<
From version < 35.23 >
edited by Xiaoling
on 2022/06/14 14:21
To version < 65.2 >
edited by Xiaoling
on 2022/07/08 15:03
>
Change comment: There is no comment for this version

Summary

Details

Page properties
Title
... ... @@ -1,1 +1,1 @@
1 -LSE01-LoRaWAN Soil Moisture & EC Sensor User Manual
1 +NSE01 - NB-IoT Soil Moisture & EC Sensor User Manual
Content
... ... @@ -3,9 +3,7 @@
3 3  
4 4  
5 5  
6 -**Table of Contents:**
7 7  
8 -{{toc/}}
9 9  
10 10  
11 11  
... ... @@ -12,1068 +12,805 @@
12 12  
13 13  
14 14  
15 -= 1. Introduction =
16 16  
17 -== 1.1 ​What is LoRaWAN Soil Moisture & EC Sensor ==
14 +**Table of Contents:**
18 18  
16 +
17 +
18 +
19 +
20 +
21 += 1.  Introduction =
22 +
23 +== 1.1 ​ What is LoRaWAN Soil Moisture & EC Sensor ==
24 +
19 19  (((
20 20  
21 21  
22 -The Dragino LSE01 is a (% style="color:#4f81bd" %)**LoRaWAN Soil Moisture & EC Sensor**(%%) for IoT of Agriculture. It is designed to measure the soil moisture of saline-alkali soil and loamy soil. The soil sensor uses FDR method to calculate the soil moisture with the compensation from soil temperature and conductivity. It also has been calibrated in factory for Mineral soil type.
23 -)))
28 +Dragino NSE01 is an (% style="color:blue" %)**NB-IOT soil moisture & EC sensor**(%%) for agricultural IoT. Used to measure the soil moisture of saline-alkali soil and loam. The soil sensor uses the FDR method to calculate soil moisture and compensates it with soil temperature and electrical conductivity. It has also been calibrated for mineral soil types at the factory.
24 24  
25 -(((
26 -It detects (% style="color:#4f81bd" %)**Soil Moisture**(%%), (% style="color:#4f81bd" %)**Soil Temperature**(%%) and (% style="color:#4f81bd" %)**Soil Conductivity**(%%), and uploads the value via wireless to LoRaWAN IoT Server.
27 -)))
30 +It can detect (% style="color:blue" %)**Soil Moisture, Soil Temperature and Soil Conductivity**(%%), and upload its value to the server wirelessly.
28 28  
29 -(((
30 -The LoRa wireless technology used in LES01 allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption.
31 -)))
32 +The wireless technology used in NSE01 allows the device to send data at a low data rate and reach ultra-long distances, providing ultra-long-distance spread spectrum Communication.
32 32  
33 -(((
34 -LES01 is powered by (% style="color:#4f81bd" %)**4000mA or 8500mAh Li-SOCI2 battery**(%%), It is designed for long term use up to 10 years.
35 -)))
34 +NSE01 are powered by (% style="color:blue" %)**8500mAh Li-SOCI2**(%%) batteries, which can be used for up to 5 years.  
36 36  
37 -(((
38 -Each LES01 is pre-load with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect after power on.
36 +
39 39  )))
40 40  
41 -
42 42  [[image:1654503236291-817.png]]
43 43  
44 44  
45 -[[image:1654503265560-120.png]]
42 +[[image:1657245163077-232.png]]
46 46  
47 47  
48 48  
49 49  == 1.2 ​Features ==
50 50  
51 -* LoRaWAN 1.0.3 Class A
52 -* Ultra low power consumption
48 +* NB-IoT Bands: B1/B3/B8/B5/B20/B28 @H-FDD
53 53  * Monitor Soil Moisture
54 54  * Monitor Soil Temperature
55 55  * Monitor Soil Conductivity
56 -* Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865
57 57  * AT Commands to change parameters
58 58  * Uplink on periodically
59 59  * Downlink to change configure
60 60  * IP66 Waterproof Enclosure
61 -* 4000mAh or 8500mAh Battery for long term use
56 +* Ultra-Low Power consumption
57 +* AT Commands to change parameters
58 +* Micro SIM card slot for NB-IoT SIM
59 +* 8500mAh Battery for long term use
62 62  
63 -== 1.3 Specification ==
64 64  
65 -Measure Volume: Base on the centra pin of the probe, a cylinder with 7cm diameter and 10cm height.
66 66  
67 -[[image:image-20220606162220-5.png]]
68 68  
64 +== 1.3  Specification ==
69 69  
70 70  
71 -== ​1.4 Applications ==
67 +(% style="color:#037691" %)**Common DC Characteristics:**
72 72  
73 -* Smart Agriculture
69 +* Supply Voltage: 2.1v ~~ 3.6v
70 +* Operating Temperature: -40 ~~ 85°C
74 74  
75 -(% class="wikigeneratedid" id="H200B1.5FirmwareChangelog" %)
76 -​
77 77  
78 -== 1.5 Firmware Change log ==
79 79  
74 +(% style="color:#037691" %)**NB-IoT Spec:**
80 80  
81 -**LSE01 v1.0 :**  Release
76 +* - B1 @H-FDD: 2100MHz
77 +* - B3 @H-FDD: 1800MHz
78 +* - B8 @H-FDD: 900MHz
79 +* - B5 @H-FDD: 850MHz
80 +* - B20 @H-FDD: 800MHz
81 +* - B28 @H-FDD: 700MHz
82 82  
83 83  
84 84  
85 -= 2. Configure LSE01 to connect to LoRaWAN network =
85 +Probe(% style="color:#037691" %)** Specification:**
86 86  
87 -== 2.1 How it works ==
87 +Measure Volume: Base on the centra pin of the probe, a cylinder with 7cm diameter and 10cm height.
88 88  
89 -(((
90 -The LSE01 is configured as LoRaWAN OTAA Class A mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and power on the LSE0150. It will automatically join the network via OTAA and start to send the sensor value
91 -)))
89 +[[image:image-20220708101224-1.png]]
92 92  
93 -(((
94 -In case you can’t set the OTAA keys in the LoRaWAN OTAA server, and you have to use the keys from the server, you can [[use AT Commands >>||anchor="H3.200BUsingtheATCommands"]].
95 -)))
96 96  
97 97  
93 +== ​1.4  Applications ==
98 98  
99 -== 2.2 ​Quick guide to connect to LoRaWAN server (OTAA) ==
95 +* Smart Agriculture
100 100  
101 -Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LG308>>url:http://www.dragino.com/products/lora/item/140-lg308.html]] as a LoRaWAN gateway in this example.
97 +(% class="wikigeneratedid" id="H200B1.5FirmwareChangelog" %)
98 +​
102 102  
100 +== 1.5  Pin Definitions ==
103 103  
104 -[[image:1654503992078-669.png]]
105 105  
103 +[[image:1657246476176-652.png]]
106 106  
107 -The LG308 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
108 108  
109 109  
110 -(% style="color:blue" %)**Step 1**(%%):  Create a device in TTN with the OTAA keys from LSE01.
107 += 2.  Use NSE01 to communicate with IoT Server =
111 111  
112 -Each LSE01 is shipped with a sticker with the default device EUI as below:
109 +== 2.1  How it works ==
113 113  
114 -[[image:image-20220606163732-6.jpeg]]
115 115  
116 -You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot:
112 +(((
113 +The NSE01 is equipped with a NB-IoT module, the pre-loaded firmware in NSE01 will get environment data from sensors and send the value to local NB-IoT network via the NB-IoT module.  The NB-IoT network will forward this value to IoT server via the protocol defined by NSE01.
114 +)))
117 117  
118 -**Add APP EUI in the application**
119 119  
117 +(((
118 +The diagram below shows the working flow in default firmware of NSE01:
119 +)))
120 120  
121 -[[image:1654504596150-405.png]]
121 +[[image:image-20220708101605-2.png]]
122 122  
123 +(((
124 +
125 +)))
123 123  
124 124  
125 -**Add APP KEY and DEV EUI**
126 126  
127 -[[image:1654504683289-357.png]]
129 +== 2.2 ​ Configure the NSE01 ==
128 128  
129 129  
132 +=== 2.2.1 Test Requirement ===
130 130  
131 -(% style="color:blue" %)**Step 2**(%%): Power on LSE01
132 132  
135 +To use NSE01 in your city, make sure meet below requirements:
133 133  
134 -Put a Jumper on JP2 to power on the device. ( The Jumper must be in FLASH position).
137 +* Your local operator has already distributed a NB-IoT Network there.
138 +* The local NB-IoT network used the band that NSE01 supports.
139 +* Your operator is able to distribute the data received in their NB-IoT network to your IoT server.
135 135  
136 -[[image:image-20220606163915-7.png]]
137 -
138 -
139 -(% style="color:blue" %)**Step 3**(%%)**:** The LSE01 will auto join to the TTN network. After join success, it will start to upload messages to TTN and you can see the messages in the panel.
140 -
141 -[[image:1654504778294-788.png]]
142 -
143 -
144 -
145 -== 2.3 Uplink Payload ==
146 -
147 -
148 -=== 2.3.1 MOD~=0(Default Mode) ===
149 -
150 -LSE01 will uplink payload via LoRaWAN with below payload format: 
151 -
152 152  (((
153 -Uplink payload includes in total 11 bytes.
142 +Below figure shows our testing structure. Here we have NB-IoT network coverage by China Mobile, the band they use is B8.  The NSE01 will use CoAP((% style="color:red" %)120.24.4.116:5683)(%%) or raw UDP((% style="color:red" %)120.24.4.116:5601)(%%) or MQTT((% style="color:red" %)120.24.4.116:1883)(%%)or TCP((% style="color:red" %)120.24.4.116:5600)(%%)protocol to send data to the test server
154 154  )))
155 155  
156 -(% border="1" cellspacing="10" style="background-color:#ffffcc; width:500px" %)
157 -|(((
158 -**Size**
159 159  
160 -**(bytes)**
161 -)))|**2**|**2**|**2**|**2**|**2**|**1**
162 -|**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(((
163 -Temperature
146 +[[image:1657249419225-449.png]]
164 164  
165 -(Reserve, Ignore now)
166 -)))|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]]|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]]|(((
167 -MOD & Digital Interrupt
168 168  
169 -(Optional)
170 -)))
171 171  
150 +=== 2.2.2 Insert SIM card ===
172 172  
173 -=== 2.3.2 MOD~=1(Original value) ===
152 +Insert the NB-IoT Card get from your provider.
174 174  
175 -This mode can get the original AD value of moisture and original conductivity (with temperature drift compensation).
154 +User need to take out the NB-IoT module and insert the SIM card like below:
176 176  
177 -(% border="1" cellspacing="10" style="background-color:#ffffcc; width:500px" %)
178 -|(((
179 -**Size**
180 180  
181 -**(bytes)**
182 -)))|**2**|**2**|**2**|**2**|**2**|**1**
183 -|**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(((
184 -Temperature
157 +[[image:1657249468462-536.png]]
185 185  
186 -(Reserve, Ignore now)
187 -)))|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]](raw)|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]](raw)|(((
188 -MOD & Digital Interrupt
189 189  
190 -(Optional)
191 -)))
192 192  
161 +=== 2.2.3 Connect USB – TTL to NSE01 to configure it ===
193 193  
194 -=== 2.3.3 Battery Info ===
195 -
196 196  (((
197 -Check the battery voltage for LSE01.
198 -)))
199 -
200 200  (((
201 -Ex1: 0x0B45 = 2885mV
165 +User need to configure NSE01 via serial port to set the (% style="color:blue" %)**Server Address** / **Uplink Topic** (%%)to define where and how-to uplink packets. NSE01 support AT Commands, user can use a USB to TTL adapter to connect to NSE01 and use AT Commands to configure it, as below.
202 202  )))
203 -
204 -(((
205 -Ex2: 0x0B49 = 2889mV
206 206  )))
207 207  
208 208  
170 +**Connection:**
209 209  
210 -=== 2.3.4 Soil Moisture ===
172 + (% style="background-color:yellow" %)USB TTL GND <~-~-~-~-> GND
211 211  
212 -(((
213 -Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil.
214 -)))
174 + (% style="background-color:yellow" %)USB TTL TXD <~-~-~-~-> UART_RXD
215 215  
216 -(((
217 -For example, if the data you get from the register is __0x05 0xDC__, the moisture content in the soil is
218 -)))
176 + (% style="background-color:yellow" %)USB TTL RXD <~-~-~-~-> UART_TXD
219 219  
220 -(((
221 -
222 -)))
223 223  
224 -(((
225 -(% style="color:#4f81bd" %)**05DC(H) = 1500(D) /100 = 15%.**
226 -)))
179 +In the PC, use below serial tool settings:
227 227  
181 +* Baud:  (% style="color:green" %)**9600**
182 +* Data bits:** (% style="color:green" %)8(%%)**
183 +* Stop bits: (% style="color:green" %)**1**
184 +* Parity:  (% style="color:green" %)**None**
185 +* Flow Control: (% style="color:green" %)**None**
228 228  
229 -
230 -=== 2.3.5 Soil Temperature ===
231 -
232 232  (((
233 - Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is 0x09 0xEC, the temperature content in the soil is
188 +Make sure the switch is in FLASH position, then power on device by connecting the jumper on NSE01. NSE01 will output system info once power on as below, we can enter the (% style="color:green" %)**password: 12345678**(%%) to access AT Command input.
234 234  )))
235 235  
236 -(((
237 -**Example**:
238 -)))
191 +[[image:image-20220708110657-3.png]]
239 239  
240 -(((
241 -If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/100 = 2.61 °C
242 -)))
193 +(% style="color:red" %)Note: the valid AT Commands can be found at: (%%)[[http:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/]]
243 243  
244 -(((
245 -If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C
246 -)))
247 247  
248 248  
197 +=== 2.2.4 Use CoAP protocol to uplink data ===
249 249  
250 -=== 2.3.6 Soil Conductivity (EC) ===
199 +(% style="color:red" %)Note: if you don't have CoAP server, you can refer this link to set up one: (%%)[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/>>http://wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/]]
251 251  
252 -(((
253 -Obtain (% style="color:#4f81bd" %)**__soluble salt concentration__**(%%) in soil or (% style="color:#4f81bd" %)**__soluble ion concentration in liquid fertilizer__**(%%) or (% style="color:#4f81bd" %)**__planting medium__**(%%). The value range of the register is 0 - 20000(Decimal)( Can be greater than 20000).
254 -)))
255 255  
256 -(((
257 -For example, if the data you get from the register is 0x00 0xC8, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm.
258 -)))
202 +**Use below commands:**
259 259  
260 -(((
261 -Generally, the EC value of irrigation water is less than 800uS / cm.
262 -)))
204 +* (% style="color:blue" %)**AT+PRO=1**  (%%) ~/~/ Set to use CoAP protocol to uplink
205 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5683   ** (%%)~/~/ to set CoAP server address and port
206 +* (% style="color:blue" %)**AT+URI=5,11,"mqtt",11,"coap",12,"0",15,"c=text1",23,"0" ** (%%) ~/~/Set COAP resource path
263 263  
264 -(((
265 -
266 -)))
208 +For parameter description, please refer to AT command set
267 267  
268 -(((
269 -
270 -)))
210 +[[image:1657249793983-486.png]]
271 271  
272 -=== 2.3.7 MOD ===
273 273  
274 -Firmware version at least v2.1 supports changing mode.
213 +After configure the server address and (% style="color:green" %)**reset the device**(%%) (via AT+ATZ ), NSE01 will start to uplink sensor values to CoAP server.
275 275  
276 -For example, bytes[10]=90
215 +[[image:1657249831934-534.png]]
277 277  
278 -mod=(bytes[10]>>7)&0x01=1.
279 279  
280 280  
281 -**Downlink Command:**
219 +=== 2.2.5 Use UDP protocol to uplink data(Default protocol) ===
282 282  
283 -If payload = 0x0A00, workmode=0
221 +This feature is supported since firmware version v1.0.1
284 284  
285 -If** **payload =** **0x0A01, workmode=1
286 286  
224 +* (% style="color:blue" %)**AT+PRO=2   ** (%%) ~/~/ Set to use UDP protocol to uplink
225 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5601   ** (%%) ~/~/ to set UDP server address and port
226 +* (% style="color:blue" %)**AT+CFM=1       ** (%%) ~/~/If the server does not respond, this command is unnecessary
287 287  
228 +[[image:1657249864775-321.png]]
288 288  
289 -=== 2.3.8 ​Decode payload in The Things Network ===
290 290  
291 -While using TTN network, you can add the payload format to decode the payload.
231 +[[image:1657249930215-289.png]]
292 292  
293 293  
294 -[[image:1654505570700-128.png]]
295 295  
296 -(((
297 -The payload decoder function for TTN is here:
298 -)))
235 +=== 2.2.6 Use MQTT protocol to uplink data ===
299 299  
300 -(((
301 -LSE01 TTN Payload Decoder: [[https:~~/~~/www.dropbox.com/sh/si8icbrjlamxqdb/AAACYwjsxxr5fj_vpqRtrETAa?dl=0>>https://www.dropbox.com/sh/si8icbrjlamxqdb/AAACYwjsxxr5fj_vpqRtrETAa?dl=0]]
302 -)))
237 +This feature is supported since firmware version v110
303 303  
304 304  
305 -== 2.4 Uplink Interval ==
240 +* (% style="color:blue" %)**AT+PRO=3   ** (%%) ~/~/Set to use MQTT protocol to uplink
241 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,1883   ** (%%) ~/~/Set MQTT server address and port
242 +* (% style="color:blue" %)**AT+CLIENT=CLIENT       ** (%%)~/~/Set up the CLIENT of MQTT
243 +* (% style="color:blue" %)**AT+UNAME=UNAME                               **(%%)~/~/Set the username of MQTT
244 +* (% style="color:blue" %)**AT+PWD=PWD                                        **(%%)~/~/Set the password of MQTT
245 +* (% style="color:blue" %)**AT+PUBTOPIC=NSE01_PUB                    **(%%)~/~/Set the sending topic of MQTT
246 +* (% style="color:blue" %)**AT+SUBTOPIC=NSE01_SUB          **(%%) ~/~/Set the subscription topic of MQTT
306 306  
307 -The LSE01 by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link: [[Change Uplink Interval>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H4.1ChangeUplinkInterval"]]
248 +[[image:1657249978444-674.png]]
308 308  
309 309  
251 +[[image:1657249990869-686.png]]
310 310  
311 -== 2.5 Downlink Payload ==
312 312  
313 -By default, LSE50 prints the downlink payload to console port.
314 -
315 -[[image:image-20220606165544-8.png]]
316 -
317 -
318 318  (((
319 -**Examples:**
255 +MQTT protocol has a much higher power consumption compare vs UDP / CoAP protocol. Please check the power analyze document and adjust the uplink period to a suitable interval.
320 320  )))
321 321  
322 -(((
323 -
324 -)))
325 325  
326 -* (((
327 -**Set TDC**
328 -)))
329 329  
330 -(((
331 -If the payload=0100003C, it means set the END Node’s TDC to 0x00003C=60(S), while type code is 01.
332 -)))
260 +=== 2.2.7 Use TCP protocol to uplink data ===
333 333  
334 -(((
335 -Payload:    01 00 00 1E    TDC=30S
336 -)))
262 +This feature is supported since firmware version v110
337 337  
338 -(((
339 -Payload:    01 00 00 3C    TDC=60S
340 -)))
341 341  
342 -(((
343 -
344 -)))
265 +* (% style="color:blue" %)**AT+PRO=4   ** (%%) ~/~/ Set to use TCP protocol to uplink
266 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5600   **(%%) ~/~/ to set TCP server address and port
345 345  
346 -* (((
347 -**Reset**
348 -)))
268 +[[image:1657250217799-140.png]]
349 349  
350 -(((
351 -If payload = 0x04FF, it will reset the LSE01
352 -)))
353 353  
271 +[[image:1657250255956-604.png]]
354 354  
355 -* **CFM**
356 356  
357 -Downlink Payload: 05000001, Set AT+CFM=1 or 05000000 , set AT+CFM=0
358 358  
275 +=== 2.2.8 Change Update Interval ===
359 359  
277 +User can use below command to change the (% style="color:green" %)**uplink interval**.
360 360  
361 -== 2.6 ​Show Data in DataCake IoT Server ==
279 +* (% style="color:blue" %)**AT+TDC=600      ** (%%)~/~/ Set Update Interval to 600s
362 362  
363 363  (((
364 -[[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps:
282 +(% style="color:red" %)**NOTE:**
365 365  )))
366 366  
367 367  (((
368 -
286 +(% style="color:red" %)1. By default, the device will send an uplink message every 1 hour.
369 369  )))
370 370  
371 -(((
372 -(% style="color:blue" %)**Step 1**(%%):  Be sure that your device is programmed and properly connected to the network at this time.
373 -)))
374 374  
375 -(((
376 -(% style="color:blue" %)**Step 2**(%%):  To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps:
377 -)))
378 378  
291 +== 2.3  Uplink Payload ==
379 379  
380 -[[image:1654505857935-743.png]]
293 +In this mode, uplink payload includes in total 18 bytes
381 381  
295 +(% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:510px" %)
296 +|=(% style="width: 50px;" %)(((
297 +**Size(bytes)**
298 +)))|=(% style="width: 50px;" %)**6**|=(% style="width: 25px;" %)2|=(% style="width: 25px;" %)**2**|=(% style="width: 80px;" %)**1**|=(% style="width: 80px;" %)**2**|=(% style="width: 80px;" %)**2**|=(% style="width: 80px;" %)**2**|=(% style="width: 40px;" %)**1**
299 +|(% style="width:97px" %)**Value**|(% style="width:83px" %)[[Device ID>>||anchor="H"]]|(% style="width:41px" %)[[Ver>>||anchor="H"]]|(% style="width:46px" %)[[BAT>>||anchor="H"]]|(% style="width:123px" %)[[Signal Strength>>||anchor="H"]]|(% style="width:108px" %)[[Soil Moisture>>||anchor="H"]]|(% style="width:133px" %)[[Soil Temperature>>||anchor="H"]]|(% style="width:159px" %)[[Soil Conductivity(EC)>>||anchor="H"]]|(% style="width:80px" %)[[Interrupt>>||anchor="H"]]
382 382  
383 -[[image:1654505874829-548.png]]
301 +If we use the MQTT client to subscribe to this MQTT topic, we can see the following information when the NSE01 uplink data.
384 384  
385 385  
386 -(% style="color:blue" %)**Step 3**(%%)**:**  Create an account or log in Datacake.
304 +[[image:image-20220708111918-4.png]]
387 387  
388 -(% style="color:blue" %)**Step 4**(%%)**:**  Search the LSE01 and add DevEUI.
389 389  
307 +The payload is ASCII string, representative same HEX:
390 390  
391 -[[image:1654505905236-553.png]]
309 +0x72403155615900640c7817075e0a8c02f900 where:
392 392  
311 +* Device ID: 0x 724031556159 = 724031556159
312 +* Version: 0x0064=100=1.0.0
393 393  
394 -After added, the sensor data arrive TTN, it will also arrive and show in Mydevices.
314 +* BAT: 0x0c78 = 3192 mV = 3.192V
315 +* Singal: 0x17 = 23
316 +* Soil Moisture: 0x075e= 1886 = 18.86  %
317 +* Soil Temperature:0x0a8c =2700=27 °C
318 +* Soil Conductivity(EC) = 0x02f9 =761 uS /cm
319 +* Interrupt: 0x00 = 0
395 395  
396 -[[image:1654505925508-181.png]]
397 397  
398 398  
399 399  
400 -== 2.7 Frequency Plans ==
324 +== 2. Payload Explanation and Sensor Interface ==
401 401  
402 -The LSE01 uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.
403 403  
327 +=== 2.4.1  Device ID ===
404 404  
405 -=== 2.7.1 EU863-870 (EU868) ===
329 +By default, the Device ID equal to the last 6 bytes of IMEI.
406 406  
407 -(% style="color:#037691" %)** Uplink:**
331 +User can use (% style="color:blue" %)**AT+DEUI**(%%) to set Device ID
408 408  
409 -868.1 - SF7BW125 to SF12BW125
333 +**Example:**
410 410  
411 -868.3 - SF7BW125 to SF12BW125 and SF7BW250
335 +AT+DEUI=A84041F15612
412 412  
413 -868.5 - SF7BW125 to SF12BW125
337 +The Device ID is stored in a none-erase area, Upgrade the firmware or run AT+FDR won't erase Device ID.
414 414  
415 -867.1 - SF7BW125 to SF12BW125
416 416  
417 -867.3 - SF7BW125 to SF12BW125
418 418  
419 -867.5 - SF7BW125 to SF12BW125
341 +=== 2.4.2  Version Info ===
420 420  
421 -867.7 - SF7BW125 to SF12BW125
343 +Specify the software version: 0x64=100, means firmware version 1.00.
422 422  
423 -867.9 - SF7BW125 to SF12BW125
345 +For example: 0x00 64 : this device is NSE01 with firmware version 1.0.0.
424 424  
425 -868.8 - FSK
426 426  
427 427  
428 -(% style="color:#037691" %)** Downlink:**
349 +=== 2.4.3  Battery Info ===
429 429  
430 -Uplink channels 1-9 (RX1)
351 +(((
352 +Check the battery voltage for LSE01.
353 +)))
431 431  
432 -869.525 - SF9BW125 (RX2 downlink only)
355 +(((
356 +Ex1: 0x0B45 = 2885mV
357 +)))
433 433  
359 +(((
360 +Ex2: 0x0B49 = 2889mV
361 +)))
434 434  
435 435  
436 -=== 2.7.2 US902-928(US915) ===
437 437  
438 -Used in USA, Canada and South America. Default use CHE=2
365 +=== 2.4.4  Signal Strength ===
439 439  
440 -(% style="color:#037691" %)**Uplink:**
367 +NB-IoT Network signal Strength.
441 441  
442 -903.9 - SF7BW125 to SF10BW125
369 +**Ex1: 0x1d = 29**
443 443  
444 -904.1 - SF7BW125 to SF10BW125
371 +(% style="color:blue" %)**0**(%%)  -113dBm or less
445 445  
446 -904.3 - SF7BW125 to SF10BW125
373 +(% style="color:blue" %)**1**(%%)  -111dBm
447 447  
448 -904.5 - SF7BW125 to SF10BW125
375 +(% style="color:blue" %)**2...30**(%%) -109dBm... -53dBm
449 449  
450 -904.7 - SF7BW125 to SF10BW125
377 +(% style="color:blue" %)**31**  (%%) -51dBm or greater
451 451  
452 -904.9 - SF7BW125 to SF10BW125
379 +(% style="color:blue" %)**99**   (%%) Not known or not detectable
453 453  
454 -905.1 - SF7BW125 to SF10BW125
455 455  
456 -905.3 - SF7BW125 to SF10BW125
457 457  
383 +=== 2.4.5  Soil Moisture ===
458 458  
459 -(% style="color:#037691" %)**Downlink:**
385 +(((
386 +Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil.
387 +)))
460 460  
461 -923.3 - SF7BW500 to SF12BW500
389 +(((
390 +For example, if the data you get from the register is **__0x05 0xDC__**, the moisture content in the soil is
391 +)))
462 462  
463 -923.9 - SF7BW500 to SF12BW500
393 +(((
394 +
395 +)))
464 464  
465 -924.5 - SF7BW500 to SF12BW500
397 +(((
398 +(% style="color:#4f81bd" %)**05DC(H) = 1500(D) /100 = 15%.**
399 +)))
466 466  
467 -925.1 - SF7BW500 to SF12BW500
468 468  
469 -925.7 - SF7BW500 to SF12BW500
470 470  
471 -926.3 - SF7BW500 to SF12BW500
403 +=== 2.4.6  Soil Temperature ===
472 472  
473 -926.9 - SF7BW500 to SF12BW500
405 +(((
406 + Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is __**0x09 0xEC**__, the temperature content in the soil is
407 +)))
474 474  
475 -927.5 - SF7BW500 to SF12BW500
409 +(((
410 +**Example**:
411 +)))
476 476  
477 -923.3 - SF12BW500(RX2 downlink only)
413 +(((
414 +If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/100 = 2.61 °C
415 +)))
478 478  
417 +(((
418 +If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C
419 +)))
479 479  
480 480  
481 -=== 2.7.3 CN470-510 (CN470) ===
482 482  
483 -Used in China, Default use CHE=1
423 +=== 2.4.7  Soil Conductivity (EC) ===
484 484  
485 -(% style="color:#037691" %)**Uplink:**
425 +(((
426 +Obtain (% style="color:#4f81bd" %)**__soluble salt concentration__**(%%) in soil or (% style="color:#4f81bd" %)**__soluble ion concentration in liquid fertilizer__**(%%) or (% style="color:#4f81bd" %)**__planting medium__**(%%). The value range of the register is 0 - 20000(Decimal)( Can be greater than 20000).
427 +)))
486 486  
487 -486.3 - SF7BW125 to SF12BW125
429 +(((
430 +For example, if the data you get from the register is __**0x00 0xC8**__, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm.
431 +)))
488 488  
489 -486.5 - SF7BW125 to SF12BW125
433 +(((
434 +Generally, the EC value of irrigation water is less than 800uS / cm.
435 +)))
490 490  
491 -486.7 - SF7BW125 to SF12BW125
437 +(((
438 +
439 +)))
492 492  
493 -486.9 - SF7BW125 to SF12BW125
441 +(((
442 +
443 +)))
494 494  
495 -487.1 - SF7BW125 to SF12BW125
445 +=== 2.4. Digital Interrupt ===
496 496  
497 -487.3 - SF7BW125 to SF12BW125
447 +Digital Interrupt refers to pin (% style="color:blue" %)**GPIO_EXTI**(%%), and there are different trigger methods. When there is a trigger, the NSE01 will send a packet to the server.
498 498  
499 -487.5 - SF7BW125 to SF12BW125
449 +The command is:
500 500  
501 -487.7 - SF7BW125 to SF12BW125
451 +(% style="color:blue" %)**AT+INTMOD=3 **(%%) ~/~/(more info about INMOD please refer [[**AT Command Manual**>>url:https://www.dragino.com/downloads/downloads/NB-IoT/NBSN95/DRAGINO_NBSN95-NB_AT%20Commands_v1.1.0.pdf]])**.**
502 502  
503 503  
504 -(% style="color:#037691" %)**Downlink:**
454 +The lower four bits of this data field shows if this packet is generated by interrupt or not. [[Click here>>||anchor="H"]] for the hardware and software set up.
505 505  
506 -506.7 - SF7BW125 to SF12BW125
507 507  
508 -506.9 - SF7BW125 to SF12BW125
457 +Example:
509 509  
510 -507.1 - SF7BW125 to SF12BW125
459 +0x(00): Normal uplink packet.
511 511  
512 -507.3 - SF7BW125 to SF12BW125
461 +0x(01): Interrupt Uplink Packet.
513 513  
514 -507.5 - SF7BW125 to SF12BW125
515 515  
516 -507.7 - SF7BW125 to SF12BW125
517 517  
518 -507.9 - SF7BW125 to SF12BW125
465 +=== 2.4.9  ​+5V Output ===
519 519  
520 -508.1 - SF7BW125 to SF12BW125
467 +NSE01 will enable +5V output before all sampling and disable the +5v after all sampling. 
521 521  
522 -505.3 - SF12BW125 (RX2 downlink only)
523 523  
470 +The 5V output time can be controlled by AT Command.
524 524  
472 +(% style="color:blue" %)**AT+5VT=1000**
525 525  
526 -=== 2.7.4 AU915-928(AU915) ===
474 +Means set 5V valid time to have 1000ms. So the real 5V output will actually have 1000ms + sampling time for other sensors.
527 527  
528 -Default use CHE=2
529 529  
530 -(% style="color:#037691" %)**Uplink:**
531 531  
532 -916.8 - SF7BW125 to SF12BW125
478 +== 2.5  Downlink Payload ==
533 533  
534 -917.0 - SF7BW125 to SF12BW125
480 +By default, NSE01 prints the downlink payload to console port.
535 535  
536 -917.2 - SF7BW125 to SF12BW125
482 +[[image:image-20220708133731-5.png]]
537 537  
538 -917.4 - SF7BW125 to SF12BW125
539 539  
540 -917.6 - SF7BW125 to SF12BW125
485 +(((
486 +(% style="color:blue" %)**Examples:**
487 +)))
541 541  
542 -917.8 - SF7BW125 to SF12BW125
489 +(((
490 +
491 +)))
543 543  
544 -918.0 - SF7BW125 to SF12BW125
493 +* (((
494 +(% style="color:blue" %)**Set TDC**
495 +)))
545 545  
546 -918.2 - SF7BW125 to SF12BW125
497 +(((
498 +If the payload=0100003C, it means set the END Node's TDC to 0x00003C=60(S), while type code is 01.
499 +)))
547 547  
501 +(((
502 +Payload:    01 00 00 1E    TDC=30S
503 +)))
548 548  
549 -(% style="color:#037691" %)**Downlink:**
505 +(((
506 +Payload:    01 00 00 3C    TDC=60S
507 +)))
550 550  
551 -923.3 - SF7BW500 to SF12BW500
509 +(((
510 +
511 +)))
552 552  
553 -923.9 - SF7BW500 to SF12BW500
513 +* (((
514 +(% style="color:blue" %)**Reset**
515 +)))
554 554  
555 -924.5 - SF7BW500 to SF12BW500
517 +(((
518 +If payload = 0x04FF, it will reset the NSE01
519 +)))
556 556  
557 -925.1 - SF7BW500 to SF12BW500
558 558  
559 -925.7 - SF7BW500 to SF12BW500
522 +* (% style="color:blue" %)**INTMOD**
560 560  
561 -926.3 - SF7BW500 to SF12BW500
524 +Downlink Payload: 06000003, Set AT+INTMOD=3
562 562  
563 -926.9 - SF7BW500 to SF12BW500
564 564  
565 -927.5 - SF7BW500 to SF12BW500
566 566  
567 -923.3 - SF12BW500(RX2 downlink only)
528 +== 2. ​LED Indicator ==
568 568  
530 +(((
531 +The NSE01 has an internal LED which is to show the status of different state.
569 569  
570 570  
571 -=== 2.7.5 AS920-923 & AS923-925 (AS923) ===
534 +* When power on, NSE01 will detect if sensor probe is connected, if probe detected, LED will blink four times. (no blinks in this step is no probe)
535 +* Then the LED will be on for 1 second means device is boot normally.
536 +* After NSE01 join NB-IoT network. The LED will be ON for 3 seconds.
537 +* For each uplink probe, LED will be on for 500ms.
538 +)))
572 572  
573 -(% style="color:#037691" %)**Default Uplink channel:**
574 574  
575 -923.2 - SF7BW125 to SF10BW125
576 576  
577 -923.4 - SF7BW125 to SF10BW125
578 578  
543 +== 2.7  Installation in Soil ==
579 579  
580 -(% style="color:#037691" %)**Additional Uplink Channel**:
545 +__**Measurement the soil surface**__
581 581  
582 -(OTAA mode, channel added by JoinAccept message)
547 +Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting. [[https:~~/~~/img.alicdn.com/imgextra/i3/2005165265/O1CN010rj9Oh1olPsQxrdUK_!!2005165265.jpg>>url:https://img.alicdn.com/imgextra/i3/2005165265/O1CN010rj9Oh1olPsQxrdUK_!!2005165265.jpg]]
583 583  
584 -(% style="color:#037691" %)**AS920~~AS923 for Japan, Malaysia, Singapore**:
549 +[[image:1657259653666-883.png]] ​
585 585  
586 -922.2 - SF7BW125 to SF10BW125
587 587  
588 -922.4 - SF7BW125 to SF10BW125
552 +(((
553 +
589 589  
590 -922.6 - SF7BW125 to SF10BW125
555 +(((
556 +Dig a hole with diameter > 20CM.
557 +)))
591 591  
592 -922.8 - SF7BW125 to SF10BW125
559 +(((
560 +Horizontal insert the probe to the soil and fill the hole for long term measurement.
561 +)))
562 +)))
593 593  
594 -923.0 - SF7BW125 to SF10BW125
564 +[[image:1654506665940-119.png]]
595 595  
596 -922.0 - SF7BW125 to SF10BW125
566 +(((
567 +
568 +)))
597 597  
598 598  
599 -(% style="color:#037691" %)**AS923 ~~ AS925 for Brunei, Cambodia, Hong Kong, Indonesia, Laos, Taiwan, Thailand, Vietnam**:
571 +== 2.8  ​Firmware Change Log ==
600 600  
601 -923.6 - SF7BW125 to SF10BW125
602 602  
603 -923.8 - SF7BW125 to SF10BW125
574 +Download URL & Firmware Change log
604 604  
605 -924.0 - SF7BW125 to SF10BW125
576 +[[www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/Firmware/]]
606 606  
607 -924.2 - SF7BW125 to SF10BW125
608 608  
609 -924.4 - SF7BW125 to SF10BW125
579 +Upgrade Instruction: [[Upgrade_Firmware>>||anchor="H"]]
610 610  
611 -924.6 - SF7BW125 to SF10BW125
612 612  
613 613  
614 -(% style="color:#037691" %)** Downlink:**
583 +== 2.9  ​Battery Analysis ==
615 615  
616 -Uplink channels 1-8 (RX1)
585 +=== 2.9.1  ​Battery Type ===
617 617  
618 -923.2 - SF10BW125 (RX2)
619 619  
588 +The NSE01 battery is a combination of an 8500mAh Li/SOCI2 Battery and a Super Capacitor. The battery is none-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter.
620 620  
621 621  
622 -=== 2.7.6 KR920-923 (KR920) ===
591 +The battery is designed to last for several years depends on the actually use environment and update interval. 
623 623  
624 -Default channel:
625 625  
626 -922.1 - SF7BW125 to SF12BW125
594 +The battery related documents as below:
627 627  
628 -922.3 - SF7BW125 to SF12BW125
596 +* [[Battery Dimension>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]
597 +* [[Lithium-Thionyl Chloride Battery>>url:http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]][[ datasheet>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]
598 +* [[Lithium-ion Battery-Capacitor datasheet>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]
629 629  
630 -922.5 - SF7BW125 to SF12BW125
631 -
632 -
633 -(% style="color:#037691" %)**Uplink: (OTAA mode, channel added by JoinAccept message)**
634 -
635 -922.1 - SF7BW125 to SF12BW125
636 -
637 -922.3 - SF7BW125 to SF12BW125
638 -
639 -922.5 - SF7BW125 to SF12BW125
640 -
641 -922.7 - SF7BW125 to SF12BW125
642 -
643 -922.9 - SF7BW125 to SF12BW125
644 -
645 -923.1 - SF7BW125 to SF12BW125
646 -
647 -923.3 - SF7BW125 to SF12BW125
648 -
649 -
650 -(% style="color:#037691" %)**Downlink:**
651 -
652 -Uplink channels 1-7(RX1)
653 -
654 -921.9 - SF12BW125 (RX2 downlink only; SF12BW125 might be changed to SF9BW125)
655 -
656 -
657 -
658 -=== 2.7.7 IN865-867 (IN865) ===
659 -
660 -(% style="color:#037691" %)** Uplink:**
661 -
662 -865.0625 - SF7BW125 to SF12BW125
663 -
664 -865.4025 - SF7BW125 to SF12BW125
665 -
666 -865.9850 - SF7BW125 to SF12BW125
667 -
668 -
669 -(% style="color:#037691" %) **Downlink:**
670 -
671 -Uplink channels 1-3 (RX1)
672 -
673 -866.550 - SF10BW125 (RX2)
674 -
675 -
676 -
677 -
678 -== 2.8 LED Indicator ==
679 -
680 -The LSE01 has an internal LED which is to show the status of different state.
681 -
682 -* Blink once when device power on.
683 -* Solid ON for 5 seconds once device successful Join the network.
684 -* Blink once when device transmit a packet.
685 -
686 -
687 -
688 -== 2.9 Installation in Soil ==
689 -
690 -**Measurement the soil surface**
691 -
692 -
693 -[[image:1654506634463-199.png]] ​
694 -
695 695  (((
696 -(((
697 -Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting.
601 +[[image:image-20220708140453-6.png]]
698 698  )))
699 -)))
700 700  
701 701  
702 702  
703 -[[image:1654506665940-119.png]]
606 +=== 2.9.2  Power consumption Analyze ===
704 704  
705 705  (((
706 -Dig a hole with diameter > 20CM.
609 +Dragino battery powered product are all runs in Low Power mode. We have an update battery calculator which base on the measurement of the real device. User can use this calculator to check the battery life and calculate the battery life if want to use different transmit interval.
707 707  )))
708 708  
709 -(((
710 -Horizontal insert the probe to the soil and fill the hole for long term measurement.
711 -)))
712 712  
713 -
714 -== 2.10 ​Firmware Change Log ==
715 -
716 716  (((
717 -**Firmware download link:**
614 +Instruction to use as below:
718 718  )))
719 719  
720 720  (((
721 -[[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/]]
618 +(% style="color:blue" %)**Step 1:  **(%%)Downlink the up-to-date DRAGINO_Battery_Life_Prediction_Table.xlsx from: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/]]
722 722  )))
723 723  
724 -(((
725 -
726 -)))
727 727  
728 728  (((
729 -**Firmware Upgrade Method: **[[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome]]
623 +(% style="color:blue" %)**Step 2: **(%%) Open it and choose
730 730  )))
731 731  
732 -(((
733 -
626 +* (((
627 +Product Model
734 734  )))
735 -
736 -(((
737 -**V1.0.**
629 +* (((
630 +Uplink Interval
738 738  )))
632 +* (((
633 +Working Mode
634 +)))
739 739  
740 740  (((
741 -Release
637 +And the Life expectation in difference case will be shown on the right.
742 742  )))
743 743  
640 +[[image:image-20220708141352-7.jpeg]]
744 744  
745 -== 2.11 ​Battery Analysis ==
746 746  
747 -=== 2.11.1 ​Battery Type ===
748 748  
749 -(((
750 -The LSE01 battery is a combination of a 4000mAh Li/SOCI2 Battery and a Super Capacitor. The battery is non-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter.
751 -)))
644 +=== 2.9.3  ​Battery Note ===
752 752  
753 753  (((
754 -The battery is designed to last for more than 5 years for the LSN50.
647 +The Li-SICO battery is designed for small current / long period application. It is not good to use a high current, short period transmit method. The recommended minimum period for use of this battery is 5 minutes. If you use a shorter period time to transmit LoRa, then the battery life may be decreased.
755 755  )))
756 756  
757 -(((
758 -(((
759 -The battery-related documents are as below:
760 -)))
761 -)))
762 762  
763 -* (((
764 -[[Battery Dimension>>url:http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/&file=LSN50-Battery-Dimension.pdf]],
765 -)))
766 -* (((
767 -[[Lithium-Thionyl Chloride Battery  datasheet>>url:https://www.dragino.com/downloads/downloads/datasheet/Battery/ER26500/ER26500_Datasheet-EN.pdf]],
768 -)))
769 -* (((
770 -[[Lithium-ion Battery-Capacitor datasheet>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC_1520_datasheet.jpg]], [[Tech Spec>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC1520%20Technical%20Specification20171123.pdf]]
771 -)))
772 772  
773 - [[image:image-20220610172436-1.png]]
652 +=== 2.9.4  Replace the battery ===
774 774  
775 -
776 -
777 -=== 2.11.2 ​Battery Note ===
778 -
779 779  (((
780 -The Li-SICO battery is designed for small current / long period application. It is not good to use a high current, short period transmit method. The recommended minimum period for use of this battery is 5 minutes. If you use a shorter period time to transmit LoRa, then the battery life may be decreased.
655 +The default battery pack of NSE01 includes a ER26500 plus super capacitor. If user can't find this pack locally, they can find ER26500 or equivalence without the SPC1520 capacitor, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes).
781 781  )))
782 782  
783 783  
784 784  
785 -=== 2.11.3 Replace the battery ===
660 += 3. ​ Access NB-IoT Module =
786 786  
787 787  (((
788 -If Battery is lower than 2.7v, user should replace the battery of LSE01.
663 +Users can directly access the AT command set of the NB-IoT module.
789 789  )))
790 790  
791 791  (((
792 -You can change the battery in the LSE01.The type of battery is not limited as long as the output is between 3v to 3.6v. On the main board, there is a diode (D1) between the battery and the main circuit. If you need to use a battery with less than 3.3v, please remove the D1 and shortcut the two pads of it so there won’t be voltage drop between battery and main board.
667 +The AT Command set can refer the BC35-G NB-IoT Module AT Command: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=datasheet/other_vendors/BC35-G/>>url:https://www.dragino.com/downloads/index.php?dir=datasheet/other_vendors/BC35-G/]] 
793 793  )))
794 794  
795 -(((
796 -The default battery pack of LSE01 includes a ER18505 plus super capacitor. If user can’t find this pack locally, they can find ER18505 or equivalence, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes)
797 -)))
670 +[[image:1657261278785-153.png]]
798 798  
799 799  
800 800  
801 -= 3. Using the AT Commands =
674 += 4.  Using the AT Commands =
802 802  
803 -== 3.1 Access AT Commands ==
676 +== 4.1  Access AT Commands ==
804 804  
678 +See this link for detail: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/]]
805 805  
806 -LSE01 supports AT Command set in the stock firmware. You can use a USB to TTL adapter to connect to LSE01 for using AT command, as below.
807 807  
808 -[[image:1654501986557-872.png||height="391" width="800"]]
681 +AT+<CMD>?  : Help on <CMD>
809 809  
683 +AT+<CMD>         : Run <CMD>
810 810  
811 -Or if you have below board, use below connection:
685 +AT+<CMD>=<value> : Set the value
812 812  
687 +AT+<CMD>=?  : Get the value
813 813  
814 -[[image:1654502005655-729.png||height="503" width="801"]]
815 815  
816 -
817 -
818 -In the PC, you need to set the serial baud rate to (% style="color:green" %)**9600**(%%) to access the serial console for LSE01. LSE01 will output system info once power on as below:
819 -
820 -
821 - [[image:1654502050864-459.png||height="564" width="806"]]
822 -
823 -
824 -Below are the available commands, a more detailed AT Command manual can be found at [[AT Command Manual>>https://www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0]]: [[https:~~/~~/www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0>>https://www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0]]
825 -
826 -
827 -(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>? **(%%) : Help on <CMD>
828 -
829 -(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD> **(%%) : Run <CMD>
830 -
831 -(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>=<value>**(%%) : Set the value
832 -
833 -(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>=?**(%%)  : Get the value
834 -
835 -
836 836  (% style="color:#037691" %)**General Commands**(%%)      
837 837  
838 -(% style="background-color:#dcdcdc" %)**AT**(%%)  : Attention       
692 +AT  : Attention       
839 839  
840 -(% style="background-color:#dcdcdc" %)**AT?**(%%)  : Short Help     
694 +AT?  : Short Help     
841 841  
842 -(% style="background-color:#dcdcdc" %)**ATZ**(%%)  : MCU Reset    
696 +ATZ  : MCU Reset    
843 843  
844 -(% style="background-color:#dcdcdc" %)**AT+TDC**(%%)  : Application Data Transmission Interval 
698 +AT+TDC  : Application Data Transmission Interval
845 845  
700 +AT+CFG  : Print all configurations
846 846  
847 -(% style="color:#037691" %)**Keys, IDs and EUIs management**
702 +AT+CFGMOD           : Working mode selection
848 848  
849 -(% style="background-color:#dcdcdc" %)**AT+APPEUI**(%%)              : Application EUI      
704 +AT+INTMOD            : Set the trigger interrupt mode
850 850  
851 -(% style="background-color:#dcdcdc" %)**AT+APPKEY**(%%)              : Application Key     
706 +AT+5VT  : Set extend the time of 5V power  
852 852  
853 -(% style="background-color:#dcdcdc" %)**AT+APPSKEY**(%%)            : Application Session Key
708 +AT+PRO  : Choose agreement
854 854  
855 -(% style="background-color:#dcdcdc" %)**AT+DADDR**(%%)              : Device Address     
710 +AT+WEIGRE  : Get weight or set weight to 0
856 856  
857 -(% style="background-color:#dcdcdc" %)**AT+DEUI**(%%)                   : Device EUI     
712 +AT+WEIGAP  : Get or Set the GapValue of weight
858 858  
859 -(% style="background-color:#dcdcdc" %)**AT+NWKID**(%%)               : Network ID (You can enter this command change only after successful network connection
714 +AT+RXDL  : Extend the sending and receiving time
860 860  
861 -(% style="background-color:#dcdcdc" %)**AT+NWKSKEY**(%%)          : Network Session Key Joining and sending date on LoRa network  
716 +AT+CNTFAC  : Get or set counting parameters
862 862  
863 -(% style="background-color:#dcdcdc" %)**AT+CFM**(%%)  : Confirm Mode       
718 +AT+SERVADDR  : Server Address
864 864  
865 -(% style="background-color:#dcdcdc" %)**AT+CFS**(%%)                     : Confirm Status       
866 866  
867 -(% style="background-color:#dcdcdc" %)**AT+JOIN**(%%)  : Join LoRa? Network       
721 +(% style="color:#037691" %)**COAP Management**      
868 868  
869 -(% style="background-color:#dcdcdc" %)**AT+NJM**(%%)  : LoRa? Network Join Mode    
723 +AT+URI            : Resource parameters
870 870  
871 -(% style="background-color:#dcdcdc" %)**AT+NJS**(%%)                     : LoRa? Network Join Status    
872 872  
873 -(% style="background-color:#dcdcdc" %)**AT+RECV**(%%)                  : Print Last Received Data in Raw Format
726 +(% style="color:#037691" %)**UDP Management**
874 874  
875 -(% style="background-color:#dcdcdc" %)**AT+RECVB**(%%)                : Print Last Received Data in Binary Format      
728 +AT+CFM          : Upload confirmation mode (only valid for UDP)
876 876  
877 -(% style="background-color:#dcdcdc" %)**AT+SEND**(%%)                  : Send Text Data      
878 878  
879 -(% style="background-color:#dcdcdc" %)**AT+SENB**(%%)                  : Send Hexadecimal Data
731 +(% style="color:#037691" %)**MQTT Management**
880 880  
733 +AT+CLIENT               : Get or Set MQTT client
881 881  
882 -(% style="color:#037691" %)**LoRa Network Management**
735 +AT+UNAME  : Get or Set MQTT Username
883 883  
884 -(% style="background-color:#dcdcdc" %)**AT+ADR**(%%)          : Adaptive Rate
737 +AT+PWD                  : Get or Set MQTT password
885 885  
886 -(% style="background-color:#dcdcdc" %)**AT+CLASS**(%%)  : LoRa Class(Currently only support class A
739 +AT+PUBTOPI : Get or Set MQTT publish topic
887 887  
888 -(% style="background-color:#dcdcdc" %)**AT+DCS**(%%)  : Duty Cycle Settin
741 +AT+SUBTOPIC  : Get or Set MQTT subscription topic
889 889  
890 -(% style="background-color:#dcdcdc" %)**AT+DR**(%%)  : Data Rate (Can Only be Modified after ADR=0)     
891 891  
892 -(% style="background-color:#dcdcdc" %)**AT+FCD**(%%)  : Frame Counter Downlink       
744 +(% style="color:#037691" %)**Information**          
893 893  
894 -(% style="background-color:#dcdcdc" %)**AT+FCU**(%%)  : Frame Counter Uplink   
746 +AT+FDR  : Factory Data Reset
895 895  
896 -(% style="background-color:#dcdcdc" %)**AT+JN1DL**(%%)  : Join Accept Delay1
748 +AT+PWOR : Serial Access Password
897 897  
898 -(% style="background-color:#dcdcdc" %)**AT+JN2DL**(%%)  : Join Accept Delay2
899 899  
900 -(% style="background-color:#dcdcdc" %)**AT+PNM**(%%)  : Public Network Mode   
901 901  
902 -(% style="background-color:#dcdcdc" %)**AT+RX1DL**(%%)  : Receive Delay1      
752 += ​5.  FAQ =
903 903  
904 -(% style="background-color:#dcdcdc" %)**AT+RX2DL**(%%)  : Receive Delay2      
754 +== 5.1 How to Upgrade Firmware ==
905 905  
906 -(% style="background-color:#dcdcdc" %)**AT+RX2DR**(%%)  : Rx2 Window Data Rate 
907 907  
908 -(% style="background-color:#dcdcdc" %)**AT+RX2FQ**(%%)  : Rx2 Window Frequency
909 -
910 -(% style="background-color:#dcdcdc" %)**AT+TXP**(%%)  : Transmit Power
911 -
912 -(% style="background-color:#dcdcdc" %)**AT+ MOD**(%%)  : Set work mode
913 -
914 -
915 -(% style="color:#037691" %)**Information** 
916 -
917 -(% style="background-color:#dcdcdc" %)**AT+RSSI**(%%)           : RSSI of the Last Received Packet   
918 -
919 -(% style="background-color:#dcdcdc" %)**AT+SNR**(%%)           : SNR of the Last Received Packet   
920 -
921 -(% style="background-color:#dcdcdc" %)**AT+VER**(%%)           : Image Version and Frequency Band       
922 -
923 -(% style="background-color:#dcdcdc" %)**AT+FDR**(%%)           : Factory Data Reset
924 -
925 -(% style="background-color:#dcdcdc" %)**AT+PORT**(%%)  : Application Port    
926 -
927 -(% style="background-color:#dcdcdc" %)**AT+CHS**(%%)  : Get or Set Frequency (Unit: Hz) for Single Channel Mode
928 -
929 - (% style="background-color:#dcdcdc" %)**AT+CHE**(%%)  : Get or Set eight channels mode, Only for US915, AU915, CN470
930 -
931 -
932 -= ​4. FAQ =
933 -
934 -== 4.1 ​How to change the LoRa Frequency Bands/Region? ==
935 -
936 936  (((
937 -You can follow the instructions for [[how to upgrade image>>||anchor="H2.10200BFirmwareChangeLog"]].
938 -When downloading the images, choose the required image file for download. ​
758 +User can upgrade the firmware for 1) bug fix, 2) new feature release.
939 939  )))
940 940  
941 941  (((
942 -
762 +Please see this link for how to upgrade:  [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H2.HardwareUpgradeMethodSupportList>>http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H2.HardwareUpgradeMethodSupportList]]
943 943  )))
944 944  
945 945  (((
946 -How to set up LSE01 to work in 8 channel mode By default, the frequency bands US915, AU915, CN470 work in 72 frequencies. Many gateways are 8 channel gateways, and in this case, the OTAA join time and uplink schedule is long and unpredictable while the end node is hopping in 72 frequencies.
766 +(% style="color:red" %)Notice, NSE01 and LSE01 share the same mother board. They use the same connection and method to update.
947 947  )))
948 948  
949 -(((
950 -
951 -)))
952 952  
953 -(((
954 -You can configure the end node to work in 8 channel mode by using the AT+CHE command. The 500kHz channels are always included for OTAA.
955 -)))
956 956  
957 -(((
958 -
959 -)))
771 += 6.  Trouble Shooting =
960 960  
961 -(((
962 -For example, in **US915** band, the frequency table is as below. By default, the end node will use all channels (0~~71) for OTAA Join process. After the OTAA Join, the end node will use these all channels (0~~71) to send uplink packets.
963 -)))
773 +== 6.1  ​Connection problem when uploading firmware ==
964 964  
965 -[[image:image-20220606154726-3.png]]
966 966  
967 -
968 -When you use the TTN network, the US915 frequency bands use are:
969 -
970 -* 903.9 - SF7BW125 to SF10BW125
971 -* 904.1 - SF7BW125 to SF10BW125
972 -* 904.3 - SF7BW125 to SF10BW125
973 -* 904.5 - SF7BW125 to SF10BW125
974 -* 904.7 - SF7BW125 to SF10BW125
975 -* 904.9 - SF7BW125 to SF10BW125
976 -* 905.1 - SF7BW125 to SF10BW125
977 -* 905.3 - SF7BW125 to SF10BW125
978 -* 904.6 - SF8BW500
979 -
776 +(% class="wikigeneratedid" %)
980 980  (((
981 -Because the end node is now hopping in 72 frequency, it makes it difficult for the devices to Join the TTN network and uplink data. To solve this issue, you can access the device via the AT commands and run:
982 -
983 -* (% style="color:#037691" %)**AT+CHE=2**
984 -* (% style="color:#037691" %)**ATZ**
778 +(% style="font-size:14px" %)**Please see: **(%%)[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H3.3Troubleshooting>>http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H3.3Troubleshooting||style="background-color: rgb(255, 255, 255); font-size: 14px;"]]
985 985  )))
986 986  
987 -(((
988 -
989 989  
990 -to set the end node to work in 8 channel mode. The device will work in Channel 8-15 & 64-71 for OTAA, and channel 8-15 for Uplink.
991 -)))
992 992  
993 -(((
994 -
995 -)))
783 +== 6.2  AT Command input doesn't work ==
996 996  
997 997  (((
998 -The **AU915** band is similar. Below are the AU915 Uplink Channels.
786 +In the case if user can see the console output but can't type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn't send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.
999 999  )))
1000 1000  
1001 -[[image:image-20220606154825-4.png]]
1002 1002  
1003 1003  
791 += 7. ​ Order Info =
1004 1004  
1005 -= 5. Trouble Shooting =
1006 1006  
1007 -== 5.1 ​Why I can’t join TTN in US915 / AU915 bands? ==
794 +Part Number**:** (% style="color:#4f81bd" %)**NSE01**
1008 1008  
1009 -It is due to channel mapping. Please see the [[Eight Channel Mode>>doc:Main.LoRaWAN Communication Debug.WebHome||anchor="H2.NoticeofUS9152FCN4702FAU915Frequencyband"]] section above for details.
1010 1010  
1011 -
1012 -== 5.2 AT Command input doesn’t work ==
1013 -
1014 -(((
1015 -In the case if user can see the console output but can’t type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn’t send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.
1016 -)))
1017 -
1018 -
1019 -== 5.3 Device rejoin in at the second uplink packet ==
1020 -
1021 -(% style="color:#4f81bd" %)**Issue describe as below:**
1022 -
1023 -[[image:1654500909990-784.png]]
1024 -
1025 -
1026 -(% style="color:#4f81bd" %)**Cause for this issue:**
1027 -
1028 -(((
1029 -The fuse on LSE01 is not large enough, some of the soil probe require large current up to 5v 800mA, in a short pulse. When this happen, it cause the device reboot so user see rejoin.
1030 -)))
1031 -
1032 -
1033 -(% style="color:#4f81bd" %)**Solution: **
1034 -
1035 -All new shipped LSE01 after 2020-May-30 will have this to fix. For the customer who see this issue, please bypass the fuse as below:
1036 -
1037 -[[image:1654500929571-736.png||height="458" width="832"]]
1038 -
1039 -
1040 -= 6. ​Order Info =
1041 -
1042 -
1043 -Part Number**:** (% style="color:#4f81bd" %)**LSE01-XX-YY**
1044 -
1045 -
1046 -(% style="color:#4f81bd" %)**XX**(%%)**:** The default frequency band
1047 -
1048 -* (% style="color:red" %)**AS923**(%%): LoRaWAN AS923 band
1049 -* (% style="color:red" %)**AU915**(%%): LoRaWAN AU915 band
1050 -* (% style="color:red" %)**EU433**(%%): LoRaWAN EU433 band
1051 -* (% style="color:red" %)**EU868**(%%): LoRaWAN EU868 band
1052 -* (% style="color:red" %)**KR920**(%%): LoRaWAN KR920 band
1053 -* (% style="color:red" %)**US915**(%%): LoRaWAN US915 band
1054 -* (% style="color:red" %)**IN865**(%%):  LoRaWAN IN865 band
1055 -* (% style="color:red" %)**CN470**(%%): LoRaWAN CN470 band
1056 -
1057 -(% style="color:#4f81bd" %)**YY**(%%)**: **Battery Option
1058 -
1059 -* (% style="color:red" %)**4**(%%): 4000mAh battery
1060 -* (% style="color:red" %)**8**(%%): 8500mAh battery
1061 -
1062 1062  (% class="wikigeneratedid" %)
1063 1063  (((
1064 1064  
1065 1065  )))
1066 1066  
1067 -= 7. Packing Info =
802 += 8.  Packing Info =
1068 1068  
1069 1069  (((
1070 1070  
1071 1071  
1072 1072  (% style="color:#037691" %)**Package Includes**:
1073 -)))
1074 1074  
1075 -* (((
1076 -LSE01 LoRaWAN Soil Moisture & EC Sensor x 1
809 +
810 +* NSE01 NB-IoT Soil Moisture & EC Sensor x 1
811 +* External antenna x 1
1077 1077  )))
1078 1078  
1079 1079  (((
... ... @@ -1080,24 +1080,20 @@
1080 1080  
1081 1081  
1082 1082  (% style="color:#037691" %)**Dimension and weight**:
1083 -)))
1084 1084  
1085 -* (((
1086 -Device Size: cm
819 +
820 +* Size: 195 x 125 x 55 mm
821 +* Weight:   420g
1087 1087  )))
1088 -* (((
1089 -Device Weight: g
1090 -)))
1091 -* (((
1092 -Package Size / pcs : cm
1093 -)))
1094 -* (((
1095 -Weight / pcs : g
1096 1096  
824 +(((
1097 1097  
826 +
827 +
828 +
1098 1098  )))
1099 1099  
1100 -= 8. Support =
831 += 9.  Support =
1101 1101  
1102 1102  * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
1103 1103  * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.com]]
1657245163077-232.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +81.0 KB
Content
1657246476176-652.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +492.6 KB
Content
1657249419225-449.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +81.0 KB
Content
1657249468462-536.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +483.6 KB
Content
1657249793983-486.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +85.8 KB
Content
1657249831934-534.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +72.5 KB
Content
1657249864775-321.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +87.0 KB
Content
1657249930215-289.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +77.3 KB
Content
1657249978444-674.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +139.5 KB
Content
1657249990869-686.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +96.9 KB
Content
1657250217799-140.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +98.7 KB
Content
1657250255956-604.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +99.0 KB
Content
1657259653666-883.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +344.4 KB
Content
1657260785982-288.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +138.2 KB
Content
1657261119050-993.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +126.1 KB
Content
1657261278785-153.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +126.1 KB
Content
image-20220708101224-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +22.2 KB
Content
image-20220708101605-2.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +87.5 KB
Content
image-20220708110657-3.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +251.7 KB
Content
image-20220708111918-4.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +38.8 KB
Content
image-20220708133731-5.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +8.7 KB
Content
image-20220708140453-6.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +132.7 KB
Content
image-20220708141352-7.jpeg
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +102.7 KB
Content
Copyright ©2010-2022 Dragino Technology Co., LTD. All rights reserved
Dragino Wiki v2.0