* [[Lithium-ion Battery-Capacitor datasheet>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]] 733 733 734 734 ((( 735 - 685 +[[image:image-20220708140453-6.png]] 736 736 ))) 737 737 738 -((( 739 -**Firmware Upgrade Method: **[[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome]] 740 -))) 741 741 742 -((( 743 - 744 -))) 745 745 746 -((( 747 -**V1.0.** 748 -))) 690 +=== 2.9.2 Power consumption Analyze === 749 749 750 750 ((( 751 - Release693 +Dragino battery powered product are all runs in Low Power mode. We have an update battery calculator which base on the measurement of the real device. User can use this calculator to check the battery life and calculate the battery life if want to use different transmit interval. 752 752 ))) 753 753 754 754 755 -== 2.11 Battery Analysis == 756 - 757 -=== 2.11.1 Battery Type === 758 - 759 759 ((( 760 - The LSE01 battery is a combination of a 4000mAh Li/SOCI2 Battery and a Super Capacitor. The batteryis non-rechargeablebattery type with a lowdischargerate (<2% per year). Thistype ofbattery is commonly used in IoT devices such aswater meter.698 +Instruction to use as below: 761 761 ))) 762 762 763 763 ((( 764 - Thebatterys designedlastforrethan5 years fortheSN50.702 +(% style="color:blue" %)**Step 1: **(%%)Downlink the up-to-date DRAGINO_Battery_Life_Prediction_Table.xlsx from: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/]] 765 765 ))) 766 766 705 + 767 767 ((( 768 -((( 769 -The battery-related documents are as below: 707 +(% style="color:blue" %)**Step 2: **(%%) Open it and choose 770 770 ))) 771 -))) 772 772 773 773 * ((( 774 - [[Battery Dimension>>url:http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/&file=LSN50-Battery-Dimension.pdf]],711 +Product Model 775 775 ))) 776 776 * ((( 777 - [[Lithium-ThionylChloride Battery datasheet>>url:https://www.dragino.com/downloads/downloads/datasheet/Battery/ER26500/ER26500_Datasheet-EN.pdf]],714 +Uplink Interval 778 778 ))) 779 779 * ((( 780 - [[Lithium-ion Battery-Capacitor datasheet>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC_1520_datasheet.jpg]],[[Tech Spec>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC1520%20Technical%20Specification20171123.pdf]]717 +Working Mode 781 781 ))) 782 782 783 - [[image:image-20220610172436-1.png]] 720 +((( 721 +And the Life expectation in difference case will be shown on the right. 722 +))) 784 784 724 +[[image:image-20220708141352-7.jpeg]] 785 785 786 786 787 -=== 2.11.2 Battery Note === 788 788 728 +=== 2.9.3 Battery Note === 729 + 789 789 ((( 790 790 The Li-SICO battery is designed for small current / long period application. It is not good to use a high current, short period transmit method. The recommended minimum period for use of this battery is 5 minutes. If you use a shorter period time to transmit LoRa, then the battery life may be decreased. 791 791 ))) ... ... @@ -792,298 +792,176 @@ 792 792 793 793 794 794 795 -=== 2. 11.3Replace the battery ===736 +=== 2.9.4 Replace the battery === 796 796 797 797 ((( 798 - IfBattery is lower than 2.7v,usershouldreplace the battery ofLSE01.739 +The default battery pack of NSE01 includes a ER26500 plus super capacitor. If user can't find this pack locally, they can find ER26500 or equivalence without the SPC1520 capacitor, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes). 799 799 ))) 800 800 742 + 743 + 744 += 3. Access NB-IoT Module = 745 + 801 801 ((( 802 - You can changethe battery in the LSE01.The type of battery isnot limitedas longas the outputis between 3v to 3.6v. On the main board, there is a diode (D1) between the battery and the maincircuit. If you need to use a battery with lessthan 3.3v, pleaseremovethe D1and shortcut thewopadsofitso therewon’tbe voltage drop between battery andmain board.747 +Users can directly access the AT command set of the NB-IoT module. 803 803 ))) 804 804 805 805 ((( 806 -The defaultbattery packof LSE01 includesa ER18505 plussupercapacitor.Ifusercan’tfind this pack locally, theycan find ER18505orequivalence,whichwillalsoworkinmostcase.The SPC can enlargethebattery lifeforigh frequency use(updateperiod below5minutes)751 +The AT Command set can refer the BC35-G NB-IoT Module AT Command: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=datasheet/other_vendors/BC35-G/>>url:https://www.dragino.com/downloads/index.php?dir=datasheet/other_vendors/BC35-G/]] 807 807 ))) 808 808 754 +[[image:1657261278785-153.png]] 809 809 810 810 811 -= 3. Using the AT Commands = 812 812 813 -= =3.1AccessAT Commands ==758 += 4. Using the AT Commands = 814 814 760 +== 4.1 Access AT Commands == 815 815 816 - LSE01supportsATCommandsetn the stock firmware.Youcanuse a USB toTTLadaptertoconnect to LSE01forusing ATcommand,asbelow.762 +See this link for detail: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/]] 817 817 818 -[[image:1654501986557-872.png||height="391" width="800"]] 819 819 765 +AT+<CMD>? : Help on <CMD> 820 820 821 - Orifyouhavebelowboard,usebelowconnection:767 +AT+<CMD> : Run <CMD> 822 822 769 +AT+<CMD>=<value> : Set the value 823 823 824 - [[image:1654502005655-729.png||height="503"width="801"]]771 +AT+<CMD>=? : Get the value 825 825 826 826 827 - 828 -In the PC, you need to set the serial baud rate to (% style="color:green" %)**9600**(%%) to access the serial console for LSE01. LSE01 will output system info once power on as below: 829 - 830 - 831 - [[image:1654502050864-459.png||height="564" width="806"]] 832 - 833 - 834 -Below are the available commands, a more detailed AT Command manual can be found at [[AT Command Manual>>https://www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0]]: [[https:~~/~~/www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0>>https://www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0]] 835 - 836 - 837 -(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>? **(%%) : Help on <CMD> 838 - 839 -(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD> **(%%) : Run <CMD> 840 - 841 -(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>=<value>**(%%) : Set the value 842 - 843 -(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>=?**(%%) : Get the value 844 - 845 - 846 846 (% style="color:#037691" %)**General Commands**(%%) 847 847 848 - (% style="background-color:#dcdcdc" %)**AT**(%%): Attention776 +AT : Attention 849 849 850 - (% style="background-color:#dcdcdc" %)**AT?**(%%): Short Help778 +AT? : Short Help 851 851 852 - (% style="background-color:#dcdcdc" %)**ATZ**(%%): MCU Reset780 +ATZ : MCU Reset 853 853 854 - (% style="background-color:#dcdcdc" %)**AT+TDC**(%%): Application Data Transmission Interval782 +AT+TDC : Application Data Transmission Interval 855 855 784 +AT+CFG : Print all configurations 856 856 857 - (%style="color:#037691"%)**Keys,IDsand EUIs management**786 +AT+CFGMOD : Working mode selection 858 858 859 - (% style="background-color:#dcdcdc" %)**AT+APPEUI**(%%)ApplicationEUI788 +AT+INTMOD : Set the trigger interrupt mode 860 860 861 - (% style="background-color:#dcdcdc" %)**AT+APPKEY**(%%)ApplicationKey790 +AT+5VT : Set extend the time of 5V power 862 862 863 - (% style="background-color:#dcdcdc" %)**AT+APPSKEY**(%%)Application Session Key792 +AT+PRO : Choose agreement 864 864 865 - (% style="background-color:#dcdcdc" %)**AT+DADDR**(%%)DeviceAddress794 +AT+WEIGRE : Get weight or set weight to 0 866 866 867 - (% style="background-color:#dcdcdc" %)**AT+DEUI**(%%)DeviceEUI796 +AT+WEIGAP : Get or Set the GapValue of weight 868 868 869 - (% style="background-color:#dcdcdc" %)**AT+NWKID**(%%):NetworkID(Youcanenterthiscommandchangeonlyaftersuccessful networkconnection)798 +AT+RXDL : Extend the sending and receiving time 870 870 871 - (% style="background-color:#dcdcdc" %)**AT+NWKSKEY**(%%)NetworkSession KeyJoining and sending dateon LoRa network800 +AT+CNTFAC : Get or set counting parameters 872 872 873 - (% style="background-color:#dcdcdc" %)**AT+CFM**(%%)ConfirmMode802 +AT+SERVADDR : Server Address 874 874 875 -(% style="background-color:#dcdcdc" %)**AT+CFS**(%%) : Confirm Status 876 876 877 -(% style=" background-color:#dcdcdc" %)**AT+JOIN**(%%): JoinLoRa? Network805 +(% style="color:#037691" %)**COAP Management** 878 878 879 - (% style="background-color:#dcdcdc" %)**AT+NJM**(%%)LoRa? Network Join Mode807 +AT+URI : Resource parameters 880 880 881 -(% style="background-color:#dcdcdc" %)**AT+NJS**(%%) : LoRa? Network Join Status 882 882 883 -(% style=" background-color:#dcdcdc" %)**AT+RECV**(%%) :PrintLast Received Data inRaw Format810 +(% style="color:#037691" %)**UDP Management** 884 884 885 - (% style="background-color:#dcdcdc" %)**AT+RECVB**(%%)Print LastReceived DatainBinaryFormat812 +AT+CFM : Upload confirmation mode (only valid for UDP) 886 886 887 -(% style="background-color:#dcdcdc" %)**AT+SEND**(%%) : Send Text Data 888 888 889 -(% style=" background-color:#dcdcdc" %)**AT+SENB**(%%): Send Hexadecimal Data815 +(% style="color:#037691" %)**MQTT Management** 890 890 817 +AT+CLIENT : Get or Set MQTT client 891 891 892 - (%style="color:#037691"%)**LoRaNetworkManagement**819 +AT+UNAME : Get or Set MQTT Username 893 893 894 - (% style="background-color:#dcdcdc" %)**AT+ADR**(%%):AdaptiveRate821 +AT+PWD : Get or Set MQTT password 895 895 896 - (% style="background-color:#dcdcdc" %)**AT+CLASS**(%%):LoRaClass(Currentlyonly supportclassA823 +AT+PUBTOPIC : Get or Set MQTT publish topic 897 897 898 - (% style="background-color:#dcdcdc" %)**AT+DCS**(%%):DutyCycleSetting825 +AT+SUBTOPIC : Get or Set MQTT subscription topic 899 899 900 -(% style="background-color:#dcdcdc" %)**AT+DR**(%%) : Data Rate (Can Only be Modified after ADR=0) 901 901 902 -(% style=" background-color:#dcdcdc" %)**AT+FCD**(%%) : Frame Counter Downlink828 +(% style="color:#037691" %)**Information** 903 903 904 - (% style="background-color:#dcdcdc" %)**AT+FCU**(%%): Frame CounterUplink830 +AT+FDR : Factory Data Reset 905 905 906 - (% style="background-color:#dcdcdc" %)**AT+JN1DL**(%%):JoinAcceptDelay1832 +AT+PWORD : Serial Access Password 907 907 908 -(% style="background-color:#dcdcdc" %)**AT+JN2DL**(%%) : Join Accept Delay2 909 909 910 -(% style="background-color:#dcdcdc" %)**AT+PNM**(%%) : Public Network Mode 911 911 912 - (% style="background-color:#dcdcdc"%)**AT+RX1DL**(%%): Receive Delay1836 += 5. FAQ = 913 913 914 - (% style="background-color:#dcdcdc"%)**AT+RX2DL**(%%): ReceiveDelay2838 +== 5.1 How to Upgrade Firmware == 915 915 916 -(% style="background-color:#dcdcdc" %)**AT+RX2DR**(%%) : Rx2 Window Data Rate 917 917 918 -(% style="background-color:#dcdcdc" %)**AT+RX2FQ**(%%) : Rx2 Window Frequency 919 - 920 -(% style="background-color:#dcdcdc" %)**AT+TXP**(%%) : Transmit Power 921 - 922 -(% style="background-color:#dcdcdc" %)**AT+ MOD**(%%) : Set work mode 923 - 924 - 925 -(% style="color:#037691" %)**Information** 926 - 927 -(% style="background-color:#dcdcdc" %)**AT+RSSI**(%%) : RSSI of the Last Received Packet 928 - 929 -(% style="background-color:#dcdcdc" %)**AT+SNR**(%%) : SNR of the Last Received Packet 930 - 931 -(% style="background-color:#dcdcdc" %)**AT+VER**(%%) : Image Version and Frequency Band 932 - 933 -(% style="background-color:#dcdcdc" %)**AT+FDR**(%%) : Factory Data Reset 934 - 935 -(% style="background-color:#dcdcdc" %)**AT+PORT**(%%) : Application Port 936 - 937 -(% style="background-color:#dcdcdc" %)**AT+CHS**(%%) : Get or Set Frequency (Unit: Hz) for Single Channel Mode 938 - 939 - (% style="background-color:#dcdcdc" %)**AT+CHE**(%%) : Get or Set eight channels mode, Only for US915, AU915, CN470 940 - 941 - 942 -= 4. FAQ = 943 - 944 -== 4.1 How to change the LoRa Frequency Bands/Region? == 945 - 946 946 ((( 947 -You can follow the instructions for [[how to upgrade image>>||anchor="H2.10200BFirmwareChangeLog"]]. 948 -When downloading the images, choose the required image file for download. 842 +User can upgrade the firmware for 1) bug fix, 2) new feature release. 949 949 ))) 950 950 951 951 ((( 952 - 846 +Please see this link for how to upgrade: [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H2.HardwareUpgradeMethodSupportList>>http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H2.HardwareUpgradeMethodSupportList]] 953 953 ))) 954 954 955 955 ((( 956 - Howtosetup LSE01 towork in 8 channel modeBy default,thefrequency bandsUS915,AU915, CN470 work in 72 frequencies.Many gatewaysare8 channelgateways, andin thiscase,theOTAA join timeand uplink scheduleis longandunpredictable while the end nodeis hoppingin 72 frequencies.850 +(% style="color:red" %)Notice, NSE01 and LSE01 share the same mother board. They use the same connection and method to update. 957 957 ))) 958 958 959 -((( 960 - 961 -))) 962 962 963 -((( 964 -You can configure the end node to work in 8 channel mode by using the AT+CHE command. The 500kHz channels are always included for OTAA. 965 -))) 966 966 967 -((( 968 - 969 -))) 855 +== 5.2 Can I calibrate NSE01 to different soil types? == 970 970 971 971 ((( 972 - Forexample,in **US915**band,the frequencytablesasbelow. By default,the endnodewilluse all channels(0~~71)forOTAAJoinprocess.AftertheOTAAJoin,theend nodewilluse these allchannels(0~~71)tosenduplinkkets.858 +NSE01 is calibrated for saline-alkali soil and loamy soil. If users want to use it for other soil, they can calibrate the value in the IoT platform base on the value measured by saline-alkali soil and loamy soil. The formula can be found at [[this link>>https://www.dragino.com/downloads/downloads/LoRa_End_Node/LSE01/Calibrate_to_other_Soil_20220605.pdf]]. 973 973 ))) 974 974 975 -[[image:image-20220606154726-3.png]] 976 976 862 += 6. Trouble Shooting = 977 977 978 - Whenyouuse the TTNnetwork,theUS915 frequencybandsuseare:864 +== 6.1 Connection problem when uploading firmware == 979 979 980 -* 903.9 - SF7BW125 to SF10BW125 981 -* 904.1 - SF7BW125 to SF10BW125 982 -* 904.3 - SF7BW125 to SF10BW125 983 -* 904.5 - SF7BW125 to SF10BW125 984 -* 904.7 - SF7BW125 to SF10BW125 985 -* 904.9 - SF7BW125 to SF10BW125 986 -* 905.1 - SF7BW125 to SF10BW125 987 -* 905.3 - SF7BW125 to SF10BW125 988 -* 904.6 - SF8BW500 989 989 990 990 ((( 991 -Because the end node is now hopping in 72 frequency, it makes it difficult for the devices to Join the TTN network and uplink data. To solve this issue, you can access the device via the AT commands and run: 992 - 993 -* (% style="color:#037691" %)**AT+CHE=2** 994 -* (% style="color:#037691" %)**ATZ** 868 +**Please see: **[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H3.3Troubleshooting>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H3.3Troubleshooting]] 995 995 ))) 996 996 871 +(% class="wikigeneratedid" %) 997 997 ((( 998 998 999 - 1000 -to set the end node to work in 8 channel mode. The device will work in Channel 8-15 & 64-71 for OTAA, and channel 8-15 for Uplink. 1001 1001 ))) 1002 1002 1003 -((( 1004 - 1005 -))) 1006 1006 1007 -((( 1008 -The **AU915** band is similar. Below are the AU915 Uplink Channels. 1009 -))) 877 +== 6.2 AT Command input doesn't work == 1010 1010 1011 -[[image:image-20220606154825-4.png]] 1012 - 1013 - 1014 - 1015 -= 5. Trouble Shooting = 1016 - 1017 -== 5.1 Why I can’t join TTN in US915 / AU915 bands? == 1018 - 1019 -It is due to channel mapping. Please see the [[Eight Channel Mode>>doc:Main.LoRaWAN Communication Debug.WebHome||anchor="H2.NoticeofUS9152FCN4702FAU915Frequencyband"]] section above for details. 1020 - 1021 - 1022 -== 5.2 AT Command input doesn’t work == 1023 - 1024 1024 ((( 1025 -In the case if user can see the console output but can’t type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn’t send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string. 1026 -))) 880 +In the case if user can see the console output but can't type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn't send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string. 1027 1027 1028 - 1029 -== 5.3 Device rejoin in at the second uplink packet == 1030 - 1031 -(% style="color:#4f81bd" %)**Issue describe as below:** 1032 - 1033 -[[image:1654500909990-784.png]] 1034 - 1035 - 1036 -(% style="color:#4f81bd" %)**Cause for this issue:** 1037 - 1038 -((( 1039 -The fuse on LSE01 is not large enough, some of the soil probe require large current up to 5v 800mA, in a short pulse. When this happen, it cause the device reboot so user see rejoin. 882 + 1040 1040 ))) 1041 1041 1042 1042 1043 - (% style="color:#4f81bd"%)**Solution:**886 += 7. Order Info = 1044 1044 1045 -All new shipped LSE01 after 2020-May-30 will have this to fix. For the customer who see this issue, please bypass the fuse as below: 1046 1046 1047 - [[image:1654500929571-736.png||height="458" width="832"]]889 +Part Number**:** (% style="color:#4f81bd" %)**NSE01** 1048 1048 1049 1049 1050 -= 6. Order Info = 1051 - 1052 - 1053 -Part Number**:** (% style="color:#4f81bd" %)**LSE01-XX-YY** 1054 - 1055 - 1056 -(% style="color:#4f81bd" %)**XX**(%%)**:** The default frequency band 1057 - 1058 -* (% style="color:red" %)**AS923**(%%): LoRaWAN AS923 band 1059 -* (% style="color:red" %)**AU915**(%%): LoRaWAN AU915 band 1060 -* (% style="color:red" %)**EU433**(%%): LoRaWAN EU433 band 1061 -* (% style="color:red" %)**EU868**(%%): LoRaWAN EU868 band 1062 -* (% style="color:red" %)**KR920**(%%): LoRaWAN KR920 band 1063 -* (% style="color:red" %)**US915**(%%): LoRaWAN US915 band 1064 -* (% style="color:red" %)**IN865**(%%): LoRaWAN IN865 band 1065 -* (% style="color:red" %)**CN470**(%%): LoRaWAN CN470 band 1066 - 1067 -(% style="color:#4f81bd" %)**YY**(%%)**: **Battery Option 1068 - 1069 -* (% style="color:red" %)**4**(%%): 4000mAh battery 1070 -* (% style="color:red" %)**8**(%%): 8500mAh battery 1071 - 1072 1072 (% class="wikigeneratedid" %) 1073 1073 ((( 1074 1074 1075 1075 ))) 1076 1076 1077 -= 7. Packing Info =897 += 8. Packing Info = 1078 1078 1079 1079 ((( 1080 1080 1081 1081 1082 1082 (% style="color:#037691" %)**Package Includes**: 1083 -))) 1084 1084 1085 -* (((1086 - LSE01LoRaWAN SoilMoisture& EC Sensorx 1904 +* NSE01 NB-IoT Soil Moisture & EC Sensor x 1 905 +* External antenna x 1 1087 1087 ))) 1088 1088 1089 1089 ((( ... ... @@ -1090,24 +1090,19 @@ 1090 1090 1091 1091 1092 1092 (% style="color:#037691" %)**Dimension and weight**: 1093 -))) 1094 1094 1095 -* (((1096 - DeviceSize:cm913 +* Size: 195 x 125 x 55 mm 914 +* Weight: 420g 1097 1097 ))) 1098 -* ((( 1099 -Device Weight: g 1100 -))) 1101 -* ((( 1102 -Package Size / pcs : cm 1103 -))) 1104 -* ((( 1105 -Weight / pcs : g 1106 1106 917 +((( 1107 1107 919 + 920 + 921 + 1108 1108 ))) 1109 1109 1110 -= 8. Support =924 += 9. Support = 1111 1111 1112 1112 * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule. 1113 1113 * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.com]]
- 1657245163077-232.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +81.0 KB - Content
- 1657246476176-652.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +492.6 KB - Content
- 1657249419225-449.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +81.0 KB - Content
- 1657249468462-536.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +483.6 KB - Content
- 1657249793983-486.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +85.8 KB - Content
- 1657249831934-534.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +72.5 KB - Content
- 1657249864775-321.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +87.0 KB - Content
- 1657249930215-289.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +77.3 KB - Content
- 1657249978444-674.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +139.5 KB - Content
- 1657249990869-686.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +96.9 KB - Content
- 1657250217799-140.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +98.7 KB - Content
- 1657250255956-604.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +99.0 KB - Content
- 1657259653666-883.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +344.4 KB - Content
- 1657260785982-288.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +138.2 KB - Content
- 1657261119050-993.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +126.1 KB - Content
- 1657261278785-153.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +126.1 KB - Content
- 1657271519014-786.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +71.5 KB - Content
- 1657327959271-447.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +78.3 KB - Content
- 1657328609906-564.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +492.6 KB - Content
- 1657328659945-416.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +78.8 KB - Content
- image-20220708101224-1.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +22.2 KB - Content
- image-20220708101605-2.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +87.5 KB - Content
- image-20220708110657-3.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +251.7 KB - Content
- image-20220708111918-4.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +38.8 KB - Content
- image-20220708133731-5.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +8.7 KB - Content
- image-20220708140453-6.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +132.7 KB - Content
- image-20220708141352-7.jpeg
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +102.7 KB - Content
- image-20220709084038-1.jpeg
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +72.0 KB - Content
- image-20220709084137-2.jpeg
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +72.0 KB - Content
- image-20220709084207-3.jpeg
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +72.0 KB - Content
- image-20220709084458-4.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +199.5 KB - Content
- image-20220709085040-1.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +200.4 KB - Content