Last modified by Mengting Qiu on 2024/04/02 16:44

From version 35.20
edited by Xiaoling
on 2022/06/14 14:16
Change comment: There is no comment for this version
To version 91.2
edited by Xiaoling
on 2022/07/09 09:58
Change comment: There is no comment for this version

Summary

Details

Page properties
Title
... ... @@ -1,1 +1,1 @@
1 -LSE01-LoRaWAN Soil Moisture & EC Sensor User Manual
1 +NDDS75 NB-IoT Distance Detect Sensor User Manual
Content
... ... @@ -1,11 +1,12 @@
1 1  (% style="text-align:center" %)
2 -[[image:image-20220606151504-2.jpeg||height="554" width="554"]]
2 +[[image:image-20220709085040-1.png||height="542" width="524"]]
3 3  
4 4  
5 5  
6 +
7 +
6 6  **Table of Contents:**
7 7  
8 -{{toc/}}
9 9  
10 10  
11 11  
... ... @@ -12,773 +12,677 @@
12 12  
13 13  
14 14  
15 -= 1. Introduction =
16 += 1.  Introduction =
16 16  
17 -== 1.1 ​What is LoRaWAN Soil Moisture & EC Sensor ==
18 +== 1.1 ​ What is NDDS75 Distance Detection Sensor ==
18 18  
19 19  (((
20 20  
21 21  
22 -The Dragino LSE01 is a (% style="color:#4f81bd" %)**LoRaWAN Soil Moisture & EC Sensor**(%%) for IoT of Agriculture. It is designed to measure the soil moisture of saline-alkali soil and loamy soil. The soil sensor uses FDR method to calculate the soil moisture with the compensation from soil temperature and conductivity. It also has been calibrated in factory for Mineral soil type.
23 -)))
24 -
25 25  (((
26 -It detects (% style="color:#4f81bd" %)**Soil Moisture**(%%), (% style="color:#4f81bd" %)**Soil Temperature**(%%) and (% style="color:#4f81bd" %)**Soil Conductivity**(%%), and uploads the value via wireless to LoRaWAN IoT Server.
24 +The Dragino NDDS75 is a (% style="color:blue" %)**NB-IoT Distance Detection Sensor**(%%) for Internet of Things solution. It is designed to measure the distance between the sensor and a flat object. The distance detection sensor is a module that uses ultrasonic sensing technology for distance measurement, and temperature compensation is performed internally to improve the reliability of data.
25 +\\The NDDS75 can be applied to scenarios such as horizontal distance measurement, liquid level measurement, parking management system, object proximity and presence detection, intelligent trash can management system, robot obstacle avoidance, automatic control, sewer, bottom water level monitoring, etc. It detects the distance between the measured object and the sensor, and uploads the value via wireless to IoT Server via NB-IoT Network.
26 +\\NarrowBand-Internet of Things (NB-IoT) is a standards-based low power wide area (LPWA) technology developed to enable a wide range of new IoT devices and services. NB-IoT significantly improves the power consumption of user devices, system capacity and spectrum efficiency, especially in deep coverage.
27 +\\NDDS75 supports different uplink methods include (% style="color:blue" %)**TCP, MQTT, UDP and CoAP** (%%)for different application requirement.
28 +\\NDDS75 is powered by (% style="color:blue" %)**8500mAh Li-SOCI2 battery**(%%), It is designed for long term use up to 5 years. (Actually Battery life depends on the use environment, update period & uplink method)
29 +\\To use NDDS75, user needs to check if there is NB-IoT coverage in local area and with the bands NDDS75 supports. If the local operate support it, user needs to get a NB-IoT SIM card from local operator and install NDDS75 to get NB-IoT network connection.
27 27  )))
28 28  
29 -(((
30 -The LoRa wireless technology used in LES01 allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption.
32 +
31 31  )))
32 32  
33 -(((
34 -LES01 is powered by (% style="color:#4f81bd" %)**4000mA or 8500mAh Li-SOCI2 battery**(%%), It is designed for long term use up to 10 years.
35 -)))
36 -
37 -(((
38 -Each LES01 is pre-load with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect after power on.
39 -)))
40 -
41 -
42 42  [[image:1654503236291-817.png]]
43 43  
44 44  
45 -[[image:1654503265560-120.png]]
38 +[[image:1657327959271-447.png]]
46 46  
47 47  
48 48  
49 -== 1.2 ​Features ==
42 +== 1.2 ​ Features ==
50 50  
51 -* LoRaWAN 1.0.3 Class A
44 +
45 +* NB-IoT Bands: B1/B3/B8/B5/B20/B28 @H-FDD
52 52  * Ultra low power consumption
53 -* Monitor Soil Moisture
54 -* Monitor Soil Temperature
55 -* Monitor Soil Conductivity
56 -* Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865
47 +* Distance Detection by Ultrasonic technology
48 +* Flat object range 280mm - 7500mm
49 +* Accuracy: ±(1cm+S*0.3%) (S: Distance)
50 +* Cable Length: 25cm
57 57  * AT Commands to change parameters
58 58  * Uplink on periodically
59 59  * Downlink to change configure
60 60  * IP66 Waterproof Enclosure
61 -* 4000mAh or 8500mAh Battery for long term use
55 +* Micro SIM card slot for NB-IoT SIM
56 +* 8500mAh Battery for long term use
62 62  
63 -== 1.3 Specification ==
64 64  
65 -Measure Volume: Base on the centra pin of the probe, a cylinder with 7cm diameter and 10cm height.
66 66  
67 -[[image:image-20220606162220-5.png]]
60 +== 1.3  Specification ==
68 68  
69 69  
63 +(% style="color:#037691" %)**Common DC Characteristics:**
70 70  
71 -== ​1.4 Applications ==
65 +* Supply Voltage: 2.1v ~~ 3.6v
66 +* Operating Temperature: -40 ~~ 85°C
72 72  
73 -* Smart Agriculture
68 +(% style="color:#037691" %)**NB-IoT Spec:**
74 74  
75 -(% class="wikigeneratedid" id="H200B1.5FirmwareChangelog" %)
76 -​
70 +* - B1 @H-FDD: 2100MHz
71 +* - B3 @H-FDD: 1800MHz
72 +* - B8 @H-FDD: 900MHz
73 +* - B5 @H-FDD: 850MHz
74 +* - B20 @H-FDD: 800MHz
75 +* - B28 @H-FDD: 700MHz
77 77  
78 -== 1.5 Firmware Change log ==
77 +(% style="color:#037691" %)**Battery:**
79 79  
79 +* Li/SOCI2 un-chargeable battery
80 +* Capacity: 8500mAh
81 +* Self Discharge: <1% / Year @ 25°C
82 +* Max continuously current: 130mA
83 +* Max boost current: 2A, 1 second
80 80  
81 -**LSE01 v1.0 :**  Release
85 +(% style="color:#037691" %)**Power Consumption**
82 82  
87 +* STOP Mode: 10uA @ 3.3v
88 +* Max transmit power: 350mA@3.3v
83 83  
90 +== ​1.4  Applications ==
84 84  
85 -= 2. Configure LSE01 to connect to LoRaWAN network =
92 +* Smart Buildings & Home Automation
93 +* Logistics and Supply Chain Management
94 +* Smart Metering
95 +* Smart Agriculture
96 +* Smart Cities
97 +* Smart Factory
86 86  
87 -== 2.1 How it works ==
99 +(% class="wikigeneratedid" id="H200B1.5FirmwareChangelog" %)
100 +​
88 88  
89 -(((
90 -The LSE01 is configured as LoRaWAN OTAA Class A mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and power on the LSE0150. It will automatically join the network via OTAA and start to send the sensor value
91 -)))
92 92  
93 -(((
94 -In case you can’t set the OTAA keys in the LoRaWAN OTAA server, and you have to use the keys from the server, you can [[use AT Commands >>||anchor="H3.200BUsingtheATCommands"]].
95 -)))
96 96  
104 +== 1.5  Pin Definitions ==
97 97  
98 98  
99 -== 2.2 ​Quick guide to connect to LoRaWAN server (OTAA) ==
107 +[[image:1657328609906-564.png]]
100 100  
101 -Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LG308>>url:http://www.dragino.com/products/lora/item/140-lg308.html]] as a LoRaWAN gateway in this example.
102 102  
103 103  
104 -[[image:1654503992078-669.png]]
111 += 2.  Use NDDS75 to communicate with IoT Server =
105 105  
113 +== 2.1  How it works ==
106 106  
107 -The LG308 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
115 +(((
116 +The NDDS75 is equipped with a NB-IoT module, the pre-loaded firmware in NDDS75 will get environment data from sensors and send the value to local NB-IoT network via the NB-IoT module.  The NB-IoT network will forward this value to IoT server via the protocol defined by NDDS75.
117 +)))
108 108  
109 109  
110 -(% style="color:blue" %)**Step 1**(%%):  Create a device in TTN with the OTAA keys from LSE01.
120 +(((
121 +The diagram below shows the working flow in default firmware of NDDS75:
122 +)))
111 111  
112 -Each LSE01 is shipped with a sticker with the default device EUI as below:
124 +(((
125 +
126 +)))
113 113  
114 -[[image:image-20220606163732-6.jpeg]]
128 +[[image:1657328659945-416.png]]
115 115  
116 -You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot:
130 +(((
131 +
132 +)))
117 117  
118 -**Add APP EUI in the application**
119 119  
135 +== 2.2 ​ Configure the NDDS75 ==
120 120  
121 -[[image:1654504596150-405.png]]
122 122  
138 +=== 2.2.1 Test Requirement ===
123 123  
140 +(((
141 +To use NDDS75 in your city, make sure meet below requirements:
142 +)))
124 124  
125 -**Add APP KEY and DEV EUI**
144 +* Your local operator has already distributed a NB-IoT Network there.
145 +* The local NB-IoT network used the band that NSE01 supports.
146 +* Your operator is able to distribute the data received in their NB-IoT network to your IoT server.
126 126  
127 -[[image:1654504683289-357.png]]
148 +(((
149 +Below figure shows our testing structure. Here we have NB-IoT network coverage by China Mobile, the band they use is B8.  The NDDS75 will use CoAP((% style="color:red" %)120.24.4.116:5683)(%%) or raw UDP((% style="color:red" %)120.24.4.116:5601)(%%) or MQTT((% style="color:red" %)120.24.4.116:1883)(%%)or TCP((% style="color:red" %)120.24.4.116:5600)(%%)protocol to send data to the test server
150 +)))
128 128  
129 129  
153 +[[image:1657328756309-230.png]]
130 130  
131 -(% style="color:blue" %)**Step 2**(%%): Power on LSE01
132 132  
133 133  
134 -Put a Jumper on JP2 to power on the device. ( The Jumper must be in FLASH position).
157 +=== 2.2.2 Insert SIM card ===
135 135  
136 -[[image:image-20220606163915-7.png]]
159 +(((
160 +Insert the NB-IoT Card get from your provider.
161 +)))
137 137  
163 +(((
164 +User need to take out the NB-IoT module and insert the SIM card like below:
165 +)))
138 138  
139 -(% style="color:blue" %)**Step 3**(%%)**:** The LSE01 will auto join to the TTN network. After join success, it will start to upload messages to TTN and you can see the messages in the panel.
140 140  
141 -[[image:1654504778294-788.png]]
168 +[[image:1657328884227-504.png]]
142 142  
143 143  
144 144  
145 -== 2.3 Uplink Payload ==
172 +=== 2.2.3 Connect USB – TTL to NDDS75 to configure it ===
146 146  
147 -
148 -=== 2.3.1 MOD~=0(Default Mode) ===
149 -
150 -LSE01 will uplink payload via LoRaWAN with below payload format: 
151 -
152 152  (((
153 -Uplink payload includes in total 11 bytes.
175 +(((
176 +User need to configure NDDS75 via serial port to set the (% style="color:blue" %)**Server Address** / **Uplink Topic** (%%)to define where and how-to uplink packets. NDDS75 support AT Commands, user can use a USB to TTL adapter to connect to NDDS75 and use AT Commands to configure it, as below.
154 154  )))
178 +)))
155 155  
156 -(% border="1" cellspacing="10" style="background-color:#ffffcc; width:500px" %)
157 -|(((
158 -**Size**
180 +[[image:image-20220709092052-2.png]]
159 159  
160 -**(bytes)**
161 -)))|**2**|**2**|**2**|**2**|**2**|**1**
162 -|**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(((
163 -Temperature
182 +**Connection:**
164 164  
165 -(Reserve, Ignore now)
166 -)))|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]]|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]]|(((
167 -MOD & Digital Interrupt
184 + (% style="background-color:yellow" %)USB TTL GND <~-~-~-~-> GND
168 168  
169 -(Optional)
170 -)))
186 + (% style="background-color:yellow" %)USB TTL TXD <~-~-~-~-> UART_RXD
171 171  
188 + (% style="background-color:yellow" %)USB TTL RXD <~-~-~-~-> UART_TXD
172 172  
173 173  
174 -=== 2.3.2 MOD~=1(Original value) ===
191 +In the PC, use below serial tool settings:
175 175  
176 -This mode can get the original AD value of moisture and original conductivity (with temperature drift compensation).
193 +* Baud:  (% style="color:green" %)**9600**
194 +* Data bits:** (% style="color:green" %)8(%%)**
195 +* Stop bits: (% style="color:green" %)**1**
196 +* Parity:  (% style="color:green" %)**None**
197 +* Flow Control: (% style="color:green" %)**None**
177 177  
178 -(% border="1" cellspacing="10" style="background-color:#ffffcc; width:500px" %)
179 -|(((
180 -**Size**
199 +(((
200 +Make sure the switch is in FLASH position, then power on device by connecting the jumper on NDDS75. NDDS75 will output system info once power on as below, we can enter the (% style="color:green" %)**password: 12345678**(%%) to access AT Command input.
201 +)))
181 181  
182 -**(bytes)**
183 -)))|**2**|**2**|**2**|**2**|**2**|**1**
184 -|**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(((
185 -Temperature
203 +[[image:1657329814315-101.png]]
186 186  
187 -(Reserve, Ignore now)
188 -)))|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]](raw)|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]](raw)|(((
189 -MOD & Digital Interrupt
190 -
191 -(Optional)
205 +(((
206 +(% style="color:red" %)Note: the valid AT Commands can be found at: (%%)[[https:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NDDS75/>>url:https://www.dragino.com/downloads/index.php?dir=NB-IoT/NDDS75/]]
192 192  )))
193 193  
194 194  
195 195  
196 -=== 2.3.3 Battery Info ===
211 +=== 2.2.4 Use CoAP protocol to uplink data ===
197 197  
198 -(((
199 -Check the battery voltage for LSE01.
200 -)))
213 +(% style="color:red" %)Note: if you don't have CoAP server, you can refer this link to set up one: (%%)[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/>>http://wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/]]
201 201  
202 -(((
203 -Ex1: 0x0B45 = 2885mV
204 -)))
205 205  
206 -(((
207 -Ex2: 0x0B49 = 2889mV
208 -)))
216 +**Use below commands:**
209 209  
218 +* (% style="color:blue" %)**AT+PRO=1**  (%%) ~/~/ Set to use CoAP protocol to uplink
219 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5683   ** (%%)~/~/ to set CoAP server address and port
220 +* (% style="color:blue" %)**AT+URI=5,11,"mqtt",11,"coap",12,"0",15,"c=text1",23,"0" ** (%%) ~/~/Set COAP resource path
210 210  
222 +For parameter description, please refer to AT command set
211 211  
212 -=== 2.3.4 Soil Moisture ===
224 +[[image:1657330452568-615.png]]
213 213  
214 -(((
215 -Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil.
216 -)))
217 217  
218 -(((
219 -For example, if the data you get from the register is __0x05 0xDC__, the moisture content in the soil is
220 -)))
227 +After configure the server address and (% style="color:green" %)**reset the device**(%%) (via AT+ATZ ), NDDS75 will start to uplink sensor values to CoAP server.
221 221  
222 -(((
223 -
224 -)))
229 +[[image:1657330472797-498.png]]
225 225  
226 -(((
227 -(% style="color:#4f81bd" %)**05DC(H) = 1500(D) /100 = 15%.**
228 -)))
229 229  
230 230  
233 +=== 2.2.5 Use UDP protocol to uplink data(Default protocol) ===
231 231  
232 -=== 2.3.5 Soil Temperature ===
233 233  
234 -(((
235 - Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is 0x09 0xEC, the temperature content in the soil is
236 -)))
236 +* (% style="color:blue" %)**AT+PRO=2   ** (%%) ~/~/ Set to use UDP protocol to uplink
237 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5601   ** (%%) ~/~/ to set UDP server address and port
238 +* (% style="color:blue" %)**AT+CFM=1       ** (%%) ~/~/If the server does not respond, this command is unnecessary
237 237  
238 -(((
239 -**Example**:
240 -)))
240 +[[image:1657330501006-241.png]]
241 241  
242 -(((
243 -If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/100 = 2.61 °C
244 -)))
245 245  
246 -(((
247 -If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C
248 -)))
243 +[[image:1657330533775-472.png]]
249 249  
250 250  
251 251  
252 -=== 2.3.6 Soil Conductivity (EC) ===
247 +=== 2.2.6 Use MQTT protocol to uplink data ===
253 253  
254 -(((
255 -Obtain (% style="color:#4f81bd" %)**__soluble salt concentration__**(%%) in soil or (% style="color:#4f81bd" %)**__soluble ion concentration in liquid fertilizer__**(%%) or (% style="color:#4f81bd" %)**__planting medium__**(%%). The value range of the register is 0 - 20000(Decimal)( Can be greater than 20000).
256 -)))
257 257  
258 -(((
259 -For example, if the data you get from the register is 0x00 0xC8, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm.
260 -)))
250 +* (% style="color:blue" %)**AT+PRO=3   ** (%%) ~/~/Set to use MQTT protocol to uplink
251 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,1883   ** (%%) ~/~/Set MQTT server address and port
252 +* (% style="color:blue" %)**AT+CLIENT=CLIENT       ** (%%)~/~/Set up the CLIENT of MQTT
253 +* (% style="color:blue" %)**AT+UNAME=UNAME                               **(%%)~/~/Set the username of MQTT
254 +* (% style="color:blue" %)**AT+PWD=PWD                                        **(%%)~/~/Set the password of MQTT
255 +* (% style="color:blue" %)**AT+PUBTOPIC=NDDS75_PUB                 **(%%)~/~/Set the sending topic of MQTT
256 +* (% style="color:blue" %)**AT+SUBTOPIC=NDDS75_SUB          **(%%) ~/~/Set the subscription topic of MQTT
261 261  
262 -(((
263 -Generally, the EC value of irrigation water is less than 800uS / cm.
264 -)))
258 +[[image:1657249978444-674.png]]
265 265  
266 -(((
267 -
268 -)))
269 269  
261 +[[image:1657330723006-866.png]]
262 +
263 +
270 270  (((
271 -
265 +MQTT protocol has a much higher power consumption compare vs UDP / CoAP protocol. Please check the power analyze document and adjust the uplink period to a suitable interval.
272 272  )))
273 273  
274 -=== 2.3.7 MOD ===
275 275  
276 -Firmware version at least v2.1 supports changing mode.
277 277  
278 -For example, bytes[10]=90
270 +=== 2.2.7 Use TCP protocol to uplink data ===
279 279  
280 -mod=(bytes[10]>>7)&0x01=1.
281 281  
273 +* (% style="color:blue" %)**AT+PRO=4   ** (%%) ~/~/ Set to use TCP protocol to uplink
274 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5600   **(%%) ~/~/ to set TCP server address and port
282 282  
283 -**Downlink Command:**
276 +[[image:image-20220709093918-1.png]]
284 284  
285 -If payload = 0x0A00, workmode=0
286 286  
287 -If** **payload =** **0x0A01, workmode=1
279 +[[image:image-20220709093918-2.png]]
288 288  
289 289  
290 290  
291 -=== 2.3.8 ​Decode payload in The Things Network ===
283 +=== 2.2.8 Change Update Interval ===
292 292  
293 -While using TTN network, you can add the payload format to decode the payload.
285 +User can use below command to change the (% style="color:green" %)**uplink interval**.
294 294  
287 +* (% style="color:blue" %)**AT+TDC=600      ** (%%)~/~/ Set Update Interval to 600s
295 295  
296 -[[image:1654505570700-128.png]]
297 -
298 298  (((
299 -The payload decoder function for TTN is here:
290 +(% style="color:red" %)**NOTE:**
300 300  )))
301 301  
302 302  (((
303 -LSE01 TTN Payload Decoder: [[https:~~/~~/www.dropbox.com/sh/si8icbrjlamxqdb/AAACYwjsxxr5fj_vpqRtrETAa?dl=0>>https://www.dropbox.com/sh/si8icbrjlamxqdb/AAACYwjsxxr5fj_vpqRtrETAa?dl=0]]
294 +(% style="color:red" %)1. By default, the device will send an uplink message every 1 hour.
304 304  )))
305 305  
306 306  
307 -== 2.4 Uplink Interval ==
308 308  
309 -The LSE01 by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link: [[Change Uplink Interval>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H4.1ChangeUplinkInterval"]]
299 +== 2. Uplink Payload ==
310 310  
301 +In this mode, uplink payload includes in total 14 bytes
311 311  
312 312  
313 -== 2.5 Downlink Payload ==
304 +(% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:510px" %)
305 +|=(% style="width: 60px;" %)(((
306 +**Size(bytes)**
307 +)))|=(% style="width: 50px;" %)**6**|=(% style="width: 25px;" %)2|=(% style="width: 25px;" %)**2**|=(% style="width: 70px;" %)**1**|=(% style="width: 60px;" %)**2**|=(% style="width: 50px;" %)**1**
308 +|(% style="width:97px" %)**Value**|(% style="width:83px" %)[[Device ID>>||anchor="H2.4.1A0A0DeviceID"]]|(% style="width:41px" %)[[Ver>>||anchor="H2.4.2A0VersionInfo"]]|(% style="width:46px" %)[[BAT>>||anchor="H2.4.3A0BatteryInfo"]]|(% style="width:123px" %)[[Signal Strength>>||anchor="H2.4.4A0SignalStrength"]]|(% style="width:108px" %)[[Distance (unit: mm)>>||anchor="H2.4.5A0SoilMoisture"]]|(% style="width:80px" %)[[Interrupt>>||anchor="H2.4.8A0DigitalInterrupt"]]
314 314  
315 -By default, LSE50 prints the downlink payload to console port.
310 +(((
311 +If we use the MQTT client to subscribe to this MQTT topic, we can see the following information when the NDDS751 uplink data.
312 +)))
316 316  
317 -[[image:image-20220606165544-8.png]]
318 318  
315 +[[image:1657331036973-987.png]]
319 319  
320 320  (((
321 -**Examples:**
318 +The payload is ASCII string, representative same HEX:
322 322  )))
323 323  
324 324  (((
325 -
322 +0x72403155615900640c6c19029200 where:
326 326  )))
327 327  
328 328  * (((
329 -**Set TDC**
326 +Device ID: 0x724031556159 = 724031556159
330 330  )))
331 -
332 -(((
333 -If the payload=0100003C, it means set the END Node’s TDC to 0x00003C=60(S), while type code is 01.
328 +* (((
329 +Version: 0x0064=100=1.0.0
334 334  )))
335 335  
336 -(((
337 -Payload:    01 00 00 1E    TDC=30S
332 +* (((
333 +BAT: 0x0c6c = 3180 mV = 3.180V
338 338  )))
339 -
340 -(((
341 -Payload:    01 00 00 3C    TDC=60S
335 +* (((
336 +Signal: 0x19 = 25
342 342  )))
343 -
344 -(((
345 -
338 +* (((
339 +Distance: 0x0292= 658 mm
346 346  )))
347 -
348 348  * (((
349 -**Reset**
342 +Interrupt: 0x00 = 0
350 350  )))
351 351  
352 -(((
353 -If payload = 0x04FF, it will reset the LSE01
354 -)))
355 355  
356 356  
357 -* **CFM**
347 +== 2.4  Payload Explanation and Sensor Interface ==
358 358  
359 -Downlink Payload: 05000001, Set AT+CFM=1 or 05000000 , set AT+CFM=0
360 360  
350 +=== 2.4.1  Device ID ===
361 361  
352 +(((
353 +By default, the Device ID equal to the last 6 bytes of IMEI.
354 +)))
362 362  
363 -== 2.6 ​Show Data in DataCake IoT Server ==
364 -
365 365  (((
366 -[[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps:
357 +User can use (% style="color:blue" %)**AT+DEUI**(%%) to set Device ID
367 367  )))
368 368  
369 369  (((
370 -
361 +**Example:**
371 371  )))
372 372  
373 373  (((
374 -(% style="color:blue" %)**Step 1**(%%):  Be sure that your device is programmed and properly connected to the network at this time.
365 +AT+DEUI=A84041F15612
375 375  )))
376 376  
377 377  (((
378 -(% style="color:blue" %)**Step 2**(%%):  To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps:
369 +The Device ID is stored in a none-erase area, Upgrade the firmware or run **AT+FDR** won't erase Device ID.
379 379  )))
380 380  
381 381  
382 -[[image:1654505857935-743.png]]
383 383  
374 +=== 2.4.2  Version Info ===
384 384  
385 -[[image:1654505874829-548.png]]
376 +(((
377 +Specify the software version: 0x64=100, means firmware version 1.00.
378 +)))
386 386  
380 +(((
381 +For example: 0x00 64 : this device is NDDS75 with firmware version 1.0.0.
382 +)))
387 387  
388 -(% style="color:blue" %)**Step 3**(%%)**:**  Create an account or log in Datacake.
389 389  
390 -(% style="color:blue" %)**Step 4**(%%)**:**  Search the LSE01 and add DevEUI.
391 391  
386 +=== 2.4.3  Battery Info ===
392 392  
393 -[[image:1654505905236-553.png]]
388 +(((
389 +Check the battery voltage for LSE01.
390 +)))
394 394  
392 +(((
393 +Ex1: 0x0B45 = 2885mV
394 +)))
395 395  
396 -After added, the sensor data arrive TTN, it will also arrive and show in Mydevices.
396 +(((
397 +Ex2: 0x0B49 = 2889mV
398 +)))
397 397  
398 -[[image:1654505925508-181.png]]
399 399  
400 400  
402 +=== 2.4.4  Signal Strength ===
401 401  
402 -== 2.7 Frequency Plans ==
404 +(((
405 +NB-IoT Network signal Strength.
406 +)))
403 403  
404 -The LSE01 uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.
408 +(((
409 +**Ex1: 0x1d = 29**
410 +)))
405 405  
412 +(((
413 +(% style="color:blue" %)**0**(%%)  -113dBm or less
414 +)))
406 406  
407 -=== 2.7.1 EU863-870 (EU868) ===
416 +(((
417 +(% style="color:blue" %)**1**(%%)  -111dBm
418 +)))
408 408  
409 -(% style="color:#037691" %)** Uplink:**
420 +(((
421 +(% style="color:blue" %)**2...30**(%%) -109dBm... -53dBm
422 +)))
410 410  
411 -868.1 - SF7BW125 to SF12BW125
424 +(((
425 +(% style="color:blue" %)**31**  (%%) -51dBm or greater
426 +)))
412 412  
413 -868.3 - SF7BW125 to SF12BW125 and SF7BW250
428 +(((
429 +(% style="color:blue" %)**99**   (%%) Not known or not detectable
430 +)))
414 414  
415 -868.5 - SF7BW125 to SF12BW125
416 416  
417 -867.1 - SF7BW125 to SF12BW125
418 418  
419 -867.3 - SF7BW125 to SF12BW125
434 +=== 2.4.5  Soil Moisture ===
420 420  
421 -867.5 - SF7BW125 to SF12BW125
436 +Get the distance. Flat object range 280mm - 7500mm.
422 422  
423 -867.7 - SF7BW125 to SF12BW125
438 +For example, if the data you get from the register is **__0x0B 0x05__**, the distance between the sensor and the measured object is
424 424  
425 -867.9 - SF7BW125 to SF12BW125
440 +(((
441 +(((
442 +(% style="color:#4f81bd" %)** 0B05(H) = 2821(D) = 2821mm.**
443 +)))
444 +)))
426 426  
427 -868.8 - FSK
446 +(((
447 +
448 +)))
428 428  
450 +(((
451 +
452 +)))
429 429  
430 -(% style="color:#037691" %)** Downlink:**
454 +=== 2.4.6  Digital Interrupt ===
431 431  
432 -Uplink channels 1-9 (RX1)
456 +(((
457 +Digital Interrupt refers to pin (% style="color:blue" %)**GPIO_EXTI**(%%), and there are different trigger methods. When there is a trigger, the NDDS75 will send a packet to the server.
458 +)))
433 433  
434 -869.525 - SF9BW125 (RX2 downlink only)
460 +(((
461 +The command is:
462 +)))
435 435  
464 +(((
465 +(% style="color:blue" %)**AT+INTMOD=3 **(%%) ~/~/(more info about INMOD please refer [[**AT Command Manual**>>url:https://www.dragino.com/downloads/downloads/NB-IoT/NBSN95/DRAGINO_NBSN95-NB_AT%20Commands_v1.1.0.pdf]])**.**
466 +)))
436 436  
437 437  
438 -=== 2.7.2 US902-928(US915) ===
469 +(((
470 +The lower four bits of this data field shows if this packet is generated by interrupt or not. Click here for the hardware and software set up.
471 +)))
439 439  
440 -Used in USA, Canada and South America. Default use CHE=2
441 441  
442 -(% style="color:#037691" %)**Uplink:**
474 +(((
475 +Example:
476 +)))
443 443  
444 -903.9 - SF7BW125 to SF10BW125
478 +(((
479 +0x(00): Normal uplink packet.
480 +)))
445 445  
446 -904.1 - SF7BW125 to SF10BW125
482 +(((
483 +0x(01): Interrupt Uplink Packet.
484 +)))
447 447  
448 -904.3 - SF7BW125 to SF10BW125
449 449  
450 -904.5 - SF7BW125 to SF10BW125
451 451  
452 -904.7 - SF7BW125 to SF10BW125
488 +=== 2.4.7  ​+5V Output ===
453 453  
454 -904.9 - SF7BW125 to SF10BW125
490 +(((
491 +NDDS75 will enable +5V output before all sampling and disable the +5v after all sampling. 
492 +)))
455 455  
456 -905.1 - SF7BW125 to SF10BW125
457 457  
458 -905.3 - SF7BW125 to SF10BW125
495 +(((
496 +The 5V output time can be controlled by AT Command.
497 +)))
459 459  
499 +(((
500 +(% style="color:blue" %)**AT+5VT=1000**
501 +)))
460 460  
461 -(% style="color:#037691" %)**Downlink:**
503 +(((
504 +Means set 5V valid time to have 1000ms. So the real 5V output will actually have 1000ms + sampling time for other sensors.
505 +)))
462 462  
463 -923.3 - SF7BW500 to SF12BW500
464 464  
465 -923.9 - SF7BW500 to SF12BW500
466 466  
467 -924.5 - SF7BW500 to SF12BW500
509 +== 2.5  Downlink Payload ==
468 468  
469 -925.1 - SF7BW500 to SF12BW500
511 +By default, NSE01 prints the downlink payload to console port.
470 470  
471 -925.7 - SF7BW500 to SF12BW500
513 +[[image:image-20220708133731-5.png]]
472 472  
473 -926.3 - SF7BW500 to SF12BW500
474 474  
475 -926.9 - SF7BW500 to SF12BW500
516 +(((
517 +(% style="color:blue" %)**Examples:**
518 +)))
476 476  
477 -927.5 - SF7BW500 to SF12BW500
520 +(((
521 +
522 +)))
478 478  
479 -923.3 - SF12BW500(RX2 downlink only)
524 +* (((
525 +(% style="color:blue" %)**Set TDC**
526 +)))
480 480  
528 +(((
529 +If the payload=0100003C, it means set the END Node's TDC to 0x00003C=60(S), while type code is 01.
530 +)))
481 481  
532 +(((
533 +Payload:    01 00 00 1E    TDC=30S
534 +)))
482 482  
483 -=== 2.7.3 CN470-510 (CN470) ===
536 +(((
537 +Payload:    01 00 00 3C    TDC=60S
538 +)))
484 484  
485 -Used in China, Default use CHE=1
540 +(((
541 +
542 +)))
486 486  
487 -(% style="color:#037691" %)**Uplink:**
544 +* (((
545 +(% style="color:blue" %)**Reset**
546 +)))
488 488  
489 -486.3 - SF7BW125 to SF12BW125
548 +(((
549 +If payload = 0x04FF, it will reset the NSE01
550 +)))
490 490  
491 -486.5 - SF7BW125 to SF12BW125
492 492  
493 -486.7 - SF7BW125 to SF12BW125
553 +* (% style="color:blue" %)**INTMOD**
494 494  
495 -486.9 - SF7BW125 to SF12BW125
555 +(((
556 +Downlink Payload: 06000003, Set AT+INTMOD=3
557 +)))
496 496  
497 -487.1 - SF7BW125 to SF12BW125
498 498  
499 -487.3 - SF7BW125 to SF12BW125
500 500  
501 -487.5 - SF7BW125 to SF12BW125
561 +== 2.6  ​LED Indicator ==
502 502  
503 -487.7 - SF7BW125 to SF12BW125
563 +(((
564 +The NSE01 has an internal LED which is to show the status of different state.
504 504  
505 505  
506 -(% style="color:#037691" %)**Downlink:**
567 +* When power on, NSE01 will detect if sensor probe is connected, if probe detected, LED will blink four times. (no blinks in this step is no probe)
568 +* Then the LED will be on for 1 second means device is boot normally.
569 +* After NSE01 join NB-IoT network. The LED will be ON for 3 seconds.
570 +* For each uplink probe, LED will be on for 500ms.
571 +)))
507 507  
508 -506.7 - SF7BW125 to SF12BW125
509 509  
510 -506.9 - SF7BW125 to SF12BW125
511 511  
512 -507.1 - SF7BW125 to SF12BW125
513 513  
514 -507.3 - SF7BW125 to SF12BW125
576 +== 2.7  Installation in Soil ==
515 515  
516 -507.5 - SF7BW125 to SF12BW125
578 +__**Measurement the soil surface**__
517 517  
518 -507.7 - SF7BW125 to SF12BW125
580 +(((
581 +Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting. [[https:~~/~~/img.alicdn.com/imgextra/i3/2005165265/O1CN010rj9Oh1olPsQxrdUK_!!2005165265.jpg>>url:https://img.alicdn.com/imgextra/i3/2005165265/O1CN010rj9Oh1olPsQxrdUK_!!2005165265.jpg]]
582 +)))
519 519  
520 -507.9 - SF7BW125 to SF12BW125
584 +[[image:1657259653666-883.png]] ​
521 521  
522 -508.1 - SF7BW125 to SF12BW125
523 523  
524 -505.3 - SF12BW125 (RX2 downlink only)
587 +(((
588 +
525 525  
590 +(((
591 +Dig a hole with diameter > 20CM.
592 +)))
526 526  
594 +(((
595 +Horizontal insert the probe to the soil and fill the hole for long term measurement.
596 +)))
597 +)))
527 527  
528 -=== 2.7.4 AU915-928(AU915) ===
599 +[[image:1654506665940-119.png]]
529 529  
530 -Default use CHE=2
601 +(((
602 +
603 +)))
531 531  
532 -(% style="color:#037691" %)**Uplink:**
533 533  
534 -916.8 - SF7BW125 to SF12BW125
606 +== 2.8  Firmware Change Log ==
535 535  
536 -917.0 - SF7BW125 to SF12BW125
537 537  
538 -917.2 - SF7BW125 to SF12BW125
609 +Download URL & Firmware Change log
539 539  
540 -917.4 - SF7BW125 to SF12BW125
611 +[[www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/Firmware/]]
541 541  
542 -917.6 - SF7BW125 to SF12BW125
543 543  
544 -917.8 - SF7BW125 to SF12BW125
614 +Upgrade Instruction: [[Upgrade_Firmware>>||anchor="H5.1200BHowtoUpgradeFirmware"]]
545 545  
546 -918.0 - SF7BW125 to SF12BW125
547 547  
548 -918.2 - SF7BW125 to SF12BW125
549 549  
618 +== 2.9  ​Battery Analysis ==
550 550  
551 -(% style="color:#037691" %)**Downlink:**
620 +=== 2.9.1  ​Battery Type ===
552 552  
553 -923.3 - SF7BW500 to SF12BW500
554 554  
555 -923.9 - SF7BW500 to SF12BW500
556 -
557 -924.5 - SF7BW500 to SF12BW500
558 -
559 -925.1 - SF7BW500 to SF12BW500
560 -
561 -925.7 - SF7BW500 to SF12BW500
562 -
563 -926.3 - SF7BW500 to SF12BW500
564 -
565 -926.9 - SF7BW500 to SF12BW500
566 -
567 -927.5 - SF7BW500 to SF12BW500
568 -
569 -923.3 - SF12BW500(RX2 downlink only)
570 -
571 -
572 -
573 -=== 2.7.5 AS920-923 & AS923-925 (AS923) ===
574 -
575 -(% style="color:#037691" %)**Default Uplink channel:**
576 -
577 -923.2 - SF7BW125 to SF10BW125
578 -
579 -923.4 - SF7BW125 to SF10BW125
580 -
581 -
582 -(% style="color:#037691" %)**Additional Uplink Channel**:
583 -
584 -(OTAA mode, channel added by JoinAccept message)
585 -
586 -(% style="color:#037691" %)**AS920~~AS923 for Japan, Malaysia, Singapore**:
587 -
588 -922.2 - SF7BW125 to SF10BW125
589 -
590 -922.4 - SF7BW125 to SF10BW125
591 -
592 -922.6 - SF7BW125 to SF10BW125
593 -
594 -922.8 - SF7BW125 to SF10BW125
595 -
596 -923.0 - SF7BW125 to SF10BW125
597 -
598 -922.0 - SF7BW125 to SF10BW125
599 -
600 -
601 -(% style="color:#037691" %)**AS923 ~~ AS925 for Brunei, Cambodia, Hong Kong, Indonesia, Laos, Taiwan, Thailand, Vietnam**:
602 -
603 -923.6 - SF7BW125 to SF10BW125
604 -
605 -923.8 - SF7BW125 to SF10BW125
606 -
607 -924.0 - SF7BW125 to SF10BW125
608 -
609 -924.2 - SF7BW125 to SF10BW125
610 -
611 -924.4 - SF7BW125 to SF10BW125
612 -
613 -924.6 - SF7BW125 to SF10BW125
614 -
615 -
616 -(% style="color:#037691" %)** Downlink:**
617 -
618 -Uplink channels 1-8 (RX1)
619 -
620 -923.2 - SF10BW125 (RX2)
621 -
622 -
623 -
624 -=== 2.7.6 KR920-923 (KR920) ===
625 -
626 -Default channel:
627 -
628 -922.1 - SF7BW125 to SF12BW125
629 -
630 -922.3 - SF7BW125 to SF12BW125
631 -
632 -922.5 - SF7BW125 to SF12BW125
633 -
634 -
635 -(% style="color:#037691" %)**Uplink: (OTAA mode, channel added by JoinAccept message)**
636 -
637 -922.1 - SF7BW125 to SF12BW125
638 -
639 -922.3 - SF7BW125 to SF12BW125
640 -
641 -922.5 - SF7BW125 to SF12BW125
642 -
643 -922.7 - SF7BW125 to SF12BW125
644 -
645 -922.9 - SF7BW125 to SF12BW125
646 -
647 -923.1 - SF7BW125 to SF12BW125
648 -
649 -923.3 - SF7BW125 to SF12BW125
650 -
651 -
652 -(% style="color:#037691" %)**Downlink:**
653 -
654 -Uplink channels 1-7(RX1)
655 -
656 -921.9 - SF12BW125 (RX2 downlink only; SF12BW125 might be changed to SF9BW125)
657 -
658 -
659 -
660 -=== 2.7.7 IN865-867 (IN865) ===
661 -
662 -(% style="color:#037691" %)** Uplink:**
663 -
664 -865.0625 - SF7BW125 to SF12BW125
665 -
666 -865.4025 - SF7BW125 to SF12BW125
667 -
668 -865.9850 - SF7BW125 to SF12BW125
669 -
670 -
671 -(% style="color:#037691" %) **Downlink:**
672 -
673 -Uplink channels 1-3 (RX1)
674 -
675 -866.550 - SF10BW125 (RX2)
676 -
677 -
678 -
679 -
680 -== 2.8 LED Indicator ==
681 -
682 -The LSE01 has an internal LED which is to show the status of different state.
683 -
684 -* Blink once when device power on.
685 -* Solid ON for 5 seconds once device successful Join the network.
686 -* Blink once when device transmit a packet.
687 -
688 -
689 -
690 -
691 -== 2.9 Installation in Soil ==
692 -
693 -**Measurement the soil surface**
694 -
695 -
696 -[[image:1654506634463-199.png]] ​
697 -
698 698  (((
699 -(((
700 -Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting.
624 +The NSE01 battery is a combination of an 8500mAh Li/SOCI2 Battery and a Super Capacitor. The battery is none-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter.
701 701  )))
702 -)))
703 703  
704 704  
705 -
706 -[[image:1654506665940-119.png]]
707 -
708 708  (((
709 -Dig a hole with diameter > 20CM.
629 +The battery is designed to last for several years depends on the actually use environment and update interval. 
710 710  )))
711 711  
712 -(((
713 -Horizontal insert the probe to the soil and fill the hole for long term measurement.
714 -)))
715 715  
716 -
717 -== 2.10 ​Firmware Change Log ==
718 -
719 719  (((
720 -**Firmware download link:**
634 +The battery related documents as below:
721 721  )))
722 722  
723 -(((
724 -[[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/]]
725 -)))
637 +* [[Battery Dimension>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]
638 +* [[Lithium-Thionyl Chloride Battery datasheet>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]
639 +* [[Lithium-ion Battery-Capacitor datasheet>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]
726 726  
727 727  (((
728 -
642 +[[image:image-20220708140453-6.png]]
729 729  )))
730 730  
731 -(((
732 -**Firmware Upgrade Method: **[[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome]]
733 -)))
734 734  
735 -(((
736 -
737 -)))
738 738  
739 -(((
740 -**V1.0.**
741 -)))
647 +=== 2.9.2  Power consumption Analyze ===
742 742  
743 743  (((
744 -Release
650 +Dragino battery powered product are all runs in Low Power mode. We have an update battery calculator which base on the measurement of the real device. User can use this calculator to check the battery life and calculate the battery life if want to use different transmit interval.
745 745  )))
746 746  
747 747  
748 -== 2.11 ​Battery Analysis ==
749 -
750 -=== 2.11.1 ​Battery Type ===
751 -
752 752  (((
753 -The LSE01 battery is a combination of a 4000mAh Li/SOCI2 Battery and a Super Capacitor. The battery is non-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter.
655 +Instruction to use as below:
754 754  )))
755 755  
756 756  (((
757 -The battery is designed to last for more than 5 years for the LSN50.
659 +(% style="color:blue" %)**Step 1:  **(%%)Downlink the up-to-date DRAGINO_Battery_Life_Prediction_Table.xlsx from: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/]]
758 758  )))
759 759  
662 +
760 760  (((
761 -(((
762 -The battery-related documents are as below:
664 +(% style="color:blue" %)**Step 2: **(%%) Open it and choose
763 763  )))
764 -)))
765 765  
766 766  * (((
767 -[[Battery Dimension>>url:http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/&file=LSN50-Battery-Dimension.pdf]],
668 +Product Model
768 768  )))
769 769  * (((
770 -[[Lithium-Thionyl Chloride Battery  datasheet>>url:https://www.dragino.com/downloads/downloads/datasheet/Battery/ER26500/ER26500_Datasheet-EN.pdf]],
671 +Uplink Interval
771 771  )))
772 772  * (((
773 -[[Lithium-ion Battery-Capacitor datasheet>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC_1520_datasheet.jpg]], [[Tech Spec>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC1520%20Technical%20Specification20171123.pdf]]
674 +Working Mode
774 774  )))
775 775  
776 - [[image:image-20220610172436-1.png]]
677 +(((
678 +And the Life expectation in difference case will be shown on the right.
679 +)))
777 777  
681 +[[image:image-20220708141352-7.jpeg]]
778 778  
779 779  
780 -=== 2.11.2 ​Battery Note ===
781 781  
685 +=== 2.9.3  ​Battery Note ===
686 +
782 782  (((
783 783  The Li-SICO battery is designed for small current / long period application. It is not good to use a high current, short period transmit method. The recommended minimum period for use of this battery is 5 minutes. If you use a shorter period time to transmit LoRa, then the battery life may be decreased.
784 784  )))
... ... @@ -785,298 +785,176 @@
785 785  
786 786  
787 787  
788 -=== 2.11.3 Replace the battery ===
693 +=== 2.9. Replace the battery ===
789 789  
790 790  (((
791 -If Battery is lower than 2.7v, user should replace the battery of LSE01.
696 +The default battery pack of NSE01 includes a ER26500 plus super capacitor. If user can't find this pack locally, they can find ER26500 or equivalence without the SPC1520 capacitor, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes).
792 792  )))
793 793  
699 +
700 +
701 += 3. ​ Access NB-IoT Module =
702 +
794 794  (((
795 -You can change the battery in the LSE01.The type of battery is not limited as long as the output is between 3v to 3.6v. On the main board, there is a diode (D1) between the battery and the main circuit. If you need to use a battery with less than 3.3v, please remove the D1 and shortcut the two pads of it so there won’t be voltage drop between battery and main board.
704 +Users can directly access the AT command set of the NB-IoT module.
796 796  )))
797 797  
798 798  (((
799 -The default battery pack of LSE01 includes a ER18505 plus super capacitor. If user can’t find this pack locally, they can find ER18505 or equivalence, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes)
708 +The AT Command set can refer the BC35-G NB-IoT Module AT Command: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=datasheet/other_vendors/BC35-G/>>url:https://www.dragino.com/downloads/index.php?dir=datasheet/other_vendors/BC35-G/]] 
800 800  )))
801 801  
711 +[[image:1657261278785-153.png]]
802 802  
803 803  
804 -= 3. ​Using the AT Commands =
805 805  
806 -== 3.1 Access AT Commands ==
715 += 4.  Using the AT Commands =
807 807  
717 +== 4.1  Access AT Commands ==
808 808  
809 -LSE01 supports AT Command set in the stock firmware. You can use a USB to TTL adapter to connect to LSE01 for using AT command, as below.
719 +See this link for detail: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/]]
810 810  
811 -[[image:1654501986557-872.png||height="391" width="800"]]
812 812  
722 +AT+<CMD>?  : Help on <CMD>
813 813  
814 -Or if you have below board, use below connection:
724 +AT+<CMD>         : Run <CMD>
815 815  
726 +AT+<CMD>=<value> : Set the value
816 816  
817 -[[image:1654502005655-729.png||height="503" width="801"]]
728 +AT+<CMD>=?  : Get the value
818 818  
819 819  
820 -
821 -In the PC, you need to set the serial baud rate to (% style="color:green" %)**9600**(%%) to access the serial console for LSE01. LSE01 will output system info once power on as below:
822 -
823 -
824 - [[image:1654502050864-459.png||height="564" width="806"]]
825 -
826 -
827 -Below are the available commands, a more detailed AT Command manual can be found at [[AT Command Manual>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/]]: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/]]
828 -
829 -
830 -(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>? **(%%) : Help on <CMD>
831 -
832 -(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD> **(%%) : Run <CMD>
833 -
834 -(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>=<value>**(%%) : Set the value
835 -
836 -(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>=?**(%%)  : Get the value
837 -
838 -
839 839  (% style="color:#037691" %)**General Commands**(%%)      
840 840  
841 -(% style="background-color:#dcdcdc" %)**AT**(%%)  : Attention       
733 +AT  : Attention       
842 842  
843 -(% style="background-color:#dcdcdc" %)**AT?**(%%)  : Short Help     
735 +AT?  : Short Help     
844 844  
845 -(% style="background-color:#dcdcdc" %)**ATZ**(%%)  : MCU Reset    
737 +ATZ  : MCU Reset    
846 846  
847 -(% style="background-color:#dcdcdc" %)**AT+TDC**(%%)  : Application Data Transmission Interval 
739 +AT+TDC  : Application Data Transmission Interval
848 848  
741 +AT+CFG  : Print all configurations
849 849  
850 -(% style="color:#037691" %)**Keys, IDs and EUIs management**
743 +AT+CFGMOD           : Working mode selection
851 851  
852 -(% style="background-color:#dcdcdc" %)**AT+APPEUI**(%%)              : Application EUI      
745 +AT+INTMOD            : Set the trigger interrupt mode
853 853  
854 -(% style="background-color:#dcdcdc" %)**AT+APPKEY**(%%)              : Application Key     
747 +AT+5VT  : Set extend the time of 5V power  
855 855  
856 -(% style="background-color:#dcdcdc" %)**AT+APPSKEY**(%%)            : Application Session Key
749 +AT+PRO  : Choose agreement
857 857  
858 -(% style="background-color:#dcdcdc" %)**AT+DADDR**(%%)              : Device Address     
751 +AT+WEIGRE  : Get weight or set weight to 0
859 859  
860 -(% style="background-color:#dcdcdc" %)**AT+DEUI**(%%)                   : Device EUI     
753 +AT+WEIGAP  : Get or Set the GapValue of weight
861 861  
862 -(% style="background-color:#dcdcdc" %)**AT+NWKID**(%%)               : Network ID (You can enter this command change only after successful network connection
755 +AT+RXDL  : Extend the sending and receiving time
863 863  
864 -(% style="background-color:#dcdcdc" %)**AT+NWKSKEY**(%%)          : Network Session Key Joining and sending date on LoRa network  
757 +AT+CNTFAC  : Get or set counting parameters
865 865  
866 -(% style="background-color:#dcdcdc" %)**AT+CFM**(%%)  : Confirm Mode       
759 +AT+SERVADDR  : Server Address
867 867  
868 -(% style="background-color:#dcdcdc" %)**AT+CFS**(%%)                     : Confirm Status       
869 869  
870 -(% style="background-color:#dcdcdc" %)**AT+JOIN**(%%)  : Join LoRa? Network       
762 +(% style="color:#037691" %)**COAP Management**      
871 871  
872 -(% style="background-color:#dcdcdc" %)**AT+NJM**(%%)  : LoRa? Network Join Mode    
764 +AT+URI            : Resource parameters
873 873  
874 -(% style="background-color:#dcdcdc" %)**AT+NJS**(%%)                     : LoRa? Network Join Status    
875 875  
876 -(% style="background-color:#dcdcdc" %)**AT+RECV**(%%)                  : Print Last Received Data in Raw Format
767 +(% style="color:#037691" %)**UDP Management**
877 877  
878 -(% style="background-color:#dcdcdc" %)**AT+RECVB**(%%)                : Print Last Received Data in Binary Format      
769 +AT+CFM          : Upload confirmation mode (only valid for UDP)
879 879  
880 -(% style="background-color:#dcdcdc" %)**AT+SEND**(%%)                  : Send Text Data      
881 881  
882 -(% style="background-color:#dcdcdc" %)**AT+SENB**(%%)                  : Send Hexadecimal Data
772 +(% style="color:#037691" %)**MQTT Management**
883 883  
774 +AT+CLIENT               : Get or Set MQTT client
884 884  
885 -(% style="color:#037691" %)**LoRa Network Management**
776 +AT+UNAME  : Get or Set MQTT Username
886 886  
887 -(% style="background-color:#dcdcdc" %)**AT+ADR**(%%)          : Adaptive Rate
778 +AT+PWD                  : Get or Set MQTT password
888 888  
889 -(% style="background-color:#dcdcdc" %)**AT+CLASS**(%%)  : LoRa Class(Currently only support class A
780 +AT+PUBTOPI : Get or Set MQTT publish topic
890 890  
891 -(% style="background-color:#dcdcdc" %)**AT+DCS**(%%)  : Duty Cycle Settin
782 +AT+SUBTOPIC  : Get or Set MQTT subscription topic
892 892  
893 -(% style="background-color:#dcdcdc" %)**AT+DR**(%%)  : Data Rate (Can Only be Modified after ADR=0)     
894 894  
895 -(% style="background-color:#dcdcdc" %)**AT+FCD**(%%)  : Frame Counter Downlink       
785 +(% style="color:#037691" %)**Information**          
896 896  
897 -(% style="background-color:#dcdcdc" %)**AT+FCU**(%%)  : Frame Counter Uplink   
787 +AT+FDR  : Factory Data Reset
898 898  
899 -(% style="background-color:#dcdcdc" %)**AT+JN1DL**(%%)  : Join Accept Delay1
789 +AT+PWOR : Serial Access Password
900 900  
901 -(% style="background-color:#dcdcdc" %)**AT+JN2DL**(%%)  : Join Accept Delay2
902 902  
903 -(% style="background-color:#dcdcdc" %)**AT+PNM**(%%)  : Public Network Mode   
904 904  
905 -(% style="background-color:#dcdcdc" %)**AT+RX1DL**(%%)  : Receive Delay1      
793 += ​5.  FAQ =
906 906  
907 -(% style="background-color:#dcdcdc" %)**AT+RX2DL**(%%)  : Receive Delay2      
795 +== 5.1 How to Upgrade Firmware ==
908 908  
909 -(% style="background-color:#dcdcdc" %)**AT+RX2DR**(%%)  : Rx2 Window Data Rate 
910 910  
911 -(% style="background-color:#dcdcdc" %)**AT+RX2FQ**(%%)  : Rx2 Window Frequency
912 -
913 -(% style="background-color:#dcdcdc" %)**AT+TXP**(%%)  : Transmit Power
914 -
915 -(% style="background-color:#dcdcdc" %)**AT+ MOD**(%%)  : Set work mode
916 -
917 -
918 -(% style="color:#037691" %)**Information** 
919 -
920 -(% style="background-color:#dcdcdc" %)**AT+RSSI**(%%)           : RSSI of the Last Received Packet   
921 -
922 -(% style="background-color:#dcdcdc" %)**AT+SNR**(%%)           : SNR of the Last Received Packet   
923 -
924 -(% style="background-color:#dcdcdc" %)**AT+VER**(%%)           : Image Version and Frequency Band       
925 -
926 -(% style="background-color:#dcdcdc" %)**AT+FDR**(%%)           : Factory Data Reset
927 -
928 -(% style="background-color:#dcdcdc" %)**AT+PORT**(%%)  : Application Port    
929 -
930 -(% style="background-color:#dcdcdc" %)**AT+CHS**(%%)  : Get or Set Frequency (Unit: Hz) for Single Channel Mode
931 -
932 - (% style="background-color:#dcdcdc" %)**AT+CHE**(%%)  : Get or Set eight channels mode, Only for US915, AU915, CN470
933 -
934 -
935 -= ​4. FAQ =
936 -
937 -== 4.1 ​How to change the LoRa Frequency Bands/Region? ==
938 -
939 939  (((
940 -You can follow the instructions for [[how to upgrade image>>||anchor="H2.10200BFirmwareChangeLog"]].
941 -When downloading the images, choose the required image file for download. ​
799 +User can upgrade the firmware for 1) bug fix, 2) new feature release.
942 942  )))
943 943  
944 944  (((
945 -
803 +Please see this link for how to upgrade:  [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H2.HardwareUpgradeMethodSupportList>>http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H2.HardwareUpgradeMethodSupportList]]
946 946  )))
947 947  
948 948  (((
949 -How to set up LSE01 to work in 8 channel mode By default, the frequency bands US915, AU915, CN470 work in 72 frequencies. Many gateways are 8 channel gateways, and in this case, the OTAA join time and uplink schedule is long and unpredictable while the end node is hopping in 72 frequencies.
807 +(% style="color:red" %)Notice, NSE01 and LSE01 share the same mother board. They use the same connection and method to update.
950 950  )))
951 951  
952 -(((
953 -
954 -)))
955 955  
956 -(((
957 -You can configure the end node to work in 8 channel mode by using the AT+CHE command. The 500kHz channels are always included for OTAA.
958 -)))
959 959  
960 -(((
961 -
962 -)))
812 +== 5.2  Can I calibrate NSE01 to different soil types? ==
963 963  
964 964  (((
965 -For example, in **US915** band, the frequency table is as below. By default, the end node will use all channels (0~~71) for OTAA Join process. After the OTAA Join, the end node will use these all channels (0~~71) to send uplink packets.
815 +NSE01 is calibrated for saline-alkali soil and loamy soil. If users want to use it for other soil, they can calibrate the value in the IoT platform base on the value measured by saline-alkali soil and loamy soil. The formula can be found at [[this link>>https://www.dragino.com/downloads/downloads/LoRa_End_Node/LSE01/Calibrate_to_other_Soil_20220605.pdf]].
966 966  )))
967 967  
968 -[[image:image-20220606154726-3.png]]
969 969  
819 += 6.  Trouble Shooting =
970 970  
971 -When you use the TTN network, the US915 frequency bands use are:
821 +== 6.1  ​Connection problem when uploading firmware ==
972 972  
973 -* 903.9 - SF7BW125 to SF10BW125
974 -* 904.1 - SF7BW125 to SF10BW125
975 -* 904.3 - SF7BW125 to SF10BW125
976 -* 904.5 - SF7BW125 to SF10BW125
977 -* 904.7 - SF7BW125 to SF10BW125
978 -* 904.9 - SF7BW125 to SF10BW125
979 -* 905.1 - SF7BW125 to SF10BW125
980 -* 905.3 - SF7BW125 to SF10BW125
981 -* 904.6 - SF8BW500
982 982  
983 983  (((
984 -Because the end node is now hopping in 72 frequency, it makes it difficult for the devices to Join the TTN network and uplink data. To solve this issue, you can access the device via the AT commands and run:
985 -
986 -* **(% style="color:#037691" %)AT+CHE=2**
987 -* **(% style="color:#037691" %)ATZ**
825 +**Please see: **[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H3.3Troubleshooting>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H3.3Troubleshooting]]
988 988  )))
989 989  
828 +(% class="wikigeneratedid" %)
990 990  (((
991 991  
992 -
993 -to set the end node to work in 8 channel mode. The device will work in Channel 8-15 & 64-71 for OTAA, and channel 8-15 for Uplink.
994 994  )))
995 995  
996 -(((
997 -
998 -)))
999 999  
1000 -(((
1001 -The **AU915** band is similar. Below are the AU915 Uplink Channels.
1002 -)))
834 +== 6.2  AT Command input doesn't work ==
1003 1003  
1004 -[[image:image-20220606154825-4.png]]
1005 -
1006 -
1007 -
1008 -= 5. Trouble Shooting =
1009 -
1010 -== 5.1 ​Why I can’t join TTN in US915 / AU915 bands? ==
1011 -
1012 -It is due to channel mapping. Please see the [[Eight Channel Mode>>doc:Main.LoRaWAN Communication Debug.WebHome||anchor="H2.NoticeofUS9152FCN4702FAU915Frequencyband"]] section above for details.
1013 -
1014 -
1015 -== 5.2 AT Command input doesn’t work ==
1016 -
1017 1017  (((
1018 -In the case if user can see the console output but can’t type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn’t send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.
1019 -)))
837 +In the case if user can see the console output but can't type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn't send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.
1020 1020  
1021 -
1022 -== 5.3 Device rejoin in at the second uplink packet ==
1023 -
1024 -(% style="color:#4f81bd" %)**Issue describe as below:**
1025 -
1026 -[[image:1654500909990-784.png]]
1027 -
1028 -
1029 -(% style="color:#4f81bd" %)**Cause for this issue:**
1030 -
1031 -(((
1032 -The fuse on LSE01 is not large enough, some of the soil probe require large current up to 5v 800mA, in a short pulse. When this happen, it cause the device reboot so user see rejoin.
839 +
1033 1033  )))
1034 1034  
1035 1035  
1036 -(% style="color:#4f81bd" %)**Solution: **
843 += 7. ​ Order Info =
1037 1037  
1038 -All new shipped LSE01 after 2020-May-30 will have this to fix. For the customer who see this issue, please bypass the fuse as below:
1039 1039  
1040 -[[image:1654500929571-736.png||height="458" width="832"]]
846 +Part Number**:** (% style="color:#4f81bd" %)**NSE01**
1041 1041  
1042 1042  
1043 -= 6. ​Order Info =
1044 -
1045 -
1046 -Part Number**:** (% style="color:#4f81bd" %)**LSE01-XX-YY**
1047 -
1048 -
1049 -(% style="color:#4f81bd" %)**XX**(%%)**:** The default frequency band
1050 -
1051 -* (% style="color:red" %)**AS923**(%%): LoRaWAN AS923 band
1052 -* (% style="color:red" %)**AU915**(%%): LoRaWAN AU915 band
1053 -* (% style="color:red" %)**EU433**(%%): LoRaWAN EU433 band
1054 -* (% style="color:red" %)**EU868**(%%): LoRaWAN EU868 band
1055 -* (% style="color:red" %)**KR920**(%%): LoRaWAN KR920 band
1056 -* (% style="color:red" %)**US915**(%%): LoRaWAN US915 band
1057 -* (% style="color:red" %)**IN865**(%%):  LoRaWAN IN865 band
1058 -* (% style="color:red" %)**CN470**(%%): LoRaWAN CN470 band
1059 -
1060 -(% style="color:#4f81bd" %)**YY**(%%)**: **Battery Option
1061 -
1062 -* (% style="color:red" %)**4**(%%): 4000mAh battery
1063 -* (% style="color:red" %)**8**(%%): 8500mAh battery
1064 -
1065 1065  (% class="wikigeneratedid" %)
1066 1066  (((
1067 1067  
1068 1068  )))
1069 1069  
1070 -= 7. Packing Info =
854 += 8.  Packing Info =
1071 1071  
1072 1072  (((
1073 1073  
1074 1074  
1075 1075  (% style="color:#037691" %)**Package Includes**:
1076 -)))
1077 1077  
1078 -* (((
1079 -LSE01 LoRaWAN Soil Moisture & EC Sensor x 1
861 +* NSE01 NB-IoT Soil Moisture & EC Sensor x 1
862 +* External antenna x 1
1080 1080  )))
1081 1081  
1082 1082  (((
... ... @@ -1083,24 +1083,19 @@
1083 1083  
1084 1084  
1085 1085  (% style="color:#037691" %)**Dimension and weight**:
1086 -)))
1087 1087  
1088 -* (((
1089 -Device Size: cm
870 +* Size: 195 x 125 x 55 mm
871 +* Weight:   420g
1090 1090  )))
1091 -* (((
1092 -Device Weight: g
1093 -)))
1094 -* (((
1095 -Package Size / pcs : cm
1096 -)))
1097 -* (((
1098 -Weight / pcs : g
1099 1099  
874 +(((
1100 1100  
876 +
877 +
878 +
1101 1101  )))
1102 1102  
1103 -= 8. Support =
881 += 9.  Support =
1104 1104  
1105 1105  * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
1106 1106  * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.com]]
1657245163077-232.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +81.0 KB
Content
1657246476176-652.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +492.6 KB
Content
1657249419225-449.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +81.0 KB
Content
1657249468462-536.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +483.6 KB
Content
1657249793983-486.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +85.8 KB
Content
1657249831934-534.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +72.5 KB
Content
1657249864775-321.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +87.0 KB
Content
1657249930215-289.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +77.3 KB
Content
1657249978444-674.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +139.5 KB
Content
1657249990869-686.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +96.9 KB
Content
1657250217799-140.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +98.7 KB
Content
1657250255956-604.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +99.0 KB
Content
1657259653666-883.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +344.4 KB
Content
1657260785982-288.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +138.2 KB
Content
1657261119050-993.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +126.1 KB
Content
1657261278785-153.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +126.1 KB
Content
1657271519014-786.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +71.5 KB
Content
1657327959271-447.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +78.3 KB
Content
1657328609906-564.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +492.6 KB
Content
1657328659945-416.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +78.8 KB
Content
1657328756309-230.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +78.5 KB
Content
1657328884227-504.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +483.6 KB
Content
1657329814315-101.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +85.3 KB
Content
1657330452568-615.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +71.3 KB
Content
1657330472797-498.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +68.9 KB
Content
1657330501006-241.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +119.2 KB
Content
1657330533775-472.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +74.9 KB
Content
1657330723006-866.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +74.1 KB
Content
1657331036973-987.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +83.8 KB
Content
image-20220708101224-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +22.2 KB
Content
image-20220708101605-2.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +87.5 KB
Content
image-20220708110657-3.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +251.7 KB
Content
image-20220708111918-4.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +38.8 KB
Content
image-20220708133731-5.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +8.7 KB
Content
image-20220708140453-6.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +132.7 KB
Content
image-20220708141352-7.jpeg
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +102.7 KB
Content
image-20220709084038-1.jpeg
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +72.0 KB
Content
image-20220709084137-2.jpeg
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +72.0 KB
Content
image-20220709084207-3.jpeg
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +72.0 KB
Content
image-20220709084458-4.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +199.5 KB
Content
image-20220709085040-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +200.4 KB
Content
image-20220709092052-2.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +247.3 KB
Content
image-20220709093918-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +42.2 KB
Content
image-20220709093918-2.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +61.9 KB
Content