Changes for page N95S31B -- NB-IoT Temperature & Humidity Sensor User Manual
Last modified by Mengting Qiu on 2024/04/02 16:44
Summary
-
Page properties (2 modified, 0 added, 0 removed)
-
Attachments (0 modified, 31 added, 0 removed)
- 1657245163077-232.png
- 1657246476176-652.png
- 1657249419225-449.png
- 1657249468462-536.png
- 1657249793983-486.png
- 1657249831934-534.png
- 1657249864775-321.png
- 1657249930215-289.png
- 1657249978444-674.png
- 1657249990869-686.png
- 1657250217799-140.png
- 1657250255956-604.png
- 1657259653666-883.png
- 1657260785982-288.png
- 1657261119050-993.png
- 1657261278785-153.png
- 1657271519014-786.png
- 1657327959271-447.png
- 1657328609906-564.png
- image-20220708101224-1.png
- image-20220708101605-2.png
- image-20220708110657-3.png
- image-20220708111918-4.png
- image-20220708133731-5.png
- image-20220708140453-6.png
- image-20220708141352-7.jpeg
- image-20220709084038-1.jpeg
- image-20220709084137-2.jpeg
- image-20220709084207-3.jpeg
- image-20220709084458-4.png
- image-20220709085040-1.png
Details
- Page properties
-
- Title
-
... ... @@ -1,1 +1,1 @@ 1 - LSE01-LoRaWANSoil Moisture&ECSensor User Manual1 +NDDS75 NB-IoT Distance Detect Sensor User Manual - Content
-
... ... @@ -1,11 +1,12 @@ 1 1 (% style="text-align:center" %) 2 -[[image:image-20220 606151504-2.jpeg||height="554" width="554"]]2 +[[image:image-20220709085040-1.png||height="542" width="524"]] 3 3 4 4 5 5 6 + 7 + 6 6 **Table of Contents:** 7 7 8 -{{toc/}} 9 9 10 10 11 11 ... ... @@ -12,770 +12,716 @@ 12 12 13 13 14 14 15 -= 1. Introduction = 16 += 1. Introduction = 16 16 17 -== 1.1 What is LoRaWANoilMoisture&ECSensor ==18 +== 1.1 What is NDDS75 Distance Detection Sensor == 18 18 19 19 ((( 20 20 21 21 22 -The Dragino LSE01 is a (% style="color:#4f81bd" %)**LoRaWAN Soil Moisture & EC Sensor**(%%) for IoT of Agriculture. It is designed to measure the soil moisture of saline-alkali soil and loamy soil. The soil sensor uses FDR method to calculate the soil moisture with the compensation from soil temperature and conductivity. It also has been calibrated in factory for Mineral soil type. 23 -))) 24 - 25 25 ((( 26 -It detects (% style="color:#4f81bd" %)**Soil Moisture**(%%), (% style="color:#4f81bd" %)**Soil Temperature**(%%) and (% style="color:#4f81bd" %)**Soil Conductivity**(%%), and uploads the value via wireless to LoRaWAN IoT Server. 24 +The Dragino NDDS75 is a (% style="color:blue" %)**NB-IoT Distance Detection Sensor**(%%) for Internet of Things solution. It is designed to measure the distance between the sensor and a flat object. The distance detection sensor is a module that uses ultrasonic sensing technology for distance measurement, and temperature compensation is performed internally to improve the reliability of data. 25 +\\The NDDS75 can be applied to scenarios such as horizontal distance measurement, liquid level measurement, parking management system, object proximity and presence detection, intelligent trash can management system, robot obstacle avoidance, automatic control, sewer, bottom water level monitoring, etc. It detects the distance between the measured object and the sensor, and uploads the value via wireless to IoT Server via NB-IoT Network. 26 +\\NarrowBand-Internet of Things (NB-IoT) is a standards-based low power wide area (LPWA) technology developed to enable a wide range of new IoT devices and services. NB-IoT significantly improves the power consumption of user devices, system capacity and spectrum efficiency, especially in deep coverage. 27 +\\NDDS75 supports different uplink methods include (% style="color:blue" %)**TCP, MQTT, UDP and CoAP** (%%)for different application requirement. 28 +\\NDDS75 is powered by (% style="color:blue" %)**8500mAh Li-SOCI2 battery**(%%), It is designed for long term use up to 5 years. (Actually Battery life depends on the use environment, update period & uplink method) 29 +\\To use NDDS75, user needs to check if there is NB-IoT coverage in local area and with the bands NDDS75 supports. If the local operate support it, user needs to get a NB-IoT SIM card from local operator and install NDDS75 to get NB-IoT network connection. 27 27 ))) 28 28 29 -((( 30 -The LoRa wireless technology used in LES01 allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption. 32 + 31 31 ))) 32 32 33 -((( 34 -LES01 is powered by (% style="color:#4f81bd" %)**4000mA or 8500mAh Li-SOCI2 battery**(%%), It is designed for long term use up to 10 years. 35 -))) 36 - 37 -((( 38 -Each LES01 is pre-load with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect after power on. 39 -))) 40 - 41 - 42 42 [[image:1654503236291-817.png]] 43 43 44 44 45 -[[image:165 4503265560-120.png]]38 +[[image:1657327959271-447.png]] 46 46 47 47 48 48 49 -== 1.2 Features == 42 +== 1.2 Features == 50 50 51 -* LoRaWAN 1.0.3 Class A 44 + 45 +* NB-IoT Bands: B1/B3/B8/B5/B20/B28 @H-FDD 52 52 * Ultra low power consumption 53 -* MonitorSoilMoisture54 -* MonitorSoil Temperature55 -* Monitor SoilConductivity56 -* Bands:CN470/EU433/KR920/US915/EU868/AS923/AU915/IN86547 +* Distance Detection by Ultrasonic technology 48 +* Flat object range 280mm - 7500mm 49 +* Accuracy: ±(1cm+S*0.3%) (S: Distance) 50 +* Cable Length: 25cm 57 57 * AT Commands to change parameters 58 58 * Uplink on periodically 59 59 * Downlink to change configure 60 60 * IP66 Waterproof Enclosure 61 -* 4000mAh or 8500mAh Battery for long term use 55 +* Micro SIM card slot for NB-IoT SIM 56 +* 8500mAh Battery for long term use 62 62 63 -== 1.3 Specification == 64 64 65 -Measure Volume: Base on the centra pin of the probe, a cylinder with 7cm diameter and 10cm height. 66 66 67 - [[image:image-20220606162220-5.png]]60 +== 1.3 Specification == 68 68 69 69 63 +(% style="color:#037691" %)**Common DC Characteristics:** 70 70 71 -== 1.4 Applications == 65 +* Supply Voltage: 2.1v ~~ 3.6v 66 +* Operating Temperature: -40 ~~ 85°C 72 72 73 - *SmartAgriculture68 +(% style="color:#037691" %)**NB-IoT Spec:** 74 74 75 -(% class="wikigeneratedid" id="H200B1.5FirmwareChangelog" %) 76 - 70 +* - B1 @H-FDD: 2100MHz 71 +* - B3 @H-FDD: 1800MHz 72 +* - B8 @H-FDD: 900MHz 73 +* - B5 @H-FDD: 850MHz 74 +* - B20 @H-FDD: 800MHz 75 +* - B28 @H-FDD: 700MHz 77 77 78 -== 1.5 Firmware Change log == 79 79 78 +(% style="color:#037691" %)**Battery:** 80 80 81 -**LSE01 v1.0 :** Release 80 +* Li/SOCI2 un-chargeable battery 81 +* Capacity: 8500mAh 82 +* Self Discharge: <1% / Year @ 25°C 83 +* Max continuously current: 130mA 84 +* Max boost current: 2A, 1 second 82 82 83 83 87 +(% style="color:#037691" %)**Power Consumption** 84 84 85 -= 2. Configure LSE01 to connect to LoRaWAN network = 89 +* STOP Mode: 10uA @ 3.3v 90 +* Max transmit power: 350mA@3.3v 86 86 87 -== 2.1 How it works == 88 88 89 -((( 90 -The LSE01 is configured as LoRaWAN OTAA Class A mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and power on the LSE0150. It will automatically join the network via OTAA and start to send the sensor value 91 -))) 92 92 93 -((( 94 -In case you can’t set the OTAA keys in the LoRaWAN OTAA server, and you have to use the keys from the server, you can [[use AT Commands >>||anchor="H3.200BUsingtheATCommands"]]. 95 -))) 96 96 95 +== 1.4 Applications == 97 97 97 +* Smart Buildings & Home Automation 98 +* Logistics and Supply Chain Management 99 +* Smart Metering 100 +* Smart Agriculture 101 +* Smart Cities 102 +* Smart Factory 98 98 99 -== 2.2 Quick guide to connect to LoRaWAN server (OTAA) == 104 +(% class="wikigeneratedid" id="H200B1.5FirmwareChangelog" %) 105 + 100 100 101 -Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LG308>>url:http://www.dragino.com/products/lora/item/140-lg308.html]] as a LoRaWAN gateway in this example. 102 102 103 103 104 - [[image:1654503992078-669.png]]109 +== 1.5 Pin Definitions == 105 105 106 106 107 - The LG308isalready set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.112 +[[image:1657246476176-652.png]] 108 108 109 109 110 -(% style="color:blue" %)**Step 1**(%%): Create a device in TTN with the OTAA keys from LSE01. 111 111 112 - EachLSE01is shipped witha stickerwiththedefault deviceEUI as below:116 += 2. Use NSE01 to communicate with IoT Server = 113 113 114 - [[image:image-20220606163732-6.jpeg]]118 +== 2.1 How it works == 115 115 116 -You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot: 117 117 118 -**Add APP EUI in the application** 119 - 120 - 121 -[[image:1654504596150-405.png]] 122 - 123 - 124 - 125 -**Add APP KEY and DEV EUI** 126 - 127 -[[image:1654504683289-357.png]] 128 - 129 - 130 - 131 -(% style="color:blue" %)**Step 2**(%%): Power on LSE01 132 - 133 - 134 -Put a Jumper on JP2 to power on the device. ( The Jumper must be in FLASH position). 135 - 136 -[[image:image-20220606163915-7.png]] 137 - 138 - 139 -(% style="color:blue" %)**Step 3**(%%)**:** The LSE01 will auto join to the TTN network. After join success, it will start to upload messages to TTN and you can see the messages in the panel. 140 - 141 -[[image:1654504778294-788.png]] 142 - 143 - 144 - 145 -== 2.3 Uplink Payload == 146 - 147 - 148 -=== 2.3.1 MOD~=0(Default Mode) === 149 - 150 -LSE01 will uplink payload via LoRaWAN with below payload format: 151 - 152 152 ((( 153 - Uplinkpayload includesin total11bytes.122 +The NSE01 is equipped with a NB-IoT module, the pre-loaded firmware in NSE01 will get environment data from sensors and send the value to local NB-IoT network via the NB-IoT module. The NB-IoT network will forward this value to IoT server via the protocol defined by NSE01. 154 154 ))) 155 155 156 -(% border="1" cellspacing="10" style="background-color:#ffffcc; width:500px" %) 157 -|((( 158 -**Size** 159 159 160 -**(bytes)** 161 -)))|**2**|**2**|**2**|**2**|**2**|**1** 162 -|**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|((( 163 -Temperature 164 - 165 -(Reserve, Ignore now) 166 -)))|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]]|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]]|((( 167 -MOD & Digital Interrupt 168 - 169 -(Optional) 170 -))) 171 - 172 - 173 -=== 2.3.2 MOD~=1(Original value) === 174 - 175 -This mode can get the original AD value of moisture and original conductivity (with temperature drift compensation). 176 - 177 -(% border="1" cellspacing="10" style="background-color:#ffffcc; width:500px" %) 178 -|((( 179 -**Size** 180 - 181 -**(bytes)** 182 -)))|**2**|**2**|**2**|**2**|**2**|**1** 183 -|**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|((( 184 -Temperature 185 - 186 -(Reserve, Ignore now) 187 -)))|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]](raw)|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]](raw)|((( 188 -MOD & Digital Interrupt 189 - 190 -(Optional) 191 -))) 192 - 193 - 194 -=== 2.3.3 Battery Info === 195 - 196 196 ((( 197 - CheckthebatteryvoltageforLSE01.127 +The diagram below shows the working flow in default firmware of NSE01: 198 198 ))) 199 199 200 -((( 201 -Ex1: 0x0B45 = 2885mV 202 -))) 130 +[[image:image-20220708101605-2.png]] 203 203 204 204 ((( 205 -Ex2: 0x0B49 = 2889mV 206 -))) 207 - 208 - 209 - 210 -=== 2.3.4 Soil Moisture === 211 - 212 -((( 213 -Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil. 214 -))) 215 - 216 -((( 217 -For example, if the data you get from the register is __0x05 0xDC__, the moisture content in the soil is 218 -))) 219 - 220 -((( 221 221 222 222 ))) 223 223 224 -((( 225 -(% style="color:#4f81bd" %)**05DC(H) = 1500(D) /100 = 15%.** 226 -))) 227 227 228 228 138 +== 2.2 Configure the NSE01 == 229 229 230 -=== 2.3.5 Soil Temperature === 231 231 232 -((( 233 - Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is 0x09 0xEC, the temperature content in the soil is 234 -))) 141 +=== 2.2.1 Test Requirement === 235 235 236 -((( 237 -**Example**: 238 -))) 239 239 240 240 ((( 241 - If payloadis 0105H:((0x0105&0x8000)>>15===0),temp=0105(H)/100 = 2.61 °C145 +To use NSE01 in your city, make sure meet below requirements: 242 242 ))) 243 243 244 - (((245 - IfpayloadisFF7EH:((FF7E& 0x8000)>>15 ===1),temp=(FF7E(H)-FFFF(H))/100 = -1.29°C246 - )))148 +* Your local operator has already distributed a NB-IoT Network there. 149 +* The local NB-IoT network used the band that NSE01 supports. 150 +* Your operator is able to distribute the data received in their NB-IoT network to your IoT server. 247 247 248 - 249 - 250 -=== 2.3.6 Soil Conductivity (EC) === 251 - 252 252 ((( 253 - Obtain (% style="color:#4f81bd"%)**__solublesalt concentration__**(%%)in soilor(% style="color:#4f81bd" %)**__solubleionconcentrationinliquid fertilizer__**(%%) or (% style="color:#4f81bd" %)**__planting medium__**(%%).Thevaluerangeof theregisteris0-20000(Decimal)(Canbegreaterthan20000).153 +Below figure shows our testing structure. Here we have NB-IoT network coverage by China Mobile, the band they use is B8. The NSE01 will use CoAP((% style="color:red" %)120.24.4.116:5683)(%%) or raw UDP((% style="color:red" %)120.24.4.116:5601)(%%) or MQTT((% style="color:red" %)120.24.4.116:1883)(%%)or TCP((% style="color:red" %)120.24.4.116:5600)(%%)protocol to send data to the test server 254 254 ))) 255 255 256 -((( 257 -For example, if the data you get from the register is 0x00 0xC8, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm. 258 -))) 259 259 260 -((( 261 -Generally, the EC value of irrigation water is less than 800uS / cm. 262 -))) 157 +[[image:1657249419225-449.png]] 263 263 264 -((( 265 - 266 -))) 267 267 268 -((( 269 - 270 -))) 271 271 272 -=== 2. 3.7MOD===161 +=== 2.2.2 Insert SIM card === 273 273 274 -Firmware version at least v2.1 supports changing mode. 275 - 276 -For example, bytes[10]=90 277 - 278 -mod=(bytes[10]>>7)&0x01=1. 279 - 280 - 281 -**Downlink Command:** 282 - 283 -If payload = 0x0A00, workmode=0 284 - 285 -If** **payload =** **0x0A01, workmode=1 286 - 287 - 288 - 289 -=== 2.3.8 Decode payload in The Things Network === 290 - 291 -While using TTN network, you can add the payload format to decode the payload. 292 - 293 - 294 -[[image:1654505570700-128.png]] 295 - 296 296 ((( 297 - ThepayloaddecoderfunctionforTTNis here:164 +Insert the NB-IoT Card get from your provider. 298 298 ))) 299 299 300 300 ((( 301 - LSE01TTNPayloadDecoder:[[https:~~/~~/www.dropbox.com/sh/si8icbrjlamxqdb/AAACYwjsxxr5fj_vpqRtrETAa?dl=0>>https://www.dropbox.com/sh/si8icbrjlamxqdb/AAACYwjsxxr5fj_vpqRtrETAa?dl=0]]168 +User need to take out the NB-IoT module and insert the SIM card like below: 302 302 ))) 303 303 304 304 305 - ==2.4Uplink Interval ==172 +[[image:1657249468462-536.png]] 306 306 307 -The LSE01 by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link: [[Change Uplink Interval>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H4.1ChangeUplinkInterval"]] 308 308 309 309 176 +=== 2.2.3 Connect USB – TTL to NSE01 to configure it === 310 310 311 -== 2.5 Downlink Payload == 312 - 313 -By default, LSE50 prints the downlink payload to console port. 314 - 315 -[[image:image-20220606165544-8.png]] 316 - 317 - 318 318 ((( 319 -**Examples:** 320 -))) 321 - 322 322 ((( 323 - 180 +User need to configure NSE01 via serial port to set the (% style="color:blue" %)**Server Address** / **Uplink Topic** (%%)to define where and how-to uplink packets. NSE01 support AT Commands, user can use a USB to TTL adapter to connect to NSE01 and use AT Commands to configure it, as below. 324 324 ))) 325 - 326 -* ((( 327 -**Set TDC** 328 328 ))) 329 329 330 -((( 331 -If the payload=0100003C, it means set the END Node’s TDC to 0x00003C=60(S), while type code is 01. 332 -))) 333 333 334 -((( 335 -Payload: 01 00 00 1E TDC=30S 336 -))) 185 +**Connection:** 337 337 338 -((( 339 -Payload: 01 00 00 3C TDC=60S 340 -))) 187 + (% style="background-color:yellow" %)USB TTL GND <~-~-~-~-> GND 341 341 342 -((( 343 - 344 -))) 189 + (% style="background-color:yellow" %)USB TTL TXD <~-~-~-~-> UART_RXD 345 345 346 -* ((( 347 -**Reset** 348 -))) 191 + (% style="background-color:yellow" %)USB TTL RXD <~-~-~-~-> UART_TXD 349 349 350 -((( 351 -If payload = 0x04FF, it will reset the LSE01 352 -))) 353 353 194 +In the PC, use below serial tool settings: 354 354 355 -* **CFM** 196 +* Baud: (% style="color:green" %)**9600** 197 +* Data bits:** (% style="color:green" %)8(%%)** 198 +* Stop bits: (% style="color:green" %)**1** 199 +* Parity: (% style="color:green" %)**None** 200 +* Flow Control: (% style="color:green" %)**None** 356 356 357 -Downlink Payload: 05000001, Set AT+CFM=1 or 05000000 , set AT+CFM=0 358 - 359 - 360 - 361 -== 2.6 Show Data in DataCake IoT Server == 362 - 363 363 ((( 364 - [[DATACAKE>>url:https://datacake.co/]]providesahumanfriendly interfacetoshow thesensordata,once wehavedatain TTN, we canuse[[DATACAKE>>url:https://datacake.co/]] toconnectto TTNandseethedatain DATACAKE.Belowarethesteps:203 +Make sure the switch is in FLASH position, then power on device by connecting the jumper on NSE01. NSE01 will output system info once power on as below, we can enter the (% style="color:green" %)**password: 12345678**(%%) to access AT Command input. 365 365 ))) 366 366 367 -((( 368 - 369 -))) 206 +[[image:image-20220708110657-3.png]] 370 370 371 371 ((( 372 -(% style="color: blue" %)**Step 1**(%%):Be surethat your deviceisprogrammed and properlyconnectedtothe networkat thistime.209 +(% style="color:red" %)Note: the valid AT Commands can be found at: (%%)[[http:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/]] 373 373 ))) 374 374 375 -((( 376 -(% style="color:blue" %)**Step 2**(%%): To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps: 377 -))) 378 378 379 379 380 - [[image:1654505857935-743.png]]214 +=== 2.2.4 Use CoAP protocol to uplink data === 381 381 216 +(% style="color:red" %)Note: if you don't have CoAP server, you can refer this link to set up one: (%%)[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/>>http://wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/]] 382 382 383 -[[image:1654505874829-548.png]] 384 384 219 +**Use below commands:** 385 385 386 -(% style="color:blue" %)**Step 3**(%%)**:** Create an account or log in Datacake. 221 +* (% style="color:blue" %)**AT+PRO=1** (%%) ~/~/ Set to use CoAP protocol to uplink 222 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5683 ** (%%)~/~/ to set CoAP server address and port 223 +* (% style="color:blue" %)**AT+URI=5,11,"mqtt",11,"coap",12,"0",15,"c=text1",23,"0" ** (%%) ~/~/Set COAP resource path 387 387 388 - (%style="color:blue"%)**Step4**(%%)**:** SearchtheLSE01andadd DevEUI.225 +For parameter description, please refer to AT command set 389 389 227 +[[image:1657249793983-486.png]] 390 390 391 -[[image:1654505905236-553.png]] 392 392 230 +After configure the server address and (% style="color:green" %)**reset the device**(%%) (via AT+ATZ ), NSE01 will start to uplink sensor values to CoAP server. 393 393 394 - After added, the sensor data arrive TTN, it willalso arriveand show in Mydevices.232 +[[image:1657249831934-534.png]] 395 395 396 -[[image:1654505925508-181.png]] 397 397 398 398 236 +=== 2.2.5 Use UDP protocol to uplink data(Default protocol) === 399 399 400 - ==2.7 FrequencyPlans==238 +This feature is supported since firmware version v1.0.1 401 401 402 -The LSE01 uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets. 403 403 241 +* (% style="color:blue" %)**AT+PRO=2 ** (%%) ~/~/ Set to use UDP protocol to uplink 242 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5601 ** (%%) ~/~/ to set UDP server address and port 243 +* (% style="color:blue" %)**AT+CFM=1 ** (%%) ~/~/If the server does not respond, this command is unnecessary 404 404 405 - === 2.7.1EU863-870 (EU868) ===245 +[[image:1657249864775-321.png]] 406 406 407 -(% style="color:#037691" %)** Uplink:** 408 408 409 - 868.1- SF7BW125 to SF12BW125248 +[[image:1657249930215-289.png]] 410 410 411 -868.3 - SF7BW125 to SF12BW125 and SF7BW250 412 412 413 -868.5 - SF7BW125 to SF12BW125 414 414 415 - 867.1-SF7BW125toSF12BW125252 +=== 2.2.6 Use MQTT protocol to uplink data === 416 416 417 - 867.3-SF7BW125toSF12BW125254 +This feature is supported since firmware version v110 418 418 419 -867.5 - SF7BW125 to SF12BW125 420 420 421 -867.7 - SF7BW125 to SF12BW125 257 +* (% style="color:blue" %)**AT+PRO=3 ** (%%) ~/~/Set to use MQTT protocol to uplink 258 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,1883 ** (%%) ~/~/Set MQTT server address and port 259 +* (% style="color:blue" %)**AT+CLIENT=CLIENT ** (%%)~/~/Set up the CLIENT of MQTT 260 +* (% style="color:blue" %)**AT+UNAME=UNAME **(%%)~/~/Set the username of MQTT 261 +* (% style="color:blue" %)**AT+PWD=PWD **(%%)~/~/Set the password of MQTT 262 +* (% style="color:blue" %)**AT+PUBTOPIC=NSE01_PUB **(%%)~/~/Set the sending topic of MQTT 263 +* (% style="color:blue" %)**AT+SUBTOPIC=NSE01_SUB **(%%) ~/~/Set the subscription topic of MQTT 422 422 423 - 867.9SF7BW125 to SF12BW125265 +[[image:1657249978444-674.png]] 424 424 425 -868.8 - FSK 426 426 268 +[[image:1657249990869-686.png]] 427 427 428 -(% style="color:#037691" %)** Downlink:** 429 429 430 -Uplink channels 1-9 (RX1) 271 +((( 272 +MQTT protocol has a much higher power consumption compare vs UDP / CoAP protocol. Please check the power analyze document and adjust the uplink period to a suitable interval. 273 +))) 431 431 432 -869.525 - SF9BW125 (RX2 downlink only) 433 433 434 434 277 +=== 2.2.7 Use TCP protocol to uplink data === 435 435 436 - ===2.7.2US902-928(US915)===279 +This feature is supported since firmware version v110 437 437 438 -Used in USA, Canada and South America. Default use CHE=2 439 439 440 -(% style="color:#037691" %)**Uplink:** 282 +* (% style="color:blue" %)**AT+PRO=4 ** (%%) ~/~/ Set to use TCP protocol to uplink 283 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5600 **(%%) ~/~/ to set TCP server address and port 441 441 442 - 903.9 - SF7BW125to SF10BW125285 +[[image:1657250217799-140.png]] 443 443 444 -904.1 - SF7BW125 to SF10BW125 445 445 446 - 904.3 - SF7BW125to SF10BW125288 +[[image:1657250255956-604.png]] 447 447 448 -904.5 - SF7BW125 to SF10BW125 449 449 450 -904.7 - SF7BW125 to SF10BW125 451 451 452 - 904.9-SF7BW125toSF10BW125292 +=== 2.2.8 Change Update Interval === 453 453 454 - 905.1-SF7BW125toSF10BW125294 +User can use below command to change the (% style="color:green" %)**uplink interval**. 455 455 456 - 905.3-SF7BW125toSF10BW125296 +* (% style="color:blue" %)**AT+TDC=600 ** (%%)~/~/ Set Update Interval to 600s 457 457 298 +((( 299 +(% style="color:red" %)**NOTE:** 300 +))) 458 458 459 -(% style="color:#037691" %)**Downlink:** 302 +((( 303 +(% style="color:red" %)1. By default, the device will send an uplink message every 1 hour. 304 +))) 460 460 461 -923.3 - SF7BW500 to SF12BW500 462 462 463 -923.9 - SF7BW500 to SF12BW500 464 464 465 - 924.5-SF7BW500 toSF12BW500308 +== 2.3 Uplink Payload == 466 466 467 - 925.1-SF7BW500toSF12BW500310 +In this mode, uplink payload includes in total 18 bytes 468 468 469 -925.7 - SF7BW500 to SF12BW500 312 +(% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:510px" %) 313 +|=(% style="width: 60px;" %)((( 314 +**Size(bytes)** 315 +)))|=(% style="width: 50px;" %)**6**|=(% style="width: 25px;" %)2|=(% style="width: 25px;" %)**2**|=(% style="width: 70px;" %)**1**|=(% style="width: 60px;" %)**2**|=(% style="width: 80px;" %)**2**|=(% style="width: 90px;" %)**2**|=(% style="width: 50px;" %)**1** 316 +|(% style="width:97px" %)**Value**|(% style="width:83px" %)[[Device ID>>||anchor="H2.4.1A0A0DeviceID"]]|(% style="width:41px" %)[[Ver>>||anchor="H2.4.2A0VersionInfo"]]|(% style="width:46px" %)[[BAT>>||anchor="H2.4.3A0BatteryInfo"]]|(% style="width:123px" %)[[Signal Strength>>||anchor="H2.4.4A0SignalStrength"]]|(% style="width:108px" %)[[Soil Moisture>>||anchor="H2.4.5A0SoilMoisture"]]|(% style="width:133px" %)[[Soil Temperature>>||anchor="H2.4.6A0SoilTemperature"]]|(% style="width:159px" %)[[Soil Conductivity(EC)>>||anchor="H2.4.7A0SoilConductivity28EC29"]]|(% style="width:80px" %)[[Interrupt>>||anchor="H2.4.8A0DigitalInterrupt"]] 470 470 471 -926.3 - SF7BW500 to SF12BW500 318 +((( 319 +If we use the MQTT client to subscribe to this MQTT topic, we can see the following information when the NSE01 uplink data. 320 +))) 472 472 473 -926.9 - SF7BW500 to SF12BW500 474 474 475 - 927.5-SF7BW500 to SF12BW500323 +[[image:image-20220708111918-4.png]] 476 476 477 -923.3 - SF12BW500(RX2 downlink only) 478 478 326 +The payload is ASCII string, representative same HEX: 479 479 328 +0x72403155615900640c7817075e0a8c02f900 where: 480 480 481 -=== 2.7.3 CN470-510 (CN470) === 330 +* Device ID: 0x 724031556159 = 724031556159 331 +* Version: 0x0064=100=1.0.0 482 482 483 -Used in China, Default use CHE=1 333 +* BAT: 0x0c78 = 3192 mV = 3.192V 334 +* Singal: 0x17 = 23 335 +* Soil Moisture: 0x075e= 1886 = 18.86 % 336 +* Soil Temperature:0x0a8c =2700=27 °C 337 +* Soil Conductivity(EC) = 0x02f9 =761 uS /cm 338 +* Interrupt: 0x00 = 0 484 484 485 - (%style="color:#037691"%)**Uplink:**340 +== 2.4 Payload Explanation and Sensor Interface == 486 486 487 -486.3 - SF7BW125 to SF12BW125 488 488 489 -4 86.5 - SF7BW125toSF12BW125343 +=== 2.4.1 Device ID === 490 490 491 -486.7 - SF7BW125 to SF12BW125 345 +((( 346 +By default, the Device ID equal to the last 6 bytes of IMEI. 347 +))) 492 492 493 -486.9 - SF7BW125 to SF12BW125 349 +((( 350 +User can use (% style="color:blue" %)**AT+DEUI**(%%) to set Device ID 351 +))) 494 494 495 -487.1 - SF7BW125 to SF12BW125 353 +((( 354 +**Example:** 355 +))) 496 496 497 -487.3 - SF7BW125 to SF12BW125 357 +((( 358 +AT+DEUI=A84041F15612 359 +))) 498 498 499 -487.5 - SF7BW125 to SF12BW125 361 +((( 362 +The Device ID is stored in a none-erase area, Upgrade the firmware or run AT+FDR won't erase Device ID. 363 +))) 500 500 501 -487.7 - SF7BW125 to SF12BW125 502 502 503 503 504 - (%style="color:#037691" %)**Downlink:**367 +=== 2.4.2 Version Info === 505 505 506 -506.7 - SF7BW125 to SF12BW125 369 +((( 370 +Specify the software version: 0x64=100, means firmware version 1.00. 371 +))) 507 507 508 -506.9 - SF7BW125 to SF12BW125 373 +((( 374 +For example: 0x00 64 : this device is NSE01 with firmware version 1.0.0. 375 +))) 509 509 510 -507.1 - SF7BW125 to SF12BW125 511 511 512 -507.3 - SF7BW125 to SF12BW125 513 513 514 - 507.5- SF7BW125toSF12BW125379 +=== 2.4.3 Battery Info === 515 515 516 -507.7 - SF7BW125 to SF12BW125 381 +((( 382 +Check the battery voltage for LSE01. 383 +))) 517 517 518 -507.9 - SF7BW125 to SF12BW125 385 +((( 386 +Ex1: 0x0B45 = 2885mV 387 +))) 519 519 520 -508.1 - SF7BW125 to SF12BW125 389 +((( 390 +Ex2: 0x0B49 = 2889mV 391 +))) 521 521 522 -505.3 - SF12BW125 (RX2 downlink only) 523 523 524 524 395 +=== 2.4.4 Signal Strength === 525 525 526 -=== 2.7.4 AU915-928(AU915) === 397 +((( 398 +NB-IoT Network signal Strength. 399 +))) 527 527 528 -Default use CHE=2 401 +((( 402 +**Ex1: 0x1d = 29** 403 +))) 529 529 530 -(% style="color:#037691" %)**Uplink:** 405 +((( 406 +(% style="color:blue" %)**0**(%%) -113dBm or less 407 +))) 531 531 532 -916.8 - SF7BW125 to SF12BW125 409 +((( 410 +(% style="color:blue" %)**1**(%%) -111dBm 411 +))) 533 533 534 -917.0 - SF7BW125 to SF12BW125 413 +((( 414 +(% style="color:blue" %)**2...30**(%%) -109dBm... -53dBm 415 +))) 535 535 536 -917.2 - SF7BW125 to SF12BW125 417 +((( 418 +(% style="color:blue" %)**31** (%%) -51dBm or greater 419 +))) 537 537 538 -917.4 - SF7BW125 to SF12BW125 421 +((( 422 +(% style="color:blue" %)**99** (%%) Not known or not detectable 423 +))) 539 539 540 -917.6 - SF7BW125 to SF12BW125 541 541 542 -917.8 - SF7BW125 to SF12BW125 543 543 544 - 918.0- SF7BW125toSF12BW125427 +=== 2.4.5 Soil Moisture === 545 545 546 -918.2 - SF7BW125 to SF12BW125 429 +((( 430 +((( 431 +Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil. 432 +))) 433 +))) 547 547 435 +((( 436 +((( 437 +For example, if the data you get from the register is **__0x05 0xDC__**, the moisture content in the soil is 438 +))) 439 +))) 548 548 549 -(% style="color:#037691" %)**Downlink:** 441 +((( 442 + 443 +))) 550 550 551 -923.3 - SF7BW500 to SF12BW500 445 +((( 446 +(% style="color:#4f81bd" %)**05DC(H) = 1500(D) /100 = 15%.** 447 +))) 552 552 553 -923.9 - SF7BW500 to SF12BW500 554 554 555 -924.5 - SF7BW500 to SF12BW500 556 556 557 - 925.1-SF7BW500toSF12BW500451 +=== 2.4.6 Soil Temperature === 558 558 559 -925.7 - SF7BW500 to SF12BW500 453 +((( 454 +Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is __**0x09 0xEC**__, the temperature content in the soil is 455 +))) 560 560 561 -926.3 - SF7BW500 to SF12BW500 457 +((( 458 +**Example**: 459 +))) 562 562 563 -926.9 - SF7BW500 to SF12BW500 461 +((( 462 +If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/100 = 2.61 °C 463 +))) 564 564 565 -927.5 - SF7BW500 to SF12BW500 465 +((( 466 +If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C 467 +))) 566 566 567 -923.3 - SF12BW500(RX2 downlink only) 568 568 569 569 471 +=== 2.4.7 Soil Conductivity (EC) === 570 570 571 -=== 2.7.5 AS920-923 & AS923-925 (AS923) === 473 +((( 474 +Obtain (% style="color:#4f81bd" %)**__soluble salt concentration__**(%%) in soil or (% style="color:#4f81bd" %)**__soluble ion concentration in liquid fertilizer__**(%%) or (% style="color:#4f81bd" %)**__planting medium__**(%%). The value range of the register is 0 - 20000(Decimal)( Can be greater than 20000). 475 +))) 572 572 573 -(% style="color:#037691" %)**Default Uplink channel:** 477 +((( 478 +For example, if the data you get from the register is __**0x00 0xC8**__, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm. 479 +))) 574 574 575 -923.2 - SF7BW125 to SF10BW125 481 +((( 482 +Generally, the EC value of irrigation water is less than 800uS / cm. 483 +))) 576 576 577 -923.4 - SF7BW125 to SF10BW125 485 +((( 486 + 487 +))) 578 578 489 +((( 490 + 491 +))) 579 579 580 - (% style="color:#037691"%)**AdditionalUplink Channel**:493 +=== 2.4.8 Digital Interrupt === 581 581 582 -(OTAA mode, channel added by JoinAccept message) 495 +((( 496 +Digital Interrupt refers to pin (% style="color:blue" %)**GPIO_EXTI**(%%), and there are different trigger methods. When there is a trigger, the NSE01 will send a packet to the server. 497 +))) 583 583 584 -(% style="color:#037691" %)**AS920~~AS923 for Japan, Malaysia, Singapore**: 499 +((( 500 +The command is: 501 +))) 585 585 586 -922.2 - SF7BW125 to SF10BW125 503 +((( 504 +(% style="color:blue" %)**AT+INTMOD=3 **(%%) ~/~/(more info about INMOD please refer [[**AT Command Manual**>>url:https://www.dragino.com/downloads/downloads/NB-IoT/NBSN95/DRAGINO_NBSN95-NB_AT%20Commands_v1.1.0.pdf]])**.** 505 +))) 587 587 588 -922.4 - SF7BW125 to SF10BW125 589 589 590 -922.6 - SF7BW125 to SF10BW125 508 +((( 509 +The lower four bits of this data field shows if this packet is generated by interrupt or not. Click here for the hardware and software set up. 510 +))) 591 591 592 -922.8 - SF7BW125 to SF10BW125 593 593 594 -923.0 - SF7BW125 to SF10BW125 513 +((( 514 +Example: 515 +))) 595 595 596 -922.0 - SF7BW125 to SF10BW125 517 +((( 518 +0x(00): Normal uplink packet. 519 +))) 597 597 521 +((( 522 +0x(01): Interrupt Uplink Packet. 523 +))) 598 598 599 -(% style="color:#037691" %)**AS923 ~~ AS925 for Brunei, Cambodia, Hong Kong, Indonesia, Laos, Taiwan, Thailand, Vietnam**: 600 600 601 -923.6 - SF7BW125 to SF10BW125 602 602 603 - 923.8- SF7BW125 toSF10BW125527 +=== 2.4.9 +5V Output === 604 604 605 -924.0 - SF7BW125 to SF10BW125 529 +((( 530 +NSE01 will enable +5V output before all sampling and disable the +5v after all sampling. 531 +))) 606 606 607 -924.2 - SF7BW125 to SF10BW125 608 608 609 -924.4 - SF7BW125 to SF10BW125 534 +((( 535 +The 5V output time can be controlled by AT Command. 536 +))) 610 610 611 -924.6 - SF7BW125 to SF10BW125 538 +((( 539 +(% style="color:blue" %)**AT+5VT=1000** 540 +))) 612 612 542 +((( 543 +Means set 5V valid time to have 1000ms. So the real 5V output will actually have 1000ms + sampling time for other sensors. 544 +))) 613 613 614 -(% style="color:#037691" %)** Downlink:** 615 615 616 -Uplink channels 1-8 (RX1) 617 617 618 - 923.2-SF10BW125(RX2)548 +== 2.5 Downlink Payload == 619 619 550 +By default, NSE01 prints the downlink payload to console port. 620 620 552 +[[image:image-20220708133731-5.png]] 621 621 622 -=== 2.7.6 KR920-923 (KR920) === 623 623 624 -Default channel: 555 +((( 556 +(% style="color:blue" %)**Examples:** 557 +))) 625 625 626 -922.1 - SF7BW125 to SF12BW125 559 +((( 560 + 561 +))) 627 627 628 -922.3 - SF7BW125 to SF12BW125 563 +* ((( 564 +(% style="color:blue" %)**Set TDC** 565 +))) 629 629 630 -922.5 - SF7BW125 to SF12BW125 567 +((( 568 +If the payload=0100003C, it means set the END Node's TDC to 0x00003C=60(S), while type code is 01. 569 +))) 631 631 571 +((( 572 +Payload: 01 00 00 1E TDC=30S 573 +))) 632 632 633 -(% style="color:#037691" %)**Uplink: (OTAA mode, channel added by JoinAccept message)** 575 +((( 576 +Payload: 01 00 00 3C TDC=60S 577 +))) 634 634 635 -922.1 - SF7BW125 to SF12BW125 579 +((( 580 + 581 +))) 636 636 637 -922.3 - SF7BW125 to SF12BW125 583 +* ((( 584 +(% style="color:blue" %)**Reset** 585 +))) 638 638 639 -922.5 - SF7BW125 to SF12BW125 587 +((( 588 +If payload = 0x04FF, it will reset the NSE01 589 +))) 640 640 641 -922.7 - SF7BW125 to SF12BW125 642 642 643 - 922.9-SF7BW125toSF12BW125592 +* (% style="color:blue" %)**INTMOD** 644 644 645 -923.1 - SF7BW125 to SF12BW125 594 +((( 595 +Downlink Payload: 06000003, Set AT+INTMOD=3 596 +))) 646 646 647 -923.3 - SF7BW125 to SF12BW125 648 648 649 649 650 - (% style="color:#037691"%)**Downlink:**600 +== 2.6 LED Indicator == 651 651 652 -Uplink channels 1-7(RX1) 602 +((( 603 +The NSE01 has an internal LED which is to show the status of different state. 653 653 654 -921.9 - SF12BW125 (RX2 downlink only; SF12BW125 might be changed to SF9BW125) 655 655 606 +* When power on, NSE01 will detect if sensor probe is connected, if probe detected, LED will blink four times. (no blinks in this step is no probe) 607 +* Then the LED will be on for 1 second means device is boot normally. 608 +* After NSE01 join NB-IoT network. The LED will be ON for 3 seconds. 609 +* For each uplink probe, LED will be on for 500ms. 610 +))) 656 656 657 657 658 -=== 2.7.7 IN865-867 (IN865) === 659 659 660 -(% style="color:#037691" %)** Uplink:** 661 661 662 - 865.0625- SF7BW125to SF12BW125615 +== 2.7 Installation in Soil == 663 663 664 - 865.4025- SF7BW125toSF12BW125617 +__**Measurement the soil surface**__ 665 665 666 -865.9850 - SF7BW125 to SF12BW125 619 +((( 620 +Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting. [[https:~~/~~/img.alicdn.com/imgextra/i3/2005165265/O1CN010rj9Oh1olPsQxrdUK_!!2005165265.jpg>>url:https://img.alicdn.com/imgextra/i3/2005165265/O1CN010rj9Oh1olPsQxrdUK_!!2005165265.jpg]] 621 +))) 667 667 623 +[[image:1657259653666-883.png]] 668 668 669 -(% style="color:#037691" %) **Downlink:** 670 670 671 -Uplink channels 1-3 (RX1) 626 +((( 627 + 672 672 673 -866.550 - SF10BW125 (RX2) 629 +((( 630 +Dig a hole with diameter > 20CM. 631 +))) 674 674 633 +((( 634 +Horizontal insert the probe to the soil and fill the hole for long term measurement. 635 +))) 636 +))) 675 675 638 +[[image:1654506665940-119.png]] 676 676 640 +((( 641 + 642 +))) 677 677 678 -== 2.8 LED Indicator == 679 679 680 - TheLSE01has aninternal LEDwhich is to show the status of differentstate.645 +== 2.8 Firmware Change Log == 681 681 682 -* Blink once when device power on. 683 -* Solid ON for 5 seconds once device successful Join the network. 684 -* Blink once when device transmit a packet. 685 685 648 +Download URL & Firmware Change log 686 686 650 +[[www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/Firmware/]] 687 687 688 -== 2.9 Installation in Soil == 689 689 690 - **Measurement the soil surface**653 +Upgrade Instruction: [[Upgrade_Firmware>>||anchor="H5.1200BHowtoUpgradeFirmware"]] 691 691 692 692 693 -[[image:1654506634463-199.png]] 694 694 695 -((( 696 -((( 697 -Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting. 698 -))) 699 -))) 657 +== 2.9 Battery Analysis == 700 700 659 +=== 2.9.1 Battery Type === 701 701 702 702 703 -[[image:1654506665940-119.png]] 704 - 705 705 ((( 706 - Diga hole with diameter>20CM.663 +The NSE01 battery is a combination of an 8500mAh Li/SOCI2 Battery and a Super Capacitor. The battery is none-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter. 707 707 ))) 708 708 666 + 709 709 ((( 710 - Horizontalinserttheprobe to thesoil andfilltheholeforlong termmeasurement.668 +The battery is designed to last for several years depends on the actually use environment and update interval. 711 711 ))) 712 712 713 713 714 -== 2.10 Firmware Change Log == 715 - 716 716 ((( 717 - **Firmware downloadlink:**673 +The battery related documents as below: 718 718 ))) 719 719 720 - (((721 -[[ http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/]]722 - )))676 +* [[Battery Dimension>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]] 677 +* [[Lithium-Thionyl Chloride Battery datasheet>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]] 678 +* [[Lithium-ion Battery-Capacitor datasheet>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]] 723 723 724 724 ((( 725 - 681 +[[image:image-20220708140453-6.png]] 726 726 ))) 727 727 728 -((( 729 -**Firmware Upgrade Method: **[[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome]] 730 -))) 731 731 732 -((( 733 - 734 -))) 735 735 736 -((( 737 -**V1.0.** 738 -))) 686 +=== 2.9.2 Power consumption Analyze === 739 739 740 740 ((( 741 - Release689 +Dragino battery powered product are all runs in Low Power mode. We have an update battery calculator which base on the measurement of the real device. User can use this calculator to check the battery life and calculate the battery life if want to use different transmit interval. 742 742 ))) 743 743 744 744 745 -== 2.11 Battery Analysis == 746 - 747 -=== 2.11.1 Battery Type === 748 - 749 749 ((( 750 - The LSE01 battery is a combination of a 4000mAh Li/SOCI2 Battery and a Super Capacitor. The batteryis non-rechargeablebattery type with a lowdischargerate (<2% per year). Thistype ofbattery is commonly used in IoT devices such aswater meter.694 +Instruction to use as below: 751 751 ))) 752 752 753 753 ((( 754 - Thebatterys designedlastforrethan5 years fortheSN50.698 +(% style="color:blue" %)**Step 1: **(%%)Downlink the up-to-date DRAGINO_Battery_Life_Prediction_Table.xlsx from: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/]] 755 755 ))) 756 756 701 + 757 757 ((( 758 -((( 759 -The battery-related documents are as below: 703 +(% style="color:blue" %)**Step 2: **(%%) Open it and choose 760 760 ))) 761 -))) 762 762 763 763 * ((( 764 - [[Battery Dimension>>url:http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/&file=LSN50-Battery-Dimension.pdf]],707 +Product Model 765 765 ))) 766 766 * ((( 767 - [[Lithium-ThionylChloride Battery datasheet>>url:https://www.dragino.com/downloads/downloads/datasheet/Battery/ER26500/ER26500_Datasheet-EN.pdf]],710 +Uplink Interval 768 768 ))) 769 769 * ((( 770 - [[Lithium-ion Battery-Capacitor datasheet>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC_1520_datasheet.jpg]],[[Tech Spec>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC1520%20Technical%20Specification20171123.pdf]]713 +Working Mode 771 771 ))) 772 772 773 - [[image:image-20220610172436-1.png]] 716 +((( 717 +And the Life expectation in difference case will be shown on the right. 718 +))) 774 774 720 +[[image:image-20220708141352-7.jpeg]] 775 775 776 776 777 -=== 2.11.2 Battery Note === 778 778 724 +=== 2.9.3 Battery Note === 725 + 779 779 ((( 780 780 The Li-SICO battery is designed for small current / long period application. It is not good to use a high current, short period transmit method. The recommended minimum period for use of this battery is 5 minutes. If you use a shorter period time to transmit LoRa, then the battery life may be decreased. 781 781 ))) ... ... @@ -782,298 +782,176 @@ 782 782 783 783 784 784 785 -=== 2. 11.3Replace the battery ===732 +=== 2.9.4 Replace the battery === 786 786 787 787 ((( 788 - IfBattery is lower than 2.7v,usershouldreplace the battery ofLSE01.735 +The default battery pack of NSE01 includes a ER26500 plus super capacitor. If user can't find this pack locally, they can find ER26500 or equivalence without the SPC1520 capacitor, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes). 789 789 ))) 790 790 738 + 739 + 740 += 3. Access NB-IoT Module = 741 + 791 791 ((( 792 - You can changethe battery in the LSE01.The type of battery isnot limitedas longas the outputis between 3v to 3.6v. On the main board, there is a diode (D1) between the battery and the maincircuit. If you need to use a battery with lessthan 3.3v, pleaseremovethe D1and shortcut thewopadsofitso therewon’tbe voltage drop between battery andmain board.743 +Users can directly access the AT command set of the NB-IoT module. 793 793 ))) 794 794 795 795 ((( 796 -The defaultbattery packof LSE01 includesa ER18505 plussupercapacitor.Ifusercan’tfind this pack locally, theycan find ER18505orequivalence,whichwillalsoworkinmostcase.The SPC can enlargethebattery lifeforigh frequency use(updateperiod below5minutes)747 +The AT Command set can refer the BC35-G NB-IoT Module AT Command: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=datasheet/other_vendors/BC35-G/>>url:https://www.dragino.com/downloads/index.php?dir=datasheet/other_vendors/BC35-G/]] 797 797 ))) 798 798 750 +[[image:1657261278785-153.png]] 799 799 800 800 801 -= 3. Using the AT Commands = 802 802 803 -= =3.1AccessAT Commands ==754 += 4. Using the AT Commands = 804 804 756 +== 4.1 Access AT Commands == 805 805 806 - LSE01supportsATCommandsetn the stock firmware.Youcanuse a USB toTTLadaptertoconnect to LSE01forusing ATcommand,asbelow.758 +See this link for detail: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/]] 807 807 808 -[[image:1654501986557-872.png||height="391" width="800"]] 809 809 761 +AT+<CMD>? : Help on <CMD> 810 810 811 - Orifyouhavebelowboard,usebelowconnection:763 +AT+<CMD> : Run <CMD> 812 812 765 +AT+<CMD>=<value> : Set the value 813 813 814 - [[image:1654502005655-729.png||height="503"width="801"]]767 +AT+<CMD>=? : Get the value 815 815 816 816 817 - 818 -In the PC, you need to set the serial baud rate to (% style="color:green" %)**9600**(%%) to access the serial console for LSE01. LSE01 will output system info once power on as below: 819 - 820 - 821 - [[image:1654502050864-459.png||height="564" width="806"]] 822 - 823 - 824 -Below are the available commands, a more detailed AT Command manual can be found at [[AT Command Manual>>https://www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0]]: [[https:~~/~~/www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0>>https://www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0]] 825 - 826 - 827 -(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>? **(%%) : Help on <CMD> 828 - 829 -(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD> **(%%) : Run <CMD> 830 - 831 -(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>=<value>**(%%) : Set the value 832 - 833 -(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>=?**(%%) : Get the value 834 - 835 - 836 836 (% style="color:#037691" %)**General Commands**(%%) 837 837 838 - (% style="background-color:#dcdcdc" %)**AT**(%%): Attention772 +AT : Attention 839 839 840 - (% style="background-color:#dcdcdc" %)**AT?**(%%): Short Help774 +AT? : Short Help 841 841 842 - (% style="background-color:#dcdcdc" %)**ATZ**(%%): MCU Reset776 +ATZ : MCU Reset 843 843 844 - (% style="background-color:#dcdcdc" %)**AT+TDC**(%%): Application Data Transmission Interval778 +AT+TDC : Application Data Transmission Interval 845 845 780 +AT+CFG : Print all configurations 846 846 847 - (%style="color:#037691"%)**Keys,IDsand EUIs management**782 +AT+CFGMOD : Working mode selection 848 848 849 - (% style="background-color:#dcdcdc" %)**AT+APPEUI**(%%)ApplicationEUI784 +AT+INTMOD : Set the trigger interrupt mode 850 850 851 - (% style="background-color:#dcdcdc" %)**AT+APPKEY**(%%)ApplicationKey786 +AT+5VT : Set extend the time of 5V power 852 852 853 - (% style="background-color:#dcdcdc" %)**AT+APPSKEY**(%%)Application Session Key788 +AT+PRO : Choose agreement 854 854 855 - (% style="background-color:#dcdcdc" %)**AT+DADDR**(%%)DeviceAddress790 +AT+WEIGRE : Get weight or set weight to 0 856 856 857 - (% style="background-color:#dcdcdc" %)**AT+DEUI**(%%)DeviceEUI792 +AT+WEIGAP : Get or Set the GapValue of weight 858 858 859 - (% style="background-color:#dcdcdc" %)**AT+NWKID**(%%):NetworkID(Youcanenterthiscommandchangeonlyaftersuccessful networkconnection)794 +AT+RXDL : Extend the sending and receiving time 860 860 861 - (% style="background-color:#dcdcdc" %)**AT+NWKSKEY**(%%)NetworkSession KeyJoining and sending dateon LoRa network796 +AT+CNTFAC : Get or set counting parameters 862 862 863 - (% style="background-color:#dcdcdc" %)**AT+CFM**(%%)ConfirmMode798 +AT+SERVADDR : Server Address 864 864 865 -(% style="background-color:#dcdcdc" %)**AT+CFS**(%%) : Confirm Status 866 866 867 -(% style=" background-color:#dcdcdc" %)**AT+JOIN**(%%): JoinLoRa? Network801 +(% style="color:#037691" %)**COAP Management** 868 868 869 - (% style="background-color:#dcdcdc" %)**AT+NJM**(%%)LoRa? Network Join Mode803 +AT+URI : Resource parameters 870 870 871 -(% style="background-color:#dcdcdc" %)**AT+NJS**(%%) : LoRa? Network Join Status 872 872 873 -(% style=" background-color:#dcdcdc" %)**AT+RECV**(%%) :PrintLast Received Data inRaw Format806 +(% style="color:#037691" %)**UDP Management** 874 874 875 - (% style="background-color:#dcdcdc" %)**AT+RECVB**(%%)Print LastReceived DatainBinaryFormat808 +AT+CFM : Upload confirmation mode (only valid for UDP) 876 876 877 -(% style="background-color:#dcdcdc" %)**AT+SEND**(%%) : Send Text Data 878 878 879 -(% style=" background-color:#dcdcdc" %)**AT+SENB**(%%): Send Hexadecimal Data811 +(% style="color:#037691" %)**MQTT Management** 880 880 813 +AT+CLIENT : Get or Set MQTT client 881 881 882 - (%style="color:#037691"%)**LoRaNetworkManagement**815 +AT+UNAME : Get or Set MQTT Username 883 883 884 - (% style="background-color:#dcdcdc" %)**AT+ADR**(%%):AdaptiveRate817 +AT+PWD : Get or Set MQTT password 885 885 886 - (% style="background-color:#dcdcdc" %)**AT+CLASS**(%%):LoRaClass(Currentlyonly supportclassA819 +AT+PUBTOPIC : Get or Set MQTT publish topic 887 887 888 - (% style="background-color:#dcdcdc" %)**AT+DCS**(%%):DutyCycleSetting821 +AT+SUBTOPIC : Get or Set MQTT subscription topic 889 889 890 -(% style="background-color:#dcdcdc" %)**AT+DR**(%%) : Data Rate (Can Only be Modified after ADR=0) 891 891 892 -(% style=" background-color:#dcdcdc" %)**AT+FCD**(%%) : Frame Counter Downlink824 +(% style="color:#037691" %)**Information** 893 893 894 - (% style="background-color:#dcdcdc" %)**AT+FCU**(%%): Frame CounterUplink826 +AT+FDR : Factory Data Reset 895 895 896 - (% style="background-color:#dcdcdc" %)**AT+JN1DL**(%%):JoinAcceptDelay1828 +AT+PWORD : Serial Access Password 897 897 898 -(% style="background-color:#dcdcdc" %)**AT+JN2DL**(%%) : Join Accept Delay2 899 899 900 -(% style="background-color:#dcdcdc" %)**AT+PNM**(%%) : Public Network Mode 901 901 902 - (% style="background-color:#dcdcdc"%)**AT+RX1DL**(%%): Receive Delay1832 += 5. FAQ = 903 903 904 - (% style="background-color:#dcdcdc"%)**AT+RX2DL**(%%): ReceiveDelay2834 +== 5.1 How to Upgrade Firmware == 905 905 906 -(% style="background-color:#dcdcdc" %)**AT+RX2DR**(%%) : Rx2 Window Data Rate 907 907 908 -(% style="background-color:#dcdcdc" %)**AT+RX2FQ**(%%) : Rx2 Window Frequency 909 - 910 -(% style="background-color:#dcdcdc" %)**AT+TXP**(%%) : Transmit Power 911 - 912 -(% style="background-color:#dcdcdc" %)**AT+ MOD**(%%) : Set work mode 913 - 914 - 915 -(% style="color:#037691" %)**Information** 916 - 917 -(% style="background-color:#dcdcdc" %)**AT+RSSI**(%%) : RSSI of the Last Received Packet 918 - 919 -(% style="background-color:#dcdcdc" %)**AT+SNR**(%%) : SNR of the Last Received Packet 920 - 921 -(% style="background-color:#dcdcdc" %)**AT+VER**(%%) : Image Version and Frequency Band 922 - 923 -(% style="background-color:#dcdcdc" %)**AT+FDR**(%%) : Factory Data Reset 924 - 925 -(% style="background-color:#dcdcdc" %)**AT+PORT**(%%) : Application Port 926 - 927 -(% style="background-color:#dcdcdc" %)**AT+CHS**(%%) : Get or Set Frequency (Unit: Hz) for Single Channel Mode 928 - 929 - (% style="background-color:#dcdcdc" %)**AT+CHE**(%%) : Get or Set eight channels mode, Only for US915, AU915, CN470 930 - 931 - 932 -= 4. FAQ = 933 - 934 -== 4.1 How to change the LoRa Frequency Bands/Region? == 935 - 936 936 ((( 937 -You can follow the instructions for [[how to upgrade image>>||anchor="H2.10200BFirmwareChangeLog"]]. 938 -When downloading the images, choose the required image file for download. 838 +User can upgrade the firmware for 1) bug fix, 2) new feature release. 939 939 ))) 940 940 941 941 ((( 942 - 842 +Please see this link for how to upgrade: [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H2.HardwareUpgradeMethodSupportList>>http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H2.HardwareUpgradeMethodSupportList]] 943 943 ))) 944 944 945 945 ((( 946 - Howtosetup LSE01 towork in 8 channel modeBy default,thefrequency bandsUS915,AU915, CN470 work in 72 frequencies.Many gatewaysare8 channelgateways, andin thiscase,theOTAA join timeand uplink scheduleis longandunpredictable while the end nodeis hoppingin 72 frequencies.846 +(% style="color:red" %)Notice, NSE01 and LSE01 share the same mother board. They use the same connection and method to update. 947 947 ))) 948 948 949 -((( 950 - 951 -))) 952 952 953 -((( 954 -You can configure the end node to work in 8 channel mode by using the AT+CHE command. The 500kHz channels are always included for OTAA. 955 -))) 956 956 957 -((( 958 - 959 -))) 851 +== 5.2 Can I calibrate NSE01 to different soil types? == 960 960 961 961 ((( 962 - Forexample,in **US915**band,the frequencytablesasbelow. By default,the endnodewilluse all channels(0~~71)forOTAAJoinprocess.AftertheOTAAJoin,theend nodewilluse these allchannels(0~~71)tosenduplinkkets.854 +NSE01 is calibrated for saline-alkali soil and loamy soil. If users want to use it for other soil, they can calibrate the value in the IoT platform base on the value measured by saline-alkali soil and loamy soil. The formula can be found at [[this link>>https://www.dragino.com/downloads/downloads/LoRa_End_Node/LSE01/Calibrate_to_other_Soil_20220605.pdf]]. 963 963 ))) 964 964 965 -[[image:image-20220606154726-3.png]] 966 966 858 += 6. Trouble Shooting = 967 967 968 - Whenyouuse the TTNnetwork,theUS915 frequencybandsuseare:860 +== 6.1 Connection problem when uploading firmware == 969 969 970 -* 903.9 - SF7BW125 to SF10BW125 971 -* 904.1 - SF7BW125 to SF10BW125 972 -* 904.3 - SF7BW125 to SF10BW125 973 -* 904.5 - SF7BW125 to SF10BW125 974 -* 904.7 - SF7BW125 to SF10BW125 975 -* 904.9 - SF7BW125 to SF10BW125 976 -* 905.1 - SF7BW125 to SF10BW125 977 -* 905.3 - SF7BW125 to SF10BW125 978 -* 904.6 - SF8BW500 979 979 980 980 ((( 981 -Because the end node is now hopping in 72 frequency, it makes it difficult for the devices to Join the TTN network and uplink data. To solve this issue, you can access the device via the AT commands and run: 982 - 983 -* (% style="color:#037691" %)**AT+CHE=2** 984 -* (% style="color:#037691" %)**ATZ** 864 +**Please see: **[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H3.3Troubleshooting>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H3.3Troubleshooting]] 985 985 ))) 986 986 867 +(% class="wikigeneratedid" %) 987 987 ((( 988 988 989 - 990 -to set the end node to work in 8 channel mode. The device will work in Channel 8-15 & 64-71 for OTAA, and channel 8-15 for Uplink. 991 991 ))) 992 992 993 -((( 994 - 995 -))) 996 996 997 -((( 998 -The **AU915** band is similar. Below are the AU915 Uplink Channels. 999 -))) 873 +== 6.2 AT Command input doesn't work == 1000 1000 1001 -[[image:image-20220606154825-4.png]] 1002 - 1003 - 1004 - 1005 -= 5. Trouble Shooting = 1006 - 1007 -== 5.1 Why I can’t join TTN in US915 / AU915 bands? == 1008 - 1009 -It is due to channel mapping. Please see the [[Eight Channel Mode>>doc:Main.LoRaWAN Communication Debug.WebHome||anchor="H2.NoticeofUS9152FCN4702FAU915Frequencyband"]] section above for details. 1010 - 1011 - 1012 -== 5.2 AT Command input doesn’t work == 1013 - 1014 1014 ((( 1015 -In the case if user can see the console output but can’t type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn’t send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string. 1016 -))) 876 +In the case if user can see the console output but can't type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn't send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string. 1017 1017 1018 - 1019 -== 5.3 Device rejoin in at the second uplink packet == 1020 - 1021 -(% style="color:#4f81bd" %)**Issue describe as below:** 1022 - 1023 -[[image:1654500909990-784.png]] 1024 - 1025 - 1026 -(% style="color:#4f81bd" %)**Cause for this issue:** 1027 - 1028 -((( 1029 -The fuse on LSE01 is not large enough, some of the soil probe require large current up to 5v 800mA, in a short pulse. When this happen, it cause the device reboot so user see rejoin. 878 + 1030 1030 ))) 1031 1031 1032 1032 1033 - (% style="color:#4f81bd"%)**Solution:**882 += 7. Order Info = 1034 1034 1035 -All new shipped LSE01 after 2020-May-30 will have this to fix. For the customer who see this issue, please bypass the fuse as below: 1036 1036 1037 - [[image:1654500929571-736.png||height="458" width="832"]]885 +Part Number**:** (% style="color:#4f81bd" %)**NSE01** 1038 1038 1039 1039 1040 -= 6. Order Info = 1041 - 1042 - 1043 -Part Number**:** (% style="color:#4f81bd" %)**LSE01-XX-YY** 1044 - 1045 - 1046 -(% style="color:#4f81bd" %)**XX**(%%)**:** The default frequency band 1047 - 1048 -* (% style="color:red" %)**AS923**(%%): LoRaWAN AS923 band 1049 -* (% style="color:red" %)**AU915**(%%): LoRaWAN AU915 band 1050 -* (% style="color:red" %)**EU433**(%%): LoRaWAN EU433 band 1051 -* (% style="color:red" %)**EU868**(%%): LoRaWAN EU868 band 1052 -* (% style="color:red" %)**KR920**(%%): LoRaWAN KR920 band 1053 -* (% style="color:red" %)**US915**(%%): LoRaWAN US915 band 1054 -* (% style="color:red" %)**IN865**(%%): LoRaWAN IN865 band 1055 -* (% style="color:red" %)**CN470**(%%): LoRaWAN CN470 band 1056 - 1057 -(% style="color:#4f81bd" %)**YY**(%%)**: **Battery Option 1058 - 1059 -* (% style="color:red" %)**4**(%%): 4000mAh battery 1060 -* (% style="color:red" %)**8**(%%): 8500mAh battery 1061 - 1062 1062 (% class="wikigeneratedid" %) 1063 1063 ((( 1064 1064 1065 1065 ))) 1066 1066 1067 -= 7. Packing Info =893 += 8. Packing Info = 1068 1068 1069 1069 ((( 1070 1070 1071 1071 1072 1072 (% style="color:#037691" %)**Package Includes**: 1073 -))) 1074 1074 1075 -* (((1076 - LSE01LoRaWAN SoilMoisture& EC Sensorx 1900 +* NSE01 NB-IoT Soil Moisture & EC Sensor x 1 901 +* External antenna x 1 1077 1077 ))) 1078 1078 1079 1079 ((( ... ... @@ -1080,24 +1080,19 @@ 1080 1080 1081 1081 1082 1082 (% style="color:#037691" %)**Dimension and weight**: 1083 -))) 1084 1084 1085 -* (((1086 - DeviceSize:cm909 +* Size: 195 x 125 x 55 mm 910 +* Weight: 420g 1087 1087 ))) 1088 -* ((( 1089 -Device Weight: g 1090 -))) 1091 -* ((( 1092 -Package Size / pcs : cm 1093 -))) 1094 -* ((( 1095 -Weight / pcs : g 1096 1096 913 +((( 1097 1097 915 + 916 + 917 + 1098 1098 ))) 1099 1099 1100 -= 8. Support =920 += 9. Support = 1101 1101 1102 1102 * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule. 1103 1103 * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.com]]
- 1657245163077-232.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +81.0 KB - Content
- 1657246476176-652.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +492.6 KB - Content
- 1657249419225-449.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +81.0 KB - Content
- 1657249468462-536.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +483.6 KB - Content
- 1657249793983-486.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +85.8 KB - Content
- 1657249831934-534.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +72.5 KB - Content
- 1657249864775-321.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +87.0 KB - Content
- 1657249930215-289.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +77.3 KB - Content
- 1657249978444-674.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +139.5 KB - Content
- 1657249990869-686.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +96.9 KB - Content
- 1657250217799-140.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +98.7 KB - Content
- 1657250255956-604.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +99.0 KB - Content
- 1657259653666-883.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +344.4 KB - Content
- 1657260785982-288.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +138.2 KB - Content
- 1657261119050-993.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +126.1 KB - Content
- 1657261278785-153.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +126.1 KB - Content
- 1657271519014-786.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +71.5 KB - Content
- 1657327959271-447.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +78.3 KB - Content
- 1657328609906-564.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +492.6 KB - Content
- image-20220708101224-1.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +22.2 KB - Content
- image-20220708101605-2.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +87.5 KB - Content
- image-20220708110657-3.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +251.7 KB - Content
- image-20220708111918-4.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +38.8 KB - Content
- image-20220708133731-5.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +8.7 KB - Content
- image-20220708140453-6.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +132.7 KB - Content
- image-20220708141352-7.jpeg
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +102.7 KB - Content
- image-20220709084038-1.jpeg
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +72.0 KB - Content
- image-20220709084137-2.jpeg
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +72.0 KB - Content
- image-20220709084207-3.jpeg
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +72.0 KB - Content
- image-20220709084458-4.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +199.5 KB - Content
- image-20220709085040-1.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +200.4 KB - Content