<
From version < 35.25 >
edited by Xiaoling
on 2022/06/25 16:23
To version < 63.1 >
edited by Xiaoling
on 2022/07/08 14:18
>
Change comment: Uploaded new attachment "1657261119050-993.png", version {1}

Summary

Details

Page properties
Title
... ... @@ -1,1 +1,1 @@
1 -LSE01-LoRaWAN Soil Moisture & EC Sensor User Manual
1 +NSE01 - NB-IoT Soil Moisture & EC Sensor User Manual
Content
... ... @@ -13,75 +13,78 @@
13 13  
14 14  **Table of Contents:**
15 15  
16 -{{toc/}}
17 17  
18 18  
19 19  
20 20  
21 21  
21 += 1.  Introduction =
22 22  
23 -= 1. Introduction =
23 +== 1.1 ​ What is LoRaWAN Soil Moisture & EC Sensor ==
24 24  
25 -== 1.1 ​What is LoRaWAN Soil Moisture & EC Sensor ==
26 -
27 27  (((
28 28  
29 29  
30 -The Dragino LSE01 is a (% style="color:#4f81bd" %)**LoRaWAN Soil Moisture & EC Sensor**(%%) for IoT of Agriculture. It is designed to measure the soil moisture of saline-alkali soil and loamy soil. The soil sensor uses FDR method to calculate the soil moisture with the compensation from soil temperature and conductivity. It also has been calibrated in factory for Mineral soil type.
31 -)))
28 +Dragino NSE01 is an (% style="color:blue" %)**NB-IOT soil moisture & EC sensor**(%%) for agricultural IoT. Used to measure the soil moisture of saline-alkali soil and loam. The soil sensor uses the FDR method to calculate soil moisture and compensates it with soil temperature and electrical conductivity. It has also been calibrated for mineral soil types at the factory.
32 32  
33 -(((
34 -It detects (% style="color:#4f81bd" %)**Soil Moisture**(%%), (% style="color:#4f81bd" %)**Soil Temperature**(%%) and (% style="color:#4f81bd" %)**Soil Conductivity**(%%), and uploads the value via wireless to LoRaWAN IoT Server.
35 -)))
30 +It can detect (% style="color:blue" %)**Soil Moisture, Soil Temperature and Soil Conductivity**(%%), and upload its value to the server wirelessly.
36 36  
37 -(((
38 -The LoRa wireless technology used in LES01 allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption.
39 -)))
32 +The wireless technology used in NSE01 allows the device to send data at a low data rate and reach ultra-long distances, providing ultra-long-distance spread spectrum Communication.
40 40  
41 -(((
42 -LES01 is powered by (% style="color:#4f81bd" %)**4000mA or 8500mAh Li-SOCI2 battery**(%%), It is designed for long term use up to 10 years.
43 -)))
34 +NSE01 are powered by (% style="color:blue" %)**8500mAh Li-SOCI2**(%%) batteries, which can be used for up to 5 years.  
44 44  
45 -(((
46 -Each LES01 is pre-load with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect after power on.
36 +
47 47  )))
48 48  
49 -
50 50  [[image:1654503236291-817.png]]
51 51  
52 52  
53 -[[image:1654503265560-120.png]]
42 +[[image:1657245163077-232.png]]
54 54  
55 55  
56 56  
57 57  == 1.2 ​Features ==
58 58  
59 -* LoRaWAN 1.0.3 Class A
60 -* Ultra low power consumption
48 +
49 +* NB-IoT Bands: B1/B3/B8/B5/B20/B28 @H-FDD
61 61  * Monitor Soil Moisture
62 62  * Monitor Soil Temperature
63 63  * Monitor Soil Conductivity
64 -* Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865
65 65  * AT Commands to change parameters
66 66  * Uplink on periodically
67 67  * Downlink to change configure
68 68  * IP66 Waterproof Enclosure
69 -* 4000mAh or 8500mAh Battery for long term use
57 +* Ultra-Low Power consumption
58 +* AT Commands to change parameters
59 +* Micro SIM card slot for NB-IoT SIM
60 +* 8500mAh Battery for long term use
70 70  
62 +== 1.3  Specification ==
71 71  
72 72  
65 +(% style="color:#037691" %)**Common DC Characteristics:**
73 73  
67 +* Supply Voltage: 2.1v ~~ 3.6v
68 +* Operating Temperature: -40 ~~ 85°C
74 74  
70 +(% style="color:#037691" %)**NB-IoT Spec:**
75 75  
76 -== 1.3 Specification ==
72 +* - B1 @H-FDD: 2100MHz
73 +* - B3 @H-FDD: 1800MHz
74 +* - B8 @H-FDD: 900MHz
75 +* - B5 @H-FDD: 850MHz
76 +* - B20 @H-FDD: 800MHz
77 +* - B28 @H-FDD: 700MHz
77 77  
79 +(% style="color:#037691" %)**Probe Specification:**
80 +
78 78  Measure Volume: Base on the centra pin of the probe, a cylinder with 7cm diameter and 10cm height.
79 79  
80 -[[image:image-20220606162220-5.png]]
83 +[[image:image-20220708101224-1.png]]
81 81  
82 82  
83 83  
84 -== ​1.4 Applications ==
87 +== ​1.4  Applications ==
85 85  
86 86  * Smart Agriculture
87 87  
... ... @@ -88,704 +88,550 @@
88 88  (% class="wikigeneratedid" id="H200B1.5FirmwareChangelog" %)
89 89  ​
90 90  
91 -== 1.5 Firmware Change log ==
94 +== 1.5  Pin Definitions ==
92 92  
93 93  
94 -**LSE01 v1.0 :**  Release
97 +[[image:1657246476176-652.png]]
95 95  
96 96  
97 97  
98 -= 2. Configure LSE01 to connect to LoRaWAN network =
101 += 2.  Use NSE01 to communicate with IoT Server =
99 99  
100 -== 2.1 How it works ==
103 +== 2.1  How it works ==
101 101  
105 +
102 102  (((
103 -The LSE01 is configured as LoRaWAN OTAA Class A mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and power on the LSE0150. It will automatically join the network via OTAA and start to send the sensor value
107 +The NSE01 is equipped with a NB-IoT module, the pre-loaded firmware in NSE01 will get environment data from sensors and send the value to local NB-IoT network via the NB-IoT module The NB-IoT network will forward this value to IoT server via the protocol defined by NSE01.
104 104  )))
105 105  
110 +
106 106  (((
107 -In case you can’t set the OTAA keys in the LoRaWAN OTAA server, and you have to use the keys from the server, you can [[use AT Commands >>||anchor="H3.200BUsingtheATCommands"]].
112 +The diagram below shows the working flow in default firmware of NSE01:
108 108  )))
109 109  
115 +[[image:image-20220708101605-2.png]]
110 110  
117 +(((
118 +
119 +)))
111 111  
112 -== 2.2 ​Quick guide to connect to LoRaWAN server (OTAA) ==
113 113  
114 -Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LG308>>url:http://www.dragino.com/products/lora/item/140-lg308.html]] as a LoRaWAN gateway in this example.
115 115  
123 +== 2.2 ​ Configure the NSE01 ==
116 116  
117 -[[image:1654503992078-669.png]]
118 118  
126 +=== 2.2.1 Test Requirement ===
119 119  
120 -The LG308 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
121 121  
129 +To use NSE01 in your city, make sure meet below requirements:
122 122  
123 -(% style="color:blue" %)**Step 1**(%%):  Create a device in TTN with the OTAA keys from LSE01.
131 +* Your local operator has already distributed a NB-IoT Network there.
132 +* The local NB-IoT network used the band that NSE01 supports.
133 +* Your operator is able to distribute the data received in their NB-IoT network to your IoT server.
124 124  
125 -Each LSE01 is shipped with a sticker with the default device EUI as below:
126 -
127 -[[image:image-20220606163732-6.jpeg]]
128 -
129 -You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot:
130 -
131 -**Add APP EUI in the application**
132 -
133 -
134 -[[image:1654504596150-405.png]]
135 -
136 -
137 -
138 -**Add APP KEY and DEV EUI**
139 -
140 -[[image:1654504683289-357.png]]
141 -
142 -
143 -
144 -(% style="color:blue" %)**Step 2**(%%): Power on LSE01
145 -
146 -
147 -Put a Jumper on JP2 to power on the device. ( The Jumper must be in FLASH position).
148 -
149 -[[image:image-20220606163915-7.png]]
150 -
151 -
152 -(% style="color:blue" %)**Step 3**(%%)**:** The LSE01 will auto join to the TTN network. After join success, it will start to upload messages to TTN and you can see the messages in the panel.
153 -
154 -[[image:1654504778294-788.png]]
155 -
156 -
157 -
158 -== 2.3 Uplink Payload ==
159 -
160 -
161 -=== 2.3.1 MOD~=0(Default Mode) ===
162 -
163 -LSE01 will uplink payload via LoRaWAN with below payload format: 
164 -
165 165  (((
166 -Uplink payload includes in total 11 bytes.
136 +Below figure shows our testing structure. Here we have NB-IoT network coverage by China Mobile, the band they use is B8.  The NSE01 will use CoAP((% style="color:red" %)120.24.4.116:5683)(%%) or raw UDP((% style="color:red" %)120.24.4.116:5601)(%%) or MQTT((% style="color:red" %)120.24.4.116:1883)(%%)or TCP((% style="color:red" %)120.24.4.116:5600)(%%)protocol to send data to the test server
167 167  )))
168 168  
169 -(% border="1" cellspacing="10" style="background-color:#ffffcc; width:500px" %)
170 -|(((
171 -**Size**
172 172  
173 -**(bytes)**
174 -)))|**2**|**2**|**2**|**2**|**2**|**1**
175 -|**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(((
176 -Temperature
140 +[[image:1657249419225-449.png]]
177 177  
178 -(Reserve, Ignore now)
179 -)))|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]]|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]]|(((
180 -MOD & Digital Interrupt
181 181  
182 -(Optional)
183 -)))
184 184  
185 -=== 2.3.2 MOD~=1(Original value) ===
144 +=== 2.2.2 Insert SIM card ===
186 186  
187 -This mode can get the original AD value of moisture and original conductivity (with temperature drift compensation).
146 +Insert the NB-IoT Card get from your provider.
188 188  
189 -(% border="1" cellspacing="10" style="background-color:#ffffcc; width:500px" %)
190 -|(((
191 -**Size**
148 +User need to take out the NB-IoT module and insert the SIM card like below:
192 192  
193 -**(bytes)**
194 -)))|**2**|**2**|**2**|**2**|**2**|**1**
195 -|**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(((
196 -Temperature
197 197  
198 -(Reserve, Ignore now)
199 -)))|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]](raw)|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]](raw)|(((
200 -MOD & Digital Interrupt
151 +[[image:1657249468462-536.png]]
201 201  
202 -(Optional)
203 -)))
204 204  
205 -=== 2.3.3 Battery Info ===
206 206  
207 -(((
208 -Check the battery voltage for LSE01.
209 -)))
155 +=== 2.2.3 Connect USB – TTL to NSE01 to configure it ===
210 210  
211 211  (((
212 -Ex1: 0x0B45 = 2885mV
213 -)))
214 -
215 215  (((
216 -Ex2: 0x0B49 = 2889mV
159 +User need to configure NSE01 via serial port to set the (% style="color:blue" %)**Server Address** / **Uplink Topic** (%%)to define where and how-to uplink packets. NSE01 support AT Commands, user can use a USB to TTL adapter to connect to NSE01 and use AT Commands to configure it, as below.
217 217  )))
218 -
219 -
220 -
221 -=== 2.3.4 Soil Moisture ===
222 -
223 -(((
224 -Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil.
225 225  )))
226 226  
227 -(((
228 -For example, if the data you get from the register is __0x05 0xDC__, the moisture content in the soil is
229 -)))
230 230  
231 -(((
232 -
233 -)))
164 +**Connection:**
234 234  
235 -(((
236 -(% style="color:#4f81bd" %)**05DC(H) = 1500(D) /100 = 15%.**
237 -)))
166 + (% style="background-color:yellow" %)USB TTL GND <~-~-~-~-> GND
238 238  
168 + (% style="background-color:yellow" %)USB TTL TXD <~-~-~-~-> UART_RXD
239 239  
170 + (% style="background-color:yellow" %)USB TTL RXD <~-~-~-~-> UART_TXD
240 240  
241 -=== 2.3.5 Soil Temperature ===
242 242  
243 -(((
244 - Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is 0x09 0xEC, the temperature content in the soil is
245 -)))
173 +In the PC, use below serial tool settings:
246 246  
247 -(((
248 -**Example**:
249 -)))
175 +* Baud:  (% style="color:green" %)**9600**
176 +* Data bits:** (% style="color:green" %)8(%%)**
177 +* Stop bits: (% style="color:green" %)**1**
178 +* Parity:  (% style="color:green" %)**None**
179 +* Flow Control: (% style="color:green" %)**None**
250 250  
251 251  (((
252 -If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/100 = 2.61 °C
182 +Make sure the switch is in FLASH position, then power on device by connecting the jumper on NSE01. NSE01 will output system info once power on as below, we can enter the (% style="color:green" %)**password: 12345678**(%%) to access AT Command input.
253 253  )))
254 254  
255 -(((
256 -If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C
257 -)))
185 +[[image:image-20220708110657-3.png]]
258 258  
187 +(% style="color:red" %)Note: the valid AT Commands can be found at: (%%)[[http:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/]]
259 259  
260 260  
261 -=== 2.3.6 Soil Conductivity (EC) ===
262 262  
263 -(((
264 -Obtain (% style="color:#4f81bd" %)**__soluble salt concentration__**(%%) in soil or (% style="color:#4f81bd" %)**__soluble ion concentration in liquid fertilizer__**(%%) or (% style="color:#4f81bd" %)**__planting medium__**(%%). The value range of the register is 0 - 20000(Decimal)( Can be greater than 20000).
265 -)))
191 +=== 2.2.4 Use CoAP protocol to uplink data ===
266 266  
267 -(((
268 -For example, if the data you get from the register is 0x00 0xC8, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm.
269 -)))
193 +(% style="color:red" %)Note: if you don't have CoAP server, you can refer this link to set up one: (%%)[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/>>http://wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/]]
270 270  
271 -(((
272 -Generally, the EC value of irrigation water is less than 800uS / cm.
273 -)))
274 274  
275 -(((
276 -
277 -)))
196 +**Use below commands:**
278 278  
279 -(((
280 -
281 -)))
198 +* (% style="color:blue" %)**AT+PRO=1**  (%%) ~/~/ Set to use CoAP protocol to uplink
199 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5683   ** (%%)~/~/ to set CoAP server address and port
200 +* (% style="color:blue" %)**AT+URI=5,11,"mqtt",11,"coap",12,"0",15,"c=text1",23,"0" ** (%%) ~/~/Set COAP resource path
282 282  
283 -=== 2.3.7 MOD ===
202 +For parameter description, please refer to AT command set
284 284  
285 -Firmware version at least v2.1 supports changing mode.
204 +[[image:1657249793983-486.png]]
286 286  
287 -For example, bytes[10]=90
288 288  
289 -mod=(bytes[10]>>7)&0x01=1.
207 +After configure the server address and (% style="color:green" %)**reset the device**(%%) (via AT+ATZ ), NSE01 will start to uplink sensor values to CoAP server.
290 290  
209 +[[image:1657249831934-534.png]]
291 291  
292 -**Downlink Command:**
293 293  
294 -If payload = 0x0A00, workmode=0
295 295  
296 -If** **payload =** **0x0A01, workmode=1
213 +=== 2.2.5 Use UDP protocol to uplink data(Default protocol) ===
297 297  
215 +This feature is supported since firmware version v1.0.1
298 298  
299 299  
300 -=== 2.3.8 ​Decode payload in The Things Network ===
218 +* (% style="color:blue" %)**AT+PRO=2   ** (%%) ~/~/ Set to use UDP protocol to uplink
219 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5601   ** (%%) ~/~/ to set UDP server address and port
220 +* (% style="color:blue" %)**AT+CFM=1       ** (%%) ~/~/If the server does not respond, this command is unnecessary
301 301  
302 -While using TTN network, you can add the payload format to decode the payload.
222 +[[image:1657249864775-321.png]]
303 303  
304 304  
305 -[[image:1654505570700-128.png]]
225 +[[image:1657249930215-289.png]]
306 306  
307 -(((
308 -The payload decoder function for TTN is here:
309 -)))
310 310  
311 -(((
312 -LSE01 TTN Payload Decoder: [[https:~~/~~/www.dropbox.com/sh/si8icbrjlamxqdb/AAACYwjsxxr5fj_vpqRtrETAa?dl=0>>https://www.dropbox.com/sh/si8icbrjlamxqdb/AAACYwjsxxr5fj_vpqRtrETAa?dl=0]]
313 -)))
314 314  
229 +=== 2.2.6 Use MQTT protocol to uplink data ===
315 315  
316 -== 2.4 Uplink Interval ==
231 +This feature is supported since firmware version v110
317 317  
318 -The LSE01 by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link: [[Change Uplink Interval>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H4.1ChangeUplinkInterval"]]
319 319  
234 +* (% style="color:blue" %)**AT+PRO=3   ** (%%) ~/~/Set to use MQTT protocol to uplink
235 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,1883   ** (%%) ~/~/Set MQTT server address and port
236 +* (% style="color:blue" %)**AT+CLIENT=CLIENT       ** (%%)~/~/Set up the CLIENT of MQTT
237 +* (% style="color:blue" %)**AT+UNAME=UNAME                               **(%%)~/~/Set the username of MQTT
238 +* (% style="color:blue" %)**AT+PWD=PWD                                        **(%%)~/~/Set the password of MQTT
239 +* (% style="color:blue" %)**AT+PUBTOPIC=NSE01_PUB                    **(%%)~/~/Set the sending topic of MQTT
240 +* (% style="color:blue" %)**AT+SUBTOPIC=NSE01_SUB          **(%%) ~/~/Set the subscription topic of MQTT
320 320  
242 +[[image:1657249978444-674.png]]
321 321  
322 -== 2.5 Downlink Payload ==
323 323  
324 -By default, LSE50 prints the downlink payload to console port.
245 +[[image:1657249990869-686.png]]
325 325  
326 -[[image:image-20220606165544-8.png]]
327 327  
328 -
329 329  (((
330 -**Examples:**
249 +MQTT protocol has a much higher power consumption compare vs UDP / CoAP protocol. Please check the power analyze document and adjust the uplink period to a suitable interval.
331 331  )))
332 332  
333 -(((
334 -
335 -)))
336 336  
337 -* (((
338 -**Set TDC**
339 -)))
340 340  
341 -(((
342 -If the payload=0100003C, it means set the END Node’s TDC to 0x00003C=60(S), while type code is 01.
343 -)))
254 +=== 2.2.7 Use TCP protocol to uplink data ===
344 344  
345 -(((
346 -Payload:    01 00 00 1E    TDC=30S
347 -)))
256 +This feature is supported since firmware version v110
348 348  
349 -(((
350 -Payload:    01 00 00 3C    TDC=60S
351 -)))
352 352  
353 -(((
354 -
355 -)))
259 +* (% style="color:blue" %)**AT+PRO=4   ** (%%) ~/~/ Set to use TCP protocol to uplink
260 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5600   **(%%) ~/~/ to set TCP server address and port
356 356  
357 -* (((
358 -**Reset**
359 -)))
262 +[[image:1657250217799-140.png]]
360 360  
361 -(((
362 -If payload = 0x04FF, it will reset the LSE01
363 -)))
364 364  
265 +[[image:1657250255956-604.png]]
365 365  
366 -* **CFM**
367 367  
368 -Downlink Payload: 05000001, Set AT+CFM=1 or 05000000 , set AT+CFM=0
369 369  
269 +=== 2.2.8 Change Update Interval ===
370 370  
271 +User can use below command to change the (% style="color:green" %)**uplink interval**.
371 371  
372 -== 2.6 ​Show Data in DataCake IoT Server ==
273 +* (% style="color:blue" %)**AT+TDC=600      ** (%%)~/~/ Set Update Interval to 600s
373 373  
374 374  (((
375 -[[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps:
276 +(% style="color:red" %)**NOTE:**
376 376  )))
377 377  
378 378  (((
379 -
280 +(% style="color:red" %)1. By default, the device will send an uplink message every 1 hour.
380 380  )))
381 381  
382 -(((
383 -(% style="color:blue" %)**Step 1**(%%):  Be sure that your device is programmed and properly connected to the network at this time.
384 -)))
385 385  
386 -(((
387 -(% style="color:blue" %)**Step 2**(%%):  To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps:
388 -)))
389 389  
285 +== 2.3  Uplink Payload ==
390 390  
391 -[[image:1654505857935-743.png]]
287 +In this mode, uplink payload includes in total 18 bytes
392 392  
289 +(% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:510px" %)
290 +|=(% style="width: 50px;" %)(((
291 +**Size(bytes)**
292 +)))|=(% style="width: 50px;" %)**6**|=(% style="width: 25px;" %)2|=(% style="width: 25px;" %)**2**|=(% style="width: 80px;" %)**1**|=(% style="width: 80px;" %)**2**|=(% style="width: 80px;" %)**2**|=(% style="width: 80px;" %)**2**|=(% style="width: 40px;" %)**1**
293 +|(% style="width:97px" %)**Value**|(% style="width:83px" %)[[Device ID>>||anchor="H"]]|(% style="width:41px" %)[[Ver>>||anchor="H"]]|(% style="width:46px" %)[[BAT>>||anchor="H"]]|(% style="width:123px" %)[[Signal Strength>>||anchor="H"]]|(% style="width:108px" %)[[Soil Moisture>>||anchor="H"]]|(% style="width:133px" %)[[Soil Temperature>>||anchor="H"]]|(% style="width:159px" %)[[Soil Conductivity(EC)>>||anchor="H"]]|(% style="width:80px" %)[[Interrupt>>||anchor="H"]]
393 393  
394 -[[image:1654505874829-548.png]]
295 +If we use the MQTT client to subscribe to this MQTT topic, we can see the following information when the NSE01 uplink data.
395 395  
396 396  
397 -(% style="color:blue" %)**Step 3**(%%)**:**  Create an account or log in Datacake.
298 +[[image:image-20220708111918-4.png]]
398 398  
399 -(% style="color:blue" %)**Step 4**(%%)**:**  Search the LSE01 and add DevEUI.
400 400  
301 +The payload is ASCII string, representative same HEX:
401 401  
402 -[[image:1654505905236-553.png]]
303 +0x72403155615900640c7817075e0a8c02f900 where:
403 403  
305 +* Device ID: 0x 724031556159 = 724031556159
306 +* Version: 0x0064=100=1.0.0
404 404  
405 -After added, the sensor data arrive TTN, it will also arrive and show in Mydevices.
308 +* BAT: 0x0c78 = 3192 mV = 3.192V
309 +* Singal: 0x17 = 23
310 +* Soil Moisture: 0x075e= 1886 = 18.86  %
311 +* Soil Temperature:0x0a8c =2700=27 °C
312 +* Soil Conductivity(EC) = 0x02f9 =761 uS /cm
313 +* Interrupt: 0x00 = 0
406 406  
407 -[[image:1654505925508-181.png]]
315 +== 2.4  Payload Explanation and Sensor Interface ==
408 408  
409 409  
318 +=== 2.4.1  Device ID ===
410 410  
411 -== 2.7 Frequency Plans ==
320 +By default, the Device ID equal to the last 6 bytes of IMEI.
412 412  
413 -The LSE01 uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.
322 +User can use (% style="color:blue" %)**AT+DEUI**(%%) to set Device ID
414 414  
324 +**Example:**
415 415  
416 -=== 2.7.1 EU863-870 (EU868) ===
326 +AT+DEUI=A84041F15612
417 417  
418 -(% style="color:#037691" %)** Uplink:**
328 +The Device ID is stored in a none-erase area, Upgrade the firmware or run AT+FDR won't erase Device ID.
419 419  
420 -868.1 - SF7BW125 to SF12BW125
421 421  
422 -868.3 - SF7BW125 to SF12BW125 and SF7BW250
423 423  
424 -868.5 - SF7BW125 to SF12BW125
332 +=== 2.4.2  Version Info ===
425 425  
426 -867.1 - SF7BW125 to SF12BW125
334 +Specify the software version: 0x64=100, means firmware version 1.00.
427 427  
428 -867.3 - SF7BW125 to SF12BW125
336 +For example: 0x00 64 : this device is NSE01 with firmware version 1.0.0.
429 429  
430 -867.5 - SF7BW125 to SF12BW125
431 431  
432 -867.7 - SF7BW125 to SF12BW125
433 433  
434 -867.9 - SF7BW125 to SF12BW125
340 +=== 2.4.3  Battery Info ===
435 435  
436 -868.8 - FSK
342 +(((
343 +Check the battery voltage for LSE01.
344 +)))
437 437  
346 +(((
347 +Ex1: 0x0B45 = 2885mV
348 +)))
438 438  
439 -(% style="color:#037691" %)** Downlink:**
350 +(((
351 +Ex2: 0x0B49 = 2889mV
352 +)))
440 440  
441 -Uplink channels 1-9 (RX1)
442 442  
443 -869.525 - SF9BW125 (RX2 downlink only)
444 444  
356 +=== 2.4.4  Signal Strength ===
445 445  
358 +NB-IoT Network signal Strength.
446 446  
447 -=== 2.7.2 US902-928(US915) ===
360 +**Ex1: 0x1d = 29**
448 448  
449 -Used in USA, Canada and South America. Default use CHE=2
362 +(% style="color:blue" %)**0**(%%)  -113dBm or less
450 450  
451 -(% style="color:#037691" %)**Uplink:**
364 +(% style="color:blue" %)**1**(%%)  -111dBm
452 452  
453 -903.9 - SF7BW125 to SF10BW125
366 +(% style="color:blue" %)**2...30**(%%) -109dBm... -53dBm
454 454  
455 -904.1 - SF7BW125 to SF10BW125
368 +(% style="color:blue" %)**31**  (%%) -51dBm or greater
456 456  
457 -904.3 - SF7BW125 to SF10BW125
370 +(% style="color:blue" %)**99**   (%%) Not known or not detectable
458 458  
459 -904.5 - SF7BW125 to SF10BW125
460 460  
461 -904.7 - SF7BW125 to SF10BW125
462 462  
463 -904.9 - SF7BW125 to SF10BW125
374 +=== 2.4. Soil Moisture ===
464 464  
465 -905.1 - SF7BW125 to SF10BW125
376 +(((
377 +Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil.
378 +)))
466 466  
467 -905.3 - SF7BW125 to SF10BW125
380 +(((
381 +For example, if the data you get from the register is **__0x05 0xDC__**, the moisture content in the soil is
382 +)))
468 468  
384 +(((
385 +
386 +)))
469 469  
470 -(% style="color:#037691" %)**Downlink:**
388 +(((
389 +(% style="color:#4f81bd" %)**05DC(H) = 1500(D) /100 = 15%.**
390 +)))
471 471  
472 -923.3 - SF7BW500 to SF12BW500
473 473  
474 -923.9 - SF7BW500 to SF12BW500
475 475  
476 -924.5 - SF7BW500 to SF12BW500
394 +=== 2.4. Soil Temperature ===
477 477  
478 -925.1 - SF7BW500 to SF12BW500
396 +(((
397 + Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is __**0x09 0xEC**__, the temperature content in the soil is
398 +)))
479 479  
480 -925.7 - SF7BW500 to SF12BW500
400 +(((
401 +**Example**:
402 +)))
481 481  
482 -926.3 - SF7BW500 to SF12BW500
404 +(((
405 +If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/100 = 2.61 °C
406 +)))
483 483  
484 -926.9 - SF7BW500 to SF12BW500
408 +(((
409 +If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C
410 +)))
485 485  
486 -927.5 - SF7BW500 to SF12BW500
487 487  
488 -923.3 - SF12BW500(RX2 downlink only)
489 489  
414 +=== 2.4.7  Soil Conductivity (EC) ===
490 490  
416 +(((
417 +Obtain (% style="color:#4f81bd" %)**__soluble salt concentration__**(%%) in soil or (% style="color:#4f81bd" %)**__soluble ion concentration in liquid fertilizer__**(%%) or (% style="color:#4f81bd" %)**__planting medium__**(%%). The value range of the register is 0 - 20000(Decimal)( Can be greater than 20000).
418 +)))
491 491  
492 -=== 2.7.3 CN470-510 (CN470) ===
420 +(((
421 +For example, if the data you get from the register is __**0x00 0xC8**__, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm.
422 +)))
493 493  
494 -Used in China, Default use CHE=1
424 +(((
425 +Generally, the EC value of irrigation water is less than 800uS / cm.
426 +)))
495 495  
496 -(% style="color:#037691" %)**Uplink:**
428 +(((
429 +
430 +)))
497 497  
498 -486.3 - SF7BW125 to SF12BW125
432 +(((
433 +
434 +)))
499 499  
500 -486.5 - SF7BW125 to SF12BW125
436 +=== 2.4. Digital Interrupt ===
501 501  
502 -486.7 - SF7BW125 to SF12BW125
438 +Digital Interrupt refers to pin (% style="color:blue" %)**GPIO_EXTI**(%%), and there are different trigger methods. When there is a trigger, the NSE01 will send a packet to the server.
503 503  
504 -486.9 - SF7BW125 to SF12BW125
440 +The command is:
505 505  
506 -487.1 - SF7BW125 to SF12BW125
442 +(% style="color:blue" %)**AT+INTMOD=3 **(%%) ~/~/(more info about INMOD please refer [[**AT Command Manual**>>url:https://www.dragino.com/downloads/downloads/NB-IoT/NBSN95/DRAGINO_NBSN95-NB_AT%20Commands_v1.1.0.pdf]])**.**
507 507  
508 -487.3 - SF7BW125 to SF12BW125
509 509  
510 -487.5 - SF7BW125 to SF12BW125
445 +The lower four bits of this data field shows if this packet is generated by interrupt or not. [[Click here>>||anchor="H"]] for the hardware and software set up.
511 511  
512 -487.7 - SF7BW125 to SF12BW125
513 513  
448 +Example:
514 514  
515 -(% style="color:#037691" %)**Downlink:**
450 +0x(00): Normal uplink packet.
516 516  
517 -506.7 - SF7BW125 to SF12BW125
452 +0x(01): Interrupt Uplink Packet.
518 518  
519 -506.9 - SF7BW125 to SF12BW125
520 520  
521 -507.1 - SF7BW125 to SF12BW125
522 522  
523 -507.3 - SF7BW125 to SF12BW125
456 +=== 2.4.9  ​+5V Output ===
524 524  
525 -507.5 - SF7BW125 to SF12BW125
458 +NSE01 will enable +5V output before all sampling and disable the +5v after all sampling. 
526 526  
527 -507.7 - SF7BW125 to SF12BW125
528 528  
529 -507.9 - SF7BW125 to SF12BW125
461 +The 5V output time can be controlled by AT Command.
530 530  
531 -508.1 - SF7BW125 to SF12BW125
463 +(% style="color:blue" %)**AT+5VT=1000**
532 532  
533 -505.3 - SF12BW125 (RX2 downlink only)
465 +Means set 5V valid time to have 1000ms. So the real 5V output will actually have 1000ms + sampling time for other sensors.
534 534  
535 535  
536 536  
537 -=== 2.7.4 AU915-928(AU915) ===
469 +== 2.5  Downlink Payload ==
538 538  
539 -Default use CHE=2
471 +By default, NSE01 prints the downlink payload to console port.
540 540  
541 -(% style="color:#037691" %)**Uplink:**
473 +[[image:image-20220708133731-5.png]]
542 542  
543 -916.8 - SF7BW125 to SF12BW125
544 544  
545 -917.0 - SF7BW125 to SF12BW125
546 546  
547 -917.2 - SF7BW125 to SF12BW125
477 +(((
478 +(% style="color:blue" %)**Examples:**
479 +)))
548 548  
549 -917.4 - SF7BW125 to SF12BW125
481 +(((
482 +
483 +)))
550 550  
551 -917.6 - SF7BW125 to SF12BW125
485 +* (((
486 +(% style="color:blue" %)**Set TDC**
487 +)))
552 552  
553 -917.8 - SF7BW125 to SF12BW125
489 +(((
490 +If the payload=0100003C, it means set the END Node's TDC to 0x00003C=60(S), while type code is 01.
491 +)))
554 554  
555 -918.0 - SF7BW125 to SF12BW125
493 +(((
494 +Payload:    01 00 00 1E    TDC=30S
495 +)))
556 556  
557 -918.2 - SF7BW125 to SF12BW125
497 +(((
498 +Payload:    01 00 00 3C    TDC=60S
499 +)))
558 558  
501 +(((
502 +
503 +)))
559 559  
560 -(% style="color:#037691" %)**Downlink:**
505 +* (((
506 +(% style="color:blue" %)**Reset**
507 +)))
561 561  
562 -923.3 - SF7BW500 to SF12BW500
509 +(((
510 +If payload = 0x04FF, it will reset the NSE01
511 +)))
563 563  
564 -923.9 - SF7BW500 to SF12BW500
565 565  
566 -924.5 - SF7BW500 to SF12BW500
514 +* (% style="color:blue" %)**INTMOD**
567 567  
568 -925.1 - SF7BW500 to SF12BW500
516 +Downlink Payload: 06000003, Set AT+INTMOD=3
569 569  
570 -925.7 - SF7BW500 to SF12BW500
571 571  
572 -926.3 - SF7BW500 to SF12BW500
573 573  
574 -926.9 - SF7BW500 to SF12BW500
520 +== 2. ​LED Indicator ==
575 575  
576 -927.5 - SF7BW500 to SF12BW500
522 +(((
523 +The NSE01 has an internal LED which is to show the status of different state.
577 577  
578 -923.3 - SF12BW500(RX2 downlink only)
579 579  
526 +* When power on, NSE01 will detect if sensor probe is connected, if probe detected, LED will blink four times. (no blinks in this step is no probe)
527 +* Then the LED will be on for 1 second means device is boot normally.
528 +* After NSE01 join NB-IoT network. The LED will be ON for 3 seconds.
529 +* For each uplink probe, LED will be on for 500ms.
530 +)))
580 580  
581 581  
582 -=== 2.7.5 AS920-923 & AS923-925 (AS923) ===
583 583  
584 -(% style="color:#037691" %)**Default Uplink channel:**
585 585  
586 -923.2 - SF7BW125 to SF10BW125
535 +== 2.7  Installation in Soil ==
587 587  
588 -923.4 - SF7BW125 to SF10BW125
537 +__**Measurement the soil surface**__
589 589  
539 +Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting. [[https:~~/~~/img.alicdn.com/imgextra/i3/2005165265/O1CN010rj9Oh1olPsQxrdUK_!!2005165265.jpg>>url:https://img.alicdn.com/imgextra/i3/2005165265/O1CN010rj9Oh1olPsQxrdUK_!!2005165265.jpg]]
590 590  
591 -(% style="color:#037691" %)**Additional Uplink Channel**:
541 +[[image:1657259653666-883.png]]
592 592  
593 -(OTAA mode, channel added by JoinAccept message)
594 594  
595 -(% style="color:#037691" %)**AS920~~AS923 for Japan, Malaysia, Singapore**:
544 +(((
545 +
596 596  
597 -922.2 - SF7BW125 to SF10BW125
547 +(((
548 +Dig a hole with diameter > 20CM.
549 +)))
598 598  
599 -922.4 - SF7BW125 to SF10BW125
551 +(((
552 +Horizontal insert the probe to the soil and fill the hole for long term measurement.
553 +)))
554 +)))
600 600  
601 -922.6 - SF7BW125 to SF10BW125
556 +[[image:1654506665940-119.png]]
602 602  
603 -922.8 - SF7BW125 to SF10BW125
558 +(((
559 +
560 +)))
604 604  
605 -923.0 - SF7BW125 to SF10BW125
606 606  
607 -922.0 - SF7BW125 to SF10BW125
563 +== 2. Firmware Change Log ==
608 608  
609 609  
610 -(% style="color:#037691" %)**AS923 ~~ AS925 for Brunei, Cambodia, Hong Kong, Indonesia, Laos, Taiwan, Thailand, Vietnam**:
566 +Download URL & Firmware Change log
611 611  
612 -923.6 - SF7BW125 to SF10BW125
568 +[[www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/Firmware/]]
613 613  
614 -923.8 - SF7BW125 to SF10BW125
615 615  
616 -924.0 - SF7BW125 to SF10BW125
571 +Upgrade Instruction: [[Upgrade_Firmware>>||anchor="H"]]
617 617  
618 -924.2 - SF7BW125 to SF10BW125
619 619  
620 -924.4 - SF7BW125 to SF10BW125
621 621  
622 -924.6 - SF7BW125 to SF10BW125
575 +== 2. Battery Analysis ==
623 623  
577 +=== 2.9.1  ​Battery Type ===
624 624  
625 -(% style="color:#037691" %)** Downlink:**
626 626  
627 -Uplink channels 1-8 (RX1)
580 +The NSE01 battery is a combination of an 8500mAh Li/SOCI2 Battery and a Super Capacitor. The battery is none-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter.
628 628  
629 -923.2 - SF10BW125 (RX2)
630 630  
583 +The battery is designed to last for several years depends on the actually use environment and update interval. 
631 631  
632 632  
633 -=== 2.7.6 KR920-923 (KR920) ===
586 +The battery related documents as below:
634 634  
635 -Default channel:
588 +* [[Battery Dimension>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]
589 +* [[Lithium-Thionyl Chloride Battery>>url:http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]][[ datasheet>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]
590 +* [[Lithium-ion Battery-Capacitor datasheet>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]
636 636  
637 -922.1 - SF7BW125 to SF12BW125
638 -
639 -922.3 - SF7BW125 to SF12BW125
640 -
641 -922.5 - SF7BW125 to SF12BW125
642 -
643 -
644 -(% style="color:#037691" %)**Uplink: (OTAA mode, channel added by JoinAccept message)**
645 -
646 -922.1 - SF7BW125 to SF12BW125
647 -
648 -922.3 - SF7BW125 to SF12BW125
649 -
650 -922.5 - SF7BW125 to SF12BW125
651 -
652 -922.7 - SF7BW125 to SF12BW125
653 -
654 -922.9 - SF7BW125 to SF12BW125
655 -
656 -923.1 - SF7BW125 to SF12BW125
657 -
658 -923.3 - SF7BW125 to SF12BW125
659 -
660 -
661 -(% style="color:#037691" %)**Downlink:**
662 -
663 -Uplink channels 1-7(RX1)
664 -
665 -921.9 - SF12BW125 (RX2 downlink only; SF12BW125 might be changed to SF9BW125)
666 -
667 -
668 -
669 -=== 2.7.7 IN865-867 (IN865) ===
670 -
671 -(% style="color:#037691" %)** Uplink:**
672 -
673 -865.0625 - SF7BW125 to SF12BW125
674 -
675 -865.4025 - SF7BW125 to SF12BW125
676 -
677 -865.9850 - SF7BW125 to SF12BW125
678 -
679 -
680 -(% style="color:#037691" %) **Downlink:**
681 -
682 -Uplink channels 1-3 (RX1)
683 -
684 -866.550 - SF10BW125 (RX2)
685 -
686 -
687 -
688 -
689 -== 2.8 LED Indicator ==
690 -
691 -The LSE01 has an internal LED which is to show the status of different state.
692 -
693 -* Blink once when device power on.
694 -* Solid ON for 5 seconds once device successful Join the network.
695 -* Blink once when device transmit a packet.
696 -
697 -
698 -== 2.9 Installation in Soil ==
699 -
700 -**Measurement the soil surface**
701 -
702 -
703 -[[image:1654506634463-199.png]] ​
704 -
705 705  (((
706 -(((
707 -Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting.
593 +[[image:image-20220708140453-6.png]]
708 708  )))
709 -)))
710 710  
711 711  
712 712  
713 -[[image:1654506665940-119.png]]
598 +=== 2.9.2  Power consumption Analyze ===
714 714  
715 715  (((
716 -Dig a hole with diameter > 20CM.
601 +Dragino battery powered product are all runs in Low Power mode. We have an update battery calculator which base on the measurement of the real device. User can use this calculator to check the battery life and calculate the battery life if want to use different transmit interval.
717 717  )))
718 718  
719 -(((
720 -Horizontal insert the probe to the soil and fill the hole for long term measurement.
721 -)))
722 722  
723 -
724 -== 2.10 ​Firmware Change Log ==
725 -
726 726  (((
727 -**Firmware download link:**
606 +Instruction to use as below:
728 728  )))
729 729  
730 730  (((
731 -[[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/]]
610 +(% style="color:blue" %)**Step 1:  **(%%)Downlink the up-to-date DRAGINO_Battery_Life_Prediction_Table.xlsx from: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/]]
732 732  )))
733 733  
734 -(((
735 -
736 -)))
737 737  
738 738  (((
739 -**Firmware Upgrade Method: **[[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome]]
615 +(% style="color:blue" %)**Step 2: **(%%) Open it and choose
740 740  )))
741 741  
742 -(((
743 -
744 -)))
745 -
746 -(((
747 -**V1.0.**
748 -)))
749 -
750 -(((
751 -Release
752 -)))
753 -
754 -
755 -== 2.11 ​Battery Analysis ==
756 -
757 -=== 2.11.1 ​Battery Type ===
758 -
759 -(((
760 -The LSE01 battery is a combination of a 4000mAh Li/SOCI2 Battery and a Super Capacitor. The battery is non-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter.
761 -)))
762 -
763 -(((
764 -The battery is designed to last for more than 5 years for the LSN50.
765 -)))
766 -
767 -(((
768 -(((
769 -The battery-related documents are as below:
770 -)))
771 -)))
772 -
773 773  * (((
774 -[[Battery Dimension>>url:http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/&file=LSN50-Battery-Dimension.pdf]],
619 +Product Model
775 775  )))
776 776  * (((
777 -[[Lithium-Thionyl Chloride Battery  datasheet>>url:https://www.dragino.com/downloads/downloads/datasheet/Battery/ER26500/ER26500_Datasheet-EN.pdf]],
622 +Uplink Interval
778 778  )))
779 779  * (((
780 -[[Lithium-ion Battery-Capacitor datasheet>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC_1520_datasheet.jpg]], [[Tech Spec>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC1520%20Technical%20Specification20171123.pdf]]
625 +Working Mode
781 781  )))
782 782  
783 - [[image:image-20220610172436-1.png]]
628 +(((
629 +And the Life expectation in difference case will be shown on the right.
630 +)))
784 784  
632 +[[image:image-20220708141352-7.jpeg]]
785 785  
786 786  
787 -=== 2.11.2 ​Battery Note ===
788 788  
636 +=== 2.9.3  ​Battery Note ===
637 +
789 789  (((
790 790  The Li-SICO battery is designed for small current / long period application. It is not good to use a high current, short period transmit method. The recommended minimum period for use of this battery is 5 minutes. If you use a shorter period time to transmit LoRa, then the battery life may be decreased.
791 791  )))
... ... @@ -792,22 +792,14 @@
792 792  
793 793  
794 794  
795 -=== 2.11.3 Replace the battery ===
644 +=== 2.9. Replace the battery ===
796 796  
797 797  (((
798 -If Battery is lower than 2.7v, user should replace the battery of LSE01.
647 +The default battery pack of NSE01 includes a ER26500 plus super capacitor. If user can't find this pack locally, they can find ER26500 or equivalence without the SPC1520 capacitor, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes).
799 799  )))
800 800  
801 -(((
802 -You can change the battery in the LSE01.The type of battery is not limited as long as the output is between 3v to 3.6v. On the main board, there is a diode (D1) between the battery and the main circuit. If you need to use a battery with less than 3.3v, please remove the D1 and shortcut the two pads of it so there won’t be voltage drop between battery and main board.
803 -)))
804 804  
805 -(((
806 -The default battery pack of LSE01 includes a ER18505 plus super capacitor. If user can’t find this pack locally, they can find ER18505 or equivalence, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes)
807 -)))
808 808  
809 -
810 -
811 811  = 3. ​Using the AT Commands =
812 812  
813 813  == 3.1 Access AT Commands ==
... ... @@ -1011,18 +1011,22 @@
1011 1011  [[image:image-20220606154825-4.png]]
1012 1012  
1013 1013  
855 +== 4.2 ​Can I calibrate LSE01 to different soil types? ==
1014 1014  
857 +LSE01 is calibrated for saline-alkali soil and loamy soil. If users want to use it for other soil, they can calibrate the value in the IoT platform base on the value measured by saline-alkali soil and loamy soil. The formula can be found at [[this link>>https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/&file=Calibrate_to_other_Soil_20220605.pdf]].
858 +
859 +
1015 1015  = 5. Trouble Shooting =
1016 1016  
1017 -== 5.1 ​Why I cant join TTN in US915 / AU915 bands? ==
862 +== 5.1 ​Why I can't join TTN in US915 / AU915 bands? ==
1018 1018  
1019 -It is due to channel mapping. Please see the [[Eight Channel Mode>>doc:Main.LoRaWAN Communication Debug.WebHome||anchor="H2.NoticeofUS9152FCN4702FAU915Frequencyband"]] section above for details.
864 +It is due to channel mapping. Please see the [[Eight Channel Mode>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H7.19EightChannelMode"]] section above for details.
1020 1020  
1021 1021  
1022 -== 5.2 AT Command input doesnt work ==
867 +== 5.2 AT Command input doesn't work ==
1023 1023  
1024 1024  (((
1025 -In the case if user can see the console output but cant type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesnt send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.
870 +In the case if user can see the console output but can't type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn't send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.
1026 1026  )))
1027 1027  
1028 1028  
1657245163077-232.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +81.0 KB
Content
1657246476176-652.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +492.6 KB
Content
1657249419225-449.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +81.0 KB
Content
1657249468462-536.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +483.6 KB
Content
1657249793983-486.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +85.8 KB
Content
1657249831934-534.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +72.5 KB
Content
1657249864775-321.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +87.0 KB
Content
1657249930215-289.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +77.3 KB
Content
1657249978444-674.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +139.5 KB
Content
1657249990869-686.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +96.9 KB
Content
1657250217799-140.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +98.7 KB
Content
1657250255956-604.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +99.0 KB
Content
1657259653666-883.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +344.4 KB
Content
1657260785982-288.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +138.2 KB
Content
1657261119050-993.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +126.1 KB
Content
image-20220708101224-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +22.2 KB
Content
image-20220708101605-2.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +87.5 KB
Content
image-20220708110657-3.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +251.7 KB
Content
image-20220708111918-4.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +38.8 KB
Content
image-20220708133731-5.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +8.7 KB
Content
image-20220708140453-6.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +132.7 KB
Content
image-20220708141352-7.jpeg
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +102.7 KB
Content
Copyright ©2010-2022 Dragino Technology Co., LTD. All rights reserved
Dragino Wiki v2.0