<
From version < 35.23 >
edited by Xiaoling
on 2022/06/14 14:21
To version < 68.2 >
edited by Xiaoling
on 2022/07/09 08:41
>
Change comment: There is no comment for this version

Summary

Details

Page properties
Title
... ... @@ -1,1 +1,1 @@
1 -LSE01-LoRaWAN Soil Moisture & EC Sensor User Manual
1 +NDDS75 NB-IoT Distance Detect Sensor User Manual
Content
... ... @@ -1,74 +1,88 @@
1 -(% style="text-align:center" %)
2 -[[image:image-20220606151504-2.jpeg||height="554" width="554"]]
1 +[[image:image-20220709084038-1.jpeg||height="575" width="575"]]
3 3  
4 4  
5 5  
6 -**Table of Contents:**
7 7  
8 -{{toc/}}
9 9  
10 10  
11 11  
12 12  
13 13  
11 +**Table of Contents:**
14 14  
15 -= 1. Introduction =
16 16  
17 -== 1.1 ​What is LoRaWAN Soil Moisture & EC Sensor ==
18 18  
19 -(((
20 -
21 21  
22 -The Dragino LSE01 is a (% style="color:#4f81bd" %)**LoRaWAN Soil Moisture & EC Sensor**(%%) for IoT of Agriculture. It is designed to measure the soil moisture of saline-alkali soil and loamy soil. The soil sensor uses FDR method to calculate the soil moisture with the compensation from soil temperature and conductivity. It also has been calibrated in factory for Mineral soil type.
23 -)))
24 24  
25 -(((
26 -It detects (% style="color:#4f81bd" %)**Soil Moisture**(%%), (% style="color:#4f81bd" %)**Soil Temperature**(%%) and (% style="color:#4f81bd" %)**Soil Conductivity**(%%), and uploads the value via wireless to LoRaWAN IoT Server.
27 -)))
28 28  
18 +
19 += 1.  Introduction =
20 +
21 +== 1.1 ​ What is NDDS75 Distance Detection Sensor ==
22 +
29 29  (((
30 -The LoRa wireless technology used in LES01 allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption.
31 -)))
24 +
32 32  
33 33  (((
34 -LES01 is powered by (% style="color:#4f81bd" %)**4000mA or 8500mAh Li-SOCI2 battery**(%%), It is designed for long term use up to 10 years.
27 +The Dragino NDDS75 is a (% style="color:blue" %)**NB-IoT Distance Detection Sensor**(%%) for Internet of Things solution. It is designed to measure the distance between the sensor and a flat object. The distance detection sensor is a module that uses ultrasonic sensing technology for distance measurement, and temperature compensation is performed internally to improve the reliability of data.
28 +\\The NDDS75 can be applied to scenarios such as horizontal distance measurement, liquid level measurement, parking management system, object proximity and presence detection, intelligent trash can management system, robot obstacle avoidance, automatic control, sewer, bottom water level monitoring, etc. It detects the distance between the measured object and the sensor, and uploads the value via wireless to IoT Server via NB-IoT Network.
29 +\\NarrowBand-Internet of Things (NB-IoT) is a standards-based low power wide area (LPWA) technology developed to enable a wide range of new IoT devices and services. NB-IoT significantly improves the power consumption of user devices, system capacity and spectrum efficiency, especially in deep coverage.
30 +\\NDDS75 supports different uplink methods include (% style="color:blue" %)**TCP, MQTT, UDP and CoAP** (%%)for different application requirement.
31 +\\NDDS75 is powered by (% style="color:blue" %)**8500mAh Li-SOCI2 battery**(%%), It is designed for long term use up to 5 years. (Actually Battery life depends on the use environment, update period & uplink method)
32 +\\To use NDDS75, user needs to check if there is NB-IoT coverage in local area and with the bands NDDS75 supports. If the local operate support it, user needs to get a NB-IoT SIM card from local operator and install NDDS75 to get NB-IoT network connection.
35 35  )))
36 36  
37 -(((
38 -Each LES01 is pre-load with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect after power on.
35 +
39 39  )))
40 40  
41 -
42 42  [[image:1654503236291-817.png]]
43 43  
44 44  
45 -[[image:1654503265560-120.png]]
41 +[[image:1657245163077-232.png]]
46 46  
47 47  
48 48  
49 -== 1.2 ​Features ==
45 +== 1.2 ​ Features ==
50 50  
51 -* LoRaWAN 1.0.3 Class A
52 -* Ultra low power consumption
47 +* NB-IoT Bands: B1/B3/B8/B5/B20/B28 @H-FDD
53 53  * Monitor Soil Moisture
54 54  * Monitor Soil Temperature
55 55  * Monitor Soil Conductivity
56 -* Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865
57 57  * AT Commands to change parameters
58 58  * Uplink on periodically
59 59  * Downlink to change configure
60 60  * IP66 Waterproof Enclosure
61 -* 4000mAh or 8500mAh Battery for long term use
55 +* Ultra-Low Power consumption
56 +* AT Commands to change parameters
57 +* Micro SIM card slot for NB-IoT SIM
58 +* 8500mAh Battery for long term use
62 62  
63 -== 1.3 Specification ==
60 +== 1.3  Specification ==
64 64  
62 +
63 +(% style="color:#037691" %)**Common DC Characteristics:**
64 +
65 +* Supply Voltage: 2.1v ~~ 3.6v
66 +* Operating Temperature: -40 ~~ 85°C
67 +
68 +(% style="color:#037691" %)**NB-IoT Spec:**
69 +
70 +* - B1 @H-FDD: 2100MHz
71 +* - B3 @H-FDD: 1800MHz
72 +* - B8 @H-FDD: 900MHz
73 +* - B5 @H-FDD: 850MHz
74 +* - B20 @H-FDD: 800MHz
75 +* - B28 @H-FDD: 700MHz
76 +
77 +Probe(% style="color:#037691" %)** Specification:**
78 +
65 65  Measure Volume: Base on the centra pin of the probe, a cylinder with 7cm diameter and 10cm height.
66 66  
67 -[[image:image-20220606162220-5.png]]
81 +[[image:image-20220708101224-1.png]]
68 68  
69 69  
70 70  
71 -== ​1.4 Applications ==
85 +== ​1.4  Applications ==
72 72  
73 73  * Smart Agriculture
74 74  
... ... @@ -75,707 +75,623 @@
75 75  (% class="wikigeneratedid" id="H200B1.5FirmwareChangelog" %)
76 76  ​
77 77  
78 -== 1.5 Firmware Change log ==
92 +== 1.5  Pin Definitions ==
79 79  
80 80  
81 -**LSE01 v1.0 :**  Release
95 +[[image:1657246476176-652.png]]
82 82  
83 83  
84 84  
85 -= 2. Configure LSE01 to connect to LoRaWAN network =
99 += 2.  Use NSE01 to communicate with IoT Server =
86 86  
87 -== 2.1 How it works ==
101 +== 2.1  How it works ==
88 88  
103 +
89 89  (((
90 -The LSE01 is configured as LoRaWAN OTAA Class A mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and power on the LSE0150. It will automatically join the network via OTAA and start to send the sensor value
105 +The NSE01 is equipped with a NB-IoT module, the pre-loaded firmware in NSE01 will get environment data from sensors and send the value to local NB-IoT network via the NB-IoT module The NB-IoT network will forward this value to IoT server via the protocol defined by NSE01.
91 91  )))
92 92  
108 +
93 93  (((
94 -In case you can’t set the OTAA keys in the LoRaWAN OTAA server, and you have to use the keys from the server, you can [[use AT Commands >>||anchor="H3.200BUsingtheATCommands"]].
110 +The diagram below shows the working flow in default firmware of NSE01:
95 95  )))
96 96  
113 +[[image:image-20220708101605-2.png]]
97 97  
115 +(((
116 +
117 +)))
98 98  
99 -== 2.2 ​Quick guide to connect to LoRaWAN server (OTAA) ==
100 100  
101 -Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LG308>>url:http://www.dragino.com/products/lora/item/140-lg308.html]] as a LoRaWAN gateway in this example.
102 102  
121 +== 2.2 ​ Configure the NSE01 ==
103 103  
104 -[[image:1654503992078-669.png]]
105 105  
124 +=== 2.2.1 Test Requirement ===
106 106  
107 -The LG308 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
108 108  
127 +(((
128 +To use NSE01 in your city, make sure meet below requirements:
129 +)))
109 109  
110 -(% style="color:blue" %)**Step 1**(%%):  Create a device in TTN with the OTAA keys from LSE01.
131 +* Your local operator has already distributed a NB-IoT Network there.
132 +* The local NB-IoT network used the band that NSE01 supports.
133 +* Your operator is able to distribute the data received in their NB-IoT network to your IoT server.
111 111  
112 -Each LSE01 is shipped with a sticker with the default device EUI as below:
135 +(((
136 +Below figure shows our testing structure. Here we have NB-IoT network coverage by China Mobile, the band they use is B8.  The NSE01 will use CoAP((% style="color:red" %)120.24.4.116:5683)(%%) or raw UDP((% style="color:red" %)120.24.4.116:5601)(%%) or MQTT((% style="color:red" %)120.24.4.116:1883)(%%)or TCP((% style="color:red" %)120.24.4.116:5600)(%%)protocol to send data to the test server
137 +)))
113 113  
114 -[[image:image-20220606163732-6.jpeg]]
115 115  
116 -You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot:
140 +[[image:1657249419225-449.png]]
117 117  
118 -**Add APP EUI in the application**
119 119  
120 120  
121 -[[image:1654504596150-405.png]]
144 +=== 2.2.2 Insert SIM card ===
122 122  
146 +(((
147 +Insert the NB-IoT Card get from your provider.
148 +)))
123 123  
150 +(((
151 +User need to take out the NB-IoT module and insert the SIM card like below:
152 +)))
124 124  
125 -**Add APP KEY and DEV EUI**
126 126  
127 -[[image:1654504683289-357.png]]
155 +[[image:1657249468462-536.png]]
128 128  
129 129  
130 130  
131 -(% style="color:blue" %)**Step 2**(%%): Power on LSE01
159 +=== 2.2.3 Connect USB TTL to NSE01 to configure it ===
132 132  
161 +(((
162 +(((
163 +User need to configure NSE01 via serial port to set the (% style="color:blue" %)**Server Address** / **Uplink Topic** (%%)to define where and how-to uplink packets. NSE01 support AT Commands, user can use a USB to TTL adapter to connect to NSE01 and use AT Commands to configure it, as below.
164 +)))
165 +)))
133 133  
134 -Put a Jumper on JP2 to power on the device. ( The Jumper must be in FLASH position).
135 135  
136 -[[image:image-20220606163915-7.png]]
168 +**Connection:**
137 137  
170 + (% style="background-color:yellow" %)USB TTL GND <~-~-~-~-> GND
138 138  
139 -(% style="color:blue" %)**Step 3**(%%)**:** The LSE01 will auto join to the TTN network. After join success, it will start to upload messages to TTN and you can see the messages in the panel.
172 + (% style="background-color:yellow" %)USB TTL TXD <~-~-~-~-> UART_RXD
140 140  
141 -[[image:1654504778294-788.png]]
174 + (% style="background-color:yellow" %)USB TTL RXD <~-~-~-~-> UART_TXD
142 142  
143 143  
177 +In the PC, use below serial tool settings:
144 144  
145 -== 2.3 Uplink Payload ==
179 +* Baud:  (% style="color:green" %)**9600**
180 +* Data bits:** (% style="color:green" %)8(%%)**
181 +* Stop bits: (% style="color:green" %)**1**
182 +* Parity:  (% style="color:green" %)**None**
183 +* Flow Control: (% style="color:green" %)**None**
146 146  
185 +(((
186 +Make sure the switch is in FLASH position, then power on device by connecting the jumper on NSE01. NSE01 will output system info once power on as below, we can enter the (% style="color:green" %)**password: 12345678**(%%) to access AT Command input.
187 +)))
147 147  
148 -=== 2.3.1 MOD~=0(Default Mode) ===
189 +[[image:image-20220708110657-3.png]]
149 149  
150 -LSE01 will uplink payload via LoRaWAN with below payload format: 
151 -
152 152  (((
153 -Uplink payload includes in total 11 bytes.
192 +(% style="color:red" %)Note: the valid AT Commands can be found at: (%%)[[http:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/]]
154 154  )))
155 155  
156 -(% border="1" cellspacing="10" style="background-color:#ffffcc; width:500px" %)
157 -|(((
158 -**Size**
159 159  
160 -**(bytes)**
161 -)))|**2**|**2**|**2**|**2**|**2**|**1**
162 -|**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(((
163 -Temperature
164 164  
165 -(Reserve, Ignore now)
166 -)))|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]]|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]]|(((
167 -MOD & Digital Interrupt
197 +=== 2.2.4 Use CoAP protocol to uplink data ===
168 168  
169 -(Optional)
170 -)))
199 +(% style="color:red" %)Note: if you don't have CoAP server, you can refer this link to set up one: (%%)[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/>>http://wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/]]
171 171  
172 172  
173 -=== 2.3.2 MOD~=1(Original value) ===
202 +**Use below commands:**
174 174  
175 -This mode can get the original AD value of moisture and original conductivity (with temperature drift compensation).
204 +* (% style="color:blue" %)**AT+PRO=1**  (%%) ~/~/ Set to use CoAP protocol to uplink
205 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5683   ** (%%)~/~/ to set CoAP server address and port
206 +* (% style="color:blue" %)**AT+URI=5,11,"mqtt",11,"coap",12,"0",15,"c=text1",23,"0" ** (%%) ~/~/Set COAP resource path
176 176  
177 -(% border="1" cellspacing="10" style="background-color:#ffffcc; width:500px" %)
178 -|(((
179 -**Size**
208 +For parameter description, please refer to AT command set
180 180  
181 -**(bytes)**
182 -)))|**2**|**2**|**2**|**2**|**2**|**1**
183 -|**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(((
184 -Temperature
210 +[[image:1657249793983-486.png]]
185 185  
186 -(Reserve, Ignore now)
187 -)))|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]](raw)|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]](raw)|(((
188 -MOD & Digital Interrupt
189 189  
190 -(Optional)
191 -)))
213 +After configure the server address and (% style="color:green" %)**reset the device**(%%) (via AT+ATZ ), NSE01 will start to uplink sensor values to CoAP server.
192 192  
215 +[[image:1657249831934-534.png]]
193 193  
194 -=== 2.3.3 Battery Info ===
195 195  
196 -(((
197 -Check the battery voltage for LSE01.
198 -)))
199 199  
200 -(((
201 -Ex1: 0x0B45 = 2885mV
202 -)))
219 +=== 2.2.5 Use UDP protocol to uplink data(Default protocol) ===
203 203  
204 -(((
205 -Ex2: 0x0B49 = 2889mV
206 -)))
221 +This feature is supported since firmware version v1.0.1
207 207  
208 208  
224 +* (% style="color:blue" %)**AT+PRO=2   ** (%%) ~/~/ Set to use UDP protocol to uplink
225 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5601   ** (%%) ~/~/ to set UDP server address and port
226 +* (% style="color:blue" %)**AT+CFM=1       ** (%%) ~/~/If the server does not respond, this command is unnecessary
209 209  
210 -=== 2.3.4 Soil Moisture ===
228 +[[image:1657249864775-321.png]]
211 211  
212 -(((
213 -Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil.
214 -)))
215 215  
216 -(((
217 -For example, if the data you get from the register is __0x05 0xDC__, the moisture content in the soil is
218 -)))
231 +[[image:1657249930215-289.png]]
219 219  
220 -(((
221 -
222 -)))
223 223  
224 -(((
225 -(% style="color:#4f81bd" %)**05DC(H) = 1500(D) /100 = 15%.**
226 -)))
227 227  
235 +=== 2.2.6 Use MQTT protocol to uplink data ===
228 228  
237 +This feature is supported since firmware version v110
229 229  
230 -=== 2.3.5 Soil Temperature ===
231 231  
232 -(((
233 - Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is 0x09 0xEC, the temperature content in the soil is
234 -)))
240 +* (% style="color:blue" %)**AT+PRO=3   ** (%%) ~/~/Set to use MQTT protocol to uplink
241 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,1883   ** (%%) ~/~/Set MQTT server address and port
242 +* (% style="color:blue" %)**AT+CLIENT=CLIENT       ** (%%)~/~/Set up the CLIENT of MQTT
243 +* (% style="color:blue" %)**AT+UNAME=UNAME                               **(%%)~/~/Set the username of MQTT
244 +* (% style="color:blue" %)**AT+PWD=PWD                                        **(%%)~/~/Set the password of MQTT
245 +* (% style="color:blue" %)**AT+PUBTOPIC=NSE01_PUB                    **(%%)~/~/Set the sending topic of MQTT
246 +* (% style="color:blue" %)**AT+SUBTOPIC=NSE01_SUB          **(%%) ~/~/Set the subscription topic of MQTT
235 235  
236 -(((
237 -**Example**:
238 -)))
248 +[[image:1657249978444-674.png]]
239 239  
240 -(((
241 -If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/100 = 2.61 °C
242 -)))
243 243  
251 +[[image:1657249990869-686.png]]
252 +
253 +
244 244  (((
245 -If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C
255 +MQTT protocol has a much higher power consumption compare vs UDP / CoAP protocol. Please check the power analyze document and adjust the uplink period to a suitable interval.
246 246  )))
247 247  
248 248  
249 249  
250 -=== 2.3.6 Soil Conductivity (EC) ===
260 +=== 2.2.7 Use TCP protocol to uplink data ===
251 251  
252 -(((
253 -Obtain (% style="color:#4f81bd" %)**__soluble salt concentration__**(%%) in soil or (% style="color:#4f81bd" %)**__soluble ion concentration in liquid fertilizer__**(%%) or (% style="color:#4f81bd" %)**__planting medium__**(%%). The value range of the register is 0 - 20000(Decimal)( Can be greater than 20000).
254 -)))
262 +This feature is supported since firmware version v110
255 255  
256 -(((
257 -For example, if the data you get from the register is 0x00 0xC8, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm.
258 -)))
259 259  
260 -(((
261 -Generally, the EC value of irrigation water is less than 800uS / cm.
262 -)))
265 +* (% style="color:blue" %)**AT+PRO=4   ** (%%) ~/~/ Set to use TCP protocol to uplink
266 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5600   **(%%) ~/~/ to set TCP server address and port
263 263  
264 -(((
265 -
266 -)))
268 +[[image:1657250217799-140.png]]
267 267  
268 -(((
269 -
270 -)))
271 271  
272 -=== 2.3.7 MOD ===
271 +[[image:1657250255956-604.png]]
273 273  
274 -Firmware version at least v2.1 supports changing mode.
275 275  
276 -For example, bytes[10]=90
277 277  
278 -mod=(bytes[10]>>7)&0x01=1.
275 +=== 2.2.8 Change Update Interval ===
279 279  
277 +User can use below command to change the (% style="color:green" %)**uplink interval**.
280 280  
281 -**Downlink Command:**
279 +* (% style="color:blue" %)**AT+TDC=600      ** (%%)~/~/ Set Update Interval to 600s
282 282  
283 -If payload = 0x0A00, workmode=0
281 +(((
282 +(% style="color:red" %)**NOTE:**
283 +)))
284 284  
285 -If** **payload =** **0x0A01, workmode=1
285 +(((
286 +(% style="color:red" %)1. By default, the device will send an uplink message every 1 hour.
287 +)))
286 286  
287 287  
288 288  
289 -=== 2.3.8 ​Decode payload in The Things Network ===
291 +== 2.3  Uplink Payload ==
290 290  
291 -While using TTN network, you can add the payload format to decode the payload.
293 +In this mode, uplink payload includes in total 18 bytes
292 292  
295 +(% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:510px" %)
296 +|=(% style="width: 60px;" %)(((
297 +**Size(bytes)**
298 +)))|=(% style="width: 50px;" %)**6**|=(% style="width: 25px;" %)2|=(% style="width: 25px;" %)**2**|=(% style="width: 70px;" %)**1**|=(% style="width: 60px;" %)**2**|=(% style="width: 80px;" %)**2**|=(% style="width: 90px;" %)**2**|=(% style="width: 50px;" %)**1**
299 +|(% style="width:97px" %)**Value**|(% style="width:83px" %)[[Device ID>>||anchor="H2.4.1A0A0DeviceID"]]|(% style="width:41px" %)[[Ver>>||anchor="H2.4.2A0VersionInfo"]]|(% style="width:46px" %)[[BAT>>||anchor="H2.4.3A0BatteryInfo"]]|(% style="width:123px" %)[[Signal Strength>>||anchor="H2.4.4A0SignalStrength"]]|(% style="width:108px" %)[[Soil Moisture>>||anchor="H2.4.5A0SoilMoisture"]]|(% style="width:133px" %)[[Soil Temperature>>||anchor="H2.4.6A0SoilTemperature"]]|(% style="width:159px" %)[[Soil Conductivity(EC)>>||anchor="H2.4.7A0SoilConductivity28EC29"]]|(% style="width:80px" %)[[Interrupt>>||anchor="H2.4.8A0DigitalInterrupt"]]
293 293  
294 -[[image:1654505570700-128.png]]
295 -
296 296  (((
297 -The payload decoder function for TTN is here:
302 +If we use the MQTT client to subscribe to this MQTT topic, we can see the following information when the NSE01 uplink data.
298 298  )))
299 299  
300 -(((
301 -LSE01 TTN Payload Decoder: [[https:~~/~~/www.dropbox.com/sh/si8icbrjlamxqdb/AAACYwjsxxr5fj_vpqRtrETAa?dl=0>>https://www.dropbox.com/sh/si8icbrjlamxqdb/AAACYwjsxxr5fj_vpqRtrETAa?dl=0]]
302 -)))
303 303  
306 +[[image:image-20220708111918-4.png]]
304 304  
305 -== 2.4 Uplink Interval ==
306 306  
307 -The LSE01 by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link: [[Change Uplink Interval>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H4.1ChangeUplinkInterval"]]
309 +The payload is ASCII string, representative same HEX:
308 308  
311 +0x72403155615900640c7817075e0a8c02f900 where:
309 309  
313 +* Device ID: 0x 724031556159 = 724031556159
314 +* Version: 0x0064=100=1.0.0
310 310  
311 -== 2.5 Downlink Payload ==
316 +* BAT: 0x0c78 = 3192 mV = 3.192V
317 +* Singal: 0x17 = 23
318 +* Soil Moisture: 0x075e= 1886 = 18.86  %
319 +* Soil Temperature:0x0a8c =2700=27 °C
320 +* Soil Conductivity(EC) = 0x02f9 =761 uS /cm
321 +* Interrupt: 0x00 = 0
312 312  
313 -By default, LSE50 prints the downlink payload to console port.
323 +== 2.4  Payload Explanation and Sensor Interface ==
314 314  
315 -[[image:image-20220606165544-8.png]]
316 316  
326 +=== 2.4.1  Device ID ===
317 317  
318 318  (((
319 -**Examples:**
329 +By default, the Device ID equal to the last 6 bytes of IMEI.
320 320  )))
321 321  
322 322  (((
323 -
333 +User can use (% style="color:blue" %)**AT+DEUI**(%%) to set Device ID
324 324  )))
325 325  
326 -* (((
327 -**Set TDC**
336 +(((
337 +**Example:**
328 328  )))
329 329  
330 330  (((
331 -If the payload=0100003C, it means set the END Node’s TDC to 0x00003C=60(S), while type code is 01.
341 +AT+DEUI=A84041F15612
332 332  )))
333 333  
334 334  (((
335 -Payload:    01 00 00 1E    TDC=30S
345 +The Device ID is stored in a none-erase area, Upgrade the firmware or run AT+FDR won't erase Device ID.
336 336  )))
337 337  
348 +
349 +
350 +=== 2.4.2  Version Info ===
351 +
338 338  (((
339 -Payload:    01 00 00 3C    TDC=60S
353 +Specify the software version: 0x64=100, means firmware version 1.00.
340 340  )))
341 341  
342 342  (((
343 -
357 +For example: 0x00 64 : this device is NSE01 with firmware version 1.0.0.
344 344  )))
345 345  
346 -* (((
347 -**Reset**
360 +
361 +
362 +=== 2.4.3  Battery Info ===
363 +
364 +(((
365 +Check the battery voltage for LSE01.
348 348  )))
349 349  
350 350  (((
351 -If payload = 0x04FF, it will reset the LSE01
369 +Ex1: 0x0B45 = 2885mV
352 352  )))
353 353  
372 +(((
373 +Ex2: 0x0B49 = 2889mV
374 +)))
354 354  
355 -* **CFM**
356 356  
357 -Downlink Payload: 05000001, Set AT+CFM=1 or 05000000 , set AT+CFM=0
358 358  
378 +=== 2.4.4  Signal Strength ===
359 359  
380 +(((
381 +NB-IoT Network signal Strength.
382 +)))
360 360  
361 -== 2.6 ​Show Data in DataCake IoT Server ==
384 +(((
385 +**Ex1: 0x1d = 29**
386 +)))
362 362  
363 363  (((
364 -[[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps:
389 +(% style="color:blue" %)**0**(%%)  -113dBm or less
365 365  )))
366 366  
367 367  (((
368 -
393 +(% style="color:blue" %)**1**(%%)  -111dBm
369 369  )))
370 370  
371 371  (((
372 -(% style="color:blue" %)**Step 1**(%%) Be sure that your device is programmed and properly connected to the network at this time.
397 +(% style="color:blue" %)**2...30**(%%) -109dBm... -53dBm
373 373  )))
374 374  
375 375  (((
376 -(% style="color:blue" %)**Step 2**(%%) To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps:
401 +(% style="color:blue" %)**31**  (%%) -51dBm or greater
377 377  )))
378 378  
404 +(((
405 +(% style="color:blue" %)**99**   (%%) Not known or not detectable
406 +)))
379 379  
380 -[[image:1654505857935-743.png]]
381 381  
382 382  
383 -[[image:1654505874829-548.png]]
410 +=== 2.4.5  Soil Moisture ===
384 384  
412 +(((
413 +(((
414 +Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil.
415 +)))
416 +)))
385 385  
386 -(% style="color:blue" %)**Step 3**(%%)**:**  Create an account or log in Datacake.
418 +(((
419 +(((
420 +For example, if the data you get from the register is **__0x05 0xDC__**, the moisture content in the soil is
421 +)))
422 +)))
387 387  
388 -(% style="color:blue" %)**Step 4**(%%)**:**  Search the LSE01 and add DevEUI.
424 +(((
425 +
426 +)))
389 389  
428 +(((
429 +(% style="color:#4f81bd" %)**05DC(H) = 1500(D) /100 = 15%.**
430 +)))
390 390  
391 -[[image:1654505905236-553.png]]
392 392  
393 393  
394 -After added, the sensor data arrive TTN, it will also arrive and show in Mydevices.
434 +=== 2.4.6  Soil Temperature ===
395 395  
396 -[[image:1654505925508-181.png]]
436 +(((
437 +Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is __**0x09 0xEC**__, the temperature content in the soil is
438 +)))
397 397  
440 +(((
441 +**Example**:
442 +)))
398 398  
444 +(((
445 +If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/100 = 2.61 °C
446 +)))
399 399  
400 -== 2.7 Frequency Plans ==
448 +(((
449 +If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C
450 +)))
401 401  
402 -The LSE01 uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.
403 403  
404 404  
405 -=== 2.7.1 EU863-870 (EU868) ===
454 +=== 2.4.7  Soil Conductivity (EC) ===
406 406  
407 -(% style="color:#037691" %)** Uplink:**
456 +(((
457 +Obtain (% style="color:#4f81bd" %)**__soluble salt concentration__**(%%) in soil or (% style="color:#4f81bd" %)**__soluble ion concentration in liquid fertilizer__**(%%) or (% style="color:#4f81bd" %)**__planting medium__**(%%). The value range of the register is 0 - 20000(Decimal)( Can be greater than 20000).
458 +)))
408 408  
409 -868.1 - SF7BW125 to SF12BW125
460 +(((
461 +For example, if the data you get from the register is __**0x00 0xC8**__, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm.
462 +)))
410 410  
411 -868.3 - SF7BW125 to SF12BW125 and SF7BW250
464 +(((
465 +Generally, the EC value of irrigation water is less than 800uS / cm.
466 +)))
412 412  
413 -868.5 - SF7BW125 to SF12BW125
468 +(((
469 +
470 +)))
414 414  
415 -867.1 - SF7BW125 to SF12BW125
472 +(((
473 +
474 +)))
416 416  
417 -867.3 - SF7BW125 to SF12BW125
476 +=== 2.4.8  Digital Interrupt ===
418 418  
419 -867.5 - SF7BW125 to SF12BW125
478 +(((
479 +Digital Interrupt refers to pin (% style="color:blue" %)**GPIO_EXTI**(%%), and there are different trigger methods. When there is a trigger, the NSE01 will send a packet to the server.
480 +)))
420 420  
421 -867.7 - SF7BW125 to SF12BW125
482 +(((
483 +The command is:
484 +)))
422 422  
423 -867.9 - SF7BW125 to SF12BW125
486 +(((
487 +(% style="color:blue" %)**AT+INTMOD=3 **(%%) ~/~/(more info about INMOD please refer [[**AT Command Manual**>>url:https://www.dragino.com/downloads/downloads/NB-IoT/NBSN95/DRAGINO_NBSN95-NB_AT%20Commands_v1.1.0.pdf]])**.**
488 +)))
424 424  
425 -868.8 - FSK
426 426  
491 +(((
492 +The lower four bits of this data field shows if this packet is generated by interrupt or not. Click here for the hardware and software set up.
493 +)))
427 427  
428 -(% style="color:#037691" %)** Downlink:**
429 429  
430 -Uplink channels 1-9 (RX1)
496 +(((
497 +Example:
498 +)))
431 431  
432 -869.525 - SF9BW125 (RX2 downlink only)
500 +(((
501 +0x(00): Normal uplink packet.
502 +)))
433 433  
504 +(((
505 +0x(01): Interrupt Uplink Packet.
506 +)))
434 434  
435 435  
436 -=== 2.7.2 US902-928(US915) ===
437 437  
438 -Used in USA, Canada and South America. Default use CHE=2
510 +=== 2.4.9  ​+5V Output ===
439 439  
440 -(% style="color:#037691" %)**Uplink:**
512 +(((
513 +NSE01 will enable +5V output before all sampling and disable the +5v after all sampling. 
514 +)))
441 441  
442 -903.9 - SF7BW125 to SF10BW125
443 443  
444 -904.1 - SF7BW125 to SF10BW125
517 +(((
518 +The 5V output time can be controlled by AT Command.
519 +)))
445 445  
446 -904.3 - SF7BW125 to SF10BW125
521 +(((
522 +(% style="color:blue" %)**AT+5VT=1000**
523 +)))
447 447  
448 -904.5 - SF7BW125 to SF10BW125
525 +(((
526 +Means set 5V valid time to have 1000ms. So the real 5V output will actually have 1000ms + sampling time for other sensors.
527 +)))
449 449  
450 -904.7 - SF7BW125 to SF10BW125
451 451  
452 -904.9 - SF7BW125 to SF10BW125
453 453  
454 -905.1 - SF7BW125 to SF10BW125
531 +== 2.5  Downlink Payload ==
455 455  
456 -905.3 - SF7BW125 to SF10BW125
533 +By default, NSE01 prints the downlink payload to console port.
457 457  
535 +[[image:image-20220708133731-5.png]]
458 458  
459 -(% style="color:#037691" %)**Downlink:**
460 460  
461 -923.3 - SF7BW500 to SF12BW500
538 +(((
539 +(% style="color:blue" %)**Examples:**
540 +)))
462 462  
463 -923.9 - SF7BW500 to SF12BW500
542 +(((
543 +
544 +)))
464 464  
465 -924.5 - SF7BW500 to SF12BW500
546 +* (((
547 +(% style="color:blue" %)**Set TDC**
548 +)))
466 466  
467 -925.1 - SF7BW500 to SF12BW500
550 +(((
551 +If the payload=0100003C, it means set the END Node's TDC to 0x00003C=60(S), while type code is 01.
552 +)))
468 468  
469 -925.7 - SF7BW500 to SF12BW500
554 +(((
555 +Payload:    01 00 00 1E    TDC=30S
556 +)))
470 470  
471 -926.3 - SF7BW500 to SF12BW500
558 +(((
559 +Payload:    01 00 00 3C    TDC=60S
560 +)))
472 472  
473 -926.9 - SF7BW500 to SF12BW500
562 +(((
563 +
564 +)))
474 474  
475 -927.5 - SF7BW500 to SF12BW500
566 +* (((
567 +(% style="color:blue" %)**Reset**
568 +)))
476 476  
477 -923.3 - SF12BW500(RX2 downlink only)
570 +(((
571 +If payload = 0x04FF, it will reset the NSE01
572 +)))
478 478  
479 479  
575 +* (% style="color:blue" %)**INTMOD**
480 480  
481 -=== 2.7.3 CN470-510 (CN470) ===
577 +(((
578 +Downlink Payload: 06000003, Set AT+INTMOD=3
579 +)))
482 482  
483 -Used in China, Default use CHE=1
484 484  
485 -(% style="color:#037691" %)**Uplink:**
486 486  
487 -486.3 - SF7BW125 to SF12BW125
583 +== 2.6  ​LED Indicator ==
488 488  
489 -486.5 - SF7BW125 to SF12BW125
585 +(((
586 +The NSE01 has an internal LED which is to show the status of different state.
490 490  
491 -486.7 - SF7BW125 to SF12BW125
492 492  
493 -486.9 - SF7BW125 to SF12BW125
589 +* When power on, NSE01 will detect if sensor probe is connected, if probe detected, LED will blink four times. (no blinks in this step is no probe)
590 +* Then the LED will be on for 1 second means device is boot normally.
591 +* After NSE01 join NB-IoT network. The LED will be ON for 3 seconds.
592 +* For each uplink probe, LED will be on for 500ms.
593 +)))
494 494  
495 -487.1 - SF7BW125 to SF12BW125
496 496  
497 -487.3 - SF7BW125 to SF12BW125
498 498  
499 -487.5 - SF7BW125 to SF12BW125
500 500  
501 -487.7 - SF7BW125 to SF12BW125
598 +== 2.7  Installation in Soil ==
502 502  
600 +__**Measurement the soil surface**__
503 503  
504 -(% style="color:#037691" %)**Downlink:**
602 +(((
603 +Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting. [[https:~~/~~/img.alicdn.com/imgextra/i3/2005165265/O1CN010rj9Oh1olPsQxrdUK_!!2005165265.jpg>>url:https://img.alicdn.com/imgextra/i3/2005165265/O1CN010rj9Oh1olPsQxrdUK_!!2005165265.jpg]]
604 +)))
505 505  
506 -506.7 - SF7BW125 to SF12BW125
606 +[[image:1657259653666-883.png]] ​
507 507  
508 -506.9 - SF7BW125 to SF12BW125
509 509  
510 -507.1 - SF7BW125 to SF12BW125
609 +(((
610 +
511 511  
512 -507.3 - SF7BW125 to SF12BW125
612 +(((
613 +Dig a hole with diameter > 20CM.
614 +)))
513 513  
514 -507.5 - SF7BW125 to SF12BW125
616 +(((
617 +Horizontal insert the probe to the soil and fill the hole for long term measurement.
618 +)))
619 +)))
515 515  
516 -507.7 - SF7BW125 to SF12BW125
621 +[[image:1654506665940-119.png]]
517 517  
518 -507.9 - SF7BW125 to SF12BW125
623 +(((
624 +
625 +)))
519 519  
520 -508.1 - SF7BW125 to SF12BW125
521 521  
522 -505.3 - SF12BW125 (RX2 downlink only)
628 +== 2.8  ​Firmware Change Log ==
523 523  
524 524  
631 +Download URL & Firmware Change log
525 525  
526 -=== 2.7.4 AU915-928(AU915) ===
633 +[[www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/Firmware/]]
527 527  
528 -Default use CHE=2
529 529  
530 -(% style="color:#037691" %)**Uplink:**
636 +Upgrade Instruction: [[Upgrade_Firmware>>||anchor="H5.1200BHowtoUpgradeFirmware"]]
531 531  
532 -916.8 - SF7BW125 to SF12BW125
533 533  
534 -917.0 - SF7BW125 to SF12BW125
535 535  
536 -917.2 - SF7BW125 to SF12BW125
640 +== 2.9  ​Battery Analysis ==
537 537  
538 -917.4 - SF7BW125 to SF12BW125
642 +=== 2.9.1  ​Battery Type ===
539 539  
540 -917.6 - SF7BW125 to SF12BW125
541 541  
542 -917.8 - SF7BW125 to SF12BW125
543 -
544 -918.0 - SF7BW125 to SF12BW125
545 -
546 -918.2 - SF7BW125 to SF12BW125
547 -
548 -
549 -(% style="color:#037691" %)**Downlink:**
550 -
551 -923.3 - SF7BW500 to SF12BW500
552 -
553 -923.9 - SF7BW500 to SF12BW500
554 -
555 -924.5 - SF7BW500 to SF12BW500
556 -
557 -925.1 - SF7BW500 to SF12BW500
558 -
559 -925.7 - SF7BW500 to SF12BW500
560 -
561 -926.3 - SF7BW500 to SF12BW500
562 -
563 -926.9 - SF7BW500 to SF12BW500
564 -
565 -927.5 - SF7BW500 to SF12BW500
566 -
567 -923.3 - SF12BW500(RX2 downlink only)
568 -
569 -
570 -
571 -=== 2.7.5 AS920-923 & AS923-925 (AS923) ===
572 -
573 -(% style="color:#037691" %)**Default Uplink channel:**
574 -
575 -923.2 - SF7BW125 to SF10BW125
576 -
577 -923.4 - SF7BW125 to SF10BW125
578 -
579 -
580 -(% style="color:#037691" %)**Additional Uplink Channel**:
581 -
582 -(OTAA mode, channel added by JoinAccept message)
583 -
584 -(% style="color:#037691" %)**AS920~~AS923 for Japan, Malaysia, Singapore**:
585 -
586 -922.2 - SF7BW125 to SF10BW125
587 -
588 -922.4 - SF7BW125 to SF10BW125
589 -
590 -922.6 - SF7BW125 to SF10BW125
591 -
592 -922.8 - SF7BW125 to SF10BW125
593 -
594 -923.0 - SF7BW125 to SF10BW125
595 -
596 -922.0 - SF7BW125 to SF10BW125
597 -
598 -
599 -(% style="color:#037691" %)**AS923 ~~ AS925 for Brunei, Cambodia, Hong Kong, Indonesia, Laos, Taiwan, Thailand, Vietnam**:
600 -
601 -923.6 - SF7BW125 to SF10BW125
602 -
603 -923.8 - SF7BW125 to SF10BW125
604 -
605 -924.0 - SF7BW125 to SF10BW125
606 -
607 -924.2 - SF7BW125 to SF10BW125
608 -
609 -924.4 - SF7BW125 to SF10BW125
610 -
611 -924.6 - SF7BW125 to SF10BW125
612 -
613 -
614 -(% style="color:#037691" %)** Downlink:**
615 -
616 -Uplink channels 1-8 (RX1)
617 -
618 -923.2 - SF10BW125 (RX2)
619 -
620 -
621 -
622 -=== 2.7.6 KR920-923 (KR920) ===
623 -
624 -Default channel:
625 -
626 -922.1 - SF7BW125 to SF12BW125
627 -
628 -922.3 - SF7BW125 to SF12BW125
629 -
630 -922.5 - SF7BW125 to SF12BW125
631 -
632 -
633 -(% style="color:#037691" %)**Uplink: (OTAA mode, channel added by JoinAccept message)**
634 -
635 -922.1 - SF7BW125 to SF12BW125
636 -
637 -922.3 - SF7BW125 to SF12BW125
638 -
639 -922.5 - SF7BW125 to SF12BW125
640 -
641 -922.7 - SF7BW125 to SF12BW125
642 -
643 -922.9 - SF7BW125 to SF12BW125
644 -
645 -923.1 - SF7BW125 to SF12BW125
646 -
647 -923.3 - SF7BW125 to SF12BW125
648 -
649 -
650 -(% style="color:#037691" %)**Downlink:**
651 -
652 -Uplink channels 1-7(RX1)
653 -
654 -921.9 - SF12BW125 (RX2 downlink only; SF12BW125 might be changed to SF9BW125)
655 -
656 -
657 -
658 -=== 2.7.7 IN865-867 (IN865) ===
659 -
660 -(% style="color:#037691" %)** Uplink:**
661 -
662 -865.0625 - SF7BW125 to SF12BW125
663 -
664 -865.4025 - SF7BW125 to SF12BW125
665 -
666 -865.9850 - SF7BW125 to SF12BW125
667 -
668 -
669 -(% style="color:#037691" %) **Downlink:**
670 -
671 -Uplink channels 1-3 (RX1)
672 -
673 -866.550 - SF10BW125 (RX2)
674 -
675 -
676 -
677 -
678 -== 2.8 LED Indicator ==
679 -
680 -The LSE01 has an internal LED which is to show the status of different state.
681 -
682 -* Blink once when device power on.
683 -* Solid ON for 5 seconds once device successful Join the network.
684 -* Blink once when device transmit a packet.
685 -
686 -
687 -
688 -== 2.9 Installation in Soil ==
689 -
690 -**Measurement the soil surface**
691 -
692 -
693 -[[image:1654506634463-199.png]] ​
694 -
695 695  (((
696 -(((
697 -Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting.
646 +The NSE01 battery is a combination of an 8500mAh Li/SOCI2 Battery and a Super Capacitor. The battery is none-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter.
698 698  )))
699 -)))
700 700  
701 701  
702 -
703 -[[image:1654506665940-119.png]]
704 -
705 705  (((
706 -Dig a hole with diameter > 20CM.
651 +The battery is designed to last for several years depends on the actually use environment and update interval. 
707 707  )))
708 708  
709 -(((
710 -Horizontal insert the probe to the soil and fill the hole for long term measurement.
711 -)))
712 712  
713 -
714 -== 2.10 ​Firmware Change Log ==
715 -
716 716  (((
717 -**Firmware download link:**
656 +The battery related documents as below:
718 718  )))
719 719  
720 -(((
721 -[[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/]]
722 -)))
659 +* [[Battery Dimension>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]
660 +* [[Lithium-Thionyl Chloride Battery datasheet>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]
661 +* [[Lithium-ion Battery-Capacitor datasheet>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]
723 723  
724 724  (((
725 -
664 +[[image:image-20220708140453-6.png]]
726 726  )))
727 727  
728 -(((
729 -**Firmware Upgrade Method: **[[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome]]
730 -)))
731 731  
732 -(((
733 -
734 -)))
735 735  
736 -(((
737 -**V1.0.**
738 -)))
669 +=== 2.9.2  Power consumption Analyze ===
739 739  
740 740  (((
741 -Release
672 +Dragino battery powered product are all runs in Low Power mode. We have an update battery calculator which base on the measurement of the real device. User can use this calculator to check the battery life and calculate the battery life if want to use different transmit interval.
742 742  )))
743 743  
744 744  
745 -== 2.11 ​Battery Analysis ==
746 -
747 -=== 2.11.1 ​Battery Type ===
748 -
749 749  (((
750 -The LSE01 battery is a combination of a 4000mAh Li/SOCI2 Battery and a Super Capacitor. The battery is non-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter.
677 +Instruction to use as below:
751 751  )))
752 752  
753 753  (((
754 -The battery is designed to last for more than 5 years for the LSN50.
681 +(% style="color:blue" %)**Step 1:  **(%%)Downlink the up-to-date DRAGINO_Battery_Life_Prediction_Table.xlsx from: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/]]
755 755  )))
756 756  
684 +
757 757  (((
758 -(((
759 -The battery-related documents are as below:
686 +(% style="color:blue" %)**Step 2: **(%%) Open it and choose
760 760  )))
761 -)))
762 762  
763 763  * (((
764 -[[Battery Dimension>>url:http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/&file=LSN50-Battery-Dimension.pdf]],
690 +Product Model
765 765  )))
766 766  * (((
767 -[[Lithium-Thionyl Chloride Battery  datasheet>>url:https://www.dragino.com/downloads/downloads/datasheet/Battery/ER26500/ER26500_Datasheet-EN.pdf]],
693 +Uplink Interval
768 768  )))
769 769  * (((
770 -[[Lithium-ion Battery-Capacitor datasheet>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC_1520_datasheet.jpg]], [[Tech Spec>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC1520%20Technical%20Specification20171123.pdf]]
696 +Working Mode
771 771  )))
772 772  
773 - [[image:image-20220610172436-1.png]]
699 +(((
700 +And the Life expectation in difference case will be shown on the right.
701 +)))
774 774  
703 +[[image:image-20220708141352-7.jpeg]]
775 775  
776 776  
777 -=== 2.11.2 ​Battery Note ===
778 778  
707 +=== 2.9.3  ​Battery Note ===
708 +
779 779  (((
780 780  The Li-SICO battery is designed for small current / long period application. It is not good to use a high current, short period transmit method. The recommended minimum period for use of this battery is 5 minutes. If you use a shorter period time to transmit LoRa, then the battery life may be decreased.
781 781  )))
... ... @@ -782,298 +782,176 @@
782 782  
783 783  
784 784  
785 -=== 2.11.3 Replace the battery ===
715 +=== 2.9. Replace the battery ===
786 786  
787 787  (((
788 -If Battery is lower than 2.7v, user should replace the battery of LSE01.
718 +The default battery pack of NSE01 includes a ER26500 plus super capacitor. If user can't find this pack locally, they can find ER26500 or equivalence without the SPC1520 capacitor, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes).
789 789  )))
790 790  
721 +
722 +
723 += 3. ​ Access NB-IoT Module =
724 +
791 791  (((
792 -You can change the battery in the LSE01.The type of battery is not limited as long as the output is between 3v to 3.6v. On the main board, there is a diode (D1) between the battery and the main circuit. If you need to use a battery with less than 3.3v, please remove the D1 and shortcut the two pads of it so there won’t be voltage drop between battery and main board.
726 +Users can directly access the AT command set of the NB-IoT module.
793 793  )))
794 794  
795 795  (((
796 -The default battery pack of LSE01 includes a ER18505 plus super capacitor. If user can’t find this pack locally, they can find ER18505 or equivalence, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes)
730 +The AT Command set can refer the BC35-G NB-IoT Module AT Command: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=datasheet/other_vendors/BC35-G/>>url:https://www.dragino.com/downloads/index.php?dir=datasheet/other_vendors/BC35-G/]] 
797 797  )))
798 798  
733 +[[image:1657261278785-153.png]]
799 799  
800 800  
801 -= 3. ​Using the AT Commands =
802 802  
803 -== 3.1 Access AT Commands ==
737 += 4.  Using the AT Commands =
804 804  
739 +== 4.1  Access AT Commands ==
805 805  
806 -LSE01 supports AT Command set in the stock firmware. You can use a USB to TTL adapter to connect to LSE01 for using AT command, as below.
741 +See this link for detail: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/]]
807 807  
808 -[[image:1654501986557-872.png||height="391" width="800"]]
809 809  
744 +AT+<CMD>?  : Help on <CMD>
810 810  
811 -Or if you have below board, use below connection:
746 +AT+<CMD>         : Run <CMD>
812 812  
748 +AT+<CMD>=<value> : Set the value
813 813  
814 -[[image:1654502005655-729.png||height="503" width="801"]]
750 +AT+<CMD>=?  : Get the value
815 815  
816 816  
817 -
818 -In the PC, you need to set the serial baud rate to (% style="color:green" %)**9600**(%%) to access the serial console for LSE01. LSE01 will output system info once power on as below:
819 -
820 -
821 - [[image:1654502050864-459.png||height="564" width="806"]]
822 -
823 -
824 -Below are the available commands, a more detailed AT Command manual can be found at [[AT Command Manual>>https://www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0]]: [[https:~~/~~/www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0>>https://www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0]]
825 -
826 -
827 -(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>? **(%%) : Help on <CMD>
828 -
829 -(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD> **(%%) : Run <CMD>
830 -
831 -(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>=<value>**(%%) : Set the value
832 -
833 -(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>=?**(%%)  : Get the value
834 -
835 -
836 836  (% style="color:#037691" %)**General Commands**(%%)      
837 837  
838 -(% style="background-color:#dcdcdc" %)**AT**(%%)  : Attention       
755 +AT  : Attention       
839 839  
840 -(% style="background-color:#dcdcdc" %)**AT?**(%%)  : Short Help     
757 +AT?  : Short Help     
841 841  
842 -(% style="background-color:#dcdcdc" %)**ATZ**(%%)  : MCU Reset    
759 +ATZ  : MCU Reset    
843 843  
844 -(% style="background-color:#dcdcdc" %)**AT+TDC**(%%)  : Application Data Transmission Interval 
761 +AT+TDC  : Application Data Transmission Interval
845 845  
763 +AT+CFG  : Print all configurations
846 846  
847 -(% style="color:#037691" %)**Keys, IDs and EUIs management**
765 +AT+CFGMOD           : Working mode selection
848 848  
849 -(% style="background-color:#dcdcdc" %)**AT+APPEUI**(%%)              : Application EUI      
767 +AT+INTMOD            : Set the trigger interrupt mode
850 850  
851 -(% style="background-color:#dcdcdc" %)**AT+APPKEY**(%%)              : Application Key     
769 +AT+5VT  : Set extend the time of 5V power  
852 852  
853 -(% style="background-color:#dcdcdc" %)**AT+APPSKEY**(%%)            : Application Session Key
771 +AT+PRO  : Choose agreement
854 854  
855 -(% style="background-color:#dcdcdc" %)**AT+DADDR**(%%)              : Device Address     
773 +AT+WEIGRE  : Get weight or set weight to 0
856 856  
857 -(% style="background-color:#dcdcdc" %)**AT+DEUI**(%%)                   : Device EUI     
775 +AT+WEIGAP  : Get or Set the GapValue of weight
858 858  
859 -(% style="background-color:#dcdcdc" %)**AT+NWKID**(%%)               : Network ID (You can enter this command change only after successful network connection
777 +AT+RXDL  : Extend the sending and receiving time
860 860  
861 -(% style="background-color:#dcdcdc" %)**AT+NWKSKEY**(%%)          : Network Session Key Joining and sending date on LoRa network  
779 +AT+CNTFAC  : Get or set counting parameters
862 862  
863 -(% style="background-color:#dcdcdc" %)**AT+CFM**(%%)  : Confirm Mode       
781 +AT+SERVADDR  : Server Address
864 864  
865 -(% style="background-color:#dcdcdc" %)**AT+CFS**(%%)                     : Confirm Status       
866 866  
867 -(% style="background-color:#dcdcdc" %)**AT+JOIN**(%%)  : Join LoRa? Network       
784 +(% style="color:#037691" %)**COAP Management**      
868 868  
869 -(% style="background-color:#dcdcdc" %)**AT+NJM**(%%)  : LoRa? Network Join Mode    
786 +AT+URI            : Resource parameters
870 870  
871 -(% style="background-color:#dcdcdc" %)**AT+NJS**(%%)                     : LoRa? Network Join Status    
872 872  
873 -(% style="background-color:#dcdcdc" %)**AT+RECV**(%%)                  : Print Last Received Data in Raw Format
789 +(% style="color:#037691" %)**UDP Management**
874 874  
875 -(% style="background-color:#dcdcdc" %)**AT+RECVB**(%%)                : Print Last Received Data in Binary Format      
791 +AT+CFM          : Upload confirmation mode (only valid for UDP)
876 876  
877 -(% style="background-color:#dcdcdc" %)**AT+SEND**(%%)                  : Send Text Data      
878 878  
879 -(% style="background-color:#dcdcdc" %)**AT+SENB**(%%)                  : Send Hexadecimal Data
794 +(% style="color:#037691" %)**MQTT Management**
880 880  
796 +AT+CLIENT               : Get or Set MQTT client
881 881  
882 -(% style="color:#037691" %)**LoRa Network Management**
798 +AT+UNAME  : Get or Set MQTT Username
883 883  
884 -(% style="background-color:#dcdcdc" %)**AT+ADR**(%%)          : Adaptive Rate
800 +AT+PWD                  : Get or Set MQTT password
885 885  
886 -(% style="background-color:#dcdcdc" %)**AT+CLASS**(%%)  : LoRa Class(Currently only support class A
802 +AT+PUBTOPI : Get or Set MQTT publish topic
887 887  
888 -(% style="background-color:#dcdcdc" %)**AT+DCS**(%%)  : Duty Cycle Settin
804 +AT+SUBTOPIC  : Get or Set MQTT subscription topic
889 889  
890 -(% style="background-color:#dcdcdc" %)**AT+DR**(%%)  : Data Rate (Can Only be Modified after ADR=0)     
891 891  
892 -(% style="background-color:#dcdcdc" %)**AT+FCD**(%%)  : Frame Counter Downlink       
807 +(% style="color:#037691" %)**Information**          
893 893  
894 -(% style="background-color:#dcdcdc" %)**AT+FCU**(%%)  : Frame Counter Uplink   
809 +AT+FDR  : Factory Data Reset
895 895  
896 -(% style="background-color:#dcdcdc" %)**AT+JN1DL**(%%)  : Join Accept Delay1
811 +AT+PWOR : Serial Access Password
897 897  
898 -(% style="background-color:#dcdcdc" %)**AT+JN2DL**(%%)  : Join Accept Delay2
899 899  
900 -(% style="background-color:#dcdcdc" %)**AT+PNM**(%%)  : Public Network Mode   
901 901  
902 -(% style="background-color:#dcdcdc" %)**AT+RX1DL**(%%)  : Receive Delay1      
815 += ​5.  FAQ =
903 903  
904 -(% style="background-color:#dcdcdc" %)**AT+RX2DL**(%%)  : Receive Delay2      
817 +== 5.1 How to Upgrade Firmware ==
905 905  
906 -(% style="background-color:#dcdcdc" %)**AT+RX2DR**(%%)  : Rx2 Window Data Rate 
907 907  
908 -(% style="background-color:#dcdcdc" %)**AT+RX2FQ**(%%)  : Rx2 Window Frequency
909 -
910 -(% style="background-color:#dcdcdc" %)**AT+TXP**(%%)  : Transmit Power
911 -
912 -(% style="background-color:#dcdcdc" %)**AT+ MOD**(%%)  : Set work mode
913 -
914 -
915 -(% style="color:#037691" %)**Information** 
916 -
917 -(% style="background-color:#dcdcdc" %)**AT+RSSI**(%%)           : RSSI of the Last Received Packet   
918 -
919 -(% style="background-color:#dcdcdc" %)**AT+SNR**(%%)           : SNR of the Last Received Packet   
920 -
921 -(% style="background-color:#dcdcdc" %)**AT+VER**(%%)           : Image Version and Frequency Band       
922 -
923 -(% style="background-color:#dcdcdc" %)**AT+FDR**(%%)           : Factory Data Reset
924 -
925 -(% style="background-color:#dcdcdc" %)**AT+PORT**(%%)  : Application Port    
926 -
927 -(% style="background-color:#dcdcdc" %)**AT+CHS**(%%)  : Get or Set Frequency (Unit: Hz) for Single Channel Mode
928 -
929 - (% style="background-color:#dcdcdc" %)**AT+CHE**(%%)  : Get or Set eight channels mode, Only for US915, AU915, CN470
930 -
931 -
932 -= ​4. FAQ =
933 -
934 -== 4.1 ​How to change the LoRa Frequency Bands/Region? ==
935 -
936 936  (((
937 -You can follow the instructions for [[how to upgrade image>>||anchor="H2.10200BFirmwareChangeLog"]].
938 -When downloading the images, choose the required image file for download. ​
821 +User can upgrade the firmware for 1) bug fix, 2) new feature release.
939 939  )))
940 940  
941 941  (((
942 -
825 +Please see this link for how to upgrade:  [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H2.HardwareUpgradeMethodSupportList>>http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H2.HardwareUpgradeMethodSupportList]]
943 943  )))
944 944  
945 945  (((
946 -How to set up LSE01 to work in 8 channel mode By default, the frequency bands US915, AU915, CN470 work in 72 frequencies. Many gateways are 8 channel gateways, and in this case, the OTAA join time and uplink schedule is long and unpredictable while the end node is hopping in 72 frequencies.
829 +(% style="color:red" %)Notice, NSE01 and LSE01 share the same mother board. They use the same connection and method to update.
947 947  )))
948 948  
949 -(((
950 -
951 -)))
952 952  
953 -(((
954 -You can configure the end node to work in 8 channel mode by using the AT+CHE command. The 500kHz channels are always included for OTAA.
955 -)))
956 956  
957 -(((
958 -
959 -)))
834 +== 5.2  Can I calibrate NSE01 to different soil types? ==
960 960  
961 961  (((
962 -For example, in **US915** band, the frequency table is as below. By default, the end node will use all channels (0~~71) for OTAA Join process. After the OTAA Join, the end node will use these all channels (0~~71) to send uplink packets.
837 +NSE01 is calibrated for saline-alkali soil and loamy soil. If users want to use it for other soil, they can calibrate the value in the IoT platform base on the value measured by saline-alkali soil and loamy soil. The formula can be found at [[this link>>https://www.dragino.com/downloads/downloads/LoRa_End_Node/LSE01/Calibrate_to_other_Soil_20220605.pdf]].
963 963  )))
964 964  
965 -[[image:image-20220606154726-3.png]]
966 966  
841 += 6.  Trouble Shooting =
967 967  
968 -When you use the TTN network, the US915 frequency bands use are:
843 +== 6.1  ​Connection problem when uploading firmware ==
969 969  
970 -* 903.9 - SF7BW125 to SF10BW125
971 -* 904.1 - SF7BW125 to SF10BW125
972 -* 904.3 - SF7BW125 to SF10BW125
973 -* 904.5 - SF7BW125 to SF10BW125
974 -* 904.7 - SF7BW125 to SF10BW125
975 -* 904.9 - SF7BW125 to SF10BW125
976 -* 905.1 - SF7BW125 to SF10BW125
977 -* 905.3 - SF7BW125 to SF10BW125
978 -* 904.6 - SF8BW500
979 979  
980 980  (((
981 -Because the end node is now hopping in 72 frequency, it makes it difficult for the devices to Join the TTN network and uplink data. To solve this issue, you can access the device via the AT commands and run:
982 -
983 -* (% style="color:#037691" %)**AT+CHE=2**
984 -* (% style="color:#037691" %)**ATZ**
847 +**Please see: **[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H3.3Troubleshooting>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H3.3Troubleshooting]]
985 985  )))
986 986  
850 +(% class="wikigeneratedid" %)
987 987  (((
988 988  
989 -
990 -to set the end node to work in 8 channel mode. The device will work in Channel 8-15 & 64-71 for OTAA, and channel 8-15 for Uplink.
991 991  )))
992 992  
993 -(((
994 -
995 -)))
996 996  
997 -(((
998 -The **AU915** band is similar. Below are the AU915 Uplink Channels.
999 -)))
856 +== 6.2  AT Command input doesn't work ==
1000 1000  
1001 -[[image:image-20220606154825-4.png]]
1002 -
1003 -
1004 -
1005 -= 5. Trouble Shooting =
1006 -
1007 -== 5.1 ​Why I can’t join TTN in US915 / AU915 bands? ==
1008 -
1009 -It is due to channel mapping. Please see the [[Eight Channel Mode>>doc:Main.LoRaWAN Communication Debug.WebHome||anchor="H2.NoticeofUS9152FCN4702FAU915Frequencyband"]] section above for details.
1010 -
1011 -
1012 -== 5.2 AT Command input doesn’t work ==
1013 -
1014 1014  (((
1015 -In the case if user can see the console output but can’t type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn’t send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.
1016 -)))
859 +In the case if user can see the console output but can't type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn't send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.
1017 1017  
1018 -
1019 -== 5.3 Device rejoin in at the second uplink packet ==
1020 -
1021 -(% style="color:#4f81bd" %)**Issue describe as below:**
1022 -
1023 -[[image:1654500909990-784.png]]
1024 -
1025 -
1026 -(% style="color:#4f81bd" %)**Cause for this issue:**
1027 -
1028 -(((
1029 -The fuse on LSE01 is not large enough, some of the soil probe require large current up to 5v 800mA, in a short pulse. When this happen, it cause the device reboot so user see rejoin.
861 +
1030 1030  )))
1031 1031  
1032 1032  
1033 -(% style="color:#4f81bd" %)**Solution: **
865 += 7. ​ Order Info =
1034 1034  
1035 -All new shipped LSE01 after 2020-May-30 will have this to fix. For the customer who see this issue, please bypass the fuse as below:
1036 1036  
1037 -[[image:1654500929571-736.png||height="458" width="832"]]
868 +Part Number**:** (% style="color:#4f81bd" %)**NSE01**
1038 1038  
1039 1039  
1040 -= 6. ​Order Info =
1041 -
1042 -
1043 -Part Number**:** (% style="color:#4f81bd" %)**LSE01-XX-YY**
1044 -
1045 -
1046 -(% style="color:#4f81bd" %)**XX**(%%)**:** The default frequency band
1047 -
1048 -* (% style="color:red" %)**AS923**(%%): LoRaWAN AS923 band
1049 -* (% style="color:red" %)**AU915**(%%): LoRaWAN AU915 band
1050 -* (% style="color:red" %)**EU433**(%%): LoRaWAN EU433 band
1051 -* (% style="color:red" %)**EU868**(%%): LoRaWAN EU868 band
1052 -* (% style="color:red" %)**KR920**(%%): LoRaWAN KR920 band
1053 -* (% style="color:red" %)**US915**(%%): LoRaWAN US915 band
1054 -* (% style="color:red" %)**IN865**(%%):  LoRaWAN IN865 band
1055 -* (% style="color:red" %)**CN470**(%%): LoRaWAN CN470 band
1056 -
1057 -(% style="color:#4f81bd" %)**YY**(%%)**: **Battery Option
1058 -
1059 -* (% style="color:red" %)**4**(%%): 4000mAh battery
1060 -* (% style="color:red" %)**8**(%%): 8500mAh battery
1061 -
1062 1062  (% class="wikigeneratedid" %)
1063 1063  (((
1064 1064  
1065 1065  )))
1066 1066  
1067 -= 7. Packing Info =
876 += 8.  Packing Info =
1068 1068  
1069 1069  (((
1070 1070  
1071 1071  
1072 1072  (% style="color:#037691" %)**Package Includes**:
1073 -)))
1074 1074  
1075 -* (((
1076 -LSE01 LoRaWAN Soil Moisture & EC Sensor x 1
883 +* NSE01 NB-IoT Soil Moisture & EC Sensor x 1
884 +* External antenna x 1
1077 1077  )))
1078 1078  
1079 1079  (((
... ... @@ -1080,24 +1080,19 @@
1080 1080  
1081 1081  
1082 1082  (% style="color:#037691" %)**Dimension and weight**:
1083 -)))
1084 1084  
1085 -* (((
1086 -Device Size: cm
892 +* Size: 195 x 125 x 55 mm
893 +* Weight:   420g
1087 1087  )))
1088 -* (((
1089 -Device Weight: g
1090 -)))
1091 -* (((
1092 -Package Size / pcs : cm
1093 -)))
1094 -* (((
1095 -Weight / pcs : g
1096 1096  
896 +(((
1097 1097  
898 +
899 +
900 +
1098 1098  )))
1099 1099  
1100 -= 8. Support =
903 += 9.  Support =
1101 1101  
1102 1102  * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
1103 1103  * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.com]]
1657245163077-232.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +81.0 KB
Content
1657246476176-652.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +492.6 KB
Content
1657249419225-449.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +81.0 KB
Content
1657249468462-536.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +483.6 KB
Content
1657249793983-486.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +85.8 KB
Content
1657249831934-534.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +72.5 KB
Content
1657249864775-321.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +87.0 KB
Content
1657249930215-289.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +77.3 KB
Content
1657249978444-674.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +139.5 KB
Content
1657249990869-686.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +96.9 KB
Content
1657250217799-140.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +98.7 KB
Content
1657250255956-604.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +99.0 KB
Content
1657259653666-883.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +344.4 KB
Content
1657260785982-288.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +138.2 KB
Content
1657261119050-993.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +126.1 KB
Content
1657261278785-153.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +126.1 KB
Content
1657271519014-786.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +71.5 KB
Content
image-20220708101224-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +22.2 KB
Content
image-20220708101605-2.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +87.5 KB
Content
image-20220708110657-3.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +251.7 KB
Content
image-20220708111918-4.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +38.8 KB
Content
image-20220708133731-5.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +8.7 KB
Content
image-20220708140453-6.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +132.7 KB
Content
image-20220708141352-7.jpeg
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +102.7 KB
Content
image-20220709084038-1.jpeg
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +72.0 KB
Content
Copyright ©2010-2022 Dragino Technology Co., LTD. All rights reserved
Dragino Wiki v2.0