Changes for page N95S31B -- NB-IoT Temperature & Humidity Sensor User Manual
Last modified by Mengting Qiu on 2024/04/02 16:44
Summary
-
Page properties (2 modified, 0 added, 0 removed)
-
Attachments (0 modified, 49 added, 0 removed)
- 1657245163077-232.png
- 1657246476176-652.png
- 1657249419225-449.png
- 1657249468462-536.png
- 1657249793983-486.png
- 1657249831934-534.png
- 1657249864775-321.png
- 1657249930215-289.png
- 1657249978444-674.png
- 1657249990869-686.png
- 1657250217799-140.png
- 1657250255956-604.png
- 1657259653666-883.png
- 1657260785982-288.png
- 1657261119050-993.png
- 1657261278785-153.png
- 1657271519014-786.png
- 1657327959271-447.png
- 1657328609906-564.png
- 1657328659945-416.png
- 1657328756309-230.png
- 1657328884227-504.png
- 1657329814315-101.png
- 1657330452568-615.png
- 1657330472797-498.png
- 1657330501006-241.png
- 1657330533775-472.png
- 1657330723006-866.png
- 1657331036973-987.png
- 1657332990863-496.png
- 1657333200519-600.png
- image-20220708101224-1.png
- image-20220708101605-2.png
- image-20220708110657-3.png
- image-20220708111918-4.png
- image-20220708133731-5.png
- image-20220708140453-6.png
- image-20220708141352-7.jpeg
- image-20220709084038-1.jpeg
- image-20220709084137-2.jpeg
- image-20220709084207-3.jpeg
- image-20220709084458-4.png
- image-20220709085040-1.png
- image-20220709092052-2.png
- image-20220709093918-1.png
- image-20220709093918-2.png
- image-20220709100028-1.png
- image-20220709101450-2.png
- image-20220709110451-3.png
Details
- Page properties
-
- Title
-
... ... @@ -1,1 +1,1 @@ 1 - LSE01-LoRaWANSoil Moisture&ECSensor User Manual1 +NDDS75 NB-IoT Distance Detect Sensor User Manual - Content
-
... ... @@ -1,8 +1,10 @@ 1 1 (% style="text-align:center" %) 2 -[[image:image-20220 606151504-2.jpeg||height="554" width="554"]]2 +[[image:image-20220709085040-1.png||height="542" width="524"]] 3 3 4 4 5 5 6 + 7 + 6 6 **Table of Contents:** 7 7 8 8 {{toc/}} ... ... @@ -12,770 +12,655 @@ 12 12 13 13 14 14 15 -= 1. Introduction = 17 += 1. Introduction = 16 16 17 -== 1.1 What is LoRaWANoilMoisture&ECSensor ==19 +== 1.1 What is NDDS75 Distance Detection Sensor == 18 18 19 19 ((( 20 20 21 21 22 -The Dragino LSE01 is a (% style="color:#4f81bd" %)**LoRaWAN Soil Moisture & EC Sensor**(%%) for IoT of Agriculture. It is designed to measure the soil moisture of saline-alkali soil and loamy soil. The soil sensor uses FDR method to calculate the soil moisture with the compensation from soil temperature and conductivity. It also has been calibrated in factory for Mineral soil type. 23 -))) 24 - 25 25 ((( 26 -It detects (% style="color:#4f81bd" %)**Soil Moisture**(%%), (% style="color:#4f81bd" %)**Soil Temperature**(%%) and (% style="color:#4f81bd" %)**Soil Conductivity**(%%), and uploads the value via wireless to LoRaWAN IoT Server. 25 +The Dragino NDDS75 is a (% style="color:blue" %)**NB-IoT Distance Detection Sensor**(%%) for Internet of Things solution. It is designed to measure the distance between the sensor and a flat object. The distance detection sensor is a module that uses ultrasonic sensing technology for distance measurement, and temperature compensation is performed internally to improve the reliability of data. 26 +\\The NDDS75 can be applied to scenarios such as horizontal distance measurement, liquid level measurement, parking management system, object proximity and presence detection, intelligent trash can management system, robot obstacle avoidance, automatic control, sewer, bottom water level monitoring, etc. It detects the distance between the measured object and the sensor, and uploads the value via wireless to IoT Server via NB-IoT Network. 27 +\\NarrowBand-Internet of Things (NB-IoT) is a standards-based low power wide area (LPWA) technology developed to enable a wide range of new IoT devices and services. NB-IoT significantly improves the power consumption of user devices, system capacity and spectrum efficiency, especially in deep coverage. 28 +\\NDDS75 supports different uplink methods include (% style="color:blue" %)**TCP, MQTT, UDP and CoAP** (%%)for different application requirement. 29 +\\NDDS75 is powered by (% style="color:blue" %)**8500mAh Li-SOCI2 battery**(%%), It is designed for long term use up to 5 years. (Actually Battery life depends on the use environment, update period & uplink method) 30 +\\To use NDDS75, user needs to check if there is NB-IoT coverage in local area and with the bands NDDS75 supports. If the local operate support it, user needs to get a NB-IoT SIM card from local operator and install NDDS75 to get NB-IoT network connection. 27 27 ))) 28 28 29 -((( 30 -The LoRa wireless technology used in LES01 allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption. 33 + 31 31 ))) 32 32 33 -((( 34 -LES01 is powered by (% style="color:#4f81bd" %)**4000mA or 8500mAh Li-SOCI2 battery**(%%), It is designed for long term use up to 10 years. 35 -))) 36 +[[image:1657327959271-447.png]] 36 36 37 -((( 38 -Each LES01 is pre-load with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect after power on. 39 -))) 40 40 41 41 42 - [[image:1654503236291-817.png]]40 +== 1.2 Features == 43 43 44 44 45 -[[image:1654503265560-120.png]] 46 - 47 - 48 - 49 -== 1.2 Features == 50 - 51 -* LoRaWAN 1.0.3 Class A 43 +* NB-IoT Bands: B1/B3/B8/B5/B20/B28 @H-FDD 52 52 * Ultra low power consumption 53 -* MonitorSoilMoisture54 -* MonitorSoil Temperature55 -* Monitor SoilConductivity56 -* Bands:CN470/EU433/KR920/US915/EU868/AS923/AU915/IN86545 +* Distance Detection by Ultrasonic technology 46 +* Flat object range 280mm - 7500mm 47 +* Accuracy: ±(1cm+S*0.3%) (S: Distance) 48 +* Cable Length: 25cm 57 57 * AT Commands to change parameters 58 58 * Uplink on periodically 59 59 * Downlink to change configure 60 60 * IP66 Waterproof Enclosure 61 -* 4000mAh or 8500mAh Battery for long term use 53 +* Micro SIM card slot for NB-IoT SIM 54 +* 8500mAh Battery for long term use 62 62 63 -== 1.3 Specification == 64 64 65 -Measure Volume: Base on the centra pin of the probe, a cylinder with 7cm diameter and 10cm height. 66 66 67 - [[image:image-20220606162220-5.png]]58 +== 1.3 Specification == 68 68 69 69 61 +(% style="color:#037691" %)**Common DC Characteristics:** 70 70 71 -== 1.4 Applications == 63 +* Supply Voltage: 2.1v ~~ 3.6v 64 +* Operating Temperature: -40 ~~ 85°C 72 72 73 - *SmartAgriculture66 +(% style="color:#037691" %)**NB-IoT Spec:** 74 74 75 -(% class="wikigeneratedid" id="H200B1.5FirmwareChangelog" %) 76 - 68 +* - B1 @H-FDD: 2100MHz 69 +* - B3 @H-FDD: 1800MHz 70 +* - B8 @H-FDD: 900MHz 71 +* - B5 @H-FDD: 850MHz 72 +* - B20 @H-FDD: 800MHz 73 +* - B28 @H-FDD: 700MHz 77 77 78 - ==1.5 FirmwareChangelog==75 +(% style="color:#037691" %)**Battery:** 79 79 77 +* Li/SOCI2 un-chargeable battery 78 +* Capacity: 8500mAh 79 +* Self Discharge: <1% / Year @ 25°C 80 +* Max continuously current: 130mA 81 +* Max boost current: 2A, 1 second 80 80 81 - **LSE01v1.0 :**Release83 +(% style="color:#037691" %)**Power Consumption** 82 82 85 +* STOP Mode: 10uA @ 3.3v 86 +* Max transmit power: 350mA@3.3v 83 83 84 84 85 -= 2. Configure LSE01 to connect to LoRaWAN network = 86 86 87 -== 2.1Howitworks ==90 +== 1.4 Applications == 88 88 89 -((( 90 -The LSE01 is configured as LoRaWAN OTAA Class A mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and power on the LSE0150. It will automatically join the network via OTAA and start to send the sensor value 91 -))) 92 +* Smart Buildings & Home Automation 93 +* Logistics and Supply Chain Management 94 +* Smart Metering 95 +* Smart Agriculture 96 +* Smart Cities 97 +* Smart Factory 92 92 93 -((( 94 -In case you can’t set the OTAA keys in the LoRaWAN OTAA server, and you have to use the keys from the server, you can [[use AT Commands >>||anchor="H3.200BUsingtheATCommands"]]. 95 -))) 99 +(% class="wikigeneratedid" id="H200B1.5FirmwareChangelog" %) 100 + 96 96 97 97 103 +== 1.5 Pin Definitions == 98 98 99 -== 2.2 Quick guide to connect to LoRaWAN server (OTAA) == 100 100 101 - Following is an example for how to join the[[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LG308>>url:http://www.dragino.com/products/lora/item/140-lg308.html]]as a LoRaWAN gateway in this example.106 +[[image:1657328609906-564.png]] 102 102 103 103 104 -[[image:1654503992078-669.png]] 105 105 110 += 2. Use NDDS75 to communicate with IoT Server = 106 106 107 - TheLG308is already set toconnected to [[TTN network>>url:https://console.cloud.thethings.network/]],sowhat we need to now is configure the TTN server.112 +== 2.1 How it works == 108 108 109 - 110 -(% style="color:blue" %)**Step 1**(%%): Create a device in TTN with the OTAA keys from LSE01. 111 - 112 -Each LSE01 is shipped with a sticker with the default device EUI as below: 113 - 114 -[[image:image-20220606163732-6.jpeg]] 115 - 116 -You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot: 117 - 118 -**Add APP EUI in the application** 119 - 120 - 121 -[[image:1654504596150-405.png]] 122 - 123 - 124 - 125 -**Add APP KEY and DEV EUI** 126 - 127 -[[image:1654504683289-357.png]] 128 - 129 - 130 - 131 -(% style="color:blue" %)**Step 2**(%%): Power on LSE01 132 - 133 - 134 -Put a Jumper on JP2 to power on the device. ( The Jumper must be in FLASH position). 135 - 136 -[[image:image-20220606163915-7.png]] 137 - 138 - 139 -(% style="color:blue" %)**Step 3**(%%)**:** The LSE01 will auto join to the TTN network. After join success, it will start to upload messages to TTN and you can see the messages in the panel. 140 - 141 -[[image:1654504778294-788.png]] 142 - 143 - 144 - 145 -== 2.3 Uplink Payload == 146 - 147 - 148 -=== 2.3.1 MOD~=0(Default Mode) === 149 - 150 -LSE01 will uplink payload via LoRaWAN with below payload format: 151 - 152 152 ((( 153 - Uplinkpayload includesin total11bytes.115 +The NDDS75 is equipped with a NB-IoT module, the pre-loaded firmware in NDDS75 will get environment data from sensors and send the value to local NB-IoT network via the NB-IoT module. The NB-IoT network will forward this value to IoT server via the protocol defined by NDDS75. 154 154 ))) 155 155 156 -(% border="1" cellspacing="10" style="background-color:#ffffcc; width:500px" %) 157 -|((( 158 -**Size** 159 159 160 -**(bytes)** 161 -)))|**2**|**2**|**2**|**2**|**2**|**1** 162 -|**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|((( 163 -Temperature 164 - 165 -(Reserve, Ignore now) 166 -)))|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]]|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]]|((( 167 -MOD & Digital Interrupt 168 - 169 -(Optional) 170 -))) 171 - 172 - 173 -=== 2.3.2 MOD~=1(Original value) === 174 - 175 -This mode can get the original AD value of moisture and original conductivity (with temperature drift compensation). 176 - 177 -(% border="1" cellspacing="10" style="background-color:#ffffcc; width:500px" %) 178 -|((( 179 -**Size** 180 - 181 -**(bytes)** 182 -)))|**2**|**2**|**2**|**2**|**2**|**1** 183 -|**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|((( 184 -Temperature 185 - 186 -(Reserve, Ignore now) 187 -)))|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]](raw)|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]](raw)|((( 188 -MOD & Digital Interrupt 189 - 190 -(Optional) 191 -))) 192 - 193 - 194 -=== 2.3.3 Battery Info === 195 - 196 196 ((( 197 - CheckthebatteryvoltageforLSE01.120 +The diagram below shows the working flow in default firmware of NDDS75: 198 198 ))) 199 199 200 200 ((( 201 - Ex1:0x0B45 = 2885mV124 + 202 202 ))) 203 203 127 +[[image:1657328659945-416.png]] 128 + 204 204 ((( 205 - Ex2:0x0B49 = 2889mV130 + 206 206 ))) 207 207 208 208 134 +== 2.2 Configure the NDDS75 == 209 209 210 -=== 2.3.4 Soil Moisture === 211 211 212 -((( 213 -Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil. 214 -))) 137 +=== 2.2.1 Test Requirement === 215 215 216 216 ((( 217 - Forexample,ifthe datayouget fromthe register is __0x05 0xDC__,themoisturecontentin thesoil is140 +To use NDDS75 in your city, make sure meet below requirements: 218 218 ))) 219 219 220 - (((221 - 222 - )))143 +* Your local operator has already distributed a NB-IoT Network there. 144 +* The local NB-IoT network used the band that NSE01 supports. 145 +* Your operator is able to distribute the data received in their NB-IoT network to your IoT server. 223 223 224 224 ((( 225 -(% style="color: #4f81bd" %)**05DC(H) = 1500(D)/100= 15%.**148 +Below figure shows our testing structure. Here we have NB-IoT network coverage by China Mobile, the band they use is B8. The NDDS75 will use CoAP((% style="color:red" %)120.24.4.116:5683)(%%) or raw UDP((% style="color:red" %)120.24.4.116:5601)(%%) or MQTT((% style="color:red" %)120.24.4.116:1883)(%%)or TCP((% style="color:red" %)120.24.4.116:5600)(%%)protocol to send data to the test server 226 226 ))) 227 227 228 228 152 +[[image:1657328756309-230.png]] 229 229 230 -=== 2.3.5 Soil Temperature === 231 231 232 -((( 233 - Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is 0x09 0xEC, the temperature content in the soil is 234 -))) 235 235 236 -((( 237 -**Example**: 238 -))) 156 +=== 2.2.2 Insert SIM card === 239 239 240 240 ((( 241 -I fpayloadis 0105H: ((0x0105 & 0x8000)>>15 === 0),temp=0105(H)/100 = 2.61 °C159 +Insert the NB-IoT Card get from your provider. 242 242 ))) 243 243 244 244 ((( 245 - IfpayloadisFF7EH:((FF7E&0x8000)>>15===1),temp=(FF7E(H)-FFFF(H))/100=-1.29 °C163 +User need to take out the NB-IoT module and insert the SIM card like below: 246 246 ))) 247 247 248 248 167 +[[image:1657328884227-504.png]] 249 249 250 -=== 2.3.6 Soil Conductivity (EC) === 251 251 252 -((( 253 -Obtain (% style="color:#4f81bd" %)**__soluble salt concentration__**(%%) in soil or (% style="color:#4f81bd" %)**__soluble ion concentration in liquid fertilizer__**(%%) or (% style="color:#4f81bd" %)**__planting medium__**(%%). The value range of the register is 0 - 20000(Decimal)( Can be greater than 20000). 254 -))) 255 255 256 -((( 257 -For example, if the data you get from the register is 0x00 0xC8, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm. 258 -))) 171 +=== 2.2.3 Connect USB – TTL to NDDS75 to configure it === 259 259 260 260 ((( 261 -Generally, the EC value of irrigation water is less than 800uS / cm. 262 -))) 263 - 264 264 ((( 265 - 175 +User need to configure NDDS75 via serial port to set the (% style="color:blue" %)**Server Address** / **Uplink Topic** (%%)to define where and how-to uplink packets. NDDS75 support AT Commands, user can use a USB to TTL adapter to connect to NDDS75 and use AT Commands to configure it, as below. 266 266 ))) 267 - 268 -((( 269 - 270 270 ))) 271 271 272 - ===2.3.7MOD ===179 +[[image:image-20220709092052-2.png]] 273 273 274 - Firmware versionat least v2.1 supportschanging mode.181 +**Connection:** 275 275 276 - Forexample,bytes[10]=90183 + (% style="background-color:yellow" %)USB TTL GND <~-~-~-~-> GND 277 277 278 - mod=(bytes[10]>>7)&0x01=1.185 + (% style="background-color:yellow" %)USB TTL TXD <~-~-~-~-> UART_RXD 279 279 187 + (% style="background-color:yellow" %)USB TTL RXD <~-~-~-~-> UART_TXD 280 280 281 -**Downlink Command:** 282 282 283 -I fpayload= 0x0A00,workmode=0190 +In the PC, use below serial tool settings: 284 284 285 -If** **payload =** **0x0A01, workmode=1 192 +* Baud: (% style="color:green" %)**9600** 193 +* Data bits:** (% style="color:green" %)8(%%)** 194 +* Stop bits: (% style="color:green" %)**1** 195 +* Parity: (% style="color:green" %)**None** 196 +* Flow Control: (% style="color:green" %)**None** 286 286 287 - 288 - 289 -=== 2.3.8 Decode payload in The Things Network === 290 - 291 -While using TTN network, you can add the payload format to decode the payload. 292 - 293 - 294 -[[image:1654505570700-128.png]] 295 - 296 296 ((( 297 - The payloaddecoderfunction forTTNis here:199 +Make sure the switch is in FLASH position, then power on device by connecting the jumper on NDDS75. NDDS75 will output system info once power on as below, we can enter the (% style="color:green" %)**password: 12345678**(%%) to access AT Command input. 298 298 ))) 299 299 202 +[[image:1657329814315-101.png]] 203 + 300 300 ((( 301 - LSE01TTNPayloadDecoder: [[https:~~/~~/www.dropbox.com/sh/si8icbrjlamxqdb/AAACYwjsxxr5fj_vpqRtrETAa?dl=0>>https://www.dropbox.com/sh/si8icbrjlamxqdb/AAACYwjsxxr5fj_vpqRtrETAa?dl=0]]205 +(% style="color:red" %)Note: the valid AT Commands can be found at: (%%)[[https:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NDDS75/>>url:https://www.dragino.com/downloads/index.php?dir=NB-IoT/NDDS75/]] 302 302 ))) 303 303 304 304 305 -== 2.4 Uplink Interval == 306 306 307 - TheLSE01 by default uplink the sensor data every20 minutes. Usercan change this interval by ATCommandorLoRaWAN Downlink Command. See thislink:[[Change Uplink Interval>>doc:Main.EndDevice AT Commands and DownlinkCommand.WebHome||anchor="H4.1ChangeUplinkInterval"]]210 +=== 2.2.4 Use CoAP protocol to uplink data === 308 308 212 +(% style="color:red" %)Note: if you don't have CoAP server, you can refer this link to set up one: (%%)[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/>>http://wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/]] 309 309 310 310 311 -== 2.5 Downlink Payload == 312 - 313 -By default, LSE50 prints the downlink payload to console port. 314 - 315 -[[image:image-20220606165544-8.png]] 316 - 317 - 318 318 ((( 319 -** Examples:**216 +**Use below commands:** 320 320 ))) 321 321 322 -((( 323 - 219 +* ((( 220 +(% style="color:blue" %)**AT+PRO=1** (%%) ~/~/ Set to use CoAP protocol to uplink 324 324 ))) 325 - 326 326 * ((( 327 -**Set TDC**223 +(% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5683 ** (%%)~/~/ to set CoAP server address and port 328 328 ))) 329 - 330 -((( 331 -If the payload=0100003C, it means set the END Node’s TDC to 0x00003C=60(S), while type code is 01. 332 -))) 333 - 334 -((( 335 -Payload: 01 00 00 1E TDC=30S 336 -))) 337 - 338 -((( 339 -Payload: 01 00 00 3C TDC=60S 340 -))) 341 - 342 -((( 343 - 344 -))) 345 - 346 346 * ((( 347 -**Re set**226 +(% style="color:blue" %)**AT+URI=5,11,"mqtt",11,"coap",12,"0",15,"c=text1",23,"0" ** (%%) ~/~/Set COAP resource path 348 348 ))) 349 349 350 350 ((( 351 - Ifpayload= 0x04FF,itwillresettheLSE01230 +For parameter description, please refer to AT command set 352 352 ))) 353 353 233 +[[image:1657330452568-615.png]] 354 354 355 -* **CFM** 356 356 357 - DownlinkPayload:05000001, Set AT+CFM=1or05000000,setAT+CFM=0236 +After configure the server address and (% style="color:green" %)**reset the device**(%%) (via AT+ATZ ), NDDS75 will start to uplink sensor values to CoAP server. 358 358 238 +[[image:1657330472797-498.png]] 359 359 360 360 361 -== 2.6 Show Data in DataCake IoT Server == 362 362 363 -((( 364 -[[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps: 365 -))) 242 +=== 2.2.5 Use UDP protocol to uplink data(Default protocol) === 366 366 367 -((( 368 - 369 -))) 370 370 371 -(( (372 -(% style="color:blue" %)**S tep1**(%%):Besurehatyourdeviceis programmedandproperlyconnectedtothe network atthis time.373 -)) )245 +* (% style="color:blue" %)**AT+PRO=2 ** (%%) ~/~/ Set to use UDP protocol to uplink 246 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5601 ** (%%) ~/~/ to set UDP server address and port 247 +* (% style="color:blue" %)**AT+CFM=1 ** (%%) ~/~/ If the server does not respond, this command is unnecessary 374 374 375 -((( 376 -(% style="color:blue" %)**Step 2**(%%): To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps: 377 -))) 249 +[[image:1657330501006-241.png]] 378 378 379 379 380 -[[image:165 4505857935-743.png]]252 +[[image:1657330533775-472.png]] 381 381 382 382 383 -[[image:1654505874829-548.png]] 384 384 256 +=== 2.2.6 Use MQTT protocol to uplink data === 385 385 386 -(% style="color:blue" %)**Step 3**(%%)**:** Create an account or log in Datacake. 387 387 388 -(% style="color:blue" %)**Step 4**(%%)**:** Search the LSE01 and add DevEUI. 259 +* (% style="color:blue" %)**AT+PRO=3 ** (%%) ~/~/Set to use MQTT protocol to uplink 260 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,1883 ** (%%) ~/~/Set MQTT server address and port 261 +* (% style="color:blue" %)**AT+CLIENT=CLIENT ** (%%)~/~/Set up the CLIENT of MQTT 262 +* (% style="color:blue" %)**AT+UNAME=UNAME **(%%)~/~/Set the username of MQTT 263 +* (% style="color:blue" %)**AT+PWD=PWD **(%%)~/~/Set the password of MQTT 264 +* (% style="color:blue" %)**AT+PUBTOPIC=NDDS75_PUB **(%%)~/~/Set the sending topic of MQTT 265 +* (% style="color:blue" %)**AT+SUBTOPIC=NDDS75_SUB **(%%) ~/~/Set the subscription topic of MQTT 389 389 267 +[[image:1657249978444-674.png]] 390 390 391 -[[image:1654505905236-553.png]] 392 392 270 +[[image:1657330723006-866.png]] 393 393 394 -After added, the sensor data arrive TTN, it will also arrive and show in Mydevices. 395 395 396 -[[image:1654505925508-181.png]] 273 +((( 274 +MQTT protocol has a much higher power consumption compare vs UDP / CoAP protocol. Please check the power analyze document and adjust the uplink period to a suitable interval. 275 +))) 397 397 398 398 399 399 400 -== 2.7 FrequencyPlans==279 +=== 2.2.7 Use TCP protocol to uplink data === 401 401 402 -The LSE01 uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets. 403 403 282 +* (% style="color:blue" %)**AT+PRO=4 ** (%%) ~/~/ Set to use TCP protocol to uplink 283 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5600 **(%%) ~/~/ to set TCP server address and port 404 404 405 - ===2.7.1EU863-870 (EU868) ===285 +[[image:image-20220709093918-1.png]] 406 406 407 -(% style="color:#037691" %)** Uplink:** 408 408 409 - 868.1-SF7BW125 to SF12BW125288 +[[image:image-20220709093918-2.png]] 410 410 411 -868.3 - SF7BW125 to SF12BW125 and SF7BW250 412 412 413 -868.5 - SF7BW125 to SF12BW125 414 414 415 - 867.1-SF7BW125toSF12BW125292 +=== 2.2.8 Change Update Interval === 416 416 417 - 867.3-SF7BW125toSF12BW125294 +User can use below command to change the (% style="color:green" %)**uplink interval**. 418 418 419 - 867.5-SF7BW125toSF12BW125296 +* (% style="color:blue" %)**AT+TDC=600 ** (%%)~/~/ Set Update Interval to 600s 420 420 421 -867.7 - SF7BW125 to SF12BW125 298 +((( 299 +(% style="color:red" %)**NOTE:** 300 +))) 422 422 423 -867.9 - SF7BW125 to SF12BW125 302 +((( 303 +(% style="color:red" %)1. By default, the device will send an uplink message every 1 hour. 304 +))) 424 424 425 -868.8 - FSK 426 426 427 427 428 - (% style="color:#037691"%)** Downlink:**308 +== 2.3 Uplink Payload == 429 429 430 - Uplinkchannels1-9(RX1)310 +In this mode, uplink payload includes in total 14 bytes 431 431 432 -869.525 - SF9BW125 (RX2 downlink only) 433 433 313 +(% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:510px" %) 314 +|=(% style="width: 80px;" %)((( 315 +**Size(bytes)** 316 +)))|=(% style="width: 80px;" %)**6**|=(% style="width: 35px;" %)2|=(% style="width: 35px;" %)**2**|=(% style="width: 110px;" %)**1**|=(% style="width: 110px;" %)**2**|=(% style="width: 70px;" %)**1** 317 +|(% style="width:97px" %)**Value**|(% style="width:83px" %)[[Device ID>>||anchor="H2.4.1A0A0DeviceID"]]|(% style="width:41px" %)[[Ver>>||anchor="H2.4.2A0VersionInfo"]]|(% style="width:46px" %)[[BAT>>||anchor="H2.4.3A0BatteryInfo"]]|(% style="width:123px" %)[[Signal Strength>>||anchor="H2.4.4A0SignalStrength"]]|(% style="width:120px" %)[[Distance (unit: mm)>>||anchor="H2.4.5A0Distance"]]|(% style="width:80px" %)[[Interrupt>>||anchor="H2.4.6A0DigitalInterrupt"]] 434 434 319 +((( 320 +If we use the MQTT client to subscribe to this MQTT topic, we can see the following information when the NDDS751 uplink data. 321 +))) 435 435 436 -=== 2.7.2 US902-928(US915) === 437 437 438 - Usedin USA, Canada and South America. Default use CHE=2324 +[[image:1657331036973-987.png]] 439 439 440 -(% style="color:#037691" %)**Uplink:** 326 +((( 327 +The payload is ASCII string, representative same HEX: 328 +))) 441 441 442 -903.9 - SF7BW125 to SF10BW125 330 +((( 331 +0x72403155615900640c6c19029200 where: 332 +))) 443 443 444 -904.1 - SF7BW125 to SF10BW125 334 +* ((( 335 +Device ID: 0x724031556159 = 724031556159 336 +))) 337 +* ((( 338 +Version: 0x0064=100=1.0.0 339 +))) 445 445 446 -904.3 - SF7BW125 to SF10BW125 341 +* ((( 342 +BAT: 0x0c6c = 3180 mV = 3.180V 343 +))) 344 +* ((( 345 +Signal: 0x19 = 25 346 +))) 347 +* ((( 348 +Distance: 0x0292= 658 mm 349 +))) 350 +* ((( 351 +Interrupt: 0x00 = 0 447 447 448 -904.5 - SF7BW125 to SF10BW125 449 449 450 -904.7 - SF7BW125 to SF10BW125 451 451 452 -904.9 - SF7BW125 to SF10BW125 355 + 356 +))) 453 453 454 - 905.1- SF7BW125to SF10BW125358 +== 2.4 Payload Explanation and Sensor Interface == 455 455 456 -905.3 - SF7BW125 to SF10BW125 457 457 361 +=== 2.4.1 Device ID === 458 458 459 -(% style="color:#037691" %)**Downlink:** 363 +((( 364 +By default, the Device ID equal to the last 6 bytes of IMEI. 365 +))) 460 460 461 -923.3 - SF7BW500 to SF12BW500 367 +((( 368 +User can use (% style="color:blue" %)**AT+DEUI**(%%) to set Device ID 369 +))) 462 462 463 -923.9 - SF7BW500 to SF12BW500 371 +((( 372 +**Example:** 373 +))) 464 464 465 -924.5 - SF7BW500 to SF12BW500 375 +((( 376 +AT+DEUI=A84041F15612 377 +))) 466 466 467 -925.1 - SF7BW500 to SF12BW500 379 +((( 380 +The Device ID is stored in a none-erase area, Upgrade the firmware or run **AT+FDR** won't erase Device ID. 381 +))) 468 468 469 -925.7 - SF7BW500 to SF12BW500 470 470 471 -926.3 - SF7BW500 to SF12BW500 472 472 473 - 926.9-SF7BW500 toSF12BW500385 +=== 2.4.2 Version Info === 474 474 475 -927.5 - SF7BW500 to SF12BW500 387 +((( 388 +Specify the software version: 0x64=100, means firmware version 1.00. 389 +))) 476 476 477 -923.3 - SF12BW500(RX2 downlink only) 391 +((( 392 +For example: 0x00 64 : this device is NDDS75 with firmware version 1.0.0. 393 +))) 478 478 479 479 480 480 481 -=== 2. 7.3CN470-510(CN470)===397 +=== 2.4.3 Battery Info === 482 482 483 -Used in China, Default use CHE=1 399 +((( 400 +Ex1: 0x0B45 = 2885mV 401 +))) 484 484 485 -(% style="color:#037691" %)**Uplink:** 403 +((( 404 +Ex2: 0x0B49 = 2889mV 405 +))) 486 486 487 -486.3 - SF7BW125 to SF12BW125 488 488 489 -486.5 - SF7BW125 to SF12BW125 490 490 491 -4 86.7-SF7BW125toSF12BW125409 +=== 2.4.4 Signal Strength === 492 492 493 -486.9 - SF7BW125 to SF12BW125 411 +((( 412 +NB-IoT Network signal Strength. 413 +))) 494 494 495 -487.1 - SF7BW125 to SF12BW125 415 +((( 416 +**Ex1: 0x1d = 29** 417 +))) 496 496 497 -487.3 - SF7BW125 to SF12BW125 419 +((( 420 +(% style="color:blue" %)**0**(%%) -113dBm or less 421 +))) 498 498 499 -487.5 - SF7BW125 to SF12BW125 423 +((( 424 +(% style="color:blue" %)**1**(%%) -111dBm 425 +))) 500 500 501 -487.7 - SF7BW125 to SF12BW125 427 +((( 428 +(% style="color:blue" %)**2...30**(%%) -109dBm... -53dBm 429 +))) 502 502 431 +((( 432 +(% style="color:blue" %)**31** (%%) -51dBm or greater 433 +))) 503 503 504 -(% style="color:#037691" %)**Downlink:** 435 +((( 436 +(% style="color:blue" %)**99** (%%) Not known or not detectable 437 +))) 505 505 506 -506.7 - SF7BW125 to SF12BW125 507 507 508 -506.9 - SF7BW125 to SF12BW125 509 509 510 - 507.1- SF7BW125 toSF12BW125441 +=== 2.4.5 Distance === 511 511 512 - 507.3-SF7BW125toSF12BW125443 +Get the distance. Flat object range 280mm - 7500mm. 513 513 514 - 507.5-SF7BW125toSF12BW125445 +For example, if the data you get from the register is **__0x0B 0x05__**, the distance between the sensor and the measured object is 515 515 516 -507.7 - SF7BW125 to SF12BW125 447 +((( 448 +((( 449 +(% style="color:blue" %)** 0B05(H) = 2821(D) = 2821mm.** 450 +))) 451 +))) 517 517 518 -507.9 - SF7BW125 to SF12BW125 453 +((( 454 + 455 +))) 519 519 520 -508.1 - SF7BW125 to SF12BW125 457 +((( 458 + 459 +))) 521 521 522 - 505.3- SF12BW125(RX2 downlinkonly)461 +=== 2.4.6 Digital Interrupt === 523 523 463 +((( 464 +Digital Interrupt refers to pin (% style="color:blue" %)**GPIO_EXTI**(%%), and there are different trigger methods. When there is a trigger, the NDDS75 will send a packet to the server. 465 +))) 524 524 467 +((( 468 +The command is: 469 +))) 525 525 526 -=== 2.7.4 AU915-928(AU915) === 471 +((( 472 +(% style="color:blue" %)**AT+INTMOD=3 **(%%) ~/~/(more info about INMOD please refer [[**AT Command Manual**>>url:https://www.dragino.com/downloads/downloads/NB-IoT/NBSN95/DRAGINO_NBSN95-NB_AT%20Commands_v1.1.0.pdf]])**.** 473 +))) 527 527 528 -Default use CHE=2 529 529 530 -(% style="color:#037691" %)**Uplink:** 476 +((( 477 +The lower four bits of this data field shows if this packet is generated by interrupt or not. Click here for the hardware and software set up. 478 +))) 531 531 532 -916.8 - SF7BW125 to SF12BW125 533 533 534 -917.0 - SF7BW125 to SF12BW125 481 +((( 482 +Example: 483 +))) 535 535 536 -917.2 - SF7BW125 to SF12BW125 485 +((( 486 +0x(00): Normal uplink packet. 487 +))) 537 537 538 -917.4 - SF7BW125 to SF12BW125 489 +((( 490 +0x(01): Interrupt Uplink Packet. 491 +))) 539 539 540 -917.6 - SF7BW125 to SF12BW125 541 541 542 -917.8 - SF7BW125 to SF12BW125 543 543 544 - 918.0- SF7BW125 toSF12BW125495 +=== 2.4.7 +5V Output === 545 545 546 -918.2 - SF7BW125 to SF12BW125 497 +((( 498 +NDDS75 will enable +5V output before all sampling and disable the +5v after all sampling. 499 +))) 547 547 548 548 549 -(% style="color:#037691" %)**Downlink:** 502 +((( 503 +The 5V output time can be controlled by AT Command. 504 +))) 550 550 551 -923.3 - SF7BW500 to SF12BW500 506 +((( 507 +(% style="color:blue" %)**AT+5VT=1000** 508 +))) 552 552 553 -923.9 - SF7BW500 to SF12BW500 510 +((( 511 +Means set 5V valid time to have 1000ms. So the real 5V output will actually have 1000ms + sampling time for other sensors. 512 +))) 554 554 555 -924.5 - SF7BW500 to SF12BW500 556 556 557 -925.1 - SF7BW500 to SF12BW500 558 558 559 - 925.7 - SF7BW500toSF12BW500516 +== 2.5 Downlink Payload == 560 560 561 - 926.3-SF7BW500toSF12BW500518 +By default, NDDS75 prints the downlink payload to console port. 562 562 563 - 926.9-SF7BW500to SF12BW500520 +[[image:image-20220709100028-1.png]] 564 564 565 -927.5 - SF7BW500 to SF12BW500 566 566 567 -923.3 - SF12BW500(RX2 downlink only) 523 +((( 524 +(% style="color:blue" %)**Examples:** 525 +))) 568 568 527 +((( 528 + 529 +))) 569 569 531 +* ((( 532 +(% style="color:blue" %)**Set TDC** 533 +))) 570 570 571 -=== 2.7.5 AS920-923 & AS923-925 (AS923) === 535 +((( 536 +If the payload=0100003C, it means set the END Node's TDC to 0x00003C=60(S), while type code is 01. 537 +))) 572 572 573 -(% style="color:#037691" %)**Default Uplink channel:** 539 +((( 540 +Payload: 01 00 00 1E TDC=30S 541 +))) 574 574 575 -923.2 - SF7BW125 to SF10BW125 543 +((( 544 +Payload: 01 00 00 3C TDC=60S 545 +))) 576 576 577 -923.4 - SF7BW125 to SF10BW125 547 +((( 548 + 549 +))) 578 578 551 +* ((( 552 +(% style="color:blue" %)**Reset** 553 +))) 579 579 580 -(% style="color:#037691" %)**Additional Uplink Channel**: 555 +((( 556 +If payload = 0x04FF, it will reset the NDDS75 557 +))) 581 581 582 -(OTAA mode, channel added by JoinAccept message) 583 583 584 -(% style="color: #037691" %)**AS920~~AS923 for Japan,Malaysia, Singapore**:560 +* (% style="color:blue" %)**INTMOD** 585 585 586 -922.2 - SF7BW125 to SF10BW125 562 +((( 563 +Downlink Payload: 06000003, Set AT+INTMOD=3 564 +))) 587 587 588 -922.4 - SF7BW125 to SF10BW125 589 589 590 -922.6 - SF7BW125 to SF10BW125 591 591 592 - 922.8-SF7BW125toSF10BW125568 +== 2.6 LED Indicator == 593 593 594 -923.0 - SF7BW125 to SF10BW125 595 595 596 - 922.0-SF7BW125 toSF10BW125571 +The NDDS75 has an internal LED which is to show the status of different state. 597 597 598 598 599 -(% style="color:#037691" %)**AS923 ~~ AS925 for Brunei, Cambodia, Hong Kong, Indonesia, Laos, Taiwan, Thailand, Vietnam**: 574 +* When power on, NDDS75 will detect if sensor probe is connected, if probe detected, LED will blink four times. (no blinks in this step is no probe) 575 +* Then the LED will be on for 1 second means device is boot normally. 576 +* After NDDS75 join NB-IoT network. The LED will be ON for 3 seconds. 577 +* For each uplink probe, LED will be on for 500ms. 600 600 601 -923.6 - SF7BW125 to SF10BW125 579 +((( 580 + 581 +))) 602 602 603 -923.8 - SF7BW125 to SF10BW125 604 604 605 -924.0 - SF7BW125 to SF10BW125 606 606 607 - 924.2- SF7BW125toSF10BW125585 +== 2.7 Firmware Change Log == 608 608 609 -924.4 - SF7BW125 to SF10BW125 610 610 611 - 924.6-SF7BW125toSF10BW125588 +Download URL & Firmware Change log 612 612 590 +((( 591 +[[https:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NDDS75/Firmware/>>url:https://www.dragino.com/downloads/index.php?dir=NB-IoT/NDDS75/Firmware/]] 592 +))) 613 613 614 -(% style="color:#037691" %)** Downlink:** 615 615 616 -Up linkchannels 1-8 (RX1)595 +Upgrade Instruction: [[Upgrade_Firmware>>||anchor="H5.1200BHowtoUpgradeFirmware"]] 617 617 618 -923.2 - SF10BW125 (RX2) 619 619 620 620 599 +== 2.8 Battery Analysis == 621 621 622 -=== 2. 7.6KR920-923(KR920)===601 +=== 2.8.1 Battery Type === 623 623 624 -Default channel: 625 625 626 -922.1 - SF7BW125 to SF12BW125 627 - 628 -922.3 - SF7BW125 to SF12BW125 629 - 630 -922.5 - SF7BW125 to SF12BW125 631 - 632 - 633 -(% style="color:#037691" %)**Uplink: (OTAA mode, channel added by JoinAccept message)** 634 - 635 -922.1 - SF7BW125 to SF12BW125 636 - 637 -922.3 - SF7BW125 to SF12BW125 638 - 639 -922.5 - SF7BW125 to SF12BW125 640 - 641 -922.7 - SF7BW125 to SF12BW125 642 - 643 -922.9 - SF7BW125 to SF12BW125 644 - 645 -923.1 - SF7BW125 to SF12BW125 646 - 647 -923.3 - SF7BW125 to SF12BW125 648 - 649 - 650 -(% style="color:#037691" %)**Downlink:** 651 - 652 -Uplink channels 1-7(RX1) 653 - 654 -921.9 - SF12BW125 (RX2 downlink only; SF12BW125 might be changed to SF9BW125) 655 - 656 - 657 - 658 -=== 2.7.7 IN865-867 (IN865) === 659 - 660 -(% style="color:#037691" %)** Uplink:** 661 - 662 -865.0625 - SF7BW125 to SF12BW125 663 - 664 -865.4025 - SF7BW125 to SF12BW125 665 - 666 -865.9850 - SF7BW125 to SF12BW125 667 - 668 - 669 -(% style="color:#037691" %) **Downlink:** 670 - 671 -Uplink channels 1-3 (RX1) 672 - 673 -866.550 - SF10BW125 (RX2) 674 - 675 - 676 - 677 - 678 -== 2.8 LED Indicator == 679 - 680 -The LSE01 has an internal LED which is to show the status of different state. 681 - 682 -* Blink once when device power on. 683 -* Solid ON for 5 seconds once device successful Join the network. 684 -* Blink once when device transmit a packet. 685 - 686 - 687 - 688 -== 2.9 Installation in Soil == 689 - 690 -**Measurement the soil surface** 691 - 692 - 693 -[[image:1654506634463-199.png]] 694 - 695 695 ((( 696 -((( 697 -Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting. 605 +The NDDS75 battery is a combination of an 8500mAh Li/SOCI2 Battery and a Super Capacitor. The battery is none-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter. 698 698 ))) 699 -))) 700 700 701 - 702 - 703 -[[image:1654506665940-119.png]] 704 - 705 705 ((( 706 - Dig aholewithdiameter>20CM.609 +The battery is designed to last for several years depends on the actually use environment and update interval. 707 707 ))) 708 708 709 709 ((( 710 - Horizontal insert theprobetothesoilnd filltheholefor longtermmeasurement.613 +The battery related documents as below: 711 711 ))) 712 712 616 +* [[Battery Dimension>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]] 617 +* [[Lithium-Thionyl Chloride Battery datasheet>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]] 618 +* [[Lithium-ion Battery-Capacitor datasheet>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]] 713 713 714 -== 2.10 Firmware Change Log == 715 - 716 716 ((( 717 - **Firmwaredownload link:**621 +[[image:image-20220709101450-2.png]] 718 718 ))) 719 719 720 -((( 721 -[[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/]] 722 -))) 723 723 724 -((( 725 - 726 -))) 727 727 728 -((( 729 -**Firmware Upgrade Method: **[[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome]] 730 -))) 626 +=== 2.8.2 Power consumption Analyze === 731 731 732 732 ((( 733 - 629 +Dragino battery powered product are all runs in Low Power mode. We have an update battery calculator which base on the measurement of the real device. User can use this calculator to check the battery life and calculate the battery life if want to use different transmit interval. 734 734 ))) 735 735 736 -((( 737 -**V1.0.** 738 -))) 739 739 740 740 ((( 741 - Release634 +Instruction to use as below: 742 742 ))) 743 743 744 - 745 -== 2.11 Battery Analysis == 746 - 747 -=== 2.11.1 Battery Type === 748 - 749 749 ((( 750 - TheLSE01 batteryisa combinationof a 4000mAh Li/SOCI2 Batteryand a Super Capacitor. Thebatterys non-rechargeablebatterytypewithalowischargerate(<2% perear). Thistype of batteryiscommonly usedIoTdevices suchas water meter.638 +(% style="color:blue" %)**Step 1: **(%%)Downlink the up-to-date DRAGINO_Battery_Life_Prediction_Table.xlsx from: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/]] 751 751 ))) 752 752 753 -((( 754 -The battery is designed to last for more than 5 years for the LSN50. 755 -))) 756 756 757 757 ((( 758 -((( 759 -The battery-related documents are as below: 643 +(% style="color:blue" %)**Step 2: **(%%) Open it and choose 760 760 ))) 761 -))) 762 762 763 763 * ((( 764 - [[Battery Dimension>>url:http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/&file=LSN50-Battery-Dimension.pdf]],647 +Product Model 765 765 ))) 766 766 * ((( 767 - [[Lithium-ThionylChloride Battery datasheet>>url:https://www.dragino.com/downloads/downloads/datasheet/Battery/ER26500/ER26500_Datasheet-EN.pdf]],650 +Uplink Interval 768 768 ))) 769 769 * ((( 770 - [[Lithium-ion Battery-Capacitor datasheet>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC_1520_datasheet.jpg]],[[Tech Spec>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC1520%20Technical%20Specification20171123.pdf]]653 +Working Mode 771 771 ))) 772 772 773 - [[image:image-20220610172436-1.png]] 656 +((( 657 +And the Life expectation in difference case will be shown on the right. 658 +))) 774 774 660 +[[image:image-20220709110451-3.png]] 775 775 776 776 777 -=== 2.11.2 Battery Note === 778 778 664 +=== 2.8.3 Battery Note === 665 + 779 779 ((( 780 780 The Li-SICO battery is designed for small current / long period application. It is not good to use a high current, short period transmit method. The recommended minimum period for use of this battery is 5 minutes. If you use a shorter period time to transmit LoRa, then the battery life may be decreased. 781 781 ))) ... ... @@ -782,298 +782,169 @@ 782 782 783 783 784 784 785 -=== 2. 11.3Replace the battery ===672 +=== 2.8.4 Replace the battery === 786 786 787 787 ((( 788 - IfBattery is lower than 2.7v,usershouldreplace the battery ofLSE01.675 +The default battery pack of NDDS75 includes a ER26500 plus super capacitor. If user can't find this pack locally, they can find ER26500 or equivalence without the SPC1520 capacitor, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes). 789 789 ))) 790 790 678 + 679 + 680 += 3. Access NB-IoT Module = 681 + 791 791 ((( 792 - You can changethe battery in the LSE01.The type of battery isnot limitedas longas the outputis between 3v to 3.6v. On the main board, there is a diode (D1) between the battery and the maincircuit. If you need to use a battery with lessthan 3.3v, pleaseremovethe D1and shortcut thewopadsofitso therewon’tbe voltage drop between battery andmain board.683 +Users can directly access the AT command set of the NB-IoT module. 793 793 ))) 794 794 795 795 ((( 796 -The defaultbattery packof LSE01 includesa ER18505 plussupercapacitor.Ifusercan’tfind this pack locally, theycan find ER18505orequivalence,whichwillalsoworkinmostcase.The SPC can enlargethebattery lifeforigh frequency use(updateperiod below5minutes)687 +The AT Command set can refer the BC35-G NB-IoT Module AT Command: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=datasheet/other_vendors/BC35-G/>>url:https://www.dragino.com/downloads/index.php?dir=datasheet/other_vendors/BC35-G/]] 797 797 ))) 798 798 690 +[[image:1657333200519-600.png]] 799 799 800 800 801 -= 3. Using the AT Commands = 802 802 803 -= =3.1AccessAT Commands ==694 += 4. Using the AT Commands = 804 804 696 +== 4.1 Access AT Commands == 805 805 806 - LSE01supportsATCommandsetn the stock firmware. You can usea USBtoTL adaptero connectto LSE01 forusing ATcommand,asbelow.698 +See this link for detail: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NDDS75/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/]] 807 807 808 -[[image:1654501986557-872.png||height="391" width="800"]] 809 809 701 +AT+<CMD>? : Help on <CMD> 810 810 811 - Orifyouhavebelowboard,usebelowconnection:703 +AT+<CMD> : Run <CMD> 812 812 705 +AT+<CMD>=<value> : Set the value 813 813 814 - [[image:1654502005655-729.png||height="503"width="801"]]707 +AT+<CMD>=? : Get the value 815 815 816 816 817 - 818 -In the PC, you need to set the serial baud rate to (% style="color:green" %)**9600**(%%) to access the serial console for LSE01. LSE01 will output system info once power on as below: 819 - 820 - 821 - [[image:1654502050864-459.png||height="564" width="806"]] 822 - 823 - 824 -Below are the available commands, a more detailed AT Command manual can be found at [[AT Command Manual>>https://www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0]]: [[https:~~/~~/www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0>>https://www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0]] 825 - 826 - 827 -(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>? **(%%) : Help on <CMD> 828 - 829 -(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD> **(%%) : Run <CMD> 830 - 831 -(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>=<value>**(%%) : Set the value 832 - 833 -(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>=?**(%%) : Get the value 834 - 835 - 836 836 (% style="color:#037691" %)**General Commands**(%%) 837 837 838 - (% style="background-color:#dcdcdc" %)**AT**(%%): Attention712 +AT : Attention 839 839 840 - (% style="background-color:#dcdcdc" %)**AT?**(%%): Short Help714 +AT? : Short Help 841 841 842 - (% style="background-color:#dcdcdc" %)**ATZ**(%%): MCU Reset716 +ATZ : MCU Reset 843 843 844 - (% style="background-color:#dcdcdc" %)**AT+TDC**(%%): Application Data Transmission Interval718 +AT+TDC : Application Data Transmission Interval 845 845 720 +AT+CFG : Print all configurations 846 846 847 - (%style="color:#037691"%)**Keys,IDsand EUIs management**722 +AT+CFGMOD : Working mode selection 848 848 849 - (% style="background-color:#dcdcdc" %)**AT+APPEUI**(%%)ApplicationEUI724 +AT+INTMOD : Set the trigger interrupt mode 850 850 851 - (% style="background-color:#dcdcdc" %)**AT+APPKEY**(%%)ApplicationKey726 +AT+5VT : Set extend the time of 5V power 852 852 853 - (% style="background-color:#dcdcdc" %)**AT+APPSKEY**(%%)Application Session Key728 +AT+PRO : Choose agreement 854 854 855 - (% style="background-color:#dcdcdc" %)**AT+DADDR**(%%)DeviceAddress730 +AT+WEIGRE : Get weight or set weight to 0 856 856 857 - (% style="background-color:#dcdcdc" %)**AT+DEUI**(%%)DeviceEUI732 +AT+WEIGAP : Get or Set the GapValue of weight 858 858 859 - (% style="background-color:#dcdcdc" %)**AT+NWKID**(%%):NetworkID(Youcanenterthiscommandchangeonlyaftersuccessful networkconnection)734 +AT+RXDL : Extend the sending and receiving time 860 860 861 - (% style="background-color:#dcdcdc" %)**AT+NWKSKEY**(%%)NetworkSession KeyJoining and sending dateon LoRa network736 +AT+CNTFAC : Get or set counting parameters 862 862 863 - (% style="background-color:#dcdcdc" %)**AT+CFM**(%%)ConfirmMode738 +AT+SERVADDR : Server Address 864 864 865 -(% style="background-color:#dcdcdc" %)**AT+CFS**(%%) : Confirm Status 866 866 867 -(% style=" background-color:#dcdcdc" %)**AT+JOIN**(%%): JoinLoRa? Network741 +(% style="color:#037691" %)**COAP Management** 868 868 869 - (% style="background-color:#dcdcdc" %)**AT+NJM**(%%)LoRa? Network Join Mode743 +AT+URI : Resource parameters 870 870 871 -(% style="background-color:#dcdcdc" %)**AT+NJS**(%%) : LoRa? Network Join Status 872 872 873 -(% style=" background-color:#dcdcdc" %)**AT+RECV**(%%) :PrintLast Received Data inRaw Format746 +(% style="color:#037691" %)**UDP Management** 874 874 875 - (% style="background-color:#dcdcdc" %)**AT+RECVB**(%%)Print LastReceived DatainBinaryFormat748 +AT+CFM : Upload confirmation mode (only valid for UDP) 876 876 877 -(% style="background-color:#dcdcdc" %)**AT+SEND**(%%) : Send Text Data 878 878 879 -(% style=" background-color:#dcdcdc" %)**AT+SENB**(%%): Send Hexadecimal Data751 +(% style="color:#037691" %)**MQTT Management** 880 880 753 +AT+CLIENT : Get or Set MQTT client 881 881 882 - (%style="color:#037691"%)**LoRaNetworkManagement**755 +AT+UNAME : Get or Set MQTT Username 883 883 884 - (% style="background-color:#dcdcdc" %)**AT+ADR**(%%):AdaptiveRate757 +AT+PWD : Get or Set MQTT password 885 885 886 - (% style="background-color:#dcdcdc" %)**AT+CLASS**(%%):LoRaClass(Currentlyonly supportclassA759 +AT+PUBTOPIC : Get or Set MQTT publish topic 887 887 888 - (% style="background-color:#dcdcdc" %)**AT+DCS**(%%):DutyCycleSetting761 +AT+SUBTOPIC : Get or Set MQTT subscription topic 889 889 890 -(% style="background-color:#dcdcdc" %)**AT+DR**(%%) : Data Rate (Can Only be Modified after ADR=0) 891 891 892 -(% style=" background-color:#dcdcdc" %)**AT+FCD**(%%) : Frame Counter Downlink764 +(% style="color:#037691" %)**Information** 893 893 894 - (% style="background-color:#dcdcdc" %)**AT+FCU**(%%): Frame CounterUplink766 +AT+FDR : Factory Data Reset 895 895 896 - (% style="background-color:#dcdcdc" %)**AT+JN1DL**(%%):JoinAcceptDelay1768 +AT+PWORD : Serial Access Password 897 897 898 -(% style="background-color:#dcdcdc" %)**AT+JN2DL**(%%) : Join Accept Delay2 899 899 900 -(% style="background-color:#dcdcdc" %)**AT+PNM**(%%) : Public Network Mode 901 901 902 - (% style="background-color:#dcdcdc"%)**AT+RX1DL**(%%): Receive Delay1772 += 5. FAQ = 903 903 904 - (% style="background-color:#dcdcdc"%)**AT+RX2DL**(%%): ReceiveDelay2774 +== 5.1 How to Upgrade Firmware == 905 905 906 -(% style="background-color:#dcdcdc" %)**AT+RX2DR**(%%) : Rx2 Window Data Rate 907 907 908 -(% style="background-color:#dcdcdc" %)**AT+RX2FQ**(%%) : Rx2 Window Frequency 909 - 910 -(% style="background-color:#dcdcdc" %)**AT+TXP**(%%) : Transmit Power 911 - 912 -(% style="background-color:#dcdcdc" %)**AT+ MOD**(%%) : Set work mode 913 - 914 - 915 -(% style="color:#037691" %)**Information** 916 - 917 -(% style="background-color:#dcdcdc" %)**AT+RSSI**(%%) : RSSI of the Last Received Packet 918 - 919 -(% style="background-color:#dcdcdc" %)**AT+SNR**(%%) : SNR of the Last Received Packet 920 - 921 -(% style="background-color:#dcdcdc" %)**AT+VER**(%%) : Image Version and Frequency Band 922 - 923 -(% style="background-color:#dcdcdc" %)**AT+FDR**(%%) : Factory Data Reset 924 - 925 -(% style="background-color:#dcdcdc" %)**AT+PORT**(%%) : Application Port 926 - 927 -(% style="background-color:#dcdcdc" %)**AT+CHS**(%%) : Get or Set Frequency (Unit: Hz) for Single Channel Mode 928 - 929 - (% style="background-color:#dcdcdc" %)**AT+CHE**(%%) : Get or Set eight channels mode, Only for US915, AU915, CN470 930 - 931 - 932 -= 4. FAQ = 933 - 934 -== 4.1 How to change the LoRa Frequency Bands/Region? == 935 - 936 936 ((( 937 -You can follow the instructions for [[how to upgrade image>>||anchor="H2.10200BFirmwareChangeLog"]]. 938 -When downloading the images, choose the required image file for download. 778 +User can upgrade the firmware for 1) bug fix, 2) new feature release. 939 939 ))) 940 940 941 941 ((( 942 - 782 +Please see this link for how to upgrade: [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H2.HardwareUpgradeMethodSupportList>>http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H2.HardwareUpgradeMethodSupportList]] 943 943 ))) 944 944 945 945 ((( 946 - Howtosetup LSE01 towork in 8 channel modeBy default,thefrequency bandsUS915,AU915, CN470 work in 72 frequencies.Many gatewaysare8 channelgateways, andin thiscase,theOTAA join timeand uplink scheduleis longandunpredictable while the end nodeis hoppingin 72 frequencies.786 +(% style="color:red" %)Notice, NDDS75 and LDDS75 share the same mother board. They use the same connection and method to update. 947 947 ))) 948 948 949 -((( 950 - 951 -))) 952 952 953 -((( 954 -You can configure the end node to work in 8 channel mode by using the AT+CHE command. The 500kHz channels are always included for OTAA. 955 -))) 956 956 957 -((( 958 - 959 -))) 791 += 6. Trouble Shooting = 960 960 961 -((( 962 -For example, in **US915** band, the frequency table is as below. By default, the end node will use all channels (0~~71) for OTAA Join process. After the OTAA Join, the end node will use these all channels (0~~71) to send uplink packets. 963 -))) 793 +== 6.1 Connection problem when uploading firmware == 964 964 965 -[[image:image-20220606154726-3.png]] 966 966 967 - 968 -When you use the TTN network, the US915 frequency bands use are: 969 - 970 -* 903.9 - SF7BW125 to SF10BW125 971 -* 904.1 - SF7BW125 to SF10BW125 972 -* 904.3 - SF7BW125 to SF10BW125 973 -* 904.5 - SF7BW125 to SF10BW125 974 -* 904.7 - SF7BW125 to SF10BW125 975 -* 904.9 - SF7BW125 to SF10BW125 976 -* 905.1 - SF7BW125 to SF10BW125 977 -* 905.3 - SF7BW125 to SF10BW125 978 -* 904.6 - SF8BW500 979 - 980 980 ((( 981 -Because the end node is now hopping in 72 frequency, it makes it difficult for the devices to Join the TTN network and uplink data. To solve this issue, you can access the device via the AT commands and run: 982 - 983 -* (% style="color:#037691" %)**AT+CHE=2** 984 -* (% style="color:#037691" %)**ATZ** 797 +**Please see: **[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H3.3Troubleshooting>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H3.3Troubleshooting]] 985 985 ))) 986 986 800 +(% class="wikigeneratedid" %) 987 987 ((( 988 988 989 - 990 -to set the end node to work in 8 channel mode. The device will work in Channel 8-15 & 64-71 for OTAA, and channel 8-15 for Uplink. 991 991 ))) 992 992 993 -((( 994 - 995 -))) 996 996 997 -((( 998 -The **AU915** band is similar. Below are the AU915 Uplink Channels. 999 -))) 806 +== 6.2 AT Command input doesn't work == 1000 1000 1001 -[[image:image-20220606154825-4.png]] 1002 - 1003 - 1004 - 1005 -= 5. Trouble Shooting = 1006 - 1007 -== 5.1 Why I can’t join TTN in US915 / AU915 bands? == 1008 - 1009 -It is due to channel mapping. Please see the [[Eight Channel Mode>>doc:Main.LoRaWAN Communication Debug.WebHome||anchor="H2.NoticeofUS9152FCN4702FAU915Frequencyband"]] section above for details. 1010 - 1011 - 1012 -== 5.2 AT Command input doesn’t work == 1013 - 1014 1014 ((( 1015 -In the case if user can see the console output but can’t type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn’t send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string. 1016 -))) 809 +In the case if user can see the console output but can't type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn't send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string. 1017 1017 1018 - 1019 -== 5.3 Device rejoin in at the second uplink packet == 1020 - 1021 -(% style="color:#4f81bd" %)**Issue describe as below:** 1022 - 1023 -[[image:1654500909990-784.png]] 1024 - 1025 - 1026 -(% style="color:#4f81bd" %)**Cause for this issue:** 1027 - 1028 -((( 1029 -The fuse on LSE01 is not large enough, some of the soil probe require large current up to 5v 800mA, in a short pulse. When this happen, it cause the device reboot so user see rejoin. 811 + 1030 1030 ))) 1031 1031 1032 1032 1033 - (% style="color:#4f81bd"%)**Solution:**815 += 7. Order Info = 1034 1034 1035 -All new shipped LSE01 after 2020-May-30 will have this to fix. For the customer who see this issue, please bypass the fuse as below: 1036 1036 1037 - [[image:1654500929571-736.png||height="458" width="832"]]818 +Part Number**:** (% style="color:#4f81bd" %)**NSDDS75** 1038 1038 1039 1039 1040 -= 6. Order Info = 1041 - 1042 - 1043 -Part Number**:** (% style="color:#4f81bd" %)**LSE01-XX-YY** 1044 - 1045 - 1046 -(% style="color:#4f81bd" %)**XX**(%%)**:** The default frequency band 1047 - 1048 -* (% style="color:red" %)**AS923**(%%): LoRaWAN AS923 band 1049 -* (% style="color:red" %)**AU915**(%%): LoRaWAN AU915 band 1050 -* (% style="color:red" %)**EU433**(%%): LoRaWAN EU433 band 1051 -* (% style="color:red" %)**EU868**(%%): LoRaWAN EU868 band 1052 -* (% style="color:red" %)**KR920**(%%): LoRaWAN KR920 band 1053 -* (% style="color:red" %)**US915**(%%): LoRaWAN US915 band 1054 -* (% style="color:red" %)**IN865**(%%): LoRaWAN IN865 band 1055 -* (% style="color:red" %)**CN470**(%%): LoRaWAN CN470 band 1056 - 1057 -(% style="color:#4f81bd" %)**YY**(%%)**: **Battery Option 1058 - 1059 -* (% style="color:red" %)**4**(%%): 4000mAh battery 1060 -* (% style="color:red" %)**8**(%%): 8500mAh battery 1061 - 1062 1062 (% class="wikigeneratedid" %) 1063 1063 ((( 1064 1064 1065 1065 ))) 1066 1066 1067 -= 7. Packing Info =826 += 8. Packing Info = 1068 1068 1069 1069 ((( 1070 1070 1071 1071 1072 1072 (% style="color:#037691" %)**Package Includes**: 1073 -))) 1074 1074 1075 -* (((1076 - LSE01LoRaWAN SoilMoisture& EC Sensorx 1833 +* NSE01 NB-IoT Distance Detect Sensor Node x 1 834 +* External antenna x 1 1077 1077 ))) 1078 1078 1079 1079 ((( ... ... @@ -1080,24 +1080,22 @@ 1080 1080 1081 1081 1082 1082 (% style="color:#037691" %)**Dimension and weight**: 1083 -))) 1084 1084 1085 -* ((( 1086 -Device Size: cm 842 + 843 +* Device Size: 13.0 x 5 x 4.5 cm 844 +* Device Weight: 150g 845 +* Package Size / pcs : 15 x 12x 5.5 cm 846 +* Weight / pcs : 220g 1087 1087 ))) 1088 -* ((( 1089 -Device Weight: g 1090 -))) 1091 -* ((( 1092 -Package Size / pcs : cm 1093 -))) 1094 -* ((( 1095 -Weight / pcs : g 1096 1096 849 +((( 1097 1097 851 + 852 + 853 + 1098 1098 ))) 1099 1099 1100 -= 8. Support =856 += 9. Support = 1101 1101 1102 1102 * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule. 1103 1103 * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.com]]
- 1657245163077-232.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +81.0 KB - Content
- 1657246476176-652.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +492.6 KB - Content
- 1657249419225-449.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +81.0 KB - Content
- 1657249468462-536.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +483.6 KB - Content
- 1657249793983-486.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +85.8 KB - Content
- 1657249831934-534.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +72.5 KB - Content
- 1657249864775-321.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +87.0 KB - Content
- 1657249930215-289.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +77.3 KB - Content
- 1657249978444-674.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +139.5 KB - Content
- 1657249990869-686.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +96.9 KB - Content
- 1657250217799-140.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +98.7 KB - Content
- 1657250255956-604.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +99.0 KB - Content
- 1657259653666-883.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +344.4 KB - Content
- 1657260785982-288.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +138.2 KB - Content
- 1657261119050-993.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +126.1 KB - Content
- 1657261278785-153.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +126.1 KB - Content
- 1657271519014-786.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +71.5 KB - Content
- 1657327959271-447.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +78.3 KB - Content
- 1657328609906-564.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +492.6 KB - Content
- 1657328659945-416.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +78.8 KB - Content
- 1657328756309-230.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +78.5 KB - Content
- 1657328884227-504.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +483.6 KB - Content
- 1657329814315-101.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +85.3 KB - Content
- 1657330452568-615.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +71.3 KB - Content
- 1657330472797-498.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +68.9 KB - Content
- 1657330501006-241.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +119.2 KB - Content
- 1657330533775-472.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +74.9 KB - Content
- 1657330723006-866.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +74.1 KB - Content
- 1657331036973-987.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +83.8 KB - Content
- 1657332990863-496.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +138.2 KB - Content
- 1657333200519-600.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +126.1 KB - Content
- image-20220708101224-1.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +22.2 KB - Content
- image-20220708101605-2.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +87.5 KB - Content
- image-20220708110657-3.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +251.7 KB - Content
- image-20220708111918-4.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +38.8 KB - Content
- image-20220708133731-5.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +8.7 KB - Content
- image-20220708140453-6.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +132.7 KB - Content
- image-20220708141352-7.jpeg
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +102.7 KB - Content
- image-20220709084038-1.jpeg
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +72.0 KB - Content
- image-20220709084137-2.jpeg
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +72.0 KB - Content
- image-20220709084207-3.jpeg
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +72.0 KB - Content
- image-20220709084458-4.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +199.5 KB - Content
- image-20220709085040-1.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +200.4 KB - Content
- image-20220709092052-2.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +247.3 KB - Content
- image-20220709093918-1.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +42.2 KB - Content
- image-20220709093918-2.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +61.9 KB - Content
- image-20220709100028-1.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +8.8 KB - Content
- image-20220709101450-2.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +138.5 KB - Content
- image-20220709110451-3.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +611.5 KB - Content