<
From version < 35.25 >
edited by Xiaoling
on 2022/06/25 16:23
To version < 65.9 >
edited by Xiaoling
on 2022/07/08 15:38
>
Change comment: There is no comment for this version

Summary

Details

Page properties
Title
... ... @@ -1,1 +1,1 @@
1 -LSE01-LoRaWAN Soil Moisture & EC Sensor User Manual
1 +NSE01 - NB-IoT Soil Moisture & EC Sensor User Manual
Content
... ... @@ -20,68 +20,82 @@
20 20  
21 21  
22 22  
23 -= 1. Introduction =
24 24  
25 -== 1.1 ​What is LoRaWAN Soil Moisture & EC Sensor ==
24 += 1.  Introduction =
26 26  
26 +== 1.1 ​ What is LoRaWAN Soil Moisture & EC Sensor ==
27 +
27 27  (((
28 28  
29 29  
30 -The Dragino LSE01 is a (% style="color:#4f81bd" %)**LoRaWAN Soil Moisture & EC Sensor**(%%) for IoT of Agriculture. It is designed to measure the soil moisture of saline-alkali soil and loamy soil. The soil sensor uses FDR method to calculate the soil moisture with the compensation from soil temperature and conductivity. It also has been calibrated in factory for Mineral soil type.
31 +(((
32 +Dragino NSE01 is an (% style="color:blue" %)**NB-IOT soil moisture & EC sensor**(%%) for agricultural IoT. Used to measure the soil moisture of saline-alkali soil and loam. The soil sensor uses the FDR method to calculate soil moisture and compensates it with soil temperature and electrical conductivity. It has also been calibrated for mineral soil types at the factory.
31 31  )))
32 32  
33 33  (((
34 -It detects (% style="color:#4f81bd" %)**Soil Moisture**(%%), (% style="color:#4f81bd" %)**Soil Temperature**(%%) and (% style="color:#4f81bd" %)**Soil Conductivity**(%%), and uploads the value via wireless to LoRaWAN IoT Server.
36 +It can detect (% style="color:blue" %)**Soil Moisture, Soil Temperature and Soil Conductivity**(%%), and upload its value to the server wirelessly.
35 35  )))
36 36  
37 37  (((
38 -The LoRa wireless technology used in LES01 allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption.
40 +The wireless technology used in NSE01 allows the device to send data at a low data rate and reach ultra-long distances, providing ultra-long-distance spread spectrum Communication.
39 39  )))
40 40  
41 41  (((
42 -LES01 is powered by (% style="color:#4f81bd" %)**4000mA or 8500mAh Li-SOCI2 battery**(%%), It is designed for long term use up to 10 years.
44 +NSE01 are powered by (% style="color:blue" %)**8500mAh Li-SOCI2**(%%) batteries, which can be used for up to 5 years.  
43 43  )))
44 44  
45 -(((
46 -Each LES01 is pre-load with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect after power on.
47 +
47 47  )))
48 48  
49 -
50 50  [[image:1654503236291-817.png]]
51 51  
52 52  
53 -[[image:1654503265560-120.png]]
53 +[[image:1657245163077-232.png]]
54 54  
55 55  
56 56  
57 -== 1.2 ​Features ==
57 +== 1.2 ​ Features ==
58 58  
59 -* LoRaWAN 1.0.3 Class A
60 -* Ultra low power consumption
59 +* NB-IoT Bands: B1/B3/B8/B5/B20/B28 @H-FDD
61 61  * Monitor Soil Moisture
62 62  * Monitor Soil Temperature
63 63  * Monitor Soil Conductivity
64 -* Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865
65 65  * AT Commands to change parameters
66 66  * Uplink on periodically
67 67  * Downlink to change configure
68 68  * IP66 Waterproof Enclosure
69 -* 4000mAh or 8500mAh Battery for long term use
67 +* Ultra-Low Power consumption
68 +* AT Commands to change parameters
69 +* Micro SIM card slot for NB-IoT SIM
70 +* 8500mAh Battery for long term use
70 70  
71 71  
73 +== 1.3  Specification ==
72 72  
73 73  
76 +(% style="color:#037691" %)**Common DC Characteristics:**
74 74  
78 +* Supply Voltage: 2.1v ~~ 3.6v
79 +* Operating Temperature: -40 ~~ 85°C
75 75  
76 -== 1.3 Specification ==
81 +(% style="color:#037691" %)**NB-IoT Spec:**
77 77  
83 +* - B1 @H-FDD: 2100MHz
84 +* - B3 @H-FDD: 1800MHz
85 +* - B8 @H-FDD: 900MHz
86 +* - B5 @H-FDD: 850MHz
87 +* - B20 @H-FDD: 800MHz
88 +* - B28 @H-FDD: 700MHz
89 +
90 +Probe(% style="color:#037691" %)** Specification:**
91 +
78 78  Measure Volume: Base on the centra pin of the probe, a cylinder with 7cm diameter and 10cm height.
79 79  
80 -[[image:image-20220606162220-5.png]]
94 +[[image:image-20220708101224-1.png]]
81 81  
82 82  
83 83  
84 -== ​1.4 Applications ==
98 +== ​1.4  Applications ==
85 85  
86 86  * Smart Agriculture
87 87  
... ... @@ -88,1002 +88,716 @@
88 88  (% class="wikigeneratedid" id="H200B1.5FirmwareChangelog" %)
89 89  ​
90 90  
91 -== 1.5 Firmware Change log ==
105 +== 1.5  Pin Definitions ==
92 92  
93 93  
94 -**LSE01 v1.0 :**  Release
108 +[[image:1657246476176-652.png]]
95 95  
96 96  
97 97  
98 -= 2. Configure LSE01 to connect to LoRaWAN network =
112 += 2.  Use NSE01 to communicate with IoT Server =
99 99  
100 -== 2.1 How it works ==
114 +== 2.1  How it works ==
101 101  
116 +
102 102  (((
103 -The LSE01 is configured as LoRaWAN OTAA Class A mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and power on the LSE0150. It will automatically join the network via OTAA and start to send the sensor value
118 +The NSE01 is equipped with a NB-IoT module, the pre-loaded firmware in NSE01 will get environment data from sensors and send the value to local NB-IoT network via the NB-IoT module The NB-IoT network will forward this value to IoT server via the protocol defined by NSE01.
104 104  )))
105 105  
121 +
106 106  (((
107 -In case you can’t set the OTAA keys in the LoRaWAN OTAA server, and you have to use the keys from the server, you can [[use AT Commands >>||anchor="H3.200BUsingtheATCommands"]].
123 +The diagram below shows the working flow in default firmware of NSE01:
108 108  )))
109 109  
126 +[[image:image-20220708101605-2.png]]
110 110  
128 +(((
129 +
130 +)))
111 111  
112 -== 2.2 ​Quick guide to connect to LoRaWAN server (OTAA) ==
113 113  
114 -Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LG308>>url:http://www.dragino.com/products/lora/item/140-lg308.html]] as a LoRaWAN gateway in this example.
115 115  
134 +== 2.2 ​ Configure the NSE01 ==
116 116  
117 -[[image:1654503992078-669.png]]
118 118  
137 +=== 2.2.1 Test Requirement ===
119 119  
120 -The LG308 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
121 121  
140 +To use NSE01 in your city, make sure meet below requirements:
122 122  
123 -(% style="color:blue" %)**Step 1**(%%):  Create a device in TTN with the OTAA keys from LSE01.
142 +* Your local operator has already distributed a NB-IoT Network there.
143 +* The local NB-IoT network used the band that NSE01 supports.
144 +* Your operator is able to distribute the data received in their NB-IoT network to your IoT server.
124 124  
125 -Each LSE01 is shipped with a sticker with the default device EUI as below:
126 -
127 -[[image:image-20220606163732-6.jpeg]]
128 -
129 -You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot:
130 -
131 -**Add APP EUI in the application**
132 -
133 -
134 -[[image:1654504596150-405.png]]
135 -
136 -
137 -
138 -**Add APP KEY and DEV EUI**
139 -
140 -[[image:1654504683289-357.png]]
141 -
142 -
143 -
144 -(% style="color:blue" %)**Step 2**(%%): Power on LSE01
145 -
146 -
147 -Put a Jumper on JP2 to power on the device. ( The Jumper must be in FLASH position).
148 -
149 -[[image:image-20220606163915-7.png]]
150 -
151 -
152 -(% style="color:blue" %)**Step 3**(%%)**:** The LSE01 will auto join to the TTN network. After join success, it will start to upload messages to TTN and you can see the messages in the panel.
153 -
154 -[[image:1654504778294-788.png]]
155 -
156 -
157 -
158 -== 2.3 Uplink Payload ==
159 -
160 -
161 -=== 2.3.1 MOD~=0(Default Mode) ===
162 -
163 -LSE01 will uplink payload via LoRaWAN with below payload format: 
164 -
165 165  (((
166 -Uplink payload includes in total 11 bytes.
147 +Below figure shows our testing structure. Here we have NB-IoT network coverage by China Mobile, the band they use is B8.  The NSE01 will use CoAP((% style="color:red" %)120.24.4.116:5683)(%%) or raw UDP((% style="color:red" %)120.24.4.116:5601)(%%) or MQTT((% style="color:red" %)120.24.4.116:1883)(%%)or TCP((% style="color:red" %)120.24.4.116:5600)(%%)protocol to send data to the test server
167 167  )))
168 168  
169 -(% border="1" cellspacing="10" style="background-color:#ffffcc; width:500px" %)
170 -|(((
171 -**Size**
172 172  
173 -**(bytes)**
174 -)))|**2**|**2**|**2**|**2**|**2**|**1**
175 -|**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(((
176 -Temperature
151 +[[image:1657249419225-449.png]]
177 177  
178 -(Reserve, Ignore now)
179 -)))|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]]|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]]|(((
180 -MOD & Digital Interrupt
181 181  
182 -(Optional)
183 -)))
184 184  
185 -=== 2.3.2 MOD~=1(Original value) ===
155 +=== 2.2.2 Insert SIM card ===
186 186  
187 -This mode can get the original AD value of moisture and original conductivity (with temperature drift compensation).
157 +Insert the NB-IoT Card get from your provider.
188 188  
189 -(% border="1" cellspacing="10" style="background-color:#ffffcc; width:500px" %)
190 -|(((
191 -**Size**
159 +User need to take out the NB-IoT module and insert the SIM card like below:
192 192  
193 -**(bytes)**
194 -)))|**2**|**2**|**2**|**2**|**2**|**1**
195 -|**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(((
196 -Temperature
197 197  
198 -(Reserve, Ignore now)
199 -)))|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]](raw)|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]](raw)|(((
200 -MOD & Digital Interrupt
162 +[[image:1657249468462-536.png]]
201 201  
202 -(Optional)
203 -)))
204 204  
205 -=== 2.3.3 Battery Info ===
206 206  
207 -(((
208 -Check the battery voltage for LSE01.
209 -)))
166 +=== 2.2.3 Connect USB – TTL to NSE01 to configure it ===
210 210  
211 211  (((
212 -Ex1: 0x0B45 = 2885mV
213 -)))
214 -
215 215  (((
216 -Ex2: 0x0B49 = 2889mV
170 +User need to configure NSE01 via serial port to set the (% style="color:blue" %)**Server Address** / **Uplink Topic** (%%)to define where and how-to uplink packets. NSE01 support AT Commands, user can use a USB to TTL adapter to connect to NSE01 and use AT Commands to configure it, as below.
217 217  )))
218 -
219 -
220 -
221 -=== 2.3.4 Soil Moisture ===
222 -
223 -(((
224 -Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil.
225 225  )))
226 226  
227 -(((
228 -For example, if the data you get from the register is __0x05 0xDC__, the moisture content in the soil is
229 -)))
230 230  
231 -(((
232 -
233 -)))
175 +**Connection:**
234 234  
235 -(((
236 -(% style="color:#4f81bd" %)**05DC(H) = 1500(D) /100 = 15%.**
237 -)))
177 + (% style="background-color:yellow" %)USB TTL GND <~-~-~-~-> GND
238 238  
179 + (% style="background-color:yellow" %)USB TTL TXD <~-~-~-~-> UART_RXD
239 239  
181 + (% style="background-color:yellow" %)USB TTL RXD <~-~-~-~-> UART_TXD
240 240  
241 -=== 2.3.5 Soil Temperature ===
242 242  
243 -(((
244 - Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is 0x09 0xEC, the temperature content in the soil is
245 -)))
184 +In the PC, use below serial tool settings:
246 246  
247 -(((
248 -**Example**:
249 -)))
186 +* Baud:  (% style="color:green" %)**9600**
187 +* Data bits:** (% style="color:green" %)8(%%)**
188 +* Stop bits: (% style="color:green" %)**1**
189 +* Parity:  (% style="color:green" %)**None**
190 +* Flow Control: (% style="color:green" %)**None**
250 250  
251 251  (((
252 -If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/100 = 2.61 °C
193 +Make sure the switch is in FLASH position, then power on device by connecting the jumper on NSE01. NSE01 will output system info once power on as below, we can enter the (% style="color:green" %)**password: 12345678**(%%) to access AT Command input.
253 253  )))
254 254  
255 -(((
256 -If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C
257 -)))
196 +[[image:image-20220708110657-3.png]]
258 258  
198 +(% style="color:red" %)Note: the valid AT Commands can be found at: (%%)[[http:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/]]
259 259  
260 260  
261 -=== 2.3.6 Soil Conductivity (EC) ===
262 262  
263 -(((
264 -Obtain (% style="color:#4f81bd" %)**__soluble salt concentration__**(%%) in soil or (% style="color:#4f81bd" %)**__soluble ion concentration in liquid fertilizer__**(%%) or (% style="color:#4f81bd" %)**__planting medium__**(%%). The value range of the register is 0 - 20000(Decimal)( Can be greater than 20000).
265 -)))
202 +=== 2.2.4 Use CoAP protocol to uplink data ===
266 266  
267 -(((
268 -For example, if the data you get from the register is 0x00 0xC8, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm.
269 -)))
204 +(% style="color:red" %)Note: if you don't have CoAP server, you can refer this link to set up one: (%%)[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/>>http://wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/]]
270 270  
271 -(((
272 -Generally, the EC value of irrigation water is less than 800uS / cm.
273 -)))
274 274  
275 -(((
276 -
277 -)))
207 +**Use below commands:**
278 278  
279 -(((
280 -
281 -)))
209 +* (% style="color:blue" %)**AT+PRO=1**  (%%) ~/~/ Set to use CoAP protocol to uplink
210 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5683   ** (%%)~/~/ to set CoAP server address and port
211 +* (% style="color:blue" %)**AT+URI=5,11,"mqtt",11,"coap",12,"0",15,"c=text1",23,"0" ** (%%) ~/~/Set COAP resource path
282 282  
283 -=== 2.3.7 MOD ===
213 +For parameter description, please refer to AT command set
284 284  
285 -Firmware version at least v2.1 supports changing mode.
215 +[[image:1657249793983-486.png]]
286 286  
287 -For example, bytes[10]=90
288 288  
289 -mod=(bytes[10]>>7)&0x01=1.
218 +After configure the server address and (% style="color:green" %)**reset the device**(%%) (via AT+ATZ ), NSE01 will start to uplink sensor values to CoAP server.
290 290  
220 +[[image:1657249831934-534.png]]
291 291  
292 -**Downlink Command:**
293 293  
294 -If payload = 0x0A00, workmode=0
295 295  
296 -If** **payload =** **0x0A01, workmode=1
224 +=== 2.2.5 Use UDP protocol to uplink data(Default protocol) ===
297 297  
226 +This feature is supported since firmware version v1.0.1
298 298  
299 299  
300 -=== 2.3.8 ​Decode payload in The Things Network ===
229 +* (% style="color:blue" %)**AT+PRO=2   ** (%%) ~/~/ Set to use UDP protocol to uplink
230 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5601   ** (%%) ~/~/ to set UDP server address and port
231 +* (% style="color:blue" %)**AT+CFM=1       ** (%%) ~/~/If the server does not respond, this command is unnecessary
301 301  
302 -While using TTN network, you can add the payload format to decode the payload.
233 +[[image:1657249864775-321.png]]
303 303  
304 304  
305 -[[image:1654505570700-128.png]]
236 +[[image:1657249930215-289.png]]
306 306  
307 -(((
308 -The payload decoder function for TTN is here:
309 -)))
310 310  
311 -(((
312 -LSE01 TTN Payload Decoder: [[https:~~/~~/www.dropbox.com/sh/si8icbrjlamxqdb/AAACYwjsxxr5fj_vpqRtrETAa?dl=0>>https://www.dropbox.com/sh/si8icbrjlamxqdb/AAACYwjsxxr5fj_vpqRtrETAa?dl=0]]
313 -)))
314 314  
240 +=== 2.2.6 Use MQTT protocol to uplink data ===
315 315  
316 -== 2.4 Uplink Interval ==
242 +This feature is supported since firmware version v110
317 317  
318 -The LSE01 by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link: [[Change Uplink Interval>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H4.1ChangeUplinkInterval"]]
319 319  
245 +* (% style="color:blue" %)**AT+PRO=3   ** (%%) ~/~/Set to use MQTT protocol to uplink
246 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,1883   ** (%%) ~/~/Set MQTT server address and port
247 +* (% style="color:blue" %)**AT+CLIENT=CLIENT       ** (%%)~/~/Set up the CLIENT of MQTT
248 +* (% style="color:blue" %)**AT+UNAME=UNAME                               **(%%)~/~/Set the username of MQTT
249 +* (% style="color:blue" %)**AT+PWD=PWD                                        **(%%)~/~/Set the password of MQTT
250 +* (% style="color:blue" %)**AT+PUBTOPIC=NSE01_PUB                    **(%%)~/~/Set the sending topic of MQTT
251 +* (% style="color:blue" %)**AT+SUBTOPIC=NSE01_SUB          **(%%) ~/~/Set the subscription topic of MQTT
320 320  
253 +[[image:1657249978444-674.png]]
321 321  
322 -== 2.5 Downlink Payload ==
323 323  
324 -By default, LSE50 prints the downlink payload to console port.
256 +[[image:1657249990869-686.png]]
325 325  
326 -[[image:image-20220606165544-8.png]]
327 327  
328 -
329 329  (((
330 -**Examples:**
260 +MQTT protocol has a much higher power consumption compare vs UDP / CoAP protocol. Please check the power analyze document and adjust the uplink period to a suitable interval.
331 331  )))
332 332  
333 -(((
334 -
335 -)))
336 336  
337 -* (((
338 -**Set TDC**
339 -)))
340 340  
341 -(((
342 -If the payload=0100003C, it means set the END Node’s TDC to 0x00003C=60(S), while type code is 01.
343 -)))
265 +=== 2.2.7 Use TCP protocol to uplink data ===
344 344  
345 -(((
346 -Payload:    01 00 00 1E    TDC=30S
347 -)))
267 +This feature is supported since firmware version v110
348 348  
349 -(((
350 -Payload:    01 00 00 3C    TDC=60S
351 -)))
352 352  
353 -(((
354 -
355 -)))
270 +* (% style="color:blue" %)**AT+PRO=4   ** (%%) ~/~/ Set to use TCP protocol to uplink
271 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5600   **(%%) ~/~/ to set TCP server address and port
356 356  
357 -* (((
358 -**Reset**
359 -)))
273 +[[image:1657250217799-140.png]]
360 360  
361 -(((
362 -If payload = 0x04FF, it will reset the LSE01
363 -)))
364 364  
276 +[[image:1657250255956-604.png]]
365 365  
366 -* **CFM**
367 367  
368 -Downlink Payload: 05000001, Set AT+CFM=1 or 05000000 , set AT+CFM=0
369 369  
280 +=== 2.2.8 Change Update Interval ===
370 370  
282 +User can use below command to change the (% style="color:green" %)**uplink interval**.
371 371  
372 -== 2.6 ​Show Data in DataCake IoT Server ==
284 +* (% style="color:blue" %)**AT+TDC=600      ** (%%)~/~/ Set Update Interval to 600s
373 373  
374 374  (((
375 -[[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps:
287 +(% style="color:red" %)**NOTE:**
376 376  )))
377 377  
378 378  (((
379 -
291 +(% style="color:red" %)1. By default, the device will send an uplink message every 1 hour.
380 380  )))
381 381  
382 -(((
383 -(% style="color:blue" %)**Step 1**(%%):  Be sure that your device is programmed and properly connected to the network at this time.
384 -)))
385 385  
386 -(((
387 -(% style="color:blue" %)**Step 2**(%%):  To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps:
388 -)))
389 389  
296 +== 2.3  Uplink Payload ==
390 390  
391 -[[image:1654505857935-743.png]]
298 +In this mode, uplink payload includes in total 18 bytes
392 392  
300 +(% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:510px" %)
301 +|=(% style="width: 50px;" %)(((
302 +**Size(bytes)**
303 +)))|=(% style="width: 50px;" %)**6**|=(% style="width: 25px;" %)2|=(% style="width: 25px;" %)**2**|=(% style="width: 80px;" %)**1**|=(% style="width: 80px;" %)**2**|=(% style="width: 80px;" %)**2**|=(% style="width: 80px;" %)**2**|=(% style="width: 40px;" %)**1**
304 +|(% style="width:97px" %)**Value**|(% style="width:83px" %)[[Device ID>>||anchor="H2.4.1A0A0DeviceID"]]|(% style="width:41px" %)[[Ver>>||anchor="H2.4.2A0VersionInfo"]]|(% style="width:46px" %)[[BAT>>||anchor="H2.4.3A0BatteryInfo"]]|(% style="width:123px" %)[[Signal Strength>>||anchor="H2.4.4A0SignalStrength"]]|(% style="width:108px" %)[[Soil Moisture>>||anchor="H2.4.5A0SoilMoisture"]]|(% style="width:133px" %)[[Soil Temperature>>||anchor="H2.4.6A0SoilTemperature"]]|(% style="width:159px" %)[[Soil Conductivity(EC)>>||anchor="H2.4.7A0SoilConductivity28EC29"]]|(% style="width:80px" %)[[Interrupt>>||anchor="H2.4.8A0DigitalInterrupt"]]
393 393  
394 -[[image:1654505874829-548.png]]
306 +If we use the MQTT client to subscribe to this MQTT topic, we can see the following information when the NSE01 uplink data.
395 395  
396 396  
397 -(% style="color:blue" %)**Step 3**(%%)**:**  Create an account or log in Datacake.
309 +[[image:image-20220708111918-4.png]]
398 398  
399 -(% style="color:blue" %)**Step 4**(%%)**:**  Search the LSE01 and add DevEUI.
400 400  
312 +The payload is ASCII string, representative same HEX:
401 401  
402 -[[image:1654505905236-553.png]]
314 +0x72403155615900640c7817075e0a8c02f900 where:
403 403  
316 +* Device ID: 0x 724031556159 = 724031556159
317 +* Version: 0x0064=100=1.0.0
404 404  
405 -After added, the sensor data arrive TTN, it will also arrive and show in Mydevices.
319 +* BAT: 0x0c78 = 3192 mV = 3.192V
320 +* Singal: 0x17 = 23
321 +* Soil Moisture: 0x075e= 1886 = 18.86  %
322 +* Soil Temperature:0x0a8c =2700=27 °C
323 +* Soil Conductivity(EC) = 0x02f9 =761 uS /cm
324 +* Interrupt: 0x00 = 0
406 406  
407 -[[image:1654505925508-181.png]]
408 408  
327 +== 2.4  Payload Explanation and Sensor Interface ==
409 409  
410 410  
411 -== 2.7 Frequency Plans ==
330 +=== 2.4.1  Device ID ===
412 412  
413 -The LSE01 uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.
332 +By default, the Device ID equal to the last 6 bytes of IMEI.
414 414  
334 +User can use (% style="color:blue" %)**AT+DEUI**(%%) to set Device ID
415 415  
416 -=== 2.7.1 EU863-870 (EU868) ===
336 +**Example:**
417 417  
418 -(% style="color:#037691" %)** Uplink:**
338 +AT+DEUI=A84041F15612
419 419  
420 -868.1 - SF7BW125 to SF12BW125
340 +The Device ID is stored in a none-erase area, Upgrade the firmware or run AT+FDR won't erase Device ID.
421 421  
422 -868.3 - SF7BW125 to SF12BW125 and SF7BW250
423 423  
424 -868.5 - SF7BW125 to SF12BW125
425 425  
426 -867.1 - SF7BW125 to SF12BW125
344 +=== 2.4.2  Version Info ===
427 427  
428 -867.3 - SF7BW125 to SF12BW125
346 +Specify the software version: 0x64=100, means firmware version 1.00.
429 429  
430 -867.5 - SF7BW125 to SF12BW125
348 +For example: 0x00 64 : this device is NSE01 with firmware version 1.0.0.
431 431  
432 -867.7 - SF7BW125 to SF12BW125
433 433  
434 -867.9 - SF7BW125 to SF12BW125
435 435  
436 -868.8 - FSK
352 +=== 2.4.3  Battery Info ===
437 437  
354 +(((
355 +Check the battery voltage for LSE01.
356 +)))
438 438  
439 -(% style="color:#037691" %)** Downlink:**
358 +(((
359 +Ex1: 0x0B45 = 2885mV
360 +)))
440 440  
441 -Uplink channels 1-9 (RX1)
362 +(((
363 +Ex2: 0x0B49 = 2889mV
364 +)))
442 442  
443 -869.525 - SF9BW125 (RX2 downlink only)
444 444  
445 445  
368 +=== 2.4.4  Signal Strength ===
446 446  
447 -=== 2.7.2 US902-928(US915) ===
370 +NB-IoT Network signal Strength.
448 448  
449 -Used in USA, Canada and South America. Default use CHE=2
372 +**Ex1: 0x1d = 29**
450 450  
451 -(% style="color:#037691" %)**Uplink:**
374 +(% style="color:blue" %)**0**(%%)  -113dBm or less
452 452  
453 -903.9 - SF7BW125 to SF10BW125
376 +(% style="color:blue" %)**1**(%%)  -111dBm
454 454  
455 -904.1 - SF7BW125 to SF10BW125
378 +(% style="color:blue" %)**2...30**(%%) -109dBm... -53dBm
456 456  
457 -904.3 - SF7BW125 to SF10BW125
380 +(% style="color:blue" %)**31**  (%%) -51dBm or greater
458 458  
459 -904.5 - SF7BW125 to SF10BW125
382 +(% style="color:blue" %)**99**   (%%) Not known or not detectable
460 460  
461 -904.7 - SF7BW125 to SF10BW125
462 462  
463 -904.9 - SF7BW125 to SF10BW125
464 464  
465 -905.1 - SF7BW125 to SF10BW125
386 +=== 2.4.5  Soil Moisture ===
466 466  
467 -905.3 - SF7BW125 to SF10BW125
388 +(((
389 +Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil.
390 +)))
468 468  
392 +(((
393 +For example, if the data you get from the register is **__0x05 0xDC__**, the moisture content in the soil is
394 +)))
469 469  
470 -(% style="color:#037691" %)**Downlink:**
396 +(((
397 +
398 +)))
471 471  
472 -923.3 - SF7BW500 to SF12BW500
400 +(((
401 +(% style="color:#4f81bd" %)**05DC(H) = 1500(D) /100 = 15%.**
402 +)))
473 473  
474 -923.9 - SF7BW500 to SF12BW500
475 475  
476 -924.5 - SF7BW500 to SF12BW500
477 477  
478 -925.1 - SF7BW500 to SF12BW500
406 +=== 2.4.6  Soil Temperature ===
479 479  
480 -925.7 - SF7BW500 to SF12BW500
408 +(((
409 + Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is __**0x09 0xEC**__, the temperature content in the soil is
410 +)))
481 481  
482 -926.3 - SF7BW500 to SF12BW500
412 +(((
413 +**Example**:
414 +)))
483 483  
484 -926.9 - SF7BW500 to SF12BW500
416 +(((
417 +If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/100 = 2.61 °C
418 +)))
485 485  
486 -927.5 - SF7BW500 to SF12BW500
420 +(((
421 +If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C
422 +)))
487 487  
488 -923.3 - SF12BW500(RX2 downlink only)
489 489  
490 490  
426 +=== 2.4.7  Soil Conductivity (EC) ===
491 491  
492 -=== 2.7.3 CN470-510 (CN470) ===
428 +(((
429 +Obtain (% style="color:#4f81bd" %)**__soluble salt concentration__**(%%) in soil or (% style="color:#4f81bd" %)**__soluble ion concentration in liquid fertilizer__**(%%) or (% style="color:#4f81bd" %)**__planting medium__**(%%). The value range of the register is 0 - 20000(Decimal)( Can be greater than 20000).
430 +)))
493 493  
494 -Used in China, Default use CHE=1
432 +(((
433 +For example, if the data you get from the register is __**0x00 0xC8**__, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm.
434 +)))
495 495  
496 -(% style="color:#037691" %)**Uplink:**
436 +(((
437 +Generally, the EC value of irrigation water is less than 800uS / cm.
438 +)))
497 497  
498 -486.3 - SF7BW125 to SF12BW125
440 +(((
441 +
442 +)))
499 499  
500 -486.5 - SF7BW125 to SF12BW125
444 +(((
445 +
446 +)))
501 501  
502 -486.7 - SF7BW125 to SF12BW125
448 +=== 2.4. Digital Interrupt ===
503 503  
504 -486.9 - SF7BW125 to SF12BW125
450 +Digital Interrupt refers to pin (% style="color:blue" %)**GPIO_EXTI**(%%), and there are different trigger methods. When there is a trigger, the NSE01 will send a packet to the server.
505 505  
506 -487.1 - SF7BW125 to SF12BW125
452 +The command is:
507 507  
508 -487.3 - SF7BW125 to SF12BW125
454 +(% style="color:blue" %)**AT+INTMOD=3 **(%%) ~/~/(more info about INMOD please refer [[**AT Command Manual**>>url:https://www.dragino.com/downloads/downloads/NB-IoT/NBSN95/DRAGINO_NBSN95-NB_AT%20Commands_v1.1.0.pdf]])**.**
509 509  
510 -487.5 - SF7BW125 to SF12BW125
511 511  
512 -487.7 - SF7BW125 to SF12BW125
457 +The lower four bits of this data field shows if this packet is generated by interrupt or not. Click here for the hardware and software set up.
513 513  
514 514  
515 -(% style="color:#037691" %)**Downlink:**
460 +Example:
516 516  
517 -506.7 - SF7BW125 to SF12BW125
462 +0x(00): Normal uplink packet.
518 518  
519 -506.9 - SF7BW125 to SF12BW125
464 +0x(01): Interrupt Uplink Packet.
520 520  
521 -507.1 - SF7BW125 to SF12BW125
522 522  
523 -507.3 - SF7BW125 to SF12BW125
524 524  
525 -507.5 - SF7BW125 to SF12BW125
468 +=== 2.4.9  ​+5V Output ===
526 526  
527 -507.7 - SF7BW125 to SF12BW125
470 +NSE01 will enable +5V output before all sampling and disable the +5v after all sampling. 
528 528  
529 -507.9 - SF7BW125 to SF12BW125
530 530  
531 -508.1 - SF7BW125 to SF12BW125
473 +The 5V output time can be controlled by AT Command.
532 532  
533 -505.3 - SF12BW125 (RX2 downlink only)
475 +(% style="color:blue" %)**AT+5VT=1000**
534 534  
477 +Means set 5V valid time to have 1000ms. So the real 5V output will actually have 1000ms + sampling time for other sensors.
535 535  
536 536  
537 -=== 2.7.4 AU915-928(AU915) ===
538 538  
539 -Default use CHE=2
481 +== 2.5  Downlink Payload ==
540 540  
541 -(% style="color:#037691" %)**Uplink:**
483 +By default, NSE01 prints the downlink payload to console port.
542 542  
543 -916.8 - SF7BW125 to SF12BW125
485 +[[image:image-20220708133731-5.png]]
544 544  
545 -917.0 - SF7BW125 to SF12BW125
546 546  
547 -917.2 - SF7BW125 to SF12BW125
488 +(((
489 +(% style="color:blue" %)**Examples:**
490 +)))
548 548  
549 -917.4 - SF7BW125 to SF12BW125
492 +(((
493 +
494 +)))
550 550  
551 -917.6 - SF7BW125 to SF12BW125
496 +* (((
497 +(% style="color:blue" %)**Set TDC**
498 +)))
552 552  
553 -917.8 - SF7BW125 to SF12BW125
500 +(((
501 +If the payload=0100003C, it means set the END Node's TDC to 0x00003C=60(S), while type code is 01.
502 +)))
554 554  
555 -918.0 - SF7BW125 to SF12BW125
504 +(((
505 +Payload:    01 00 00 1E    TDC=30S
506 +)))
556 556  
557 -918.2 - SF7BW125 to SF12BW125
508 +(((
509 +Payload:    01 00 00 3C    TDC=60S
510 +)))
558 558  
512 +(((
513 +
514 +)))
559 559  
560 -(% style="color:#037691" %)**Downlink:**
516 +* (((
517 +(% style="color:blue" %)**Reset**
518 +)))
561 561  
562 -923.3 - SF7BW500 to SF12BW500
520 +(((
521 +If payload = 0x04FF, it will reset the NSE01
522 +)))
563 563  
564 -923.9 - SF7BW500 to SF12BW500
565 565  
566 -924.5 - SF7BW500 to SF12BW500
525 +* (% style="color:blue" %)**INTMOD**
567 567  
568 -925.1 - SF7BW500 to SF12BW500
527 +Downlink Payload: 06000003, Set AT+INTMOD=3
569 569  
570 -925.7 - SF7BW500 to SF12BW500
571 571  
572 -926.3 - SF7BW500 to SF12BW500
573 573  
574 -926.9 - SF7BW500 to SF12BW500
531 +== 2. ​LED Indicator ==
575 575  
576 -927.5 - SF7BW500 to SF12BW500
533 +(((
534 +The NSE01 has an internal LED which is to show the status of different state.
577 577  
578 -923.3 - SF12BW500(RX2 downlink only)
579 579  
537 +* When power on, NSE01 will detect if sensor probe is connected, if probe detected, LED will blink four times. (no blinks in this step is no probe)
538 +* Then the LED will be on for 1 second means device is boot normally.
539 +* After NSE01 join NB-IoT network. The LED will be ON for 3 seconds.
540 +* For each uplink probe, LED will be on for 500ms.
541 +)))
580 580  
581 581  
582 -=== 2.7.5 AS920-923 & AS923-925 (AS923) ===
583 583  
584 -(% style="color:#037691" %)**Default Uplink channel:**
585 585  
586 -923.2 - SF7BW125 to SF10BW125
546 +== 2.7  Installation in Soil ==
587 587  
588 -923.4 - SF7BW125 to SF10BW125
548 +__**Measurement the soil surface**__
589 589  
550 +Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting. [[https:~~/~~/img.alicdn.com/imgextra/i3/2005165265/O1CN010rj9Oh1olPsQxrdUK_!!2005165265.jpg>>url:https://img.alicdn.com/imgextra/i3/2005165265/O1CN010rj9Oh1olPsQxrdUK_!!2005165265.jpg]]
590 590  
591 -(% style="color:#037691" %)**Additional Uplink Channel**:
552 +[[image:1657259653666-883.png]]
592 592  
593 -(OTAA mode, channel added by JoinAccept message)
594 594  
595 -(% style="color:#037691" %)**AS920~~AS923 for Japan, Malaysia, Singapore**:
555 +(((
556 +
596 596  
597 -922.2 - SF7BW125 to SF10BW125
558 +(((
559 +Dig a hole with diameter > 20CM.
560 +)))
598 598  
599 -922.4 - SF7BW125 to SF10BW125
562 +(((
563 +Horizontal insert the probe to the soil and fill the hole for long term measurement.
564 +)))
565 +)))
600 600  
601 -922.6 - SF7BW125 to SF10BW125
567 +[[image:1654506665940-119.png]]
602 602  
603 -922.8 - SF7BW125 to SF10BW125
569 +(((
570 +
571 +)))
604 604  
605 -923.0 - SF7BW125 to SF10BW125
606 606  
607 -922.0 - SF7BW125 to SF10BW125
574 +== 2. Firmware Change Log ==
608 608  
609 609  
610 -(% style="color:#037691" %)**AS923 ~~ AS925 for Brunei, Cambodia, Hong Kong, Indonesia, Laos, Taiwan, Thailand, Vietnam**:
577 +Download URL & Firmware Change log
611 611  
612 -923.6 - SF7BW125 to SF10BW125
579 +[[www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/Firmware/]]
613 613  
614 -923.8 - SF7BW125 to SF10BW125
615 615  
616 -924.0 - SF7BW125 to SF10BW125
582 +Upgrade Instruction: [[Upgrade_Firmware>>||anchor="H5.1200BHowtoUpgradeFirmware"]]
617 617  
618 -924.2 - SF7BW125 to SF10BW125
619 619  
620 -924.4 - SF7BW125 to SF10BW125
621 621  
622 -924.6 - SF7BW125 to SF10BW125
586 +== 2. Battery Analysis ==
623 623  
588 +=== 2.9.1  ​Battery Type ===
624 624  
625 -(% style="color:#037691" %)** Downlink:**
626 626  
627 -Uplink channels 1-8 (RX1)
591 +The NSE01 battery is a combination of an 8500mAh Li/SOCI2 Battery and a Super Capacitor. The battery is none-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter.
628 628  
629 -923.2 - SF10BW125 (RX2)
630 630  
594 +The battery is designed to last for several years depends on the actually use environment and update interval. 
631 631  
632 632  
633 -=== 2.7.6 KR920-923 (KR920) ===
597 +The battery related documents as below:
634 634  
635 -Default channel:
599 +* [[Battery Dimension>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]
600 +* [[Lithium-Thionyl Chloride Battery datasheet>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]
601 +* [[Lithium-ion Battery-Capacitor datasheet>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]
636 636  
637 -922.1 - SF7BW125 to SF12BW125
638 -
639 -922.3 - SF7BW125 to SF12BW125
640 -
641 -922.5 - SF7BW125 to SF12BW125
642 -
643 -
644 -(% style="color:#037691" %)**Uplink: (OTAA mode, channel added by JoinAccept message)**
645 -
646 -922.1 - SF7BW125 to SF12BW125
647 -
648 -922.3 - SF7BW125 to SF12BW125
649 -
650 -922.5 - SF7BW125 to SF12BW125
651 -
652 -922.7 - SF7BW125 to SF12BW125
653 -
654 -922.9 - SF7BW125 to SF12BW125
655 -
656 -923.1 - SF7BW125 to SF12BW125
657 -
658 -923.3 - SF7BW125 to SF12BW125
659 -
660 -
661 -(% style="color:#037691" %)**Downlink:**
662 -
663 -Uplink channels 1-7(RX1)
664 -
665 -921.9 - SF12BW125 (RX2 downlink only; SF12BW125 might be changed to SF9BW125)
666 -
667 -
668 -
669 -=== 2.7.7 IN865-867 (IN865) ===
670 -
671 -(% style="color:#037691" %)** Uplink:**
672 -
673 -865.0625 - SF7BW125 to SF12BW125
674 -
675 -865.4025 - SF7BW125 to SF12BW125
676 -
677 -865.9850 - SF7BW125 to SF12BW125
678 -
679 -
680 -(% style="color:#037691" %) **Downlink:**
681 -
682 -Uplink channels 1-3 (RX1)
683 -
684 -866.550 - SF10BW125 (RX2)
685 -
686 -
687 -
688 -
689 -== 2.8 LED Indicator ==
690 -
691 -The LSE01 has an internal LED which is to show the status of different state.
692 -
693 -* Blink once when device power on.
694 -* Solid ON for 5 seconds once device successful Join the network.
695 -* Blink once when device transmit a packet.
696 -
697 -
698 -== 2.9 Installation in Soil ==
699 -
700 -**Measurement the soil surface**
701 -
702 -
703 -[[image:1654506634463-199.png]] ​
704 -
705 705  (((
706 -(((
707 -Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting.
604 +[[image:image-20220708140453-6.png]]
708 708  )))
709 -)))
710 710  
711 711  
712 712  
713 -[[image:1654506665940-119.png]]
609 +=== 2.9.2  Power consumption Analyze ===
714 714  
715 715  (((
716 -Dig a hole with diameter > 20CM.
612 +Dragino battery powered product are all runs in Low Power mode. We have an update battery calculator which base on the measurement of the real device. User can use this calculator to check the battery life and calculate the battery life if want to use different transmit interval.
717 717  )))
718 718  
719 -(((
720 -Horizontal insert the probe to the soil and fill the hole for long term measurement.
721 -)))
722 722  
723 -
724 -== 2.10 ​Firmware Change Log ==
725 -
726 726  (((
727 -**Firmware download link:**
617 +Instruction to use as below:
728 728  )))
729 729  
730 730  (((
731 -[[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/]]
621 +(% style="color:blue" %)**Step 1:  **(%%)Downlink the up-to-date DRAGINO_Battery_Life_Prediction_Table.xlsx from: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/]]
732 732  )))
733 733  
734 -(((
735 -
736 -)))
737 737  
738 738  (((
739 -**Firmware Upgrade Method: **[[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome]]
626 +(% style="color:blue" %)**Step 2: **(%%) Open it and choose
740 740  )))
741 741  
742 -(((
743 -
629 +* (((
630 +Product Model
744 744  )))
745 -
746 -(((
747 -**V1.0.**
632 +* (((
633 +Uplink Interval
748 748  )))
635 +* (((
636 +Working Mode
637 +)))
749 749  
750 750  (((
751 -Release
640 +And the Life expectation in difference case will be shown on the right.
752 752  )))
753 753  
643 +[[image:image-20220708141352-7.jpeg]]
754 754  
755 -== 2.11 ​Battery Analysis ==
756 756  
757 -=== 2.11.1 ​Battery Type ===
758 758  
759 -(((
760 -The LSE01 battery is a combination of a 4000mAh Li/SOCI2 Battery and a Super Capacitor. The battery is non-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter.
761 -)))
647 +=== 2.9.3  ​Battery Note ===
762 762  
763 763  (((
764 -The battery is designed to last for more than 5 years for the LSN50.
650 +The Li-SICO battery is designed for small current / long period application. It is not good to use a high current, short period transmit method. The recommended minimum period for use of this battery is 5 minutes. If you use a shorter period time to transmit LoRa, then the battery life may be decreased.
765 765  )))
766 766  
767 -(((
768 -(((
769 -The battery-related documents are as below:
770 -)))
771 -)))
772 772  
773 -* (((
774 -[[Battery Dimension>>url:http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/&file=LSN50-Battery-Dimension.pdf]],
775 -)))
776 -* (((
777 -[[Lithium-Thionyl Chloride Battery  datasheet>>url:https://www.dragino.com/downloads/downloads/datasheet/Battery/ER26500/ER26500_Datasheet-EN.pdf]],
778 -)))
779 -* (((
780 -[[Lithium-ion Battery-Capacitor datasheet>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC_1520_datasheet.jpg]], [[Tech Spec>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC1520%20Technical%20Specification20171123.pdf]]
781 -)))
782 782  
783 - [[image:image-20220610172436-1.png]]
655 +=== 2.9.4  Replace the battery ===
784 784  
785 -
786 -
787 -=== 2.11.2 ​Battery Note ===
788 -
789 789  (((
790 -The Li-SICO battery is designed for small current / long period application. It is not good to use a high current, short period transmit method. The recommended minimum period for use of this battery is 5 minutes. If you use a shorter period time to transmit LoRa, then the battery life may be decreased.
658 +The default battery pack of NSE01 includes a ER26500 plus super capacitor. If user can't find this pack locally, they can find ER26500 or equivalence without the SPC1520 capacitor, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes).
791 791  )))
792 792  
793 793  
794 794  
795 -=== 2.11.3 Replace the battery ===
663 += 3. ​ Access NB-IoT Module =
796 796  
797 797  (((
798 -If Battery is lower than 2.7v, user should replace the battery of LSE01.
666 +Users can directly access the AT command set of the NB-IoT module.
799 799  )))
800 800  
801 801  (((
802 -You can change the battery in the LSE01.The type of battery is not limited as long as the output is between 3v to 3.6v. On the main board, there is a diode (D1) between the battery and the main circuit. If you need to use a battery with less than 3.3v, please remove the D1 and shortcut the two pads of it so there won’t be voltage drop between battery and main board.
670 +The AT Command set can refer the BC35-G NB-IoT Module AT Command: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=datasheet/other_vendors/BC35-G/>>url:https://www.dragino.com/downloads/index.php?dir=datasheet/other_vendors/BC35-G/]] 
803 803  )))
804 804  
805 -(((
806 -The default battery pack of LSE01 includes a ER18505 plus super capacitor. If user can’t find this pack locally, they can find ER18505 or equivalence, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes)
807 -)))
673 +[[image:1657261278785-153.png]]
808 808  
809 809  
810 810  
811 -= 3. Using the AT Commands =
677 += 4.  Using the AT Commands =
812 812  
813 -== 3.1 Access AT Commands ==
679 +== 4.1  Access AT Commands ==
814 814  
681 +See this link for detail: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/]]
815 815  
816 -LSE01 supports AT Command set in the stock firmware. You can use a USB to TTL adapter to connect to LSE01 for using AT command, as below.
817 817  
818 -[[image:1654501986557-872.png||height="391" width="800"]]
684 +AT+<CMD>?  : Help on <CMD>
819 819  
686 +AT+<CMD>         : Run <CMD>
820 820  
821 -Or if you have below board, use below connection:
688 +AT+<CMD>=<value> : Set the value
822 822  
690 +AT+<CMD>=?  : Get the value
823 823  
824 -[[image:1654502005655-729.png||height="503" width="801"]]
825 825  
826 -
827 -
828 -In the PC, you need to set the serial baud rate to (% style="color:green" %)**9600**(%%) to access the serial console for LSE01. LSE01 will output system info once power on as below:
829 -
830 -
831 - [[image:1654502050864-459.png||height="564" width="806"]]
832 -
833 -
834 -Below are the available commands, a more detailed AT Command manual can be found at [[AT Command Manual>>https://www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0]]: [[https:~~/~~/www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0>>https://www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0]]
835 -
836 -
837 -(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>? **(%%) : Help on <CMD>
838 -
839 -(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD> **(%%) : Run <CMD>
840 -
841 -(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>=<value>**(%%) : Set the value
842 -
843 -(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>=?**(%%)  : Get the value
844 -
845 -
846 846  (% style="color:#037691" %)**General Commands**(%%)      
847 847  
848 -(% style="background-color:#dcdcdc" %)**AT**(%%)  : Attention       
695 +AT  : Attention       
849 849  
850 -(% style="background-color:#dcdcdc" %)**AT?**(%%)  : Short Help     
697 +AT?  : Short Help     
851 851  
852 -(% style="background-color:#dcdcdc" %)**ATZ**(%%)  : MCU Reset    
699 +ATZ  : MCU Reset    
853 853  
854 -(% style="background-color:#dcdcdc" %)**AT+TDC**(%%)  : Application Data Transmission Interval 
701 +AT+TDC  : Application Data Transmission Interval
855 855  
703 +AT+CFG  : Print all configurations
856 856  
857 -(% style="color:#037691" %)**Keys, IDs and EUIs management**
705 +AT+CFGMOD           : Working mode selection
858 858  
859 -(% style="background-color:#dcdcdc" %)**AT+APPEUI**(%%)              : Application EUI      
707 +AT+INTMOD            : Set the trigger interrupt mode
860 860  
861 -(% style="background-color:#dcdcdc" %)**AT+APPKEY**(%%)              : Application Key     
709 +AT+5VT  : Set extend the time of 5V power  
862 862  
863 -(% style="background-color:#dcdcdc" %)**AT+APPSKEY**(%%)            : Application Session Key
711 +AT+PRO  : Choose agreement
864 864  
865 -(% style="background-color:#dcdcdc" %)**AT+DADDR**(%%)              : Device Address     
713 +AT+WEIGRE  : Get weight or set weight to 0
866 866  
867 -(% style="background-color:#dcdcdc" %)**AT+DEUI**(%%)                   : Device EUI     
715 +AT+WEIGAP  : Get or Set the GapValue of weight
868 868  
869 -(% style="background-color:#dcdcdc" %)**AT+NWKID**(%%)               : Network ID (You can enter this command change only after successful network connection
717 +AT+RXDL  : Extend the sending and receiving time
870 870  
871 -(% style="background-color:#dcdcdc" %)**AT+NWKSKEY**(%%)          : Network Session Key Joining and sending date on LoRa network  
719 +AT+CNTFAC  : Get or set counting parameters
872 872  
873 -(% style="background-color:#dcdcdc" %)**AT+CFM**(%%)  : Confirm Mode       
721 +AT+SERVADDR  : Server Address
874 874  
875 -(% style="background-color:#dcdcdc" %)**AT+CFS**(%%)                     : Confirm Status       
876 876  
877 -(% style="background-color:#dcdcdc" %)**AT+JOIN**(%%)  : Join LoRa? Network       
724 +(% style="color:#037691" %)**COAP Management**      
878 878  
879 -(% style="background-color:#dcdcdc" %)**AT+NJM**(%%)  : LoRa? Network Join Mode    
726 +AT+URI            : Resource parameters
880 880  
881 -(% style="background-color:#dcdcdc" %)**AT+NJS**(%%)                     : LoRa? Network Join Status    
882 882  
883 -(% style="background-color:#dcdcdc" %)**AT+RECV**(%%)                  : Print Last Received Data in Raw Format
729 +(% style="color:#037691" %)**UDP Management**
884 884  
885 -(% style="background-color:#dcdcdc" %)**AT+RECVB**(%%)                : Print Last Received Data in Binary Format      
731 +AT+CFM          : Upload confirmation mode (only valid for UDP)
886 886  
887 -(% style="background-color:#dcdcdc" %)**AT+SEND**(%%)                  : Send Text Data      
888 888  
889 -(% style="background-color:#dcdcdc" %)**AT+SENB**(%%)                  : Send Hexadecimal Data
734 +(% style="color:#037691" %)**MQTT Management**
890 890  
736 +AT+CLIENT               : Get or Set MQTT client
891 891  
892 -(% style="color:#037691" %)**LoRa Network Management**
738 +AT+UNAME  : Get or Set MQTT Username
893 893  
894 -(% style="background-color:#dcdcdc" %)**AT+ADR**(%%)          : Adaptive Rate
740 +AT+PWD                  : Get or Set MQTT password
895 895  
896 -(% style="background-color:#dcdcdc" %)**AT+CLASS**(%%)  : LoRa Class(Currently only support class A
742 +AT+PUBTOPI : Get or Set MQTT publish topic
897 897  
898 -(% style="background-color:#dcdcdc" %)**AT+DCS**(%%)  : Duty Cycle Settin
744 +AT+SUBTOPIC  : Get or Set MQTT subscription topic
899 899  
900 -(% style="background-color:#dcdcdc" %)**AT+DR**(%%)  : Data Rate (Can Only be Modified after ADR=0)     
901 901  
902 -(% style="background-color:#dcdcdc" %)**AT+FCD**(%%)  : Frame Counter Downlink       
747 +(% style="color:#037691" %)**Information**          
903 903  
904 -(% style="background-color:#dcdcdc" %)**AT+FCU**(%%)  : Frame Counter Uplink   
749 +AT+FDR  : Factory Data Reset
905 905  
906 -(% style="background-color:#dcdcdc" %)**AT+JN1DL**(%%)  : Join Accept Delay1
751 +AT+PWOR : Serial Access Password
907 907  
908 -(% style="background-color:#dcdcdc" %)**AT+JN2DL**(%%)  : Join Accept Delay2
909 909  
910 -(% style="background-color:#dcdcdc" %)**AT+PNM**(%%)  : Public Network Mode   
911 911  
912 -(% style="background-color:#dcdcdc" %)**AT+RX1DL**(%%)  : Receive Delay1      
755 += ​5.  FAQ =
913 913  
914 -(% style="background-color:#dcdcdc" %)**AT+RX2DL**(%%)  : Receive Delay2      
757 +== 5.1 How to Upgrade Firmware ==
915 915  
916 -(% style="background-color:#dcdcdc" %)**AT+RX2DR**(%%)  : Rx2 Window Data Rate 
917 917  
918 -(% style="background-color:#dcdcdc" %)**AT+RX2FQ**(%%)  : Rx2 Window Frequency
919 -
920 -(% style="background-color:#dcdcdc" %)**AT+TXP**(%%)  : Transmit Power
921 -
922 -(% style="background-color:#dcdcdc" %)**AT+ MOD**(%%)  : Set work mode
923 -
924 -
925 -(% style="color:#037691" %)**Information** 
926 -
927 -(% style="background-color:#dcdcdc" %)**AT+RSSI**(%%)           : RSSI of the Last Received Packet   
928 -
929 -(% style="background-color:#dcdcdc" %)**AT+SNR**(%%)           : SNR of the Last Received Packet   
930 -
931 -(% style="background-color:#dcdcdc" %)**AT+VER**(%%)           : Image Version and Frequency Band       
932 -
933 -(% style="background-color:#dcdcdc" %)**AT+FDR**(%%)           : Factory Data Reset
934 -
935 -(% style="background-color:#dcdcdc" %)**AT+PORT**(%%)  : Application Port    
936 -
937 -(% style="background-color:#dcdcdc" %)**AT+CHS**(%%)  : Get or Set Frequency (Unit: Hz) for Single Channel Mode
938 -
939 - (% style="background-color:#dcdcdc" %)**AT+CHE**(%%)  : Get or Set eight channels mode, Only for US915, AU915, CN470
940 -
941 -
942 -= ​4. FAQ =
943 -
944 -== 4.1 ​How to change the LoRa Frequency Bands/Region? ==
945 -
946 946  (((
947 -You can follow the instructions for [[how to upgrade image>>||anchor="H2.10200BFirmwareChangeLog"]].
948 -When downloading the images, choose the required image file for download. ​
761 +User can upgrade the firmware for 1) bug fix, 2) new feature release.
949 949  )))
950 950  
951 951  (((
952 -
765 +Please see this link for how to upgrade:  [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H2.HardwareUpgradeMethodSupportList>>http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H2.HardwareUpgradeMethodSupportList]]
953 953  )))
954 954  
955 955  (((
956 -How to set up LSE01 to work in 8 channel mode By default, the frequency bands US915, AU915, CN470 work in 72 frequencies. Many gateways are 8 channel gateways, and in this case, the OTAA join time and uplink schedule is long and unpredictable while the end node is hopping in 72 frequencies.
769 +(% style="color:red" %)Notice, NSE01 and LSE01 share the same mother board. They use the same connection and method to update.
957 957  )))
958 958  
959 -(((
960 -
961 -)))
962 962  
963 -(((
964 -You can configure the end node to work in 8 channel mode by using the AT+CHE command. The 500kHz channels are always included for OTAA.
965 -)))
966 966  
967 -(((
968 -
969 -)))
774 += 6.  Trouble Shooting =
970 970  
971 -(((
972 -For example, in **US915** band, the frequency table is as below. By default, the end node will use all channels (0~~71) for OTAA Join process. After the OTAA Join, the end node will use these all channels (0~~71) to send uplink packets.
973 -)))
776 +== 6.1  ​Connection problem when uploading firmware ==
974 974  
975 -[[image:image-20220606154726-3.png]]
976 976  
977 -
978 -When you use the TTN network, the US915 frequency bands use are:
979 -
980 -* 903.9 - SF7BW125 to SF10BW125
981 -* 904.1 - SF7BW125 to SF10BW125
982 -* 904.3 - SF7BW125 to SF10BW125
983 -* 904.5 - SF7BW125 to SF10BW125
984 -* 904.7 - SF7BW125 to SF10BW125
985 -* 904.9 - SF7BW125 to SF10BW125
986 -* 905.1 - SF7BW125 to SF10BW125
987 -* 905.3 - SF7BW125 to SF10BW125
988 -* 904.6 - SF8BW500
989 -
779 +(% class="wikigeneratedid" %)
990 990  (((
991 -Because the end node is now hopping in 72 frequency, it makes it difficult for the devices to Join the TTN network and uplink data. To solve this issue, you can access the device via the AT commands and run:
992 -
993 -* (% style="color:#037691" %)**AT+CHE=2**
994 -* (% style="color:#037691" %)**ATZ**
781 +(% style="font-size:14px" %)**Please see: **(%%)[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H3.3Troubleshooting>>http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H3.3Troubleshooting||style="background-color: rgb(255, 255, 255); font-size: 14px;"]]
995 995  )))
996 996  
997 -(((
998 -
999 999  
1000 -to set the end node to work in 8 channel mode. The device will work in Channel 8-15 & 64-71 for OTAA, and channel 8-15 for Uplink.
1001 -)))
1002 1002  
1003 -(((
1004 -
1005 -)))
786 +== 6.2  AT Command input doesn't work ==
1006 1006  
1007 1007  (((
1008 -The **AU915** band is similar. Below are the AU915 Uplink Channels.
789 +In the case if user can see the console output but can't type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn't send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.
1009 1009  )))
1010 1010  
1011 -[[image:image-20220606154825-4.png]]
1012 1012  
1013 1013  
794 += 7. ​ Order Info =
1014 1014  
1015 -= 5. Trouble Shooting =
1016 1016  
1017 -== 5.1 ​Why I can’t join TTN in US915 / AU915 bands? ==
797 +Part Number**:** (% style="color:#4f81bd" %)**NSE01**
1018 1018  
1019 -It is due to channel mapping. Please see the [[Eight Channel Mode>>doc:Main.LoRaWAN Communication Debug.WebHome||anchor="H2.NoticeofUS9152FCN4702FAU915Frequencyband"]] section above for details.
1020 1020  
1021 -
1022 -== 5.2 AT Command input doesn’t work ==
1023 -
1024 -(((
1025 -In the case if user can see the console output but can’t type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn’t send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.
1026 -)))
1027 -
1028 -
1029 -== 5.3 Device rejoin in at the second uplink packet ==
1030 -
1031 -(% style="color:#4f81bd" %)**Issue describe as below:**
1032 -
1033 -[[image:1654500909990-784.png]]
1034 -
1035 -
1036 -(% style="color:#4f81bd" %)**Cause for this issue:**
1037 -
1038 -(((
1039 -The fuse on LSE01 is not large enough, some of the soil probe require large current up to 5v 800mA, in a short pulse. When this happen, it cause the device reboot so user see rejoin.
1040 -)))
1041 -
1042 -
1043 -(% style="color:#4f81bd" %)**Solution: **
1044 -
1045 -All new shipped LSE01 after 2020-May-30 will have this to fix. For the customer who see this issue, please bypass the fuse as below:
1046 -
1047 -[[image:1654500929571-736.png||height="458" width="832"]]
1048 -
1049 -
1050 -= 6. ​Order Info =
1051 -
1052 -
1053 -Part Number**:** (% style="color:#4f81bd" %)**LSE01-XX-YY**
1054 -
1055 -
1056 -(% style="color:#4f81bd" %)**XX**(%%)**:** The default frequency band
1057 -
1058 -* (% style="color:red" %)**AS923**(%%): LoRaWAN AS923 band
1059 -* (% style="color:red" %)**AU915**(%%): LoRaWAN AU915 band
1060 -* (% style="color:red" %)**EU433**(%%): LoRaWAN EU433 band
1061 -* (% style="color:red" %)**EU868**(%%): LoRaWAN EU868 band
1062 -* (% style="color:red" %)**KR920**(%%): LoRaWAN KR920 band
1063 -* (% style="color:red" %)**US915**(%%): LoRaWAN US915 band
1064 -* (% style="color:red" %)**IN865**(%%):  LoRaWAN IN865 band
1065 -* (% style="color:red" %)**CN470**(%%): LoRaWAN CN470 band
1066 -
1067 -(% style="color:#4f81bd" %)**YY**(%%)**: **Battery Option
1068 -
1069 -* (% style="color:red" %)**4**(%%): 4000mAh battery
1070 -* (% style="color:red" %)**8**(%%): 8500mAh battery
1071 -
1072 1072  (% class="wikigeneratedid" %)
1073 1073  (((
1074 1074  
1075 1075  )))
1076 1076  
1077 -= 7. Packing Info =
805 += 8.  Packing Info =
1078 1078  
1079 1079  (((
1080 1080  
1081 1081  
1082 1082  (% style="color:#037691" %)**Package Includes**:
1083 -)))
1084 1084  
1085 -* (((
1086 -LSE01 LoRaWAN Soil Moisture & EC Sensor x 1
812 +
813 +* NSE01 NB-IoT Soil Moisture & EC Sensor x 1
814 +* External antenna x 1
1087 1087  )))
1088 1088  
1089 1089  (((
... ... @@ -1090,24 +1090,20 @@
1090 1090  
1091 1091  
1092 1092  (% style="color:#037691" %)**Dimension and weight**:
1093 -)))
1094 1094  
1095 -* (((
1096 -Device Size: cm
822 +
823 +* Size: 195 x 125 x 55 mm
824 +* Weight:   420g
1097 1097  )))
1098 -* (((
1099 -Device Weight: g
1100 -)))
1101 -* (((
1102 -Package Size / pcs : cm
1103 -)))
1104 -* (((
1105 -Weight / pcs : g
1106 1106  
827 +(((
1107 1107  
829 +
830 +
831 +
1108 1108  )))
1109 1109  
1110 -= 8. Support =
834 += 9.  Support =
1111 1111  
1112 1112  * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
1113 1113  * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.com]]
1657245163077-232.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +81.0 KB
Content
1657246476176-652.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +492.6 KB
Content
1657249419225-449.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +81.0 KB
Content
1657249468462-536.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +483.6 KB
Content
1657249793983-486.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +85.8 KB
Content
1657249831934-534.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +72.5 KB
Content
1657249864775-321.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +87.0 KB
Content
1657249930215-289.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +77.3 KB
Content
1657249978444-674.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +139.5 KB
Content
1657249990869-686.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +96.9 KB
Content
1657250217799-140.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +98.7 KB
Content
1657250255956-604.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +99.0 KB
Content
1657259653666-883.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +344.4 KB
Content
1657260785982-288.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +138.2 KB
Content
1657261119050-993.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +126.1 KB
Content
1657261278785-153.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +126.1 KB
Content
image-20220708101224-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +22.2 KB
Content
image-20220708101605-2.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +87.5 KB
Content
image-20220708110657-3.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +251.7 KB
Content
image-20220708111918-4.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +38.8 KB
Content
image-20220708133731-5.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +8.7 KB
Content
image-20220708140453-6.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +132.7 KB
Content
image-20220708141352-7.jpeg
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +102.7 KB
Content
Copyright ©2010-2022 Dragino Technology Co., LTD. All rights reserved
Dragino Wiki v2.0