<
From version < 35.25 >
edited by Xiaoling
on 2022/06/25 16:23
To version < 68.2 >
edited by Xiaoling
on 2022/07/09 08:41
>
Change comment: There is no comment for this version

Summary

Details

Page properties
Title
... ... @@ -1,1 +1,1 @@
1 -LSE01-LoRaWAN Soil Moisture & EC Sensor User Manual
1 +NDDS75 NB-IoT Distance Detect Sensor User Manual
Content
... ... @@ -1,5 +1,4 @@
1 -(% style="text-align:center" %)
2 -[[image:image-20220606151504-2.jpeg||height="554" width="554"]]
1 +[[image:image-20220709084038-1.jpeg||height="575" width="575"]]
3 3  
4 4  
5 5  
... ... @@ -9,11 +9,8 @@
9 9  
10 10  
11 11  
12 -
13 -
14 14  **Table of Contents:**
15 15  
16 -{{toc/}}
17 17  
18 18  
19 19  
... ... @@ -20,68 +20,73 @@
20 20  
21 21  
22 22  
23 -= 1. Introduction =
19 += 1.  Introduction =
24 24  
25 -== 1.1 ​What is LoRaWAN Soil Moisture & EC Sensor ==
21 +== 1.1 ​ What is NDDS75 Distance Detection Sensor ==
26 26  
27 27  (((
28 28  
29 29  
30 -The Dragino LSE01 is a (% style="color:#4f81bd" %)**LoRaWAN Soil Moisture & EC Sensor**(%%) for IoT of Agriculture. It is designed to measure the soil moisture of saline-alkali soil and loamy soil. The soil sensor uses FDR method to calculate the soil moisture with the compensation from soil temperature and conductivity. It also has been calibrated in factory for Mineral soil type.
31 -)))
32 -
33 33  (((
34 -It detects (% style="color:#4f81bd" %)**Soil Moisture**(%%), (% style="color:#4f81bd" %)**Soil Temperature**(%%) and (% style="color:#4f81bd" %)**Soil Conductivity**(%%), and uploads the value via wireless to LoRaWAN IoT Server.
27 +The Dragino NDDS75 is a (% style="color:blue" %)**NB-IoT Distance Detection Sensor**(%%) for Internet of Things solution. It is designed to measure the distance between the sensor and a flat object. The distance detection sensor is a module that uses ultrasonic sensing technology for distance measurement, and temperature compensation is performed internally to improve the reliability of data.
28 +\\The NDDS75 can be applied to scenarios such as horizontal distance measurement, liquid level measurement, parking management system, object proximity and presence detection, intelligent trash can management system, robot obstacle avoidance, automatic control, sewer, bottom water level monitoring, etc. It detects the distance between the measured object and the sensor, and uploads the value via wireless to IoT Server via NB-IoT Network.
29 +\\NarrowBand-Internet of Things (NB-IoT) is a standards-based low power wide area (LPWA) technology developed to enable a wide range of new IoT devices and services. NB-IoT significantly improves the power consumption of user devices, system capacity and spectrum efficiency, especially in deep coverage.
30 +\\NDDS75 supports different uplink methods include (% style="color:blue" %)**TCP, MQTT, UDP and CoAP** (%%)for different application requirement.
31 +\\NDDS75 is powered by (% style="color:blue" %)**8500mAh Li-SOCI2 battery**(%%), It is designed for long term use up to 5 years. (Actually Battery life depends on the use environment, update period & uplink method)
32 +\\To use NDDS75, user needs to check if there is NB-IoT coverage in local area and with the bands NDDS75 supports. If the local operate support it, user needs to get a NB-IoT SIM card from local operator and install NDDS75 to get NB-IoT network connection.
35 35  )))
36 36  
37 -(((
38 -The LoRa wireless technology used in LES01 allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption.
35 +
39 39  )))
40 40  
41 -(((
42 -LES01 is powered by (% style="color:#4f81bd" %)**4000mA or 8500mAh Li-SOCI2 battery**(%%), It is designed for long term use up to 10 years.
43 -)))
44 -
45 -(((
46 -Each LES01 is pre-load with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect after power on.
47 -)))
48 -
49 -
50 50  [[image:1654503236291-817.png]]
51 51  
52 52  
53 -[[image:1654503265560-120.png]]
41 +[[image:1657245163077-232.png]]
54 54  
55 55  
56 56  
57 -== 1.2 ​Features ==
45 +== 1.2 ​ Features ==
58 58  
59 -* LoRaWAN 1.0.3 Class A
60 -* Ultra low power consumption
47 +* NB-IoT Bands: B1/B3/B8/B5/B20/B28 @H-FDD
61 61  * Monitor Soil Moisture
62 62  * Monitor Soil Temperature
63 63  * Monitor Soil Conductivity
64 -* Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865
65 65  * AT Commands to change parameters
66 66  * Uplink on periodically
67 67  * Downlink to change configure
68 68  * IP66 Waterproof Enclosure
69 -* 4000mAh or 8500mAh Battery for long term use
55 +* Ultra-Low Power consumption
56 +* AT Commands to change parameters
57 +* Micro SIM card slot for NB-IoT SIM
58 +* 8500mAh Battery for long term use
70 70  
60 +== 1.3  Specification ==
71 71  
72 72  
63 +(% style="color:#037691" %)**Common DC Characteristics:**
73 73  
65 +* Supply Voltage: 2.1v ~~ 3.6v
66 +* Operating Temperature: -40 ~~ 85°C
74 74  
68 +(% style="color:#037691" %)**NB-IoT Spec:**
75 75  
76 -== 1.3 Specification ==
70 +* - B1 @H-FDD: 2100MHz
71 +* - B3 @H-FDD: 1800MHz
72 +* - B8 @H-FDD: 900MHz
73 +* - B5 @H-FDD: 850MHz
74 +* - B20 @H-FDD: 800MHz
75 +* - B28 @H-FDD: 700MHz
77 77  
77 +Probe(% style="color:#037691" %)** Specification:**
78 +
78 78  Measure Volume: Base on the centra pin of the probe, a cylinder with 7cm diameter and 10cm height.
79 79  
80 -[[image:image-20220606162220-5.png]]
81 +[[image:image-20220708101224-1.png]]
81 81  
82 82  
83 83  
84 -== ​1.4 Applications ==
85 +== ​1.4  Applications ==
85 85  
86 86  * Smart Agriculture
87 87  
... ... @@ -88,704 +88,623 @@
88 88  (% class="wikigeneratedid" id="H200B1.5FirmwareChangelog" %)
89 89  ​
90 90  
91 -== 1.5 Firmware Change log ==
92 +== 1.5  Pin Definitions ==
92 92  
93 93  
94 -**LSE01 v1.0 :**  Release
95 +[[image:1657246476176-652.png]]
95 95  
96 96  
97 97  
98 -= 2. Configure LSE01 to connect to LoRaWAN network =
99 += 2.  Use NSE01 to communicate with IoT Server =
99 99  
100 -== 2.1 How it works ==
101 +== 2.1  How it works ==
101 101  
103 +
102 102  (((
103 -The LSE01 is configured as LoRaWAN OTAA Class A mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and power on the LSE0150. It will automatically join the network via OTAA and start to send the sensor value
105 +The NSE01 is equipped with a NB-IoT module, the pre-loaded firmware in NSE01 will get environment data from sensors and send the value to local NB-IoT network via the NB-IoT module The NB-IoT network will forward this value to IoT server via the protocol defined by NSE01.
104 104  )))
105 105  
108 +
106 106  (((
107 -In case you can’t set the OTAA keys in the LoRaWAN OTAA server, and you have to use the keys from the server, you can [[use AT Commands >>||anchor="H3.200BUsingtheATCommands"]].
110 +The diagram below shows the working flow in default firmware of NSE01:
108 108  )))
109 109  
113 +[[image:image-20220708101605-2.png]]
110 110  
115 +(((
116 +
117 +)))
111 111  
112 -== 2.2 ​Quick guide to connect to LoRaWAN server (OTAA) ==
113 113  
114 -Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LG308>>url:http://www.dragino.com/products/lora/item/140-lg308.html]] as a LoRaWAN gateway in this example.
115 115  
121 +== 2.2 ​ Configure the NSE01 ==
116 116  
117 -[[image:1654503992078-669.png]]
118 118  
124 +=== 2.2.1 Test Requirement ===
119 119  
120 -The LG308 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
121 121  
127 +(((
128 +To use NSE01 in your city, make sure meet below requirements:
129 +)))
122 122  
123 -(% style="color:blue" %)**Step 1**(%%):  Create a device in TTN with the OTAA keys from LSE01.
131 +* Your local operator has already distributed a NB-IoT Network there.
132 +* The local NB-IoT network used the band that NSE01 supports.
133 +* Your operator is able to distribute the data received in their NB-IoT network to your IoT server.
124 124  
125 -Each LSE01 is shipped with a sticker with the default device EUI as below:
135 +(((
136 +Below figure shows our testing structure. Here we have NB-IoT network coverage by China Mobile, the band they use is B8.  The NSE01 will use CoAP((% style="color:red" %)120.24.4.116:5683)(%%) or raw UDP((% style="color:red" %)120.24.4.116:5601)(%%) or MQTT((% style="color:red" %)120.24.4.116:1883)(%%)or TCP((% style="color:red" %)120.24.4.116:5600)(%%)protocol to send data to the test server
137 +)))
126 126  
127 -[[image:image-20220606163732-6.jpeg]]
128 128  
129 -You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot:
140 +[[image:1657249419225-449.png]]
130 130  
131 -**Add APP EUI in the application**
132 132  
133 133  
134 -[[image:1654504596150-405.png]]
144 +=== 2.2.2 Insert SIM card ===
135 135  
146 +(((
147 +Insert the NB-IoT Card get from your provider.
148 +)))
136 136  
150 +(((
151 +User need to take out the NB-IoT module and insert the SIM card like below:
152 +)))
137 137  
138 -**Add APP KEY and DEV EUI**
139 139  
140 -[[image:1654504683289-357.png]]
155 +[[image:1657249468462-536.png]]
141 141  
142 142  
143 143  
144 -(% style="color:blue" %)**Step 2**(%%): Power on LSE01
159 +=== 2.2.3 Connect USB TTL to NSE01 to configure it ===
145 145  
161 +(((
162 +(((
163 +User need to configure NSE01 via serial port to set the (% style="color:blue" %)**Server Address** / **Uplink Topic** (%%)to define where and how-to uplink packets. NSE01 support AT Commands, user can use a USB to TTL adapter to connect to NSE01 and use AT Commands to configure it, as below.
164 +)))
165 +)))
146 146  
147 -Put a Jumper on JP2 to power on the device. ( The Jumper must be in FLASH position).
148 148  
149 -[[image:image-20220606163915-7.png]]
168 +**Connection:**
150 150  
170 + (% style="background-color:yellow" %)USB TTL GND <~-~-~-~-> GND
151 151  
152 -(% style="color:blue" %)**Step 3**(%%)**:** The LSE01 will auto join to the TTN network. After join success, it will start to upload messages to TTN and you can see the messages in the panel.
172 + (% style="background-color:yellow" %)USB TTL TXD <~-~-~-~-> UART_RXD
153 153  
154 -[[image:1654504778294-788.png]]
174 + (% style="background-color:yellow" %)USB TTL RXD <~-~-~-~-> UART_TXD
155 155  
156 156  
177 +In the PC, use below serial tool settings:
157 157  
158 -== 2.3 Uplink Payload ==
179 +* Baud:  (% style="color:green" %)**9600**
180 +* Data bits:** (% style="color:green" %)8(%%)**
181 +* Stop bits: (% style="color:green" %)**1**
182 +* Parity:  (% style="color:green" %)**None**
183 +* Flow Control: (% style="color:green" %)**None**
159 159  
185 +(((
186 +Make sure the switch is in FLASH position, then power on device by connecting the jumper on NSE01. NSE01 will output system info once power on as below, we can enter the (% style="color:green" %)**password: 12345678**(%%) to access AT Command input.
187 +)))
160 160  
161 -=== 2.3.1 MOD~=0(Default Mode) ===
189 +[[image:image-20220708110657-3.png]]
162 162  
163 -LSE01 will uplink payload via LoRaWAN with below payload format: 
164 -
165 165  (((
166 -Uplink payload includes in total 11 bytes.
192 +(% style="color:red" %)Note: the valid AT Commands can be found at: (%%)[[http:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/]]
167 167  )))
168 168  
169 -(% border="1" cellspacing="10" style="background-color:#ffffcc; width:500px" %)
170 -|(((
171 -**Size**
172 172  
173 -**(bytes)**
174 -)))|**2**|**2**|**2**|**2**|**2**|**1**
175 -|**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(((
176 -Temperature
177 177  
178 -(Reserve, Ignore now)
179 -)))|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]]|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]]|(((
180 -MOD & Digital Interrupt
197 +=== 2.2.4 Use CoAP protocol to uplink data ===
181 181  
182 -(Optional)
183 -)))
199 +(% style="color:red" %)Note: if you don't have CoAP server, you can refer this link to set up one: (%%)[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/>>http://wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/]]
184 184  
185 -=== 2.3.2 MOD~=1(Original value) ===
186 186  
187 -This mode can get the original AD value of moisture and original conductivity (with temperature drift compensation).
202 +**Use below commands:**
188 188  
189 -(% border="1" cellspacing="10" style="background-color:#ffffcc; width:500px" %)
190 -|(((
191 -**Size**
204 +* (% style="color:blue" %)**AT+PRO=1**  (%%) ~/~/ Set to use CoAP protocol to uplink
205 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5683   ** (%%)~/~/ to set CoAP server address and port
206 +* (% style="color:blue" %)**AT+URI=5,11,"mqtt",11,"coap",12,"0",15,"c=text1",23,"0" ** (%%) ~/~/Set COAP resource path
192 192  
193 -**(bytes)**
194 -)))|**2**|**2**|**2**|**2**|**2**|**1**
195 -|**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(((
196 -Temperature
208 +For parameter description, please refer to AT command set
197 197  
198 -(Reserve, Ignore now)
199 -)))|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]](raw)|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]](raw)|(((
200 -MOD & Digital Interrupt
210 +[[image:1657249793983-486.png]]
201 201  
202 -(Optional)
203 -)))
204 204  
205 -=== 2.3.3 Battery Info ===
213 +After configure the server address and (% style="color:green" %)**reset the device**(%%) (via AT+ATZ ), NSE01 will start to uplink sensor values to CoAP server.
206 206  
207 -(((
208 -Check the battery voltage for LSE01.
209 -)))
215 +[[image:1657249831934-534.png]]
210 210  
211 -(((
212 -Ex1: 0x0B45 = 2885mV
213 -)))
214 214  
215 -(((
216 -Ex2: 0x0B49 = 2889mV
217 -)))
218 218  
219 +=== 2.2.5 Use UDP protocol to uplink data(Default protocol) ===
219 219  
221 +This feature is supported since firmware version v1.0.1
220 220  
221 -=== 2.3.4 Soil Moisture ===
222 222  
223 -(((
224 -Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil.
225 -)))
224 +* (% style="color:blue" %)**AT+PRO=2   ** (%%) ~/~/ Set to use UDP protocol to uplink
225 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5601   ** (%%) ~/~/ to set UDP server address and port
226 +* (% style="color:blue" %)**AT+CFM=1       ** (%%) ~/~/If the server does not respond, this command is unnecessary
226 226  
227 -(((
228 -For example, if the data you get from the register is __0x05 0xDC__, the moisture content in the soil is
229 -)))
228 +[[image:1657249864775-321.png]]
230 230  
231 -(((
232 -
233 -)))
234 234  
235 -(((
236 -(% style="color:#4f81bd" %)**05DC(H) = 1500(D) /100 = 15%.**
237 -)))
231 +[[image:1657249930215-289.png]]
238 238  
239 239  
240 240  
241 -=== 2.3.5 Soil Temperature ===
235 +=== 2.2.6 Use MQTT protocol to uplink data ===
242 242  
243 -(((
244 - Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is 0x09 0xEC, the temperature content in the soil is
245 -)))
237 +This feature is supported since firmware version v110
246 246  
247 -(((
248 -**Example**:
249 -)))
250 250  
251 -(((
252 -If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/100 = 2.61 °C
253 -)))
240 +* (% style="color:blue" %)**AT+PRO=3   ** (%%) ~/~/Set to use MQTT protocol to uplink
241 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,1883   ** (%%) ~/~/Set MQTT server address and port
242 +* (% style="color:blue" %)**AT+CLIENT=CLIENT       ** (%%)~/~/Set up the CLIENT of MQTT
243 +* (% style="color:blue" %)**AT+UNAME=UNAME                               **(%%)~/~/Set the username of MQTT
244 +* (% style="color:blue" %)**AT+PWD=PWD                                        **(%%)~/~/Set the password of MQTT
245 +* (% style="color:blue" %)**AT+PUBTOPIC=NSE01_PUB                    **(%%)~/~/Set the sending topic of MQTT
246 +* (% style="color:blue" %)**AT+SUBTOPIC=NSE01_SUB          **(%%) ~/~/Set the subscription topic of MQTT
254 254  
255 -(((
256 -If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C
257 -)))
248 +[[image:1657249978444-674.png]]
258 258  
259 259  
251 +[[image:1657249990869-686.png]]
260 260  
261 -=== 2.3.6 Soil Conductivity (EC) ===
262 262  
263 263  (((
264 -Obtain (% style="color:#4f81bd" %)**__soluble salt concentration__**(%%) in soil or (% style="color:#4f81bd" %)**__soluble ion concentration in liquid fertilizer__**(%%) or (% style="color:#4f81bd" %)**__planting medium__**(%%). The value range of the register is 0 - 20000(Decimal)( Can be greater than 20000).
255 +MQTT protocol has a much higher power consumption compare vs UDP / CoAP protocol. Please check the power analyze document and adjust the uplink period to a suitable interval.
265 265  )))
266 266  
267 -(((
268 -For example, if the data you get from the register is 0x00 0xC8, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm.
269 -)))
270 270  
271 -(((
272 -Generally, the EC value of irrigation water is less than 800uS / cm.
273 -)))
274 274  
275 -(((
276 -
277 -)))
260 +=== 2.2.7 Use TCP protocol to uplink data ===
278 278  
279 -(((
280 -
281 -)))
262 +This feature is supported since firmware version v110
282 282  
283 -=== 2.3.7 MOD ===
284 284  
285 -Firmware version at least v2.1 supports changing mode.
265 +* (% style="color:blue" %)**AT+PRO=4   ** (%%) ~/~/ Set to use TCP protocol to uplink
266 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5600   **(%%) ~/~/ to set TCP server address and port
286 286  
287 -For example, bytes[10]=90
268 +[[image:1657250217799-140.png]]
288 288  
289 -mod=(bytes[10]>>7)&0x01=1.
290 290  
271 +[[image:1657250255956-604.png]]
291 291  
292 -**Downlink Command:**
293 293  
294 -If payload = 0x0A00, workmode=0
295 295  
296 -If** **payload =** **0x0A01, workmode=1
275 +=== 2.2.8 Change Update Interval ===
297 297  
277 +User can use below command to change the (% style="color:green" %)**uplink interval**.
298 298  
279 +* (% style="color:blue" %)**AT+TDC=600      ** (%%)~/~/ Set Update Interval to 600s
299 299  
300 -=== 2.3.8 ​Decode payload in The Things Network ===
281 +(((
282 +(% style="color:red" %)**NOTE:**
283 +)))
301 301  
302 -While using TTN network, you can add the payload format to decode the payload.
285 +(((
286 +(% style="color:red" %)1. By default, the device will send an uplink message every 1 hour.
287 +)))
303 303  
304 304  
305 -[[image:1654505570700-128.png]]
306 306  
307 -(((
308 -The payload decoder function for TTN is here:
309 -)))
291 +== 2.3  Uplink Payload ==
310 310  
293 +In this mode, uplink payload includes in total 18 bytes
294 +
295 +(% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:510px" %)
296 +|=(% style="width: 60px;" %)(((
297 +**Size(bytes)**
298 +)))|=(% style="width: 50px;" %)**6**|=(% style="width: 25px;" %)2|=(% style="width: 25px;" %)**2**|=(% style="width: 70px;" %)**1**|=(% style="width: 60px;" %)**2**|=(% style="width: 80px;" %)**2**|=(% style="width: 90px;" %)**2**|=(% style="width: 50px;" %)**1**
299 +|(% style="width:97px" %)**Value**|(% style="width:83px" %)[[Device ID>>||anchor="H2.4.1A0A0DeviceID"]]|(% style="width:41px" %)[[Ver>>||anchor="H2.4.2A0VersionInfo"]]|(% style="width:46px" %)[[BAT>>||anchor="H2.4.3A0BatteryInfo"]]|(% style="width:123px" %)[[Signal Strength>>||anchor="H2.4.4A0SignalStrength"]]|(% style="width:108px" %)[[Soil Moisture>>||anchor="H2.4.5A0SoilMoisture"]]|(% style="width:133px" %)[[Soil Temperature>>||anchor="H2.4.6A0SoilTemperature"]]|(% style="width:159px" %)[[Soil Conductivity(EC)>>||anchor="H2.4.7A0SoilConductivity28EC29"]]|(% style="width:80px" %)[[Interrupt>>||anchor="H2.4.8A0DigitalInterrupt"]]
300 +
311 311  (((
312 -LSE01 TTN Payload Decoder: [[https:~~/~~/www.dropbox.com/sh/si8icbrjlamxqdb/AAACYwjsxxr5fj_vpqRtrETAa?dl=0>>https://www.dropbox.com/sh/si8icbrjlamxqdb/AAACYwjsxxr5fj_vpqRtrETAa?dl=0]]
302 +If we use the MQTT client to subscribe to this MQTT topic, we can see the following information when the NSE01 uplink data.
313 313  )))
314 314  
315 315  
316 -== 2.4 Uplink Interval ==
306 +[[image:image-20220708111918-4.png]]
317 317  
318 -The LSE01 by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link: [[Change Uplink Interval>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H4.1ChangeUplinkInterval"]]
319 319  
309 +The payload is ASCII string, representative same HEX:
320 320  
311 +0x72403155615900640c7817075e0a8c02f900 where:
321 321  
322 -== 2.5 Downlink Payload ==
313 +* Device ID: 0x 724031556159 = 724031556159
314 +* Version: 0x0064=100=1.0.0
323 323  
324 -By default, LSE50 prints the downlink payload to console port.
316 +* BAT: 0x0c78 = 3192 mV = 3.192V
317 +* Singal: 0x17 = 23
318 +* Soil Moisture: 0x075e= 1886 = 18.86  %
319 +* Soil Temperature:0x0a8c =2700=27 °C
320 +* Soil Conductivity(EC) = 0x02f9 =761 uS /cm
321 +* Interrupt: 0x00 = 0
325 325  
326 -[[image:image-20220606165544-8.png]]
323 +== 2.4  Payload Explanation and Sensor Interface ==
327 327  
328 328  
326 +=== 2.4.1  Device ID ===
327 +
329 329  (((
330 -**Examples:**
329 +By default, the Device ID equal to the last 6 bytes of IMEI.
331 331  )))
332 332  
333 333  (((
334 -
333 +User can use (% style="color:blue" %)**AT+DEUI**(%%) to set Device ID
335 335  )))
336 336  
337 -* (((
338 -**Set TDC**
336 +(((
337 +**Example:**
339 339  )))
340 340  
341 341  (((
342 -If the payload=0100003C, it means set the END Node’s TDC to 0x00003C=60(S), while type code is 01.
341 +AT+DEUI=A84041F15612
343 343  )))
344 344  
345 345  (((
346 -Payload:    01 00 00 1E    TDC=30S
345 +The Device ID is stored in a none-erase area, Upgrade the firmware or run AT+FDR won't erase Device ID.
347 347  )))
348 348  
348 +
349 +
350 +=== 2.4.2  Version Info ===
351 +
349 349  (((
350 -Payload:    01 00 00 3C    TDC=60S
353 +Specify the software version: 0x64=100, means firmware version 1.00.
351 351  )))
352 352  
353 353  (((
354 -
357 +For example: 0x00 64 : this device is NSE01 with firmware version 1.0.0.
355 355  )))
356 356  
357 -* (((
358 -**Reset**
360 +
361 +
362 +=== 2.4.3  Battery Info ===
363 +
364 +(((
365 +Check the battery voltage for LSE01.
359 359  )))
360 360  
361 361  (((
362 -If payload = 0x04FF, it will reset the LSE01
369 +Ex1: 0x0B45 = 2885mV
363 363  )))
364 364  
372 +(((
373 +Ex2: 0x0B49 = 2889mV
374 +)))
365 365  
366 -* **CFM**
367 367  
368 -Downlink Payload: 05000001, Set AT+CFM=1 or 05000000 , set AT+CFM=0
369 369  
378 +=== 2.4.4  Signal Strength ===
370 370  
380 +(((
381 +NB-IoT Network signal Strength.
382 +)))
371 371  
372 -== 2.6 ​Show Data in DataCake IoT Server ==
384 +(((
385 +**Ex1: 0x1d = 29**
386 +)))
373 373  
374 374  (((
375 -[[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps:
389 +(% style="color:blue" %)**0**(%%)  -113dBm or less
376 376  )))
377 377  
378 378  (((
379 -
393 +(% style="color:blue" %)**1**(%%)  -111dBm
380 380  )))
381 381  
382 382  (((
383 -(% style="color:blue" %)**Step 1**(%%) Be sure that your device is programmed and properly connected to the network at this time.
397 +(% style="color:blue" %)**2...30**(%%) -109dBm... -53dBm
384 384  )))
385 385  
386 386  (((
387 -(% style="color:blue" %)**Step 2**(%%) To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps:
401 +(% style="color:blue" %)**31**  (%%) -51dBm or greater
388 388  )))
389 389  
404 +(((
405 +(% style="color:blue" %)**99**   (%%) Not known or not detectable
406 +)))
390 390  
391 -[[image:1654505857935-743.png]]
392 392  
393 393  
394 -[[image:1654505874829-548.png]]
410 +=== 2.4.5  Soil Moisture ===
395 395  
412 +(((
413 +(((
414 +Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil.
415 +)))
416 +)))
396 396  
397 -(% style="color:blue" %)**Step 3**(%%)**:**  Create an account or log in Datacake.
418 +(((
419 +(((
420 +For example, if the data you get from the register is **__0x05 0xDC__**, the moisture content in the soil is
421 +)))
422 +)))
398 398  
399 -(% style="color:blue" %)**Step 4**(%%)**:**  Search the LSE01 and add DevEUI.
424 +(((
425 +
426 +)))
400 400  
428 +(((
429 +(% style="color:#4f81bd" %)**05DC(H) = 1500(D) /100 = 15%.**
430 +)))
401 401  
402 -[[image:1654505905236-553.png]]
403 403  
404 404  
405 -After added, the sensor data arrive TTN, it will also arrive and show in Mydevices.
434 +=== 2.4.6  Soil Temperature ===
406 406  
407 -[[image:1654505925508-181.png]]
436 +(((
437 +Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is __**0x09 0xEC**__, the temperature content in the soil is
438 +)))
408 408  
440 +(((
441 +**Example**:
442 +)))
409 409  
444 +(((
445 +If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/100 = 2.61 °C
446 +)))
410 410  
411 -== 2.7 Frequency Plans ==
448 +(((
449 +If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C
450 +)))
412 412  
413 -The LSE01 uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.
414 414  
415 415  
416 -=== 2.7.1 EU863-870 (EU868) ===
454 +=== 2.4.7  Soil Conductivity (EC) ===
417 417  
418 -(% style="color:#037691" %)** Uplink:**
456 +(((
457 +Obtain (% style="color:#4f81bd" %)**__soluble salt concentration__**(%%) in soil or (% style="color:#4f81bd" %)**__soluble ion concentration in liquid fertilizer__**(%%) or (% style="color:#4f81bd" %)**__planting medium__**(%%). The value range of the register is 0 - 20000(Decimal)( Can be greater than 20000).
458 +)))
419 419  
420 -868.1 - SF7BW125 to SF12BW125
460 +(((
461 +For example, if the data you get from the register is __**0x00 0xC8**__, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm.
462 +)))
421 421  
422 -868.3 - SF7BW125 to SF12BW125 and SF7BW250
464 +(((
465 +Generally, the EC value of irrigation water is less than 800uS / cm.
466 +)))
423 423  
424 -868.5 - SF7BW125 to SF12BW125
468 +(((
469 +
470 +)))
425 425  
426 -867.1 - SF7BW125 to SF12BW125
472 +(((
473 +
474 +)))
427 427  
428 -867.3 - SF7BW125 to SF12BW125
476 +=== 2.4.8  Digital Interrupt ===
429 429  
430 -867.5 - SF7BW125 to SF12BW125
478 +(((
479 +Digital Interrupt refers to pin (% style="color:blue" %)**GPIO_EXTI**(%%), and there are different trigger methods. When there is a trigger, the NSE01 will send a packet to the server.
480 +)))
431 431  
432 -867.7 - SF7BW125 to SF12BW125
482 +(((
483 +The command is:
484 +)))
433 433  
434 -867.9 - SF7BW125 to SF12BW125
486 +(((
487 +(% style="color:blue" %)**AT+INTMOD=3 **(%%) ~/~/(more info about INMOD please refer [[**AT Command Manual**>>url:https://www.dragino.com/downloads/downloads/NB-IoT/NBSN95/DRAGINO_NBSN95-NB_AT%20Commands_v1.1.0.pdf]])**.**
488 +)))
435 435  
436 -868.8 - FSK
437 437  
491 +(((
492 +The lower four bits of this data field shows if this packet is generated by interrupt or not. Click here for the hardware and software set up.
493 +)))
438 438  
439 -(% style="color:#037691" %)** Downlink:**
440 440  
441 -Uplink channels 1-9 (RX1)
496 +(((
497 +Example:
498 +)))
442 442  
443 -869.525 - SF9BW125 (RX2 downlink only)
500 +(((
501 +0x(00): Normal uplink packet.
502 +)))
444 444  
504 +(((
505 +0x(01): Interrupt Uplink Packet.
506 +)))
445 445  
446 446  
447 -=== 2.7.2 US902-928(US915) ===
448 448  
449 -Used in USA, Canada and South America. Default use CHE=2
510 +=== 2.4.9  ​+5V Output ===
450 450  
451 -(% style="color:#037691" %)**Uplink:**
512 +(((
513 +NSE01 will enable +5V output before all sampling and disable the +5v after all sampling. 
514 +)))
452 452  
453 -903.9 - SF7BW125 to SF10BW125
454 454  
455 -904.1 - SF7BW125 to SF10BW125
517 +(((
518 +The 5V output time can be controlled by AT Command.
519 +)))
456 456  
457 -904.3 - SF7BW125 to SF10BW125
521 +(((
522 +(% style="color:blue" %)**AT+5VT=1000**
523 +)))
458 458  
459 -904.5 - SF7BW125 to SF10BW125
525 +(((
526 +Means set 5V valid time to have 1000ms. So the real 5V output will actually have 1000ms + sampling time for other sensors.
527 +)))
460 460  
461 -904.7 - SF7BW125 to SF10BW125
462 462  
463 -904.9 - SF7BW125 to SF10BW125
464 464  
465 -905.1 - SF7BW125 to SF10BW125
531 +== 2.5  Downlink Payload ==
466 466  
467 -905.3 - SF7BW125 to SF10BW125
533 +By default, NSE01 prints the downlink payload to console port.
468 468  
535 +[[image:image-20220708133731-5.png]]
469 469  
470 -(% style="color:#037691" %)**Downlink:**
471 471  
472 -923.3 - SF7BW500 to SF12BW500
538 +(((
539 +(% style="color:blue" %)**Examples:**
540 +)))
473 473  
474 -923.9 - SF7BW500 to SF12BW500
542 +(((
543 +
544 +)))
475 475  
476 -924.5 - SF7BW500 to SF12BW500
546 +* (((
547 +(% style="color:blue" %)**Set TDC**
548 +)))
477 477  
478 -925.1 - SF7BW500 to SF12BW500
550 +(((
551 +If the payload=0100003C, it means set the END Node's TDC to 0x00003C=60(S), while type code is 01.
552 +)))
479 479  
480 -925.7 - SF7BW500 to SF12BW500
554 +(((
555 +Payload:    01 00 00 1E    TDC=30S
556 +)))
481 481  
482 -926.3 - SF7BW500 to SF12BW500
558 +(((
559 +Payload:    01 00 00 3C    TDC=60S
560 +)))
483 483  
484 -926.9 - SF7BW500 to SF12BW500
562 +(((
563 +
564 +)))
485 485  
486 -927.5 - SF7BW500 to SF12BW500
566 +* (((
567 +(% style="color:blue" %)**Reset**
568 +)))
487 487  
488 -923.3 - SF12BW500(RX2 downlink only)
570 +(((
571 +If payload = 0x04FF, it will reset the NSE01
572 +)))
489 489  
490 490  
575 +* (% style="color:blue" %)**INTMOD**
491 491  
492 -=== 2.7.3 CN470-510 (CN470) ===
577 +(((
578 +Downlink Payload: 06000003, Set AT+INTMOD=3
579 +)))
493 493  
494 -Used in China, Default use CHE=1
495 495  
496 -(% style="color:#037691" %)**Uplink:**
497 497  
498 -486.3 - SF7BW125 to SF12BW125
583 +== 2.6  ​LED Indicator ==
499 499  
500 -486.5 - SF7BW125 to SF12BW125
585 +(((
586 +The NSE01 has an internal LED which is to show the status of different state.
501 501  
502 -486.7 - SF7BW125 to SF12BW125
503 503  
504 -486.9 - SF7BW125 to SF12BW125
589 +* When power on, NSE01 will detect if sensor probe is connected, if probe detected, LED will blink four times. (no blinks in this step is no probe)
590 +* Then the LED will be on for 1 second means device is boot normally.
591 +* After NSE01 join NB-IoT network. The LED will be ON for 3 seconds.
592 +* For each uplink probe, LED will be on for 500ms.
593 +)))
505 505  
506 -487.1 - SF7BW125 to SF12BW125
507 507  
508 -487.3 - SF7BW125 to SF12BW125
509 509  
510 -487.5 - SF7BW125 to SF12BW125
511 511  
512 -487.7 - SF7BW125 to SF12BW125
598 +== 2.7  Installation in Soil ==
513 513  
600 +__**Measurement the soil surface**__
514 514  
515 -(% style="color:#037691" %)**Downlink:**
602 +(((
603 +Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting. [[https:~~/~~/img.alicdn.com/imgextra/i3/2005165265/O1CN010rj9Oh1olPsQxrdUK_!!2005165265.jpg>>url:https://img.alicdn.com/imgextra/i3/2005165265/O1CN010rj9Oh1olPsQxrdUK_!!2005165265.jpg]]
604 +)))
516 516  
517 -506.7 - SF7BW125 to SF12BW125
606 +[[image:1657259653666-883.png]] ​
518 518  
519 -506.9 - SF7BW125 to SF12BW125
520 520  
521 -507.1 - SF7BW125 to SF12BW125
609 +(((
610 +
522 522  
523 -507.3 - SF7BW125 to SF12BW125
612 +(((
613 +Dig a hole with diameter > 20CM.
614 +)))
524 524  
525 -507.5 - SF7BW125 to SF12BW125
616 +(((
617 +Horizontal insert the probe to the soil and fill the hole for long term measurement.
618 +)))
619 +)))
526 526  
527 -507.7 - SF7BW125 to SF12BW125
621 +[[image:1654506665940-119.png]]
528 528  
529 -507.9 - SF7BW125 to SF12BW125
623 +(((
624 +
625 +)))
530 530  
531 -508.1 - SF7BW125 to SF12BW125
532 532  
533 -505.3 - SF12BW125 (RX2 downlink only)
628 +== 2.8  ​Firmware Change Log ==
534 534  
535 535  
631 +Download URL & Firmware Change log
536 536  
537 -=== 2.7.4 AU915-928(AU915) ===
633 +[[www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/Firmware/]]
538 538  
539 -Default use CHE=2
540 540  
541 -(% style="color:#037691" %)**Uplink:**
636 +Upgrade Instruction: [[Upgrade_Firmware>>||anchor="H5.1200BHowtoUpgradeFirmware"]]
542 542  
543 -916.8 - SF7BW125 to SF12BW125
544 544  
545 -917.0 - SF7BW125 to SF12BW125
546 546  
547 -917.2 - SF7BW125 to SF12BW125
640 +== 2.9  ​Battery Analysis ==
548 548  
549 -917.4 - SF7BW125 to SF12BW125
642 +=== 2.9.1  ​Battery Type ===
550 550  
551 -917.6 - SF7BW125 to SF12BW125
552 552  
553 -917.8 - SF7BW125 to SF12BW125
554 -
555 -918.0 - SF7BW125 to SF12BW125
556 -
557 -918.2 - SF7BW125 to SF12BW125
558 -
559 -
560 -(% style="color:#037691" %)**Downlink:**
561 -
562 -923.3 - SF7BW500 to SF12BW500
563 -
564 -923.9 - SF7BW500 to SF12BW500
565 -
566 -924.5 - SF7BW500 to SF12BW500
567 -
568 -925.1 - SF7BW500 to SF12BW500
569 -
570 -925.7 - SF7BW500 to SF12BW500
571 -
572 -926.3 - SF7BW500 to SF12BW500
573 -
574 -926.9 - SF7BW500 to SF12BW500
575 -
576 -927.5 - SF7BW500 to SF12BW500
577 -
578 -923.3 - SF12BW500(RX2 downlink only)
579 -
580 -
581 -
582 -=== 2.7.5 AS920-923 & AS923-925 (AS923) ===
583 -
584 -(% style="color:#037691" %)**Default Uplink channel:**
585 -
586 -923.2 - SF7BW125 to SF10BW125
587 -
588 -923.4 - SF7BW125 to SF10BW125
589 -
590 -
591 -(% style="color:#037691" %)**Additional Uplink Channel**:
592 -
593 -(OTAA mode, channel added by JoinAccept message)
594 -
595 -(% style="color:#037691" %)**AS920~~AS923 for Japan, Malaysia, Singapore**:
596 -
597 -922.2 - SF7BW125 to SF10BW125
598 -
599 -922.4 - SF7BW125 to SF10BW125
600 -
601 -922.6 - SF7BW125 to SF10BW125
602 -
603 -922.8 - SF7BW125 to SF10BW125
604 -
605 -923.0 - SF7BW125 to SF10BW125
606 -
607 -922.0 - SF7BW125 to SF10BW125
608 -
609 -
610 -(% style="color:#037691" %)**AS923 ~~ AS925 for Brunei, Cambodia, Hong Kong, Indonesia, Laos, Taiwan, Thailand, Vietnam**:
611 -
612 -923.6 - SF7BW125 to SF10BW125
613 -
614 -923.8 - SF7BW125 to SF10BW125
615 -
616 -924.0 - SF7BW125 to SF10BW125
617 -
618 -924.2 - SF7BW125 to SF10BW125
619 -
620 -924.4 - SF7BW125 to SF10BW125
621 -
622 -924.6 - SF7BW125 to SF10BW125
623 -
624 -
625 -(% style="color:#037691" %)** Downlink:**
626 -
627 -Uplink channels 1-8 (RX1)
628 -
629 -923.2 - SF10BW125 (RX2)
630 -
631 -
632 -
633 -=== 2.7.6 KR920-923 (KR920) ===
634 -
635 -Default channel:
636 -
637 -922.1 - SF7BW125 to SF12BW125
638 -
639 -922.3 - SF7BW125 to SF12BW125
640 -
641 -922.5 - SF7BW125 to SF12BW125
642 -
643 -
644 -(% style="color:#037691" %)**Uplink: (OTAA mode, channel added by JoinAccept message)**
645 -
646 -922.1 - SF7BW125 to SF12BW125
647 -
648 -922.3 - SF7BW125 to SF12BW125
649 -
650 -922.5 - SF7BW125 to SF12BW125
651 -
652 -922.7 - SF7BW125 to SF12BW125
653 -
654 -922.9 - SF7BW125 to SF12BW125
655 -
656 -923.1 - SF7BW125 to SF12BW125
657 -
658 -923.3 - SF7BW125 to SF12BW125
659 -
660 -
661 -(% style="color:#037691" %)**Downlink:**
662 -
663 -Uplink channels 1-7(RX1)
664 -
665 -921.9 - SF12BW125 (RX2 downlink only; SF12BW125 might be changed to SF9BW125)
666 -
667 -
668 -
669 -=== 2.7.7 IN865-867 (IN865) ===
670 -
671 -(% style="color:#037691" %)** Uplink:**
672 -
673 -865.0625 - SF7BW125 to SF12BW125
674 -
675 -865.4025 - SF7BW125 to SF12BW125
676 -
677 -865.9850 - SF7BW125 to SF12BW125
678 -
679 -
680 -(% style="color:#037691" %) **Downlink:**
681 -
682 -Uplink channels 1-3 (RX1)
683 -
684 -866.550 - SF10BW125 (RX2)
685 -
686 -
687 -
688 -
689 -== 2.8 LED Indicator ==
690 -
691 -The LSE01 has an internal LED which is to show the status of different state.
692 -
693 -* Blink once when device power on.
694 -* Solid ON for 5 seconds once device successful Join the network.
695 -* Blink once when device transmit a packet.
696 -
697 -
698 -== 2.9 Installation in Soil ==
699 -
700 -**Measurement the soil surface**
701 -
702 -
703 -[[image:1654506634463-199.png]] ​
704 -
705 705  (((
706 -(((
707 -Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting.
646 +The NSE01 battery is a combination of an 8500mAh Li/SOCI2 Battery and a Super Capacitor. The battery is none-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter.
708 708  )))
709 -)))
710 710  
711 711  
712 -
713 -[[image:1654506665940-119.png]]
714 -
715 715  (((
716 -Dig a hole with diameter > 20CM.
651 +The battery is designed to last for several years depends on the actually use environment and update interval. 
717 717  )))
718 718  
719 -(((
720 -Horizontal insert the probe to the soil and fill the hole for long term measurement.
721 -)))
722 722  
723 -
724 -== 2.10 ​Firmware Change Log ==
725 -
726 726  (((
727 -**Firmware download link:**
656 +The battery related documents as below:
728 728  )))
729 729  
730 -(((
731 -[[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/]]
732 -)))
659 +* [[Battery Dimension>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]
660 +* [[Lithium-Thionyl Chloride Battery datasheet>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]
661 +* [[Lithium-ion Battery-Capacitor datasheet>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]
733 733  
734 734  (((
735 -
664 +[[image:image-20220708140453-6.png]]
736 736  )))
737 737  
738 -(((
739 -**Firmware Upgrade Method: **[[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome]]
740 -)))
741 741  
742 -(((
743 -
744 -)))
745 745  
746 -(((
747 -**V1.0.**
748 -)))
669 +=== 2.9.2  Power consumption Analyze ===
749 749  
750 750  (((
751 -Release
672 +Dragino battery powered product are all runs in Low Power mode. We have an update battery calculator which base on the measurement of the real device. User can use this calculator to check the battery life and calculate the battery life if want to use different transmit interval.
752 752  )))
753 753  
754 754  
755 -== 2.11 ​Battery Analysis ==
756 -
757 -=== 2.11.1 ​Battery Type ===
758 -
759 759  (((
760 -The LSE01 battery is a combination of a 4000mAh Li/SOCI2 Battery and a Super Capacitor. The battery is non-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter.
677 +Instruction to use as below:
761 761  )))
762 762  
763 763  (((
764 -The battery is designed to last for more than 5 years for the LSN50.
681 +(% style="color:blue" %)**Step 1:  **(%%)Downlink the up-to-date DRAGINO_Battery_Life_Prediction_Table.xlsx from: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/]]
765 765  )))
766 766  
684 +
767 767  (((
768 -(((
769 -The battery-related documents are as below:
686 +(% style="color:blue" %)**Step 2: **(%%) Open it and choose
770 770  )))
771 -)))
772 772  
773 773  * (((
774 -[[Battery Dimension>>url:http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/&file=LSN50-Battery-Dimension.pdf]],
690 +Product Model
775 775  )))
776 776  * (((
777 -[[Lithium-Thionyl Chloride Battery  datasheet>>url:https://www.dragino.com/downloads/downloads/datasheet/Battery/ER26500/ER26500_Datasheet-EN.pdf]],
693 +Uplink Interval
778 778  )))
779 779  * (((
780 -[[Lithium-ion Battery-Capacitor datasheet>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC_1520_datasheet.jpg]], [[Tech Spec>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC1520%20Technical%20Specification20171123.pdf]]
696 +Working Mode
781 781  )))
782 782  
783 - [[image:image-20220610172436-1.png]]
699 +(((
700 +And the Life expectation in difference case will be shown on the right.
701 +)))
784 784  
703 +[[image:image-20220708141352-7.jpeg]]
785 785  
786 786  
787 -=== 2.11.2 ​Battery Note ===
788 788  
707 +=== 2.9.3  ​Battery Note ===
708 +
789 789  (((
790 790  The Li-SICO battery is designed for small current / long period application. It is not good to use a high current, short period transmit method. The recommended minimum period for use of this battery is 5 minutes. If you use a shorter period time to transmit LoRa, then the battery life may be decreased.
791 791  )))
... ... @@ -792,298 +792,176 @@
792 792  
793 793  
794 794  
795 -=== 2.11.3 Replace the battery ===
715 +=== 2.9. Replace the battery ===
796 796  
797 797  (((
798 -If Battery is lower than 2.7v, user should replace the battery of LSE01.
718 +The default battery pack of NSE01 includes a ER26500 plus super capacitor. If user can't find this pack locally, they can find ER26500 or equivalence without the SPC1520 capacitor, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes).
799 799  )))
800 800  
721 +
722 +
723 += 3. ​ Access NB-IoT Module =
724 +
801 801  (((
802 -You can change the battery in the LSE01.The type of battery is not limited as long as the output is between 3v to 3.6v. On the main board, there is a diode (D1) between the battery and the main circuit. If you need to use a battery with less than 3.3v, please remove the D1 and shortcut the two pads of it so there won’t be voltage drop between battery and main board.
726 +Users can directly access the AT command set of the NB-IoT module.
803 803  )))
804 804  
805 805  (((
806 -The default battery pack of LSE01 includes a ER18505 plus super capacitor. If user can’t find this pack locally, they can find ER18505 or equivalence, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes)
730 +The AT Command set can refer the BC35-G NB-IoT Module AT Command: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=datasheet/other_vendors/BC35-G/>>url:https://www.dragino.com/downloads/index.php?dir=datasheet/other_vendors/BC35-G/]] 
807 807  )))
808 808  
733 +[[image:1657261278785-153.png]]
809 809  
810 810  
811 -= 3. ​Using the AT Commands =
812 812  
813 -== 3.1 Access AT Commands ==
737 += 4.  Using the AT Commands =
814 814  
739 +== 4.1  Access AT Commands ==
815 815  
816 -LSE01 supports AT Command set in the stock firmware. You can use a USB to TTL adapter to connect to LSE01 for using AT command, as below.
741 +See this link for detail: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/]]
817 817  
818 -[[image:1654501986557-872.png||height="391" width="800"]]
819 819  
744 +AT+<CMD>?  : Help on <CMD>
820 820  
821 -Or if you have below board, use below connection:
746 +AT+<CMD>         : Run <CMD>
822 822  
748 +AT+<CMD>=<value> : Set the value
823 823  
824 -[[image:1654502005655-729.png||height="503" width="801"]]
750 +AT+<CMD>=?  : Get the value
825 825  
826 826  
827 -
828 -In the PC, you need to set the serial baud rate to (% style="color:green" %)**9600**(%%) to access the serial console for LSE01. LSE01 will output system info once power on as below:
829 -
830 -
831 - [[image:1654502050864-459.png||height="564" width="806"]]
832 -
833 -
834 -Below are the available commands, a more detailed AT Command manual can be found at [[AT Command Manual>>https://www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0]]: [[https:~~/~~/www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0>>https://www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0]]
835 -
836 -
837 -(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>? **(%%) : Help on <CMD>
838 -
839 -(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD> **(%%) : Run <CMD>
840 -
841 -(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>=<value>**(%%) : Set the value
842 -
843 -(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>=?**(%%)  : Get the value
844 -
845 -
846 846  (% style="color:#037691" %)**General Commands**(%%)      
847 847  
848 -(% style="background-color:#dcdcdc" %)**AT**(%%)  : Attention       
755 +AT  : Attention       
849 849  
850 -(% style="background-color:#dcdcdc" %)**AT?**(%%)  : Short Help     
757 +AT?  : Short Help     
851 851  
852 -(% style="background-color:#dcdcdc" %)**ATZ**(%%)  : MCU Reset    
759 +ATZ  : MCU Reset    
853 853  
854 -(% style="background-color:#dcdcdc" %)**AT+TDC**(%%)  : Application Data Transmission Interval 
761 +AT+TDC  : Application Data Transmission Interval
855 855  
763 +AT+CFG  : Print all configurations
856 856  
857 -(% style="color:#037691" %)**Keys, IDs and EUIs management**
765 +AT+CFGMOD           : Working mode selection
858 858  
859 -(% style="background-color:#dcdcdc" %)**AT+APPEUI**(%%)              : Application EUI      
767 +AT+INTMOD            : Set the trigger interrupt mode
860 860  
861 -(% style="background-color:#dcdcdc" %)**AT+APPKEY**(%%)              : Application Key     
769 +AT+5VT  : Set extend the time of 5V power  
862 862  
863 -(% style="background-color:#dcdcdc" %)**AT+APPSKEY**(%%)            : Application Session Key
771 +AT+PRO  : Choose agreement
864 864  
865 -(% style="background-color:#dcdcdc" %)**AT+DADDR**(%%)              : Device Address     
773 +AT+WEIGRE  : Get weight or set weight to 0
866 866  
867 -(% style="background-color:#dcdcdc" %)**AT+DEUI**(%%)                   : Device EUI     
775 +AT+WEIGAP  : Get or Set the GapValue of weight
868 868  
869 -(% style="background-color:#dcdcdc" %)**AT+NWKID**(%%)               : Network ID (You can enter this command change only after successful network connection
777 +AT+RXDL  : Extend the sending and receiving time
870 870  
871 -(% style="background-color:#dcdcdc" %)**AT+NWKSKEY**(%%)          : Network Session Key Joining and sending date on LoRa network  
779 +AT+CNTFAC  : Get or set counting parameters
872 872  
873 -(% style="background-color:#dcdcdc" %)**AT+CFM**(%%)  : Confirm Mode       
781 +AT+SERVADDR  : Server Address
874 874  
875 -(% style="background-color:#dcdcdc" %)**AT+CFS**(%%)                     : Confirm Status       
876 876  
877 -(% style="background-color:#dcdcdc" %)**AT+JOIN**(%%)  : Join LoRa? Network       
784 +(% style="color:#037691" %)**COAP Management**      
878 878  
879 -(% style="background-color:#dcdcdc" %)**AT+NJM**(%%)  : LoRa? Network Join Mode    
786 +AT+URI            : Resource parameters
880 880  
881 -(% style="background-color:#dcdcdc" %)**AT+NJS**(%%)                     : LoRa? Network Join Status    
882 882  
883 -(% style="background-color:#dcdcdc" %)**AT+RECV**(%%)                  : Print Last Received Data in Raw Format
789 +(% style="color:#037691" %)**UDP Management**
884 884  
885 -(% style="background-color:#dcdcdc" %)**AT+RECVB**(%%)                : Print Last Received Data in Binary Format      
791 +AT+CFM          : Upload confirmation mode (only valid for UDP)
886 886  
887 -(% style="background-color:#dcdcdc" %)**AT+SEND**(%%)                  : Send Text Data      
888 888  
889 -(% style="background-color:#dcdcdc" %)**AT+SENB**(%%)                  : Send Hexadecimal Data
794 +(% style="color:#037691" %)**MQTT Management**
890 890  
796 +AT+CLIENT               : Get or Set MQTT client
891 891  
892 -(% style="color:#037691" %)**LoRa Network Management**
798 +AT+UNAME  : Get or Set MQTT Username
893 893  
894 -(% style="background-color:#dcdcdc" %)**AT+ADR**(%%)          : Adaptive Rate
800 +AT+PWD                  : Get or Set MQTT password
895 895  
896 -(% style="background-color:#dcdcdc" %)**AT+CLASS**(%%)  : LoRa Class(Currently only support class A
802 +AT+PUBTOPI : Get or Set MQTT publish topic
897 897  
898 -(% style="background-color:#dcdcdc" %)**AT+DCS**(%%)  : Duty Cycle Settin
804 +AT+SUBTOPIC  : Get or Set MQTT subscription topic
899 899  
900 -(% style="background-color:#dcdcdc" %)**AT+DR**(%%)  : Data Rate (Can Only be Modified after ADR=0)     
901 901  
902 -(% style="background-color:#dcdcdc" %)**AT+FCD**(%%)  : Frame Counter Downlink       
807 +(% style="color:#037691" %)**Information**          
903 903  
904 -(% style="background-color:#dcdcdc" %)**AT+FCU**(%%)  : Frame Counter Uplink   
809 +AT+FDR  : Factory Data Reset
905 905  
906 -(% style="background-color:#dcdcdc" %)**AT+JN1DL**(%%)  : Join Accept Delay1
811 +AT+PWOR : Serial Access Password
907 907  
908 -(% style="background-color:#dcdcdc" %)**AT+JN2DL**(%%)  : Join Accept Delay2
909 909  
910 -(% style="background-color:#dcdcdc" %)**AT+PNM**(%%)  : Public Network Mode   
911 911  
912 -(% style="background-color:#dcdcdc" %)**AT+RX1DL**(%%)  : Receive Delay1      
815 += ​5.  FAQ =
913 913  
914 -(% style="background-color:#dcdcdc" %)**AT+RX2DL**(%%)  : Receive Delay2      
817 +== 5.1 How to Upgrade Firmware ==
915 915  
916 -(% style="background-color:#dcdcdc" %)**AT+RX2DR**(%%)  : Rx2 Window Data Rate 
917 917  
918 -(% style="background-color:#dcdcdc" %)**AT+RX2FQ**(%%)  : Rx2 Window Frequency
919 -
920 -(% style="background-color:#dcdcdc" %)**AT+TXP**(%%)  : Transmit Power
921 -
922 -(% style="background-color:#dcdcdc" %)**AT+ MOD**(%%)  : Set work mode
923 -
924 -
925 -(% style="color:#037691" %)**Information** 
926 -
927 -(% style="background-color:#dcdcdc" %)**AT+RSSI**(%%)           : RSSI of the Last Received Packet   
928 -
929 -(% style="background-color:#dcdcdc" %)**AT+SNR**(%%)           : SNR of the Last Received Packet   
930 -
931 -(% style="background-color:#dcdcdc" %)**AT+VER**(%%)           : Image Version and Frequency Band       
932 -
933 -(% style="background-color:#dcdcdc" %)**AT+FDR**(%%)           : Factory Data Reset
934 -
935 -(% style="background-color:#dcdcdc" %)**AT+PORT**(%%)  : Application Port    
936 -
937 -(% style="background-color:#dcdcdc" %)**AT+CHS**(%%)  : Get or Set Frequency (Unit: Hz) for Single Channel Mode
938 -
939 - (% style="background-color:#dcdcdc" %)**AT+CHE**(%%)  : Get or Set eight channels mode, Only for US915, AU915, CN470
940 -
941 -
942 -= ​4. FAQ =
943 -
944 -== 4.1 ​How to change the LoRa Frequency Bands/Region? ==
945 -
946 946  (((
947 -You can follow the instructions for [[how to upgrade image>>||anchor="H2.10200BFirmwareChangeLog"]].
948 -When downloading the images, choose the required image file for download. ​
821 +User can upgrade the firmware for 1) bug fix, 2) new feature release.
949 949  )))
950 950  
951 951  (((
952 -
825 +Please see this link for how to upgrade:  [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H2.HardwareUpgradeMethodSupportList>>http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H2.HardwareUpgradeMethodSupportList]]
953 953  )))
954 954  
955 955  (((
956 -How to set up LSE01 to work in 8 channel mode By default, the frequency bands US915, AU915, CN470 work in 72 frequencies. Many gateways are 8 channel gateways, and in this case, the OTAA join time and uplink schedule is long and unpredictable while the end node is hopping in 72 frequencies.
829 +(% style="color:red" %)Notice, NSE01 and LSE01 share the same mother board. They use the same connection and method to update.
957 957  )))
958 958  
959 -(((
960 -
961 -)))
962 962  
963 -(((
964 -You can configure the end node to work in 8 channel mode by using the AT+CHE command. The 500kHz channels are always included for OTAA.
965 -)))
966 966  
967 -(((
968 -
969 -)))
834 +== 5.2  Can I calibrate NSE01 to different soil types? ==
970 970  
971 971  (((
972 -For example, in **US915** band, the frequency table is as below. By default, the end node will use all channels (0~~71) for OTAA Join process. After the OTAA Join, the end node will use these all channels (0~~71) to send uplink packets.
837 +NSE01 is calibrated for saline-alkali soil and loamy soil. If users want to use it for other soil, they can calibrate the value in the IoT platform base on the value measured by saline-alkali soil and loamy soil. The formula can be found at [[this link>>https://www.dragino.com/downloads/downloads/LoRa_End_Node/LSE01/Calibrate_to_other_Soil_20220605.pdf]].
973 973  )))
974 974  
975 -[[image:image-20220606154726-3.png]]
976 976  
841 += 6.  Trouble Shooting =
977 977  
978 -When you use the TTN network, the US915 frequency bands use are:
843 +== 6.1  ​Connection problem when uploading firmware ==
979 979  
980 -* 903.9 - SF7BW125 to SF10BW125
981 -* 904.1 - SF7BW125 to SF10BW125
982 -* 904.3 - SF7BW125 to SF10BW125
983 -* 904.5 - SF7BW125 to SF10BW125
984 -* 904.7 - SF7BW125 to SF10BW125
985 -* 904.9 - SF7BW125 to SF10BW125
986 -* 905.1 - SF7BW125 to SF10BW125
987 -* 905.3 - SF7BW125 to SF10BW125
988 -* 904.6 - SF8BW500
989 989  
990 990  (((
991 -Because the end node is now hopping in 72 frequency, it makes it difficult for the devices to Join the TTN network and uplink data. To solve this issue, you can access the device via the AT commands and run:
992 -
993 -* (% style="color:#037691" %)**AT+CHE=2**
994 -* (% style="color:#037691" %)**ATZ**
847 +**Please see: **[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H3.3Troubleshooting>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H3.3Troubleshooting]]
995 995  )))
996 996  
850 +(% class="wikigeneratedid" %)
997 997  (((
998 998  
999 -
1000 -to set the end node to work in 8 channel mode. The device will work in Channel 8-15 & 64-71 for OTAA, and channel 8-15 for Uplink.
1001 1001  )))
1002 1002  
1003 -(((
1004 -
1005 -)))
1006 1006  
1007 -(((
1008 -The **AU915** band is similar. Below are the AU915 Uplink Channels.
1009 -)))
856 +== 6.2  AT Command input doesn't work ==
1010 1010  
1011 -[[image:image-20220606154825-4.png]]
1012 -
1013 -
1014 -
1015 -= 5. Trouble Shooting =
1016 -
1017 -== 5.1 ​Why I can’t join TTN in US915 / AU915 bands? ==
1018 -
1019 -It is due to channel mapping. Please see the [[Eight Channel Mode>>doc:Main.LoRaWAN Communication Debug.WebHome||anchor="H2.NoticeofUS9152FCN4702FAU915Frequencyband"]] section above for details.
1020 -
1021 -
1022 -== 5.2 AT Command input doesn’t work ==
1023 -
1024 1024  (((
1025 -In the case if user can see the console output but can’t type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn’t send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.
1026 -)))
859 +In the case if user can see the console output but can't type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn't send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.
1027 1027  
1028 -
1029 -== 5.3 Device rejoin in at the second uplink packet ==
1030 -
1031 -(% style="color:#4f81bd" %)**Issue describe as below:**
1032 -
1033 -[[image:1654500909990-784.png]]
1034 -
1035 -
1036 -(% style="color:#4f81bd" %)**Cause for this issue:**
1037 -
1038 -(((
1039 -The fuse on LSE01 is not large enough, some of the soil probe require large current up to 5v 800mA, in a short pulse. When this happen, it cause the device reboot so user see rejoin.
861 +
1040 1040  )))
1041 1041  
1042 1042  
1043 -(% style="color:#4f81bd" %)**Solution: **
865 += 7. ​ Order Info =
1044 1044  
1045 -All new shipped LSE01 after 2020-May-30 will have this to fix. For the customer who see this issue, please bypass the fuse as below:
1046 1046  
1047 -[[image:1654500929571-736.png||height="458" width="832"]]
868 +Part Number**:** (% style="color:#4f81bd" %)**NSE01**
1048 1048  
1049 1049  
1050 -= 6. ​Order Info =
1051 -
1052 -
1053 -Part Number**:** (% style="color:#4f81bd" %)**LSE01-XX-YY**
1054 -
1055 -
1056 -(% style="color:#4f81bd" %)**XX**(%%)**:** The default frequency band
1057 -
1058 -* (% style="color:red" %)**AS923**(%%): LoRaWAN AS923 band
1059 -* (% style="color:red" %)**AU915**(%%): LoRaWAN AU915 band
1060 -* (% style="color:red" %)**EU433**(%%): LoRaWAN EU433 band
1061 -* (% style="color:red" %)**EU868**(%%): LoRaWAN EU868 band
1062 -* (% style="color:red" %)**KR920**(%%): LoRaWAN KR920 band
1063 -* (% style="color:red" %)**US915**(%%): LoRaWAN US915 band
1064 -* (% style="color:red" %)**IN865**(%%):  LoRaWAN IN865 band
1065 -* (% style="color:red" %)**CN470**(%%): LoRaWAN CN470 band
1066 -
1067 -(% style="color:#4f81bd" %)**YY**(%%)**: **Battery Option
1068 -
1069 -* (% style="color:red" %)**4**(%%): 4000mAh battery
1070 -* (% style="color:red" %)**8**(%%): 8500mAh battery
1071 -
1072 1072  (% class="wikigeneratedid" %)
1073 1073  (((
1074 1074  
1075 1075  )))
1076 1076  
1077 -= 7. Packing Info =
876 += 8.  Packing Info =
1078 1078  
1079 1079  (((
1080 1080  
1081 1081  
1082 1082  (% style="color:#037691" %)**Package Includes**:
1083 -)))
1084 1084  
1085 -* (((
1086 -LSE01 LoRaWAN Soil Moisture & EC Sensor x 1
883 +* NSE01 NB-IoT Soil Moisture & EC Sensor x 1
884 +* External antenna x 1
1087 1087  )))
1088 1088  
1089 1089  (((
... ... @@ -1090,24 +1090,19 @@
1090 1090  
1091 1091  
1092 1092  (% style="color:#037691" %)**Dimension and weight**:
1093 -)))
1094 1094  
1095 -* (((
1096 -Device Size: cm
892 +* Size: 195 x 125 x 55 mm
893 +* Weight:   420g
1097 1097  )))
1098 -* (((
1099 -Device Weight: g
1100 -)))
1101 -* (((
1102 -Package Size / pcs : cm
1103 -)))
1104 -* (((
1105 -Weight / pcs : g
1106 1106  
896 +(((
1107 1107  
898 +
899 +
900 +
1108 1108  )))
1109 1109  
1110 -= 8. Support =
903 += 9.  Support =
1111 1111  
1112 1112  * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
1113 1113  * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.com]]
1657245163077-232.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +81.0 KB
Content
1657246476176-652.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +492.6 KB
Content
1657249419225-449.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +81.0 KB
Content
1657249468462-536.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +483.6 KB
Content
1657249793983-486.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +85.8 KB
Content
1657249831934-534.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +72.5 KB
Content
1657249864775-321.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +87.0 KB
Content
1657249930215-289.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +77.3 KB
Content
1657249978444-674.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +139.5 KB
Content
1657249990869-686.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +96.9 KB
Content
1657250217799-140.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +98.7 KB
Content
1657250255956-604.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +99.0 KB
Content
1657259653666-883.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +344.4 KB
Content
1657260785982-288.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +138.2 KB
Content
1657261119050-993.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +126.1 KB
Content
1657261278785-153.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +126.1 KB
Content
1657271519014-786.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +71.5 KB
Content
image-20220708101224-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +22.2 KB
Content
image-20220708101605-2.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +87.5 KB
Content
image-20220708110657-3.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +251.7 KB
Content
image-20220708111918-4.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +38.8 KB
Content
image-20220708133731-5.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +8.7 KB
Content
image-20220708140453-6.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +132.7 KB
Content
image-20220708141352-7.jpeg
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +102.7 KB
Content
image-20220709084038-1.jpeg
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +72.0 KB
Content
Copyright ©2010-2022 Dragino Technology Co., LTD. All rights reserved
Dragino Wiki v2.0