Changes for page N95S31B -- NB-IoT Temperature & Humidity Sensor User Manual
Last modified by Mengting Qiu on 2024/04/02 16:44
Summary
-
Page properties (2 modified, 0 added, 0 removed)
-
Attachments (0 modified, 28 added, 0 removed)
- 1657245163077-232.png
- 1657246476176-652.png
- 1657249419225-449.png
- 1657249468462-536.png
- 1657249793983-486.png
- 1657249831934-534.png
- 1657249864775-321.png
- 1657249930215-289.png
- 1657249978444-674.png
- 1657249990869-686.png
- 1657250217799-140.png
- 1657250255956-604.png
- 1657259653666-883.png
- 1657260785982-288.png
- 1657261119050-993.png
- 1657261278785-153.png
- 1657271519014-786.png
- image-20220708101224-1.png
- image-20220708101605-2.png
- image-20220708110657-3.png
- image-20220708111918-4.png
- image-20220708133731-5.png
- image-20220708140453-6.png
- image-20220708141352-7.jpeg
- image-20220709084038-1.jpeg
- image-20220709084137-2.jpeg
- image-20220709084207-3.jpeg
- image-20220709084458-4.png
Details
- Page properties
-
- Title
-
... ... @@ -1,1 +1,1 @@ 1 - LSE01-LoRaWANSoil Moisture&ECSensor User Manual1 +NDDS75 NB-IoT Distance Detect Sensor User Manual - Content
-
... ... @@ -1,5 +1,4 @@ 1 -(% style="text-align:center" %) 2 -[[image:image-20220606151504-2.jpeg||height="554" width="554"]] 1 +[[image:image-20220709084207-3.jpeg||height="548" width="548"]] 3 3 4 4 5 5 ... ... @@ -7,13 +7,8 @@ 7 7 8 8 9 9 10 - 11 - 12 - 13 - 14 14 **Table of Contents:** 15 15 16 -{{toc/}} 17 17 18 18 19 19 ... ... @@ -20,68 +20,73 @@ 20 20 21 21 22 22 23 -= 1. Introduction = 17 += 1. Introduction = 24 24 25 -== 1.1 What is LoRaWANoilMoisture&ECSensor ==19 +== 1.1 What is NDDS75 Distance Detection Sensor == 26 26 27 27 ((( 28 28 29 29 30 -The Dragino LSE01 is a (% style="color:#4f81bd" %)**LoRaWAN Soil Moisture & EC Sensor**(%%) for IoT of Agriculture. It is designed to measure the soil moisture of saline-alkali soil and loamy soil. The soil sensor uses FDR method to calculate the soil moisture with the compensation from soil temperature and conductivity. It also has been calibrated in factory for Mineral soil type. 31 -))) 32 - 33 33 ((( 34 -It detects (% style="color:#4f81bd" %)**Soil Moisture**(%%), (% style="color:#4f81bd" %)**Soil Temperature**(%%) and (% style="color:#4f81bd" %)**Soil Conductivity**(%%), and uploads the value via wireless to LoRaWAN IoT Server. 25 +The Dragino NDDS75 is a (% style="color:blue" %)**NB-IoT Distance Detection Sensor**(%%) for Internet of Things solution. It is designed to measure the distance between the sensor and a flat object. The distance detection sensor is a module that uses ultrasonic sensing technology for distance measurement, and temperature compensation is performed internally to improve the reliability of data. 26 +\\The NDDS75 can be applied to scenarios such as horizontal distance measurement, liquid level measurement, parking management system, object proximity and presence detection, intelligent trash can management system, robot obstacle avoidance, automatic control, sewer, bottom water level monitoring, etc. It detects the distance between the measured object and the sensor, and uploads the value via wireless to IoT Server via NB-IoT Network. 27 +\\NarrowBand-Internet of Things (NB-IoT) is a standards-based low power wide area (LPWA) technology developed to enable a wide range of new IoT devices and services. NB-IoT significantly improves the power consumption of user devices, system capacity and spectrum efficiency, especially in deep coverage. 28 +\\NDDS75 supports different uplink methods include (% style="color:blue" %)**TCP, MQTT, UDP and CoAP** (%%)for different application requirement. 29 +\\NDDS75 is powered by (% style="color:blue" %)**8500mAh Li-SOCI2 battery**(%%), It is designed for long term use up to 5 years. (Actually Battery life depends on the use environment, update period & uplink method) 30 +\\To use NDDS75, user needs to check if there is NB-IoT coverage in local area and with the bands NDDS75 supports. If the local operate support it, user needs to get a NB-IoT SIM card from local operator and install NDDS75 to get NB-IoT network connection. 35 35 ))) 36 36 37 -((( 38 -The LoRa wireless technology used in LES01 allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption. 33 + 39 39 ))) 40 40 41 -((( 42 -LES01 is powered by (% style="color:#4f81bd" %)**4000mA or 8500mAh Li-SOCI2 battery**(%%), It is designed for long term use up to 10 years. 43 -))) 44 - 45 -((( 46 -Each LES01 is pre-load with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect after power on. 47 -))) 48 - 49 - 50 50 [[image:1654503236291-817.png]] 51 51 52 52 53 -[[image:16545 03265560-120.png]]39 +[[image:1657245163077-232.png]] 54 54 55 55 56 56 57 -== 1.2 Features == 43 +== 1.2 Features == 58 58 59 -* LoRaWAN 1.0.3 Class A 60 -* Ultra low power consumption 45 +* NB-IoT Bands: B1/B3/B8/B5/B20/B28 @H-FDD 61 61 * Monitor Soil Moisture 62 62 * Monitor Soil Temperature 63 63 * Monitor Soil Conductivity 64 -* Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865 65 65 * AT Commands to change parameters 66 66 * Uplink on periodically 67 67 * Downlink to change configure 68 68 * IP66 Waterproof Enclosure 69 -* 4000mAh or 8500mAh Battery for long term use 53 +* Ultra-Low Power consumption 54 +* AT Commands to change parameters 55 +* Micro SIM card slot for NB-IoT SIM 56 +* 8500mAh Battery for long term use 70 70 58 +== 1.3 Specification == 71 71 72 72 61 +(% style="color:#037691" %)**Common DC Characteristics:** 73 73 63 +* Supply Voltage: 2.1v ~~ 3.6v 64 +* Operating Temperature: -40 ~~ 85°C 74 74 66 +(% style="color:#037691" %)**NB-IoT Spec:** 75 75 76 -== 1.3 Specification == 68 +* - B1 @H-FDD: 2100MHz 69 +* - B3 @H-FDD: 1800MHz 70 +* - B8 @H-FDD: 900MHz 71 +* - B5 @H-FDD: 850MHz 72 +* - B20 @H-FDD: 800MHz 73 +* - B28 @H-FDD: 700MHz 77 77 75 +Probe(% style="color:#037691" %)** Specification:** 76 + 78 78 Measure Volume: Base on the centra pin of the probe, a cylinder with 7cm diameter and 10cm height. 79 79 80 -[[image:image-20220 606162220-5.png]]79 +[[image:image-20220708101224-1.png]] 81 81 82 82 83 83 84 -== 1.4 Applications == 83 +== 1.4 Applications == 85 85 86 86 * Smart Agriculture 87 87 ... ... @@ -88,704 +88,623 @@ 88 88 (% class="wikigeneratedid" id="H200B1.5FirmwareChangelog" %) 89 89 90 90 91 -== 1.5 Firmware Changelog==90 +== 1.5 Pin Definitions == 92 92 93 93 94 - **LSE01v1.0 :** Release93 +[[image:1657246476176-652.png]] 95 95 96 96 97 97 98 -= 2. ConfigureLSE01 to connect toLoRaWANnetwork=97 += 2. Use NSE01 to communicate with IoT Server = 99 99 100 -== 2.1 How it works == 99 +== 2.1 How it works == 101 101 101 + 102 102 ((( 103 -The LSE01 isconfiguredasLoRaWANOTAAClass Amodebydefault.IthasOTAAkeystojoinLoRaWANnetwork.Toconnect a localLoRaWAN network,you need toinputtheOTAAkeysin theLoRaWANserverandpoweronthe LSE0150. It willautomaticallyjointhenetworkviaOTAA and starttosendthesensor value103 +The NSE01 is equipped with a NB-IoT module, the pre-loaded firmware in NSE01 will get environment data from sensors and send the value to local NB-IoT network via the NB-IoT module. The NB-IoT network will forward this value to IoT server via the protocol defined by NSE01. 104 104 ))) 105 105 106 + 106 106 ((( 107 - In case you can’t set the OTAA keys in theLoRaWAN OTAA server,andyouhave tousethe keysfromtheserver, you can [[useAT Commands >>||anchor="H3.200BUsingtheATCommands"]].108 +The diagram below shows the working flow in default firmware of NSE01: 108 108 ))) 109 109 111 +[[image:image-20220708101605-2.png]] 110 110 113 +((( 114 + 115 +))) 111 111 112 -== 2.2 Quick guide to connect to LoRaWAN server (OTAA) == 113 113 114 -Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LG308>>url:http://www.dragino.com/products/lora/item/140-lg308.html]] as a LoRaWAN gateway in this example. 115 115 119 +== 2.2 Configure the NSE01 == 116 116 117 -[[image:1654503992078-669.png]] 118 118 122 +=== 2.2.1 Test Requirement === 119 119 120 -The LG308 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server. 121 121 125 +((( 126 +To use NSE01 in your city, make sure meet below requirements: 127 +))) 122 122 123 -(% style="color:blue" %)**Step 1**(%%): Create a device in TTN with the OTAA keys from LSE01. 129 +* Your local operator has already distributed a NB-IoT Network there. 130 +* The local NB-IoT network used the band that NSE01 supports. 131 +* Your operator is able to distribute the data received in their NB-IoT network to your IoT server. 124 124 125 -Each LSE01 is shipped with a sticker with the default device EUI as below: 133 +((( 134 +Below figure shows our testing structure. Here we have NB-IoT network coverage by China Mobile, the band they use is B8. The NSE01 will use CoAP((% style="color:red" %)120.24.4.116:5683)(%%) or raw UDP((% style="color:red" %)120.24.4.116:5601)(%%) or MQTT((% style="color:red" %)120.24.4.116:1883)(%%)or TCP((% style="color:red" %)120.24.4.116:5600)(%%)protocol to send data to the test server 135 +))) 126 126 127 -[[image:image-20220606163732-6.jpeg]] 128 128 129 - You can enter this key in the LoRaWAN Server portal.Below is TTN screenshot:138 +[[image:1657249419225-449.png]] 130 130 131 -**Add APP EUI in the application** 132 132 133 133 134 - [[image:1654504596150-405.png]]142 +=== 2.2.2 Insert SIM card === 135 135 144 +((( 145 +Insert the NB-IoT Card get from your provider. 146 +))) 136 136 148 +((( 149 +User need to take out the NB-IoT module and insert the SIM card like below: 150 +))) 137 137 138 -**Add APP KEY and DEV EUI** 139 139 140 -[[image:1654 504683289-357.png]]153 +[[image:1657249468462-536.png]] 141 141 142 142 143 143 144 - (% style="color:blue"%)**Step2**(%%):PoweronLSE01157 +=== 2.2.3 Connect USB – TTL to NSE01 to configure it === 145 145 159 +((( 160 +((( 161 +User need to configure NSE01 via serial port to set the (% style="color:blue" %)**Server Address** / **Uplink Topic** (%%)to define where and how-to uplink packets. NSE01 support AT Commands, user can use a USB to TTL adapter to connect to NSE01 and use AT Commands to configure it, as below. 162 +))) 163 +))) 146 146 147 -Put a Jumper on JP2 to power on the device. ( The Jumper must be in FLASH position). 148 148 149 - [[image:image-20220606163915-7.png]]166 +**Connection:** 150 150 168 + (% style="background-color:yellow" %)USB TTL GND <~-~-~-~-> GND 151 151 152 -(% style="color: blue" %)**Step3**(%%)**:**TheLSE01will auto join to theTTNnetwork.After join success, it will start to upload messages toTTN and you can see the messages in the panel.170 + (% style="background-color:yellow" %)USB TTL TXD <~-~-~-~-> UART_RXD 153 153 154 - [[image:1654504778294-788.png]]172 + (% style="background-color:yellow" %)USB TTL RXD <~-~-~-~-> UART_TXD 155 155 156 156 175 +In the PC, use below serial tool settings: 157 157 158 -== 2.3 Uplink Payload == 177 +* Baud: (% style="color:green" %)**9600** 178 +* Data bits:** (% style="color:green" %)8(%%)** 179 +* Stop bits: (% style="color:green" %)**1** 180 +* Parity: (% style="color:green" %)**None** 181 +* Flow Control: (% style="color:green" %)**None** 159 159 183 +((( 184 +Make sure the switch is in FLASH position, then power on device by connecting the jumper on NSE01. NSE01 will output system info once power on as below, we can enter the (% style="color:green" %)**password: 12345678**(%%) to access AT Command input. 185 +))) 160 160 161 - === 2.3.1 MOD~=0(Default Mode) ===187 +[[image:image-20220708110657-3.png]] 162 162 163 -LSE01 will uplink payload via LoRaWAN with below payload format: 164 - 165 165 ((( 166 - Uplinkpayload includestotal11 bytes.190 +(% style="color:red" %)Note: the valid AT Commands can be found at: (%%)[[http:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/]] 167 167 ))) 168 168 169 -(% border="1" cellspacing="10" style="background-color:#ffffcc; width:500px" %) 170 -|((( 171 -**Size** 172 172 173 -**(bytes)** 174 -)))|**2**|**2**|**2**|**2**|**2**|**1** 175 -|**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|((( 176 -Temperature 177 177 178 -(Reserve, Ignore now) 179 -)))|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]]|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]]|((( 180 -MOD & Digital Interrupt 195 +=== 2.2.4 Use CoAP protocol to uplink data === 181 181 182 -(Optional) 183 -))) 197 +(% style="color:red" %)Note: if you don't have CoAP server, you can refer this link to set up one: (%%)[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/>>http://wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/]] 184 184 185 -=== 2.3.2 MOD~=1(Original value) === 186 186 187 - Thismodecan get the originalAD valueof moisture and original conductivity (withtemperature driftcompensation).200 +**Use below commands:** 188 188 189 -(% border="1"cellspacing="10"style="background-color:#ffffcc;width:500px"%)190 - |(((191 -** Size**202 +* (% style="color:blue" %)**AT+PRO=1** (%%) ~/~/ Set to use CoAP protocol to uplink 203 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5683 ** (%%)~/~/ to set CoAP server address and port 204 +* (% style="color:blue" %)**AT+URI=5,11,"mqtt",11,"coap",12,"0",15,"c=text1",23,"0" ** (%%) ~/~/Set COAP resource path 192 192 193 -**(bytes)** 194 -)))|**2**|**2**|**2**|**2**|**2**|**1** 195 -|**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|((( 196 -Temperature 206 +For parameter description, please refer to AT command set 197 197 198 -(Reserve, Ignore now) 199 -)))|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]](raw)|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]](raw)|((( 200 -MOD & Digital Interrupt 208 +[[image:1657249793983-486.png]] 201 201 202 -(Optional) 203 -))) 204 204 205 - ===2.3.3BatteryInfo===211 +After configure the server address and (% style="color:green" %)**reset the device**(%%) (via AT+ATZ ), NSE01 will start to uplink sensor values to CoAP server. 206 206 207 -((( 208 -Check the battery voltage for LSE01. 209 -))) 213 +[[image:1657249831934-534.png]] 210 210 211 -((( 212 -Ex1: 0x0B45 = 2885mV 213 -))) 214 214 215 -((( 216 -Ex2: 0x0B49 = 2889mV 217 -))) 218 218 217 +=== 2.2.5 Use UDP protocol to uplink data(Default protocol) === 219 219 219 +This feature is supported since firmware version v1.0.1 220 220 221 -=== 2.3.4 Soil Moisture === 222 222 223 -(( (224 - Getthemoisturententof the soil. The valuerange of the register is 0-10000(Decimal),dividethisvalueby100togetthepercentageof moistureinthe soil.225 -)) )222 +* (% style="color:blue" %)**AT+PRO=2 ** (%%) ~/~/ Set to use UDP protocol to uplink 223 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5601 ** (%%) ~/~/ to set UDP server address and port 224 +* (% style="color:blue" %)**AT+CFM=1 ** (%%) ~/~/If the server does not respond, this command is unnecessary 226 226 227 -((( 228 -For example, if the data you get from the register is __0x05 0xDC__, the moisture content in the soil is 229 -))) 226 +[[image:1657249864775-321.png]] 230 230 231 -((( 232 - 233 -))) 234 234 235 -((( 236 -(% style="color:#4f81bd" %)**05DC(H) = 1500(D) /100 = 15%.** 237 -))) 229 +[[image:1657249930215-289.png]] 238 238 239 239 240 240 241 -=== 2. 3.5SoilTemperature===233 +=== 2.2.6 Use MQTT protocol to uplink data === 242 242 243 -((( 244 - Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is 0x09 0xEC, the temperature content in the soil is 245 -))) 235 +This feature is supported since firmware version v110 246 246 247 -((( 248 -**Example**: 249 -))) 250 250 251 -((( 252 -If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/100 = 2.61 °C 253 -))) 238 +* (% style="color:blue" %)**AT+PRO=3 ** (%%) ~/~/Set to use MQTT protocol to uplink 239 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,1883 ** (%%) ~/~/Set MQTT server address and port 240 +* (% style="color:blue" %)**AT+CLIENT=CLIENT ** (%%)~/~/Set up the CLIENT of MQTT 241 +* (% style="color:blue" %)**AT+UNAME=UNAME **(%%)~/~/Set the username of MQTT 242 +* (% style="color:blue" %)**AT+PWD=PWD **(%%)~/~/Set the password of MQTT 243 +* (% style="color:blue" %)**AT+PUBTOPIC=NSE01_PUB **(%%)~/~/Set the sending topic of MQTT 244 +* (% style="color:blue" %)**AT+SUBTOPIC=NSE01_SUB **(%%) ~/~/Set the subscription topic of MQTT 254 254 255 -((( 256 -If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C 257 -))) 246 +[[image:1657249978444-674.png]] 258 258 259 259 249 +[[image:1657249990869-686.png]] 260 260 261 -=== 2.3.6 Soil Conductivity (EC) === 262 262 263 263 ((( 264 - Obtain(% style="color:#4f81bd"%)**__solublesaltconcentration__**(%%)in soil or(% style="color:#4f81bd" %)**__solubleion concentrationinliquidfertilizer__**(%%)or(% style="color:#4f81bd"%)**__plantingmedium__**(%%).Thevaluerangeoftheregisters0-20000(Decimal)( Canbegreaterthan 20000).253 +MQTT protocol has a much higher power consumption compare vs UDP / CoAP protocol. Please check the power analyze document and adjust the uplink period to a suitable interval. 265 265 ))) 266 266 267 -((( 268 -For example, if the data you get from the register is 0x00 0xC8, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm. 269 -))) 270 270 271 -((( 272 -Generally, the EC value of irrigation water is less than 800uS / cm. 273 -))) 274 274 275 -((( 276 - 277 -))) 258 +=== 2.2.7 Use TCP protocol to uplink data === 278 278 279 -((( 280 - 281 -))) 260 +This feature is supported since firmware version v110 282 282 283 -=== 2.3.7 MOD === 284 284 285 -Firmware version at least v2.1 supports changing mode. 263 +* (% style="color:blue" %)**AT+PRO=4 ** (%%) ~/~/ Set to use TCP protocol to uplink 264 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5600 **(%%) ~/~/ to set TCP server address and port 286 286 287 - For example, bytes[10]=90266 +[[image:1657250217799-140.png]] 288 288 289 -mod=(bytes[10]>>7)&0x01=1. 290 290 269 +[[image:1657250255956-604.png]] 291 291 292 -**Downlink Command:** 293 293 294 -If payload = 0x0A00, workmode=0 295 295 296 - If** **payload=****0x0A01,workmode=1273 +=== 2.2.8 Change Update Interval === 297 297 275 +User can use below command to change the (% style="color:green" %)**uplink interval**. 298 298 277 +* (% style="color:blue" %)**AT+TDC=600 ** (%%)~/~/ Set Update Interval to 600s 299 299 300 -=== 2.3.8 Decode payload in The Things Network === 279 +((( 280 +(% style="color:red" %)**NOTE:** 281 +))) 301 301 302 -While using TTN network, you can add the payload format to decode the payload. 283 +((( 284 +(% style="color:red" %)1. By default, the device will send an uplink message every 1 hour. 285 +))) 303 303 304 304 305 -[[image:1654505570700-128.png]] 306 306 307 -((( 308 -The payload decoder function for TTN is here: 309 -))) 289 +== 2.3 Uplink Payload == 310 310 291 +In this mode, uplink payload includes in total 18 bytes 292 + 293 +(% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:510px" %) 294 +|=(% style="width: 60px;" %)((( 295 +**Size(bytes)** 296 +)))|=(% style="width: 50px;" %)**6**|=(% style="width: 25px;" %)2|=(% style="width: 25px;" %)**2**|=(% style="width: 70px;" %)**1**|=(% style="width: 60px;" %)**2**|=(% style="width: 80px;" %)**2**|=(% style="width: 90px;" %)**2**|=(% style="width: 50px;" %)**1** 297 +|(% style="width:97px" %)**Value**|(% style="width:83px" %)[[Device ID>>||anchor="H2.4.1A0A0DeviceID"]]|(% style="width:41px" %)[[Ver>>||anchor="H2.4.2A0VersionInfo"]]|(% style="width:46px" %)[[BAT>>||anchor="H2.4.3A0BatteryInfo"]]|(% style="width:123px" %)[[Signal Strength>>||anchor="H2.4.4A0SignalStrength"]]|(% style="width:108px" %)[[Soil Moisture>>||anchor="H2.4.5A0SoilMoisture"]]|(% style="width:133px" %)[[Soil Temperature>>||anchor="H2.4.6A0SoilTemperature"]]|(% style="width:159px" %)[[Soil Conductivity(EC)>>||anchor="H2.4.7A0SoilConductivity28EC29"]]|(% style="width:80px" %)[[Interrupt>>||anchor="H2.4.8A0DigitalInterrupt"]] 298 + 311 311 ((( 312 - LSE01TTNPayloadDecoder:[[https:~~/~~/www.dropbox.com/sh/si8icbrjlamxqdb/AAACYwjsxxr5fj_vpqRtrETAa?dl=0>>https://www.dropbox.com/sh/si8icbrjlamxqdb/AAACYwjsxxr5fj_vpqRtrETAa?dl=0]]300 +If we use the MQTT client to subscribe to this MQTT topic, we can see the following information when the NSE01 uplink data. 313 313 ))) 314 314 315 315 316 - ==2.4Uplink Interval ==304 +[[image:image-20220708111918-4.png]] 317 317 318 -The LSE01 by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link: [[Change Uplink Interval>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H4.1ChangeUplinkInterval"]] 319 319 307 +The payload is ASCII string, representative same HEX: 320 320 309 +0x72403155615900640c7817075e0a8c02f900 where: 321 321 322 -== 2.5 Downlink Payload == 311 +* Device ID: 0x 724031556159 = 724031556159 312 +* Version: 0x0064=100=1.0.0 323 323 324 -By default, LSE50 prints the downlink payload to console port. 314 +* BAT: 0x0c78 = 3192 mV = 3.192V 315 +* Singal: 0x17 = 23 316 +* Soil Moisture: 0x075e= 1886 = 18.86 % 317 +* Soil Temperature:0x0a8c =2700=27 °C 318 +* Soil Conductivity(EC) = 0x02f9 =761 uS /cm 319 +* Interrupt: 0x00 = 0 325 325 326 - [[image:image-20220606165544-8.png]]321 +== 2.4 Payload Explanation and Sensor Interface == 327 327 328 328 324 +=== 2.4.1 Device ID === 325 + 329 329 ((( 330 - **Examples:**327 +By default, the Device ID equal to the last 6 bytes of IMEI. 331 331 ))) 332 332 333 333 ((( 334 - 331 +User can use (% style="color:blue" %)**AT+DEUI**(%%) to set Device ID 335 335 ))) 336 336 337 - *(((338 -** Set TDC**334 +((( 335 +**Example:** 339 339 ))) 340 340 341 341 ((( 342 -I f the payload=0100003C, it means set the END Node’s TDC to 0x00003C=60(S), while type code is 01.339 +AT+DEUI=A84041F15612 343 343 ))) 344 344 345 345 ((( 346 - Payload:0100001ETDC=30S343 +The Device ID is stored in a none-erase area, Upgrade the firmware or run AT+FDR won't erase Device ID. 347 347 ))) 348 348 346 + 347 + 348 +=== 2.4.2 Version Info === 349 + 349 349 ((( 350 - Payload:003CTDC=60S351 +Specify the software version: 0x64=100, means firmware version 1.00. 351 351 ))) 352 352 353 353 ((( 354 - 355 +For example: 0x00 64 : this device is NSE01 with firmware version 1.0.0. 355 355 ))) 356 356 357 -* ((( 358 -**Reset** 358 + 359 + 360 +=== 2.4.3 Battery Info === 361 + 362 +((( 363 +Check the battery voltage for LSE01. 359 359 ))) 360 360 361 361 ((( 362 - Ifpayload =0x04FF,itwill reset the LSE01367 +Ex1: 0x0B45 = 2885mV 363 363 ))) 364 364 370 +((( 371 +Ex2: 0x0B49 = 2889mV 372 +))) 365 365 366 -* **CFM** 367 367 368 -Downlink Payload: 05000001, Set AT+CFM=1 or 05000000 , set AT+CFM=0 369 369 376 +=== 2.4.4 Signal Strength === 370 370 378 +((( 379 +NB-IoT Network signal Strength. 380 +))) 371 371 372 -== 2.6 Show Data in DataCake IoT Server == 382 +((( 383 +**Ex1: 0x1d = 29** 384 +))) 373 373 374 374 ((( 375 - [[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface toshow the sensordata, once we have data in TTN, we canuse[[DATACAKE>>url:https://datacake.co/]]toconnecttoTTNandseethedata in DATACAKE.Belowaretheteps:387 +(% style="color:blue" %)**0**(%%) -113dBm or less 376 376 ))) 377 377 378 378 ((( 379 - 391 +(% style="color:blue" %)**1**(%%) -111dBm 380 380 ))) 381 381 382 382 ((( 383 -(% style="color:blue" %)** Step 1**(%%):Be sure that yourdevice is programmedandproperly connected to the network at this time.395 +(% style="color:blue" %)**2...30**(%%) -109dBm... -53dBm 384 384 ))) 385 385 386 386 ((( 387 -(% style="color:blue" %)** Step 2**(%%):Toconfigurethe Application to forwarddata toDATACAKE you will need to add integration.To add the DATACAKE integration, perform the following steps:399 +(% style="color:blue" %)**31** (%%) -51dBm or greater 388 388 ))) 389 389 402 +((( 403 +(% style="color:blue" %)**99** (%%) Not known or not detectable 404 +))) 390 390 391 -[[image:1654505857935-743.png]] 392 392 393 393 394 - [[image:1654505874829-548.png]]408 +=== 2.4.5 Soil Moisture === 395 395 410 +((( 411 +((( 412 +Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil. 413 +))) 414 +))) 396 396 397 -(% style="color:blue" %)**Step 3**(%%)**:** Create an account or log in Datacake. 416 +((( 417 +((( 418 +For example, if the data you get from the register is **__0x05 0xDC__**, the moisture content in the soil is 419 +))) 420 +))) 398 398 399 -(% style="color:blue" %)**Step 4**(%%)**:** Search the LSE01 and add DevEUI. 422 +((( 423 + 424 +))) 400 400 426 +((( 427 +(% style="color:#4f81bd" %)**05DC(H) = 1500(D) /100 = 15%.** 428 +))) 401 401 402 -[[image:1654505905236-553.png]] 403 403 404 404 405 - Afteradded,thesensordata arriveTTN, it will also arrive and show in Mydevices.432 +=== 2.4.6 Soil Temperature === 406 406 407 -[[image:1654505925508-181.png]] 434 +((( 435 +Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is __**0x09 0xEC**__, the temperature content in the soil is 436 +))) 408 408 438 +((( 439 +**Example**: 440 +))) 409 409 442 +((( 443 +If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/100 = 2.61 °C 444 +))) 410 410 411 -== 2.7 Frequency Plans == 446 +((( 447 +If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C 448 +))) 412 412 413 -The LSE01 uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets. 414 414 415 415 416 -=== 2. 7.1 EU863-870(EU868) ===452 +=== 2.4.7 Soil Conductivity (EC) === 417 417 418 -(% style="color:#037691" %)** Uplink:** 454 +((( 455 +Obtain (% style="color:#4f81bd" %)**__soluble salt concentration__**(%%) in soil or (% style="color:#4f81bd" %)**__soluble ion concentration in liquid fertilizer__**(%%) or (% style="color:#4f81bd" %)**__planting medium__**(%%). The value range of the register is 0 - 20000(Decimal)( Can be greater than 20000). 456 +))) 419 419 420 -868.1 - SF7BW125 to SF12BW125 458 +((( 459 +For example, if the data you get from the register is __**0x00 0xC8**__, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm. 460 +))) 421 421 422 -868.3 - SF7BW125 to SF12BW125 and SF7BW250 462 +((( 463 +Generally, the EC value of irrigation water is less than 800uS / cm. 464 +))) 423 423 424 -868.5 - SF7BW125 to SF12BW125 466 +((( 467 + 468 +))) 425 425 426 -867.1 - SF7BW125 to SF12BW125 470 +((( 471 + 472 +))) 427 427 428 - 867.3- SF7BW125toSF12BW125474 +=== 2.4.8 Digital Interrupt === 429 429 430 -867.5 - SF7BW125 to SF12BW125 476 +((( 477 +Digital Interrupt refers to pin (% style="color:blue" %)**GPIO_EXTI**(%%), and there are different trigger methods. When there is a trigger, the NSE01 will send a packet to the server. 478 +))) 431 431 432 -867.7 - SF7BW125 to SF12BW125 480 +((( 481 +The command is: 482 +))) 433 433 434 -867.9 - SF7BW125 to SF12BW125 484 +((( 485 +(% style="color:blue" %)**AT+INTMOD=3 **(%%) ~/~/(more info about INMOD please refer [[**AT Command Manual**>>url:https://www.dragino.com/downloads/downloads/NB-IoT/NBSN95/DRAGINO_NBSN95-NB_AT%20Commands_v1.1.0.pdf]])**.** 486 +))) 435 435 436 -868.8 - FSK 437 437 489 +((( 490 +The lower four bits of this data field shows if this packet is generated by interrupt or not. Click here for the hardware and software set up. 491 +))) 438 438 439 -(% style="color:#037691" %)** Downlink:** 440 440 441 -Uplink channels 1-9 (RX1) 494 +((( 495 +Example: 496 +))) 442 442 443 -869.525 - SF9BW125 (RX2 downlink only) 498 +((( 499 +0x(00): Normal uplink packet. 500 +))) 444 444 502 +((( 503 +0x(01): Interrupt Uplink Packet. 504 +))) 445 445 446 446 447 -=== 2.7.2 US902-928(US915) === 448 448 449 - UsedinUSA,Canada and South America. Defaultuse CHE=2508 +=== 2.4.9 +5V Output === 450 450 451 -(% style="color:#037691" %)**Uplink:** 510 +((( 511 +NSE01 will enable +5V output before all sampling and disable the +5v after all sampling. 512 +))) 452 452 453 -903.9 - SF7BW125 to SF10BW125 454 454 455 -904.1 - SF7BW125 to SF10BW125 515 +((( 516 +The 5V output time can be controlled by AT Command. 517 +))) 456 456 457 -904.3 - SF7BW125 to SF10BW125 519 +((( 520 +(% style="color:blue" %)**AT+5VT=1000** 521 +))) 458 458 459 -904.5 - SF7BW125 to SF10BW125 523 +((( 524 +Means set 5V valid time to have 1000ms. So the real 5V output will actually have 1000ms + sampling time for other sensors. 525 +))) 460 460 461 -904.7 - SF7BW125 to SF10BW125 462 462 463 -904.9 - SF7BW125 to SF10BW125 464 464 465 - 905.1- SF7BW125toSF10BW125529 +== 2.5 Downlink Payload == 466 466 467 - 905.3-SF7BW125toSF10BW125531 +By default, NSE01 prints the downlink payload to console port. 468 468 533 +[[image:image-20220708133731-5.png]] 469 469 470 -(% style="color:#037691" %)**Downlink:** 471 471 472 -923.3 - SF7BW500 to SF12BW500 536 +((( 537 +(% style="color:blue" %)**Examples:** 538 +))) 473 473 474 -923.9 - SF7BW500 to SF12BW500 540 +((( 541 + 542 +))) 475 475 476 -924.5 - SF7BW500 to SF12BW500 544 +* ((( 545 +(% style="color:blue" %)**Set TDC** 546 +))) 477 477 478 -925.1 - SF7BW500 to SF12BW500 548 +((( 549 +If the payload=0100003C, it means set the END Node's TDC to 0x00003C=60(S), while type code is 01. 550 +))) 479 479 480 -925.7 - SF7BW500 to SF12BW500 552 +((( 553 +Payload: 01 00 00 1E TDC=30S 554 +))) 481 481 482 -926.3 - SF7BW500 to SF12BW500 556 +((( 557 +Payload: 01 00 00 3C TDC=60S 558 +))) 483 483 484 -926.9 - SF7BW500 to SF12BW500 560 +((( 561 + 562 +))) 485 485 486 -927.5 - SF7BW500 to SF12BW500 564 +* ((( 565 +(% style="color:blue" %)**Reset** 566 +))) 487 487 488 -923.3 - SF12BW500(RX2 downlink only) 568 +((( 569 +If payload = 0x04FF, it will reset the NSE01 570 +))) 489 489 490 490 573 +* (% style="color:blue" %)**INTMOD** 491 491 492 -=== 2.7.3 CN470-510 (CN470) === 575 +((( 576 +Downlink Payload: 06000003, Set AT+INTMOD=3 577 +))) 493 493 494 -Used in China, Default use CHE=1 495 495 496 -(% style="color:#037691" %)**Uplink:** 497 497 498 - 486.3- SF7BW125toSF12BW125581 +== 2.6 LED Indicator == 499 499 500 -486.5 - SF7BW125 to SF12BW125 583 +((( 584 +The NSE01 has an internal LED which is to show the status of different state. 501 501 502 -486.7 - SF7BW125 to SF12BW125 503 503 504 -486.9 - SF7BW125 to SF12BW125 587 +* When power on, NSE01 will detect if sensor probe is connected, if probe detected, LED will blink four times. (no blinks in this step is no probe) 588 +* Then the LED will be on for 1 second means device is boot normally. 589 +* After NSE01 join NB-IoT network. The LED will be ON for 3 seconds. 590 +* For each uplink probe, LED will be on for 500ms. 591 +))) 505 505 506 -487.1 - SF7BW125 to SF12BW125 507 507 508 -487.3 - SF7BW125 to SF12BW125 509 509 510 -487.5 - SF7BW125 to SF12BW125 511 511 512 - 487.7- SF7BW125to SF12BW125596 +== 2.7 Installation in Soil == 513 513 598 +__**Measurement the soil surface**__ 514 514 515 -(% style="color:#037691" %)**Downlink:** 600 +((( 601 +Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting. [[https:~~/~~/img.alicdn.com/imgextra/i3/2005165265/O1CN010rj9Oh1olPsQxrdUK_!!2005165265.jpg>>url:https://img.alicdn.com/imgextra/i3/2005165265/O1CN010rj9Oh1olPsQxrdUK_!!2005165265.jpg]] 602 +))) 516 516 517 - 506.7- SF7BW125to SF12BW125604 +[[image:1657259653666-883.png]] 518 518 519 -506.9 - SF7BW125 to SF12BW125 520 520 521 -507.1 - SF7BW125 to SF12BW125 607 +((( 608 + 522 522 523 -507.3 - SF7BW125 to SF12BW125 610 +((( 611 +Dig a hole with diameter > 20CM. 612 +))) 524 524 525 -507.5 - SF7BW125 to SF12BW125 614 +((( 615 +Horizontal insert the probe to the soil and fill the hole for long term measurement. 616 +))) 617 +))) 526 526 527 -50 7.7-SF7BW125 to SF12BW125619 +[[image:1654506665940-119.png]] 528 528 529 -507.9 - SF7BW125 to SF12BW125 621 +((( 622 + 623 +))) 530 530 531 -508.1 - SF7BW125 to SF12BW125 532 532 533 - 505.3- SF12BW125(RX2 downlinkonly)626 +== 2.8 Firmware Change Log == 534 534 535 535 629 +Download URL & Firmware Change log 536 536 537 - === 2.7.4 AU915-928(AU915)===631 +[[www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/Firmware/]] 538 538 539 -Default use CHE=2 540 540 541 - (%style="color:#037691"%)**Uplink:**634 +Upgrade Instruction: [[Upgrade_Firmware>>||anchor="H5.1200BHowtoUpgradeFirmware"]] 542 542 543 -916.8 - SF7BW125 to SF12BW125 544 544 545 -917.0 - SF7BW125 to SF12BW125 546 546 547 - 917.2- SF7BW125toSF12BW125638 +== 2.9 Battery Analysis == 548 548 549 -9 17.4 - SF7BW125toSF12BW125640 +=== 2.9.1 Battery Type === 550 550 551 -917.6 - SF7BW125 to SF12BW125 552 552 553 -917.8 - SF7BW125 to SF12BW125 554 - 555 -918.0 - SF7BW125 to SF12BW125 556 - 557 -918.2 - SF7BW125 to SF12BW125 558 - 559 - 560 -(% style="color:#037691" %)**Downlink:** 561 - 562 -923.3 - SF7BW500 to SF12BW500 563 - 564 -923.9 - SF7BW500 to SF12BW500 565 - 566 -924.5 - SF7BW500 to SF12BW500 567 - 568 -925.1 - SF7BW500 to SF12BW500 569 - 570 -925.7 - SF7BW500 to SF12BW500 571 - 572 -926.3 - SF7BW500 to SF12BW500 573 - 574 -926.9 - SF7BW500 to SF12BW500 575 - 576 -927.5 - SF7BW500 to SF12BW500 577 - 578 -923.3 - SF12BW500(RX2 downlink only) 579 - 580 - 581 - 582 -=== 2.7.5 AS920-923 & AS923-925 (AS923) === 583 - 584 -(% style="color:#037691" %)**Default Uplink channel:** 585 - 586 -923.2 - SF7BW125 to SF10BW125 587 - 588 -923.4 - SF7BW125 to SF10BW125 589 - 590 - 591 -(% style="color:#037691" %)**Additional Uplink Channel**: 592 - 593 -(OTAA mode, channel added by JoinAccept message) 594 - 595 -(% style="color:#037691" %)**AS920~~AS923 for Japan, Malaysia, Singapore**: 596 - 597 -922.2 - SF7BW125 to SF10BW125 598 - 599 -922.4 - SF7BW125 to SF10BW125 600 - 601 -922.6 - SF7BW125 to SF10BW125 602 - 603 -922.8 - SF7BW125 to SF10BW125 604 - 605 -923.0 - SF7BW125 to SF10BW125 606 - 607 -922.0 - SF7BW125 to SF10BW125 608 - 609 - 610 -(% style="color:#037691" %)**AS923 ~~ AS925 for Brunei, Cambodia, Hong Kong, Indonesia, Laos, Taiwan, Thailand, Vietnam**: 611 - 612 -923.6 - SF7BW125 to SF10BW125 613 - 614 -923.8 - SF7BW125 to SF10BW125 615 - 616 -924.0 - SF7BW125 to SF10BW125 617 - 618 -924.2 - SF7BW125 to SF10BW125 619 - 620 -924.4 - SF7BW125 to SF10BW125 621 - 622 -924.6 - SF7BW125 to SF10BW125 623 - 624 - 625 -(% style="color:#037691" %)** Downlink:** 626 - 627 -Uplink channels 1-8 (RX1) 628 - 629 -923.2 - SF10BW125 (RX2) 630 - 631 - 632 - 633 -=== 2.7.6 KR920-923 (KR920) === 634 - 635 -Default channel: 636 - 637 -922.1 - SF7BW125 to SF12BW125 638 - 639 -922.3 - SF7BW125 to SF12BW125 640 - 641 -922.5 - SF7BW125 to SF12BW125 642 - 643 - 644 -(% style="color:#037691" %)**Uplink: (OTAA mode, channel added by JoinAccept message)** 645 - 646 -922.1 - SF7BW125 to SF12BW125 647 - 648 -922.3 - SF7BW125 to SF12BW125 649 - 650 -922.5 - SF7BW125 to SF12BW125 651 - 652 -922.7 - SF7BW125 to SF12BW125 653 - 654 -922.9 - SF7BW125 to SF12BW125 655 - 656 -923.1 - SF7BW125 to SF12BW125 657 - 658 -923.3 - SF7BW125 to SF12BW125 659 - 660 - 661 -(% style="color:#037691" %)**Downlink:** 662 - 663 -Uplink channels 1-7(RX1) 664 - 665 -921.9 - SF12BW125 (RX2 downlink only; SF12BW125 might be changed to SF9BW125) 666 - 667 - 668 - 669 -=== 2.7.7 IN865-867 (IN865) === 670 - 671 -(% style="color:#037691" %)** Uplink:** 672 - 673 -865.0625 - SF7BW125 to SF12BW125 674 - 675 -865.4025 - SF7BW125 to SF12BW125 676 - 677 -865.9850 - SF7BW125 to SF12BW125 678 - 679 - 680 -(% style="color:#037691" %) **Downlink:** 681 - 682 -Uplink channels 1-3 (RX1) 683 - 684 -866.550 - SF10BW125 (RX2) 685 - 686 - 687 - 688 - 689 -== 2.8 LED Indicator == 690 - 691 -The LSE01 has an internal LED which is to show the status of different state. 692 - 693 -* Blink once when device power on. 694 -* Solid ON for 5 seconds once device successful Join the network. 695 -* Blink once when device transmit a packet. 696 - 697 - 698 -== 2.9 Installation in Soil == 699 - 700 -**Measurement the soil surface** 701 - 702 - 703 -[[image:1654506634463-199.png]] 704 - 705 705 ((( 706 -((( 707 -Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting. 644 +The NSE01 battery is a combination of an 8500mAh Li/SOCI2 Battery and a Super Capacitor. The battery is none-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter. 708 708 ))) 709 -))) 710 710 711 711 712 - 713 -[[image:1654506665940-119.png]] 714 - 715 715 ((( 716 - Dig aholewithdiameter>20CM.649 +The battery is designed to last for several years depends on the actually use environment and update interval. 717 717 ))) 718 718 719 -((( 720 -Horizontal insert the probe to the soil and fill the hole for long term measurement. 721 -))) 722 722 723 - 724 -== 2.10 Firmware Change Log == 725 - 726 726 ((( 727 - **Firmware downloadlink:**654 +The battery related documents as below: 728 728 ))) 729 729 730 - (((731 -[[ http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/]]732 - )))657 +* [[Battery Dimension>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]] 658 +* [[Lithium-Thionyl Chloride Battery datasheet>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]] 659 +* [[Lithium-ion Battery-Capacitor datasheet>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]] 733 733 734 734 ((( 735 - 662 +[[image:image-20220708140453-6.png]] 736 736 ))) 737 737 738 -((( 739 -**Firmware Upgrade Method: **[[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome]] 740 -))) 741 741 742 -((( 743 - 744 -))) 745 745 746 -((( 747 -**V1.0.** 748 -))) 667 +=== 2.9.2 Power consumption Analyze === 749 749 750 750 ((( 751 - Release670 +Dragino battery powered product are all runs in Low Power mode. We have an update battery calculator which base on the measurement of the real device. User can use this calculator to check the battery life and calculate the battery life if want to use different transmit interval. 752 752 ))) 753 753 754 754 755 -== 2.11 Battery Analysis == 756 - 757 -=== 2.11.1 Battery Type === 758 - 759 759 ((( 760 - The LSE01 battery is a combination of a 4000mAh Li/SOCI2 Battery and a Super Capacitor. The batteryis non-rechargeablebattery type with a lowdischargerate (<2% per year). Thistype ofbattery is commonly used in IoT devices such aswater meter.675 +Instruction to use as below: 761 761 ))) 762 762 763 763 ((( 764 - Thebatterys designedlastforrethan5 years fortheSN50.679 +(% style="color:blue" %)**Step 1: **(%%)Downlink the up-to-date DRAGINO_Battery_Life_Prediction_Table.xlsx from: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/]] 765 765 ))) 766 766 682 + 767 767 ((( 768 -((( 769 -The battery-related documents are as below: 684 +(% style="color:blue" %)**Step 2: **(%%) Open it and choose 770 770 ))) 771 -))) 772 772 773 773 * ((( 774 - [[Battery Dimension>>url:http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/&file=LSN50-Battery-Dimension.pdf]],688 +Product Model 775 775 ))) 776 776 * ((( 777 - [[Lithium-ThionylChloride Battery datasheet>>url:https://www.dragino.com/downloads/downloads/datasheet/Battery/ER26500/ER26500_Datasheet-EN.pdf]],691 +Uplink Interval 778 778 ))) 779 779 * ((( 780 - [[Lithium-ion Battery-Capacitor datasheet>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC_1520_datasheet.jpg]],[[Tech Spec>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC1520%20Technical%20Specification20171123.pdf]]694 +Working Mode 781 781 ))) 782 782 783 - [[image:image-20220610172436-1.png]] 697 +((( 698 +And the Life expectation in difference case will be shown on the right. 699 +))) 784 784 701 +[[image:image-20220708141352-7.jpeg]] 785 785 786 786 787 -=== 2.11.2 Battery Note === 788 788 705 +=== 2.9.3 Battery Note === 706 + 789 789 ((( 790 790 The Li-SICO battery is designed for small current / long period application. It is not good to use a high current, short period transmit method. The recommended minimum period for use of this battery is 5 minutes. If you use a shorter period time to transmit LoRa, then the battery life may be decreased. 791 791 ))) ... ... @@ -792,298 +792,176 @@ 792 792 793 793 794 794 795 -=== 2. 11.3Replace the battery ===713 +=== 2.9.4 Replace the battery === 796 796 797 797 ((( 798 - IfBattery is lower than 2.7v,usershouldreplace the battery ofLSE01.716 +The default battery pack of NSE01 includes a ER26500 plus super capacitor. If user can't find this pack locally, they can find ER26500 or equivalence without the SPC1520 capacitor, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes). 799 799 ))) 800 800 719 + 720 + 721 += 3. Access NB-IoT Module = 722 + 801 801 ((( 802 - You can changethe battery in the LSE01.The type of battery isnot limitedas longas the outputis between 3v to 3.6v. On the main board, there is a diode (D1) between the battery and the maincircuit. If you need to use a battery with lessthan 3.3v, pleaseremovethe D1and shortcut thewopadsofitso therewon’tbe voltage drop between battery andmain board.724 +Users can directly access the AT command set of the NB-IoT module. 803 803 ))) 804 804 805 805 ((( 806 -The defaultbattery packof LSE01 includesa ER18505 plussupercapacitor.Ifusercan’tfind this pack locally, theycan find ER18505orequivalence,whichwillalsoworkinmostcase.The SPC can enlargethebattery lifeforigh frequency use(updateperiod below5minutes)728 +The AT Command set can refer the BC35-G NB-IoT Module AT Command: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=datasheet/other_vendors/BC35-G/>>url:https://www.dragino.com/downloads/index.php?dir=datasheet/other_vendors/BC35-G/]] 807 807 ))) 808 808 731 +[[image:1657261278785-153.png]] 809 809 810 810 811 -= 3. Using the AT Commands = 812 812 813 -= =3.1AccessAT Commands ==735 += 4. Using the AT Commands = 814 814 737 +== 4.1 Access AT Commands == 815 815 816 - LSE01supportsATCommandsetn the stock firmware.Youcanuse a USB toTTLadaptertoconnect to LSE01forusing ATcommand,asbelow.739 +See this link for detail: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/]] 817 817 818 -[[image:1654501986557-872.png||height="391" width="800"]] 819 819 742 +AT+<CMD>? : Help on <CMD> 820 820 821 - Orifyouhavebelowboard,usebelowconnection:744 +AT+<CMD> : Run <CMD> 822 822 746 +AT+<CMD>=<value> : Set the value 823 823 824 - [[image:1654502005655-729.png||height="503"width="801"]]748 +AT+<CMD>=? : Get the value 825 825 826 826 827 - 828 -In the PC, you need to set the serial baud rate to (% style="color:green" %)**9600**(%%) to access the serial console for LSE01. LSE01 will output system info once power on as below: 829 - 830 - 831 - [[image:1654502050864-459.png||height="564" width="806"]] 832 - 833 - 834 -Below are the available commands, a more detailed AT Command manual can be found at [[AT Command Manual>>https://www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0]]: [[https:~~/~~/www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0>>https://www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0]] 835 - 836 - 837 -(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>? **(%%) : Help on <CMD> 838 - 839 -(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD> **(%%) : Run <CMD> 840 - 841 -(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>=<value>**(%%) : Set the value 842 - 843 -(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>=?**(%%) : Get the value 844 - 845 - 846 846 (% style="color:#037691" %)**General Commands**(%%) 847 847 848 - (% style="background-color:#dcdcdc" %)**AT**(%%): Attention753 +AT : Attention 849 849 850 - (% style="background-color:#dcdcdc" %)**AT?**(%%): Short Help755 +AT? : Short Help 851 851 852 - (% style="background-color:#dcdcdc" %)**ATZ**(%%): MCU Reset757 +ATZ : MCU Reset 853 853 854 - (% style="background-color:#dcdcdc" %)**AT+TDC**(%%): Application Data Transmission Interval759 +AT+TDC : Application Data Transmission Interval 855 855 761 +AT+CFG : Print all configurations 856 856 857 - (%style="color:#037691"%)**Keys,IDsand EUIs management**763 +AT+CFGMOD : Working mode selection 858 858 859 - (% style="background-color:#dcdcdc" %)**AT+APPEUI**(%%)ApplicationEUI765 +AT+INTMOD : Set the trigger interrupt mode 860 860 861 - (% style="background-color:#dcdcdc" %)**AT+APPKEY**(%%)ApplicationKey767 +AT+5VT : Set extend the time of 5V power 862 862 863 - (% style="background-color:#dcdcdc" %)**AT+APPSKEY**(%%)Application Session Key769 +AT+PRO : Choose agreement 864 864 865 - (% style="background-color:#dcdcdc" %)**AT+DADDR**(%%)DeviceAddress771 +AT+WEIGRE : Get weight or set weight to 0 866 866 867 - (% style="background-color:#dcdcdc" %)**AT+DEUI**(%%)DeviceEUI773 +AT+WEIGAP : Get or Set the GapValue of weight 868 868 869 - (% style="background-color:#dcdcdc" %)**AT+NWKID**(%%):NetworkID(Youcanenterthiscommandchangeonlyaftersuccessful networkconnection)775 +AT+RXDL : Extend the sending and receiving time 870 870 871 - (% style="background-color:#dcdcdc" %)**AT+NWKSKEY**(%%)NetworkSession KeyJoining and sending dateon LoRa network777 +AT+CNTFAC : Get or set counting parameters 872 872 873 - (% style="background-color:#dcdcdc" %)**AT+CFM**(%%)ConfirmMode779 +AT+SERVADDR : Server Address 874 874 875 -(% style="background-color:#dcdcdc" %)**AT+CFS**(%%) : Confirm Status 876 876 877 -(% style=" background-color:#dcdcdc" %)**AT+JOIN**(%%): JoinLoRa? Network782 +(% style="color:#037691" %)**COAP Management** 878 878 879 - (% style="background-color:#dcdcdc" %)**AT+NJM**(%%)LoRa? Network Join Mode784 +AT+URI : Resource parameters 880 880 881 -(% style="background-color:#dcdcdc" %)**AT+NJS**(%%) : LoRa? Network Join Status 882 882 883 -(% style=" background-color:#dcdcdc" %)**AT+RECV**(%%) :PrintLast Received Data inRaw Format787 +(% style="color:#037691" %)**UDP Management** 884 884 885 - (% style="background-color:#dcdcdc" %)**AT+RECVB**(%%)Print LastReceived DatainBinaryFormat789 +AT+CFM : Upload confirmation mode (only valid for UDP) 886 886 887 -(% style="background-color:#dcdcdc" %)**AT+SEND**(%%) : Send Text Data 888 888 889 -(% style=" background-color:#dcdcdc" %)**AT+SENB**(%%): Send Hexadecimal Data792 +(% style="color:#037691" %)**MQTT Management** 890 890 794 +AT+CLIENT : Get or Set MQTT client 891 891 892 - (%style="color:#037691"%)**LoRaNetworkManagement**796 +AT+UNAME : Get or Set MQTT Username 893 893 894 - (% style="background-color:#dcdcdc" %)**AT+ADR**(%%):AdaptiveRate798 +AT+PWD : Get or Set MQTT password 895 895 896 - (% style="background-color:#dcdcdc" %)**AT+CLASS**(%%):LoRaClass(Currentlyonly supportclassA800 +AT+PUBTOPIC : Get or Set MQTT publish topic 897 897 898 - (% style="background-color:#dcdcdc" %)**AT+DCS**(%%):DutyCycleSetting802 +AT+SUBTOPIC : Get or Set MQTT subscription topic 899 899 900 -(% style="background-color:#dcdcdc" %)**AT+DR**(%%) : Data Rate (Can Only be Modified after ADR=0) 901 901 902 -(% style=" background-color:#dcdcdc" %)**AT+FCD**(%%) : Frame Counter Downlink805 +(% style="color:#037691" %)**Information** 903 903 904 - (% style="background-color:#dcdcdc" %)**AT+FCU**(%%): Frame CounterUplink807 +AT+FDR : Factory Data Reset 905 905 906 - (% style="background-color:#dcdcdc" %)**AT+JN1DL**(%%):JoinAcceptDelay1809 +AT+PWORD : Serial Access Password 907 907 908 -(% style="background-color:#dcdcdc" %)**AT+JN2DL**(%%) : Join Accept Delay2 909 909 910 -(% style="background-color:#dcdcdc" %)**AT+PNM**(%%) : Public Network Mode 911 911 912 - (% style="background-color:#dcdcdc"%)**AT+RX1DL**(%%): Receive Delay1813 += 5. FAQ = 913 913 914 - (% style="background-color:#dcdcdc"%)**AT+RX2DL**(%%): ReceiveDelay2815 +== 5.1 How to Upgrade Firmware == 915 915 916 -(% style="background-color:#dcdcdc" %)**AT+RX2DR**(%%) : Rx2 Window Data Rate 917 917 918 -(% style="background-color:#dcdcdc" %)**AT+RX2FQ**(%%) : Rx2 Window Frequency 919 - 920 -(% style="background-color:#dcdcdc" %)**AT+TXP**(%%) : Transmit Power 921 - 922 -(% style="background-color:#dcdcdc" %)**AT+ MOD**(%%) : Set work mode 923 - 924 - 925 -(% style="color:#037691" %)**Information** 926 - 927 -(% style="background-color:#dcdcdc" %)**AT+RSSI**(%%) : RSSI of the Last Received Packet 928 - 929 -(% style="background-color:#dcdcdc" %)**AT+SNR**(%%) : SNR of the Last Received Packet 930 - 931 -(% style="background-color:#dcdcdc" %)**AT+VER**(%%) : Image Version and Frequency Band 932 - 933 -(% style="background-color:#dcdcdc" %)**AT+FDR**(%%) : Factory Data Reset 934 - 935 -(% style="background-color:#dcdcdc" %)**AT+PORT**(%%) : Application Port 936 - 937 -(% style="background-color:#dcdcdc" %)**AT+CHS**(%%) : Get or Set Frequency (Unit: Hz) for Single Channel Mode 938 - 939 - (% style="background-color:#dcdcdc" %)**AT+CHE**(%%) : Get or Set eight channels mode, Only for US915, AU915, CN470 940 - 941 - 942 -= 4. FAQ = 943 - 944 -== 4.1 How to change the LoRa Frequency Bands/Region? == 945 - 946 946 ((( 947 -You can follow the instructions for [[how to upgrade image>>||anchor="H2.10200BFirmwareChangeLog"]]. 948 -When downloading the images, choose the required image file for download. 819 +User can upgrade the firmware for 1) bug fix, 2) new feature release. 949 949 ))) 950 950 951 951 ((( 952 - 823 +Please see this link for how to upgrade: [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H2.HardwareUpgradeMethodSupportList>>http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H2.HardwareUpgradeMethodSupportList]] 953 953 ))) 954 954 955 955 ((( 956 - Howtosetup LSE01 towork in 8 channel modeBy default,thefrequency bandsUS915,AU915, CN470 work in 72 frequencies.Many gatewaysare8 channelgateways, andin thiscase,theOTAA join timeand uplink scheduleis longandunpredictable while the end nodeis hoppingin 72 frequencies.827 +(% style="color:red" %)Notice, NSE01 and LSE01 share the same mother board. They use the same connection and method to update. 957 957 ))) 958 958 959 -((( 960 - 961 -))) 962 962 963 -((( 964 -You can configure the end node to work in 8 channel mode by using the AT+CHE command. The 500kHz channels are always included for OTAA. 965 -))) 966 966 967 -((( 968 - 969 -))) 832 +== 5.2 Can I calibrate NSE01 to different soil types? == 970 970 971 971 ((( 972 - Forexample,in **US915**band,the frequencytablesasbelow. By default,the endnodewilluse all channels(0~~71)forOTAAJoinprocess.AftertheOTAAJoin,theend nodewilluse these allchannels(0~~71)tosenduplinkkets.835 +NSE01 is calibrated for saline-alkali soil and loamy soil. If users want to use it for other soil, they can calibrate the value in the IoT platform base on the value measured by saline-alkali soil and loamy soil. The formula can be found at [[this link>>https://www.dragino.com/downloads/downloads/LoRa_End_Node/LSE01/Calibrate_to_other_Soil_20220605.pdf]]. 973 973 ))) 974 974 975 -[[image:image-20220606154726-3.png]] 976 976 839 += 6. Trouble Shooting = 977 977 978 - Whenyouuse the TTNnetwork,theUS915 frequencybandsuseare:841 +== 6.1 Connection problem when uploading firmware == 979 979 980 -* 903.9 - SF7BW125 to SF10BW125 981 -* 904.1 - SF7BW125 to SF10BW125 982 -* 904.3 - SF7BW125 to SF10BW125 983 -* 904.5 - SF7BW125 to SF10BW125 984 -* 904.7 - SF7BW125 to SF10BW125 985 -* 904.9 - SF7BW125 to SF10BW125 986 -* 905.1 - SF7BW125 to SF10BW125 987 -* 905.3 - SF7BW125 to SF10BW125 988 -* 904.6 - SF8BW500 989 989 990 990 ((( 991 -Because the end node is now hopping in 72 frequency, it makes it difficult for the devices to Join the TTN network and uplink data. To solve this issue, you can access the device via the AT commands and run: 992 - 993 -* (% style="color:#037691" %)**AT+CHE=2** 994 -* (% style="color:#037691" %)**ATZ** 845 +**Please see: **[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H3.3Troubleshooting>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H3.3Troubleshooting]] 995 995 ))) 996 996 848 +(% class="wikigeneratedid" %) 997 997 ((( 998 998 999 - 1000 -to set the end node to work in 8 channel mode. The device will work in Channel 8-15 & 64-71 for OTAA, and channel 8-15 for Uplink. 1001 1001 ))) 1002 1002 1003 -((( 1004 - 1005 -))) 1006 1006 1007 -((( 1008 -The **AU915** band is similar. Below are the AU915 Uplink Channels. 1009 -))) 854 +== 6.2 AT Command input doesn't work == 1010 1010 1011 -[[image:image-20220606154825-4.png]] 1012 - 1013 - 1014 - 1015 -= 5. Trouble Shooting = 1016 - 1017 -== 5.1 Why I can’t join TTN in US915 / AU915 bands? == 1018 - 1019 -It is due to channel mapping. Please see the [[Eight Channel Mode>>doc:Main.LoRaWAN Communication Debug.WebHome||anchor="H2.NoticeofUS9152FCN4702FAU915Frequencyband"]] section above for details. 1020 - 1021 - 1022 -== 5.2 AT Command input doesn’t work == 1023 - 1024 1024 ((( 1025 -In the case if user can see the console output but can’t type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn’t send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string. 1026 -))) 857 +In the case if user can see the console output but can't type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn't send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string. 1027 1027 1028 - 1029 -== 5.3 Device rejoin in at the second uplink packet == 1030 - 1031 -(% style="color:#4f81bd" %)**Issue describe as below:** 1032 - 1033 -[[image:1654500909990-784.png]] 1034 - 1035 - 1036 -(% style="color:#4f81bd" %)**Cause for this issue:** 1037 - 1038 -((( 1039 -The fuse on LSE01 is not large enough, some of the soil probe require large current up to 5v 800mA, in a short pulse. When this happen, it cause the device reboot so user see rejoin. 859 + 1040 1040 ))) 1041 1041 1042 1042 1043 - (% style="color:#4f81bd"%)**Solution:**863 += 7. Order Info = 1044 1044 1045 -All new shipped LSE01 after 2020-May-30 will have this to fix. For the customer who see this issue, please bypass the fuse as below: 1046 1046 1047 - [[image:1654500929571-736.png||height="458" width="832"]]866 +Part Number**:** (% style="color:#4f81bd" %)**NSE01** 1048 1048 1049 1049 1050 -= 6. Order Info = 1051 - 1052 - 1053 -Part Number**:** (% style="color:#4f81bd" %)**LSE01-XX-YY** 1054 - 1055 - 1056 -(% style="color:#4f81bd" %)**XX**(%%)**:** The default frequency band 1057 - 1058 -* (% style="color:red" %)**AS923**(%%): LoRaWAN AS923 band 1059 -* (% style="color:red" %)**AU915**(%%): LoRaWAN AU915 band 1060 -* (% style="color:red" %)**EU433**(%%): LoRaWAN EU433 band 1061 -* (% style="color:red" %)**EU868**(%%): LoRaWAN EU868 band 1062 -* (% style="color:red" %)**KR920**(%%): LoRaWAN KR920 band 1063 -* (% style="color:red" %)**US915**(%%): LoRaWAN US915 band 1064 -* (% style="color:red" %)**IN865**(%%): LoRaWAN IN865 band 1065 -* (% style="color:red" %)**CN470**(%%): LoRaWAN CN470 band 1066 - 1067 -(% style="color:#4f81bd" %)**YY**(%%)**: **Battery Option 1068 - 1069 -* (% style="color:red" %)**4**(%%): 4000mAh battery 1070 -* (% style="color:red" %)**8**(%%): 8500mAh battery 1071 - 1072 1072 (% class="wikigeneratedid" %) 1073 1073 ((( 1074 1074 1075 1075 ))) 1076 1076 1077 -= 7. Packing Info =874 += 8. Packing Info = 1078 1078 1079 1079 ((( 1080 1080 1081 1081 1082 1082 (% style="color:#037691" %)**Package Includes**: 1083 -))) 1084 1084 1085 -* (((1086 - LSE01LoRaWAN SoilMoisture& EC Sensorx 1881 +* NSE01 NB-IoT Soil Moisture & EC Sensor x 1 882 +* External antenna x 1 1087 1087 ))) 1088 1088 1089 1089 ((( ... ... @@ -1090,24 +1090,19 @@ 1090 1090 1091 1091 1092 1092 (% style="color:#037691" %)**Dimension and weight**: 1093 -))) 1094 1094 1095 -* (((1096 - DeviceSize:cm890 +* Size: 195 x 125 x 55 mm 891 +* Weight: 420g 1097 1097 ))) 1098 -* ((( 1099 -Device Weight: g 1100 -))) 1101 -* ((( 1102 -Package Size / pcs : cm 1103 -))) 1104 -* ((( 1105 -Weight / pcs : g 1106 1106 894 +((( 1107 1107 896 + 897 + 898 + 1108 1108 ))) 1109 1109 1110 -= 8. Support =901 += 9. Support = 1111 1111 1112 1112 * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule. 1113 1113 * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.com]]
- 1657245163077-232.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +81.0 KB - Content
- 1657246476176-652.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +492.6 KB - Content
- 1657249419225-449.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +81.0 KB - Content
- 1657249468462-536.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +483.6 KB - Content
- 1657249793983-486.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +85.8 KB - Content
- 1657249831934-534.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +72.5 KB - Content
- 1657249864775-321.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +87.0 KB - Content
- 1657249930215-289.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +77.3 KB - Content
- 1657249978444-674.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +139.5 KB - Content
- 1657249990869-686.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +96.9 KB - Content
- 1657250217799-140.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +98.7 KB - Content
- 1657250255956-604.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +99.0 KB - Content
- 1657259653666-883.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +344.4 KB - Content
- 1657260785982-288.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +138.2 KB - Content
- 1657261119050-993.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +126.1 KB - Content
- 1657261278785-153.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +126.1 KB - Content
- 1657271519014-786.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +71.5 KB - Content
- image-20220708101224-1.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +22.2 KB - Content
- image-20220708101605-2.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +87.5 KB - Content
- image-20220708110657-3.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +251.7 KB - Content
- image-20220708111918-4.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +38.8 KB - Content
- image-20220708133731-5.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +8.7 KB - Content
- image-20220708140453-6.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +132.7 KB - Content
- image-20220708141352-7.jpeg
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +102.7 KB - Content
- image-20220709084038-1.jpeg
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +72.0 KB - Content
- image-20220709084137-2.jpeg
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +72.0 KB - Content
- image-20220709084207-3.jpeg
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +72.0 KB - Content
- image-20220709084458-4.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +199.5 KB - Content