<
From version < 35.20 >
edited by Xiaoling
on 2022/06/14 14:16
To version < 65.2 >
edited by Xiaoling
on 2022/07/08 15:03
>
Change comment: There is no comment for this version

Summary

Details

Page properties
Title
... ... @@ -1,1 +1,1 @@
1 -LSE01-LoRaWAN Soil Moisture & EC Sensor User Manual
1 +NSE01 - NB-IoT Soil Moisture & EC Sensor User Manual
Content
... ... @@ -3,9 +3,7 @@
3 3  
4 4  
5 5  
6 -**Table of Contents:**
7 7  
8 -{{toc/}}
9 9  
10 10  
11 11  
... ... @@ -12,1071 +12,805 @@
12 12  
13 13  
14 14  
15 -= 1. Introduction =
16 16  
17 -== 1.1 ​What is LoRaWAN Soil Moisture & EC Sensor ==
14 +**Table of Contents:**
18 18  
16 +
17 +
18 +
19 +
20 +
21 += 1.  Introduction =
22 +
23 +== 1.1 ​ What is LoRaWAN Soil Moisture & EC Sensor ==
24 +
19 19  (((
20 20  
21 21  
22 -The Dragino LSE01 is a (% style="color:#4f81bd" %)**LoRaWAN Soil Moisture & EC Sensor**(%%) for IoT of Agriculture. It is designed to measure the soil moisture of saline-alkali soil and loamy soil. The soil sensor uses FDR method to calculate the soil moisture with the compensation from soil temperature and conductivity. It also has been calibrated in factory for Mineral soil type.
23 -)))
28 +Dragino NSE01 is an (% style="color:blue" %)**NB-IOT soil moisture & EC sensor**(%%) for agricultural IoT. Used to measure the soil moisture of saline-alkali soil and loam. The soil sensor uses the FDR method to calculate soil moisture and compensates it with soil temperature and electrical conductivity. It has also been calibrated for mineral soil types at the factory.
24 24  
25 -(((
26 -It detects (% style="color:#4f81bd" %)**Soil Moisture**(%%), (% style="color:#4f81bd" %)**Soil Temperature**(%%) and (% style="color:#4f81bd" %)**Soil Conductivity**(%%), and uploads the value via wireless to LoRaWAN IoT Server.
27 -)))
30 +It can detect (% style="color:blue" %)**Soil Moisture, Soil Temperature and Soil Conductivity**(%%), and upload its value to the server wirelessly.
28 28  
29 -(((
30 -The LoRa wireless technology used in LES01 allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption.
31 -)))
32 +The wireless technology used in NSE01 allows the device to send data at a low data rate and reach ultra-long distances, providing ultra-long-distance spread spectrum Communication.
32 32  
33 -(((
34 -LES01 is powered by (% style="color:#4f81bd" %)**4000mA or 8500mAh Li-SOCI2 battery**(%%), It is designed for long term use up to 10 years.
35 -)))
34 +NSE01 are powered by (% style="color:blue" %)**8500mAh Li-SOCI2**(%%) batteries, which can be used for up to 5 years.  
36 36  
37 -(((
38 -Each LES01 is pre-load with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect after power on.
36 +
39 39  )))
40 40  
41 -
42 42  [[image:1654503236291-817.png]]
43 43  
44 44  
45 -[[image:1654503265560-120.png]]
42 +[[image:1657245163077-232.png]]
46 46  
47 47  
48 48  
49 49  == 1.2 ​Features ==
50 50  
51 -* LoRaWAN 1.0.3 Class A
52 -* Ultra low power consumption
48 +* NB-IoT Bands: B1/B3/B8/B5/B20/B28 @H-FDD
53 53  * Monitor Soil Moisture
54 54  * Monitor Soil Temperature
55 55  * Monitor Soil Conductivity
56 -* Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865
57 57  * AT Commands to change parameters
58 58  * Uplink on periodically
59 59  * Downlink to change configure
60 60  * IP66 Waterproof Enclosure
61 -* 4000mAh or 8500mAh Battery for long term use
56 +* Ultra-Low Power consumption
57 +* AT Commands to change parameters
58 +* Micro SIM card slot for NB-IoT SIM
59 +* 8500mAh Battery for long term use
62 62  
63 -== 1.3 Specification ==
64 64  
65 -Measure Volume: Base on the centra pin of the probe, a cylinder with 7cm diameter and 10cm height.
66 66  
67 -[[image:image-20220606162220-5.png]]
68 68  
64 +== 1.3  Specification ==
69 69  
70 70  
71 -== ​1.4 Applications ==
67 +(% style="color:#037691" %)**Common DC Characteristics:**
72 72  
73 -* Smart Agriculture
69 +* Supply Voltage: 2.1v ~~ 3.6v
70 +* Operating Temperature: -40 ~~ 85°C
74 74  
75 -(% class="wikigeneratedid" id="H200B1.5FirmwareChangelog" %)
76 -​
77 77  
78 -== 1.5 Firmware Change log ==
79 79  
74 +(% style="color:#037691" %)**NB-IoT Spec:**
80 80  
81 -**LSE01 v1.0 :**  Release
76 +* - B1 @H-FDD: 2100MHz
77 +* - B3 @H-FDD: 1800MHz
78 +* - B8 @H-FDD: 900MHz
79 +* - B5 @H-FDD: 850MHz
80 +* - B20 @H-FDD: 800MHz
81 +* - B28 @H-FDD: 700MHz
82 82  
83 83  
84 84  
85 -= 2. Configure LSE01 to connect to LoRaWAN network =
85 +Probe(% style="color:#037691" %)** Specification:**
86 86  
87 -== 2.1 How it works ==
87 +Measure Volume: Base on the centra pin of the probe, a cylinder with 7cm diameter and 10cm height.
88 88  
89 -(((
90 -The LSE01 is configured as LoRaWAN OTAA Class A mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and power on the LSE0150. It will automatically join the network via OTAA and start to send the sensor value
91 -)))
89 +[[image:image-20220708101224-1.png]]
92 92  
93 -(((
94 -In case you can’t set the OTAA keys in the LoRaWAN OTAA server, and you have to use the keys from the server, you can [[use AT Commands >>||anchor="H3.200BUsingtheATCommands"]].
95 -)))
96 96  
97 97  
93 +== ​1.4  Applications ==
98 98  
99 -== 2.2 ​Quick guide to connect to LoRaWAN server (OTAA) ==
95 +* Smart Agriculture
100 100  
101 -Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LG308>>url:http://www.dragino.com/products/lora/item/140-lg308.html]] as a LoRaWAN gateway in this example.
97 +(% class="wikigeneratedid" id="H200B1.5FirmwareChangelog" %)
98 +​
102 102  
100 +== 1.5  Pin Definitions ==
103 103  
104 -[[image:1654503992078-669.png]]
105 105  
103 +[[image:1657246476176-652.png]]
106 106  
107 -The LG308 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
108 108  
109 109  
110 -(% style="color:blue" %)**Step 1**(%%):  Create a device in TTN with the OTAA keys from LSE01.
107 += 2.  Use NSE01 to communicate with IoT Server =
111 111  
112 -Each LSE01 is shipped with a sticker with the default device EUI as below:
109 +== 2.1  How it works ==
113 113  
114 -[[image:image-20220606163732-6.jpeg]]
115 115  
116 -You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot:
112 +(((
113 +The NSE01 is equipped with a NB-IoT module, the pre-loaded firmware in NSE01 will get environment data from sensors and send the value to local NB-IoT network via the NB-IoT module.  The NB-IoT network will forward this value to IoT server via the protocol defined by NSE01.
114 +)))
117 117  
118 -**Add APP EUI in the application**
119 119  
117 +(((
118 +The diagram below shows the working flow in default firmware of NSE01:
119 +)))
120 120  
121 -[[image:1654504596150-405.png]]
121 +[[image:image-20220708101605-2.png]]
122 122  
123 +(((
124 +
125 +)))
123 123  
124 124  
125 -**Add APP KEY and DEV EUI**
126 126  
127 -[[image:1654504683289-357.png]]
129 +== 2.2 ​ Configure the NSE01 ==
128 128  
129 129  
132 +=== 2.2.1 Test Requirement ===
130 130  
131 -(% style="color:blue" %)**Step 2**(%%): Power on LSE01
132 132  
135 +To use NSE01 in your city, make sure meet below requirements:
133 133  
134 -Put a Jumper on JP2 to power on the device. ( The Jumper must be in FLASH position).
137 +* Your local operator has already distributed a NB-IoT Network there.
138 +* The local NB-IoT network used the band that NSE01 supports.
139 +* Your operator is able to distribute the data received in their NB-IoT network to your IoT server.
135 135  
136 -[[image:image-20220606163915-7.png]]
137 -
138 -
139 -(% style="color:blue" %)**Step 3**(%%)**:** The LSE01 will auto join to the TTN network. After join success, it will start to upload messages to TTN and you can see the messages in the panel.
140 -
141 -[[image:1654504778294-788.png]]
142 -
143 -
144 -
145 -== 2.3 Uplink Payload ==
146 -
147 -
148 -=== 2.3.1 MOD~=0(Default Mode) ===
149 -
150 -LSE01 will uplink payload via LoRaWAN with below payload format: 
151 -
152 152  (((
153 -Uplink payload includes in total 11 bytes.
142 +Below figure shows our testing structure. Here we have NB-IoT network coverage by China Mobile, the band they use is B8.  The NSE01 will use CoAP((% style="color:red" %)120.24.4.116:5683)(%%) or raw UDP((% style="color:red" %)120.24.4.116:5601)(%%) or MQTT((% style="color:red" %)120.24.4.116:1883)(%%)or TCP((% style="color:red" %)120.24.4.116:5600)(%%)protocol to send data to the test server
154 154  )))
155 155  
156 -(% border="1" cellspacing="10" style="background-color:#ffffcc; width:500px" %)
157 -|(((
158 -**Size**
159 159  
160 -**(bytes)**
161 -)))|**2**|**2**|**2**|**2**|**2**|**1**
162 -|**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(((
163 -Temperature
146 +[[image:1657249419225-449.png]]
164 164  
165 -(Reserve, Ignore now)
166 -)))|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]]|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]]|(((
167 -MOD & Digital Interrupt
168 168  
169 -(Optional)
170 -)))
171 171  
150 +=== 2.2.2 Insert SIM card ===
172 172  
152 +Insert the NB-IoT Card get from your provider.
173 173  
174 -=== 2.3.2 MOD~=1(Original value) ===
154 +User need to take out the NB-IoT module and insert the SIM card like below:
175 175  
176 -This mode can get the original AD value of moisture and original conductivity (with temperature drift compensation).
177 177  
178 -(% border="1" cellspacing="10" style="background-color:#ffffcc; width:500px" %)
179 -|(((
180 -**Size**
157 +[[image:1657249468462-536.png]]
181 181  
182 -**(bytes)**
183 -)))|**2**|**2**|**2**|**2**|**2**|**1**
184 -|**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(((
185 -Temperature
186 186  
187 -(Reserve, Ignore now)
188 -)))|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]](raw)|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]](raw)|(((
189 -MOD & Digital Interrupt
190 190  
191 -(Optional)
192 -)))
161 +=== 2.2.3 Connect USB – TTL to NSE01 to configure it ===
193 193  
194 -
195 -
196 -=== 2.3.3 Battery Info ===
197 -
198 198  (((
199 -Check the battery voltage for LSE01.
200 -)))
201 -
202 202  (((
203 -Ex1: 0x0B45 = 2885mV
165 +User need to configure NSE01 via serial port to set the (% style="color:blue" %)**Server Address** / **Uplink Topic** (%%)to define where and how-to uplink packets. NSE01 support AT Commands, user can use a USB to TTL adapter to connect to NSE01 and use AT Commands to configure it, as below.
204 204  )))
205 -
206 -(((
207 -Ex2: 0x0B49 = 2889mV
208 208  )))
209 209  
210 210  
170 +**Connection:**
211 211  
212 -=== 2.3.4 Soil Moisture ===
172 + (% style="background-color:yellow" %)USB TTL GND <~-~-~-~-> GND
213 213  
214 -(((
215 -Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil.
216 -)))
174 + (% style="background-color:yellow" %)USB TTL TXD <~-~-~-~-> UART_RXD
217 217  
218 -(((
219 -For example, if the data you get from the register is __0x05 0xDC__, the moisture content in the soil is
220 -)))
176 + (% style="background-color:yellow" %)USB TTL RXD <~-~-~-~-> UART_TXD
221 221  
222 -(((
223 -
224 -)))
225 225  
226 -(((
227 -(% style="color:#4f81bd" %)**05DC(H) = 1500(D) /100 = 15%.**
228 -)))
179 +In the PC, use below serial tool settings:
229 229  
181 +* Baud:  (% style="color:green" %)**9600**
182 +* Data bits:** (% style="color:green" %)8(%%)**
183 +* Stop bits: (% style="color:green" %)**1**
184 +* Parity:  (% style="color:green" %)**None**
185 +* Flow Control: (% style="color:green" %)**None**
230 230  
231 -
232 -=== 2.3.5 Soil Temperature ===
233 -
234 234  (((
235 - Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is 0x09 0xEC, the temperature content in the soil is
188 +Make sure the switch is in FLASH position, then power on device by connecting the jumper on NSE01. NSE01 will output system info once power on as below, we can enter the (% style="color:green" %)**password: 12345678**(%%) to access AT Command input.
236 236  )))
237 237  
238 -(((
239 -**Example**:
240 -)))
191 +[[image:image-20220708110657-3.png]]
241 241  
242 -(((
243 -If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/100 = 2.61 °C
244 -)))
193 +(% style="color:red" %)Note: the valid AT Commands can be found at: (%%)[[http:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/]]
245 245  
246 -(((
247 -If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C
248 -)))
249 249  
250 250  
197 +=== 2.2.4 Use CoAP protocol to uplink data ===
251 251  
252 -=== 2.3.6 Soil Conductivity (EC) ===
199 +(% style="color:red" %)Note: if you don't have CoAP server, you can refer this link to set up one: (%%)[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/>>http://wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/]]
253 253  
254 -(((
255 -Obtain (% style="color:#4f81bd" %)**__soluble salt concentration__**(%%) in soil or (% style="color:#4f81bd" %)**__soluble ion concentration in liquid fertilizer__**(%%) or (% style="color:#4f81bd" %)**__planting medium__**(%%). The value range of the register is 0 - 20000(Decimal)( Can be greater than 20000).
256 -)))
257 257  
258 -(((
259 -For example, if the data you get from the register is 0x00 0xC8, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm.
260 -)))
202 +**Use below commands:**
261 261  
262 -(((
263 -Generally, the EC value of irrigation water is less than 800uS / cm.
264 -)))
204 +* (% style="color:blue" %)**AT+PRO=1**  (%%) ~/~/ Set to use CoAP protocol to uplink
205 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5683   ** (%%)~/~/ to set CoAP server address and port
206 +* (% style="color:blue" %)**AT+URI=5,11,"mqtt",11,"coap",12,"0",15,"c=text1",23,"0" ** (%%) ~/~/Set COAP resource path
265 265  
266 -(((
267 -
268 -)))
208 +For parameter description, please refer to AT command set
269 269  
270 -(((
271 -
272 -)))
210 +[[image:1657249793983-486.png]]
273 273  
274 -=== 2.3.7 MOD ===
275 275  
276 -Firmware version at least v2.1 supports changing mode.
213 +After configure the server address and (% style="color:green" %)**reset the device**(%%) (via AT+ATZ ), NSE01 will start to uplink sensor values to CoAP server.
277 277  
278 -For example, bytes[10]=90
215 +[[image:1657249831934-534.png]]
279 279  
280 -mod=(bytes[10]>>7)&0x01=1.
281 281  
282 282  
283 -**Downlink Command:**
219 +=== 2.2.5 Use UDP protocol to uplink data(Default protocol) ===
284 284  
285 -If payload = 0x0A00, workmode=0
221 +This feature is supported since firmware version v1.0.1
286 286  
287 -If** **payload =** **0x0A01, workmode=1
288 288  
224 +* (% style="color:blue" %)**AT+PRO=2   ** (%%) ~/~/ Set to use UDP protocol to uplink
225 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5601   ** (%%) ~/~/ to set UDP server address and port
226 +* (% style="color:blue" %)**AT+CFM=1       ** (%%) ~/~/If the server does not respond, this command is unnecessary
289 289  
228 +[[image:1657249864775-321.png]]
290 290  
291 -=== 2.3.8 ​Decode payload in The Things Network ===
292 292  
293 -While using TTN network, you can add the payload format to decode the payload.
231 +[[image:1657249930215-289.png]]
294 294  
295 295  
296 -[[image:1654505570700-128.png]]
297 297  
298 -(((
299 -The payload decoder function for TTN is here:
300 -)))
235 +=== 2.2.6 Use MQTT protocol to uplink data ===
301 301  
302 -(((
303 -LSE01 TTN Payload Decoder: [[https:~~/~~/www.dropbox.com/sh/si8icbrjlamxqdb/AAACYwjsxxr5fj_vpqRtrETAa?dl=0>>https://www.dropbox.com/sh/si8icbrjlamxqdb/AAACYwjsxxr5fj_vpqRtrETAa?dl=0]]
304 -)))
237 +This feature is supported since firmware version v110
305 305  
306 306  
307 -== 2.4 Uplink Interval ==
240 +* (% style="color:blue" %)**AT+PRO=3   ** (%%) ~/~/Set to use MQTT protocol to uplink
241 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,1883   ** (%%) ~/~/Set MQTT server address and port
242 +* (% style="color:blue" %)**AT+CLIENT=CLIENT       ** (%%)~/~/Set up the CLIENT of MQTT
243 +* (% style="color:blue" %)**AT+UNAME=UNAME                               **(%%)~/~/Set the username of MQTT
244 +* (% style="color:blue" %)**AT+PWD=PWD                                        **(%%)~/~/Set the password of MQTT
245 +* (% style="color:blue" %)**AT+PUBTOPIC=NSE01_PUB                    **(%%)~/~/Set the sending topic of MQTT
246 +* (% style="color:blue" %)**AT+SUBTOPIC=NSE01_SUB          **(%%) ~/~/Set the subscription topic of MQTT
308 308  
309 -The LSE01 by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link: [[Change Uplink Interval>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H4.1ChangeUplinkInterval"]]
248 +[[image:1657249978444-674.png]]
310 310  
311 311  
251 +[[image:1657249990869-686.png]]
312 312  
313 -== 2.5 Downlink Payload ==
314 314  
315 -By default, LSE50 prints the downlink payload to console port.
316 -
317 -[[image:image-20220606165544-8.png]]
318 -
319 -
320 320  (((
321 -**Examples:**
255 +MQTT protocol has a much higher power consumption compare vs UDP / CoAP protocol. Please check the power analyze document and adjust the uplink period to a suitable interval.
322 322  )))
323 323  
324 -(((
325 -
326 -)))
327 327  
328 -* (((
329 -**Set TDC**
330 -)))
331 331  
332 -(((
333 -If the payload=0100003C, it means set the END Node’s TDC to 0x00003C=60(S), while type code is 01.
334 -)))
260 +=== 2.2.7 Use TCP protocol to uplink data ===
335 335  
336 -(((
337 -Payload:    01 00 00 1E    TDC=30S
338 -)))
262 +This feature is supported since firmware version v110
339 339  
340 -(((
341 -Payload:    01 00 00 3C    TDC=60S
342 -)))
343 343  
344 -(((
345 -
346 -)))
265 +* (% style="color:blue" %)**AT+PRO=4   ** (%%) ~/~/ Set to use TCP protocol to uplink
266 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5600   **(%%) ~/~/ to set TCP server address and port
347 347  
348 -* (((
349 -**Reset**
350 -)))
268 +[[image:1657250217799-140.png]]
351 351  
352 -(((
353 -If payload = 0x04FF, it will reset the LSE01
354 -)))
355 355  
271 +[[image:1657250255956-604.png]]
356 356  
357 -* **CFM**
358 358  
359 -Downlink Payload: 05000001, Set AT+CFM=1 or 05000000 , set AT+CFM=0
360 360  
275 +=== 2.2.8 Change Update Interval ===
361 361  
277 +User can use below command to change the (% style="color:green" %)**uplink interval**.
362 362  
363 -== 2.6 ​Show Data in DataCake IoT Server ==
279 +* (% style="color:blue" %)**AT+TDC=600      ** (%%)~/~/ Set Update Interval to 600s
364 364  
365 365  (((
366 -[[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps:
282 +(% style="color:red" %)**NOTE:**
367 367  )))
368 368  
369 369  (((
370 -
286 +(% style="color:red" %)1. By default, the device will send an uplink message every 1 hour.
371 371  )))
372 372  
373 -(((
374 -(% style="color:blue" %)**Step 1**(%%):  Be sure that your device is programmed and properly connected to the network at this time.
375 -)))
376 376  
377 -(((
378 -(% style="color:blue" %)**Step 2**(%%):  To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps:
379 -)))
380 380  
291 +== 2.3  Uplink Payload ==
381 381  
382 -[[image:1654505857935-743.png]]
293 +In this mode, uplink payload includes in total 18 bytes
383 383  
295 +(% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:510px" %)
296 +|=(% style="width: 50px;" %)(((
297 +**Size(bytes)**
298 +)))|=(% style="width: 50px;" %)**6**|=(% style="width: 25px;" %)2|=(% style="width: 25px;" %)**2**|=(% style="width: 80px;" %)**1**|=(% style="width: 80px;" %)**2**|=(% style="width: 80px;" %)**2**|=(% style="width: 80px;" %)**2**|=(% style="width: 40px;" %)**1**
299 +|(% style="width:97px" %)**Value**|(% style="width:83px" %)[[Device ID>>||anchor="H"]]|(% style="width:41px" %)[[Ver>>||anchor="H"]]|(% style="width:46px" %)[[BAT>>||anchor="H"]]|(% style="width:123px" %)[[Signal Strength>>||anchor="H"]]|(% style="width:108px" %)[[Soil Moisture>>||anchor="H"]]|(% style="width:133px" %)[[Soil Temperature>>||anchor="H"]]|(% style="width:159px" %)[[Soil Conductivity(EC)>>||anchor="H"]]|(% style="width:80px" %)[[Interrupt>>||anchor="H"]]
384 384  
385 -[[image:1654505874829-548.png]]
301 +If we use the MQTT client to subscribe to this MQTT topic, we can see the following information when the NSE01 uplink data.
386 386  
387 387  
388 -(% style="color:blue" %)**Step 3**(%%)**:**  Create an account or log in Datacake.
304 +[[image:image-20220708111918-4.png]]
389 389  
390 -(% style="color:blue" %)**Step 4**(%%)**:**  Search the LSE01 and add DevEUI.
391 391  
307 +The payload is ASCII string, representative same HEX:
392 392  
393 -[[image:1654505905236-553.png]]
309 +0x72403155615900640c7817075e0a8c02f900 where:
394 394  
311 +* Device ID: 0x 724031556159 = 724031556159
312 +* Version: 0x0064=100=1.0.0
395 395  
396 -After added, the sensor data arrive TTN, it will also arrive and show in Mydevices.
314 +* BAT: 0x0c78 = 3192 mV = 3.192V
315 +* Singal: 0x17 = 23
316 +* Soil Moisture: 0x075e= 1886 = 18.86  %
317 +* Soil Temperature:0x0a8c =2700=27 °C
318 +* Soil Conductivity(EC) = 0x02f9 =761 uS /cm
319 +* Interrupt: 0x00 = 0
397 397  
398 -[[image:1654505925508-181.png]]
399 399  
400 400  
401 401  
402 -== 2.7 Frequency Plans ==
324 +== 2. Payload Explanation and Sensor Interface ==
403 403  
404 -The LSE01 uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.
405 405  
327 +=== 2.4.1  Device ID ===
406 406  
407 -=== 2.7.1 EU863-870 (EU868) ===
329 +By default, the Device ID equal to the last 6 bytes of IMEI.
408 408  
409 -(% style="color:#037691" %)** Uplink:**
331 +User can use (% style="color:blue" %)**AT+DEUI**(%%) to set Device ID
410 410  
411 -868.1 - SF7BW125 to SF12BW125
333 +**Example:**
412 412  
413 -868.3 - SF7BW125 to SF12BW125 and SF7BW250
335 +AT+DEUI=A84041F15612
414 414  
415 -868.5 - SF7BW125 to SF12BW125
337 +The Device ID is stored in a none-erase area, Upgrade the firmware or run AT+FDR won't erase Device ID.
416 416  
417 -867.1 - SF7BW125 to SF12BW125
418 418  
419 -867.3 - SF7BW125 to SF12BW125
420 420  
421 -867.5 - SF7BW125 to SF12BW125
341 +=== 2.4.2  Version Info ===
422 422  
423 -867.7 - SF7BW125 to SF12BW125
343 +Specify the software version: 0x64=100, means firmware version 1.00.
424 424  
425 -867.9 - SF7BW125 to SF12BW125
345 +For example: 0x00 64 : this device is NSE01 with firmware version 1.0.0.
426 426  
427 -868.8 - FSK
428 428  
429 429  
430 -(% style="color:#037691" %)** Downlink:**
349 +=== 2.4.3  Battery Info ===
431 431  
432 -Uplink channels 1-9 (RX1)
351 +(((
352 +Check the battery voltage for LSE01.
353 +)))
433 433  
434 -869.525 - SF9BW125 (RX2 downlink only)
355 +(((
356 +Ex1: 0x0B45 = 2885mV
357 +)))
435 435  
359 +(((
360 +Ex2: 0x0B49 = 2889mV
361 +)))
436 436  
437 437  
438 -=== 2.7.2 US902-928(US915) ===
439 439  
440 -Used in USA, Canada and South America. Default use CHE=2
365 +=== 2.4.4  Signal Strength ===
441 441  
442 -(% style="color:#037691" %)**Uplink:**
367 +NB-IoT Network signal Strength.
443 443  
444 -903.9 - SF7BW125 to SF10BW125
369 +**Ex1: 0x1d = 29**
445 445  
446 -904.1 - SF7BW125 to SF10BW125
371 +(% style="color:blue" %)**0**(%%)  -113dBm or less
447 447  
448 -904.3 - SF7BW125 to SF10BW125
373 +(% style="color:blue" %)**1**(%%)  -111dBm
449 449  
450 -904.5 - SF7BW125 to SF10BW125
375 +(% style="color:blue" %)**2...30**(%%) -109dBm... -53dBm
451 451  
452 -904.7 - SF7BW125 to SF10BW125
377 +(% style="color:blue" %)**31**  (%%) -51dBm or greater
453 453  
454 -904.9 - SF7BW125 to SF10BW125
379 +(% style="color:blue" %)**99**   (%%) Not known or not detectable
455 455  
456 -905.1 - SF7BW125 to SF10BW125
457 457  
458 -905.3 - SF7BW125 to SF10BW125
459 459  
383 +=== 2.4.5  Soil Moisture ===
460 460  
461 -(% style="color:#037691" %)**Downlink:**
385 +(((
386 +Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil.
387 +)))
462 462  
463 -923.3 - SF7BW500 to SF12BW500
389 +(((
390 +For example, if the data you get from the register is **__0x05 0xDC__**, the moisture content in the soil is
391 +)))
464 464  
465 -923.9 - SF7BW500 to SF12BW500
393 +(((
394 +
395 +)))
466 466  
467 -924.5 - SF7BW500 to SF12BW500
397 +(((
398 +(% style="color:#4f81bd" %)**05DC(H) = 1500(D) /100 = 15%.**
399 +)))
468 468  
469 -925.1 - SF7BW500 to SF12BW500
470 470  
471 -925.7 - SF7BW500 to SF12BW500
472 472  
473 -926.3 - SF7BW500 to SF12BW500
403 +=== 2.4.6  Soil Temperature ===
474 474  
475 -926.9 - SF7BW500 to SF12BW500
405 +(((
406 + Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is __**0x09 0xEC**__, the temperature content in the soil is
407 +)))
476 476  
477 -927.5 - SF7BW500 to SF12BW500
409 +(((
410 +**Example**:
411 +)))
478 478  
479 -923.3 - SF12BW500(RX2 downlink only)
413 +(((
414 +If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/100 = 2.61 °C
415 +)))
480 480  
417 +(((
418 +If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C
419 +)))
481 481  
482 482  
483 -=== 2.7.3 CN470-510 (CN470) ===
484 484  
485 -Used in China, Default use CHE=1
423 +=== 2.4.7  Soil Conductivity (EC) ===
486 486  
487 -(% style="color:#037691" %)**Uplink:**
425 +(((
426 +Obtain (% style="color:#4f81bd" %)**__soluble salt concentration__**(%%) in soil or (% style="color:#4f81bd" %)**__soluble ion concentration in liquid fertilizer__**(%%) or (% style="color:#4f81bd" %)**__planting medium__**(%%). The value range of the register is 0 - 20000(Decimal)( Can be greater than 20000).
427 +)))
488 488  
489 -486.3 - SF7BW125 to SF12BW125
429 +(((
430 +For example, if the data you get from the register is __**0x00 0xC8**__, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm.
431 +)))
490 490  
491 -486.5 - SF7BW125 to SF12BW125
433 +(((
434 +Generally, the EC value of irrigation water is less than 800uS / cm.
435 +)))
492 492  
493 -486.7 - SF7BW125 to SF12BW125
437 +(((
438 +
439 +)))
494 494  
495 -486.9 - SF7BW125 to SF12BW125
441 +(((
442 +
443 +)))
496 496  
497 -487.1 - SF7BW125 to SF12BW125
445 +=== 2.4. Digital Interrupt ===
498 498  
499 -487.3 - SF7BW125 to SF12BW125
447 +Digital Interrupt refers to pin (% style="color:blue" %)**GPIO_EXTI**(%%), and there are different trigger methods. When there is a trigger, the NSE01 will send a packet to the server.
500 500  
501 -487.5 - SF7BW125 to SF12BW125
449 +The command is:
502 502  
503 -487.7 - SF7BW125 to SF12BW125
451 +(% style="color:blue" %)**AT+INTMOD=3 **(%%) ~/~/(more info about INMOD please refer [[**AT Command Manual**>>url:https://www.dragino.com/downloads/downloads/NB-IoT/NBSN95/DRAGINO_NBSN95-NB_AT%20Commands_v1.1.0.pdf]])**.**
504 504  
505 505  
506 -(% style="color:#037691" %)**Downlink:**
454 +The lower four bits of this data field shows if this packet is generated by interrupt or not. [[Click here>>||anchor="H"]] for the hardware and software set up.
507 507  
508 -506.7 - SF7BW125 to SF12BW125
509 509  
510 -506.9 - SF7BW125 to SF12BW125
457 +Example:
511 511  
512 -507.1 - SF7BW125 to SF12BW125
459 +0x(00): Normal uplink packet.
513 513  
514 -507.3 - SF7BW125 to SF12BW125
461 +0x(01): Interrupt Uplink Packet.
515 515  
516 -507.5 - SF7BW125 to SF12BW125
517 517  
518 -507.7 - SF7BW125 to SF12BW125
519 519  
520 -507.9 - SF7BW125 to SF12BW125
465 +=== 2.4.9  ​+5V Output ===
521 521  
522 -508.1 - SF7BW125 to SF12BW125
467 +NSE01 will enable +5V output before all sampling and disable the +5v after all sampling. 
523 523  
524 -505.3 - SF12BW125 (RX2 downlink only)
525 525  
470 +The 5V output time can be controlled by AT Command.
526 526  
472 +(% style="color:blue" %)**AT+5VT=1000**
527 527  
528 -=== 2.7.4 AU915-928(AU915) ===
474 +Means set 5V valid time to have 1000ms. So the real 5V output will actually have 1000ms + sampling time for other sensors.
529 529  
530 -Default use CHE=2
531 531  
532 -(% style="color:#037691" %)**Uplink:**
533 533  
534 -916.8 - SF7BW125 to SF12BW125
478 +== 2.5  Downlink Payload ==
535 535  
536 -917.0 - SF7BW125 to SF12BW125
480 +By default, NSE01 prints the downlink payload to console port.
537 537  
538 -917.2 - SF7BW125 to SF12BW125
482 +[[image:image-20220708133731-5.png]]
539 539  
540 -917.4 - SF7BW125 to SF12BW125
541 541  
542 -917.6 - SF7BW125 to SF12BW125
485 +(((
486 +(% style="color:blue" %)**Examples:**
487 +)))
543 543  
544 -917.8 - SF7BW125 to SF12BW125
489 +(((
490 +
491 +)))
545 545  
546 -918.0 - SF7BW125 to SF12BW125
493 +* (((
494 +(% style="color:blue" %)**Set TDC**
495 +)))
547 547  
548 -918.2 - SF7BW125 to SF12BW125
497 +(((
498 +If the payload=0100003C, it means set the END Node's TDC to 0x00003C=60(S), while type code is 01.
499 +)))
549 549  
501 +(((
502 +Payload:    01 00 00 1E    TDC=30S
503 +)))
550 550  
551 -(% style="color:#037691" %)**Downlink:**
505 +(((
506 +Payload:    01 00 00 3C    TDC=60S
507 +)))
552 552  
553 -923.3 - SF7BW500 to SF12BW500
509 +(((
510 +
511 +)))
554 554  
555 -923.9 - SF7BW500 to SF12BW500
513 +* (((
514 +(% style="color:blue" %)**Reset**
515 +)))
556 556  
557 -924.5 - SF7BW500 to SF12BW500
517 +(((
518 +If payload = 0x04FF, it will reset the NSE01
519 +)))
558 558  
559 -925.1 - SF7BW500 to SF12BW500
560 560  
561 -925.7 - SF7BW500 to SF12BW500
522 +* (% style="color:blue" %)**INTMOD**
562 562  
563 -926.3 - SF7BW500 to SF12BW500
524 +Downlink Payload: 06000003, Set AT+INTMOD=3
564 564  
565 -926.9 - SF7BW500 to SF12BW500
566 566  
567 -927.5 - SF7BW500 to SF12BW500
568 568  
569 -923.3 - SF12BW500(RX2 downlink only)
528 +== 2. ​LED Indicator ==
570 570  
530 +(((
531 +The NSE01 has an internal LED which is to show the status of different state.
571 571  
572 572  
573 -=== 2.7.5 AS920-923 & AS923-925 (AS923) ===
534 +* When power on, NSE01 will detect if sensor probe is connected, if probe detected, LED will blink four times. (no blinks in this step is no probe)
535 +* Then the LED will be on for 1 second means device is boot normally.
536 +* After NSE01 join NB-IoT network. The LED will be ON for 3 seconds.
537 +* For each uplink probe, LED will be on for 500ms.
538 +)))
574 574  
575 -(% style="color:#037691" %)**Default Uplink channel:**
576 576  
577 -923.2 - SF7BW125 to SF10BW125
578 578  
579 -923.4 - SF7BW125 to SF10BW125
580 580  
543 +== 2.7  Installation in Soil ==
581 581  
582 -(% style="color:#037691" %)**Additional Uplink Channel**:
545 +__**Measurement the soil surface**__
583 583  
584 -(OTAA mode, channel added by JoinAccept message)
547 +Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting. [[https:~~/~~/img.alicdn.com/imgextra/i3/2005165265/O1CN010rj9Oh1olPsQxrdUK_!!2005165265.jpg>>url:https://img.alicdn.com/imgextra/i3/2005165265/O1CN010rj9Oh1olPsQxrdUK_!!2005165265.jpg]]
585 585  
586 -(% style="color:#037691" %)**AS920~~AS923 for Japan, Malaysia, Singapore**:
549 +[[image:1657259653666-883.png]] ​
587 587  
588 -922.2 - SF7BW125 to SF10BW125
589 589  
590 -922.4 - SF7BW125 to SF10BW125
552 +(((
553 +
591 591  
592 -922.6 - SF7BW125 to SF10BW125
555 +(((
556 +Dig a hole with diameter > 20CM.
557 +)))
593 593  
594 -922.8 - SF7BW125 to SF10BW125
559 +(((
560 +Horizontal insert the probe to the soil and fill the hole for long term measurement.
561 +)))
562 +)))
595 595  
596 -923.0 - SF7BW125 to SF10BW125
564 +[[image:1654506665940-119.png]]
597 597  
598 -922.0 - SF7BW125 to SF10BW125
566 +(((
567 +
568 +)))
599 599  
600 600  
601 -(% style="color:#037691" %)**AS923 ~~ AS925 for Brunei, Cambodia, Hong Kong, Indonesia, Laos, Taiwan, Thailand, Vietnam**:
571 +== 2.8  ​Firmware Change Log ==
602 602  
603 -923.6 - SF7BW125 to SF10BW125
604 604  
605 -923.8 - SF7BW125 to SF10BW125
574 +Download URL & Firmware Change log
606 606  
607 -924.0 - SF7BW125 to SF10BW125
576 +[[www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/Firmware/]]
608 608  
609 -924.2 - SF7BW125 to SF10BW125
610 610  
611 -924.4 - SF7BW125 to SF10BW125
579 +Upgrade Instruction: [[Upgrade_Firmware>>||anchor="H"]]
612 612  
613 -924.6 - SF7BW125 to SF10BW125
614 614  
615 615  
616 -(% style="color:#037691" %)** Downlink:**
583 +== 2.9  ​Battery Analysis ==
617 617  
618 -Uplink channels 1-8 (RX1)
585 +=== 2.9.1  ​Battery Type ===
619 619  
620 -923.2 - SF10BW125 (RX2)
621 621  
588 +The NSE01 battery is a combination of an 8500mAh Li/SOCI2 Battery and a Super Capacitor. The battery is none-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter.
622 622  
623 623  
624 -=== 2.7.6 KR920-923 (KR920) ===
591 +The battery is designed to last for several years depends on the actually use environment and update interval. 
625 625  
626 -Default channel:
627 627  
628 -922.1 - SF7BW125 to SF12BW125
594 +The battery related documents as below:
629 629  
630 -922.3 - SF7BW125 to SF12BW125
596 +* [[Battery Dimension>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]
597 +* [[Lithium-Thionyl Chloride Battery>>url:http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]][[ datasheet>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]
598 +* [[Lithium-ion Battery-Capacitor datasheet>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]
631 631  
632 -922.5 - SF7BW125 to SF12BW125
633 -
634 -
635 -(% style="color:#037691" %)**Uplink: (OTAA mode, channel added by JoinAccept message)**
636 -
637 -922.1 - SF7BW125 to SF12BW125
638 -
639 -922.3 - SF7BW125 to SF12BW125
640 -
641 -922.5 - SF7BW125 to SF12BW125
642 -
643 -922.7 - SF7BW125 to SF12BW125
644 -
645 -922.9 - SF7BW125 to SF12BW125
646 -
647 -923.1 - SF7BW125 to SF12BW125
648 -
649 -923.3 - SF7BW125 to SF12BW125
650 -
651 -
652 -(% style="color:#037691" %)**Downlink:**
653 -
654 -Uplink channels 1-7(RX1)
655 -
656 -921.9 - SF12BW125 (RX2 downlink only; SF12BW125 might be changed to SF9BW125)
657 -
658 -
659 -
660 -=== 2.7.7 IN865-867 (IN865) ===
661 -
662 -(% style="color:#037691" %)** Uplink:**
663 -
664 -865.0625 - SF7BW125 to SF12BW125
665 -
666 -865.4025 - SF7BW125 to SF12BW125
667 -
668 -865.9850 - SF7BW125 to SF12BW125
669 -
670 -
671 -(% style="color:#037691" %) **Downlink:**
672 -
673 -Uplink channels 1-3 (RX1)
674 -
675 -866.550 - SF10BW125 (RX2)
676 -
677 -
678 -
679 -
680 -== 2.8 LED Indicator ==
681 -
682 -The LSE01 has an internal LED which is to show the status of different state.
683 -
684 -* Blink once when device power on.
685 -* Solid ON for 5 seconds once device successful Join the network.
686 -* Blink once when device transmit a packet.
687 -
688 -
689 -
690 -
691 -== 2.9 Installation in Soil ==
692 -
693 -**Measurement the soil surface**
694 -
695 -
696 -[[image:1654506634463-199.png]] ​
697 -
698 698  (((
699 -(((
700 -Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting.
601 +[[image:image-20220708140453-6.png]]
701 701  )))
702 -)))
703 703  
704 704  
705 705  
706 -[[image:1654506665940-119.png]]
606 +=== 2.9.2  Power consumption Analyze ===
707 707  
708 708  (((
709 -Dig a hole with diameter > 20CM.
609 +Dragino battery powered product are all runs in Low Power mode. We have an update battery calculator which base on the measurement of the real device. User can use this calculator to check the battery life and calculate the battery life if want to use different transmit interval.
710 710  )))
711 711  
712 -(((
713 -Horizontal insert the probe to the soil and fill the hole for long term measurement.
714 -)))
715 715  
716 -
717 -== 2.10 ​Firmware Change Log ==
718 -
719 719  (((
720 -**Firmware download link:**
614 +Instruction to use as below:
721 721  )))
722 722  
723 723  (((
724 -[[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/]]
618 +(% style="color:blue" %)**Step 1:  **(%%)Downlink the up-to-date DRAGINO_Battery_Life_Prediction_Table.xlsx from: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/]]
725 725  )))
726 726  
727 -(((
728 -
729 -)))
730 730  
731 731  (((
732 -**Firmware Upgrade Method: **[[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome]]
623 +(% style="color:blue" %)**Step 2: **(%%) Open it and choose
733 733  )))
734 734  
735 -(((
736 -
626 +* (((
627 +Product Model
737 737  )))
738 -
739 -(((
740 -**V1.0.**
629 +* (((
630 +Uplink Interval
741 741  )))
632 +* (((
633 +Working Mode
634 +)))
742 742  
743 743  (((
744 -Release
637 +And the Life expectation in difference case will be shown on the right.
745 745  )))
746 746  
640 +[[image:image-20220708141352-7.jpeg]]
747 747  
748 -== 2.11 ​Battery Analysis ==
749 749  
750 -=== 2.11.1 ​Battery Type ===
751 751  
752 -(((
753 -The LSE01 battery is a combination of a 4000mAh Li/SOCI2 Battery and a Super Capacitor. The battery is non-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter.
754 -)))
644 +=== 2.9.3  ​Battery Note ===
755 755  
756 756  (((
757 -The battery is designed to last for more than 5 years for the LSN50.
647 +The Li-SICO battery is designed for small current / long period application. It is not good to use a high current, short period transmit method. The recommended minimum period for use of this battery is 5 minutes. If you use a shorter period time to transmit LoRa, then the battery life may be decreased.
758 758  )))
759 759  
760 -(((
761 -(((
762 -The battery-related documents are as below:
763 -)))
764 -)))
765 765  
766 -* (((
767 -[[Battery Dimension>>url:http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/&file=LSN50-Battery-Dimension.pdf]],
768 -)))
769 -* (((
770 -[[Lithium-Thionyl Chloride Battery  datasheet>>url:https://www.dragino.com/downloads/downloads/datasheet/Battery/ER26500/ER26500_Datasheet-EN.pdf]],
771 -)))
772 -* (((
773 -[[Lithium-ion Battery-Capacitor datasheet>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC_1520_datasheet.jpg]], [[Tech Spec>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC1520%20Technical%20Specification20171123.pdf]]
774 -)))
775 775  
776 - [[image:image-20220610172436-1.png]]
652 +=== 2.9.4  Replace the battery ===
777 777  
778 -
779 -
780 -=== 2.11.2 ​Battery Note ===
781 -
782 782  (((
783 -The Li-SICO battery is designed for small current / long period application. It is not good to use a high current, short period transmit method. The recommended minimum period for use of this battery is 5 minutes. If you use a shorter period time to transmit LoRa, then the battery life may be decreased.
655 +The default battery pack of NSE01 includes a ER26500 plus super capacitor. If user can't find this pack locally, they can find ER26500 or equivalence without the SPC1520 capacitor, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes).
784 784  )))
785 785  
786 786  
787 787  
788 -=== 2.11.3 Replace the battery ===
660 += 3. ​ Access NB-IoT Module =
789 789  
790 790  (((
791 -If Battery is lower than 2.7v, user should replace the battery of LSE01.
663 +Users can directly access the AT command set of the NB-IoT module.
792 792  )))
793 793  
794 794  (((
795 -You can change the battery in the LSE01.The type of battery is not limited as long as the output is between 3v to 3.6v. On the main board, there is a diode (D1) between the battery and the main circuit. If you need to use a battery with less than 3.3v, please remove the D1 and shortcut the two pads of it so there won’t be voltage drop between battery and main board.
667 +The AT Command set can refer the BC35-G NB-IoT Module AT Command: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=datasheet/other_vendors/BC35-G/>>url:https://www.dragino.com/downloads/index.php?dir=datasheet/other_vendors/BC35-G/]] 
796 796  )))
797 797  
798 -(((
799 -The default battery pack of LSE01 includes a ER18505 plus super capacitor. If user can’t find this pack locally, they can find ER18505 or equivalence, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes)
800 -)))
670 +[[image:1657261278785-153.png]]
801 801  
802 802  
803 803  
804 -= 3. Using the AT Commands =
674 += 4.  Using the AT Commands =
805 805  
806 -== 3.1 Access AT Commands ==
676 +== 4.1  Access AT Commands ==
807 807  
678 +See this link for detail: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/]]
808 808  
809 -LSE01 supports AT Command set in the stock firmware. You can use a USB to TTL adapter to connect to LSE01 for using AT command, as below.
810 810  
811 -[[image:1654501986557-872.png||height="391" width="800"]]
681 +AT+<CMD>?  : Help on <CMD>
812 812  
683 +AT+<CMD>         : Run <CMD>
813 813  
814 -Or if you have below board, use below connection:
685 +AT+<CMD>=<value> : Set the value
815 815  
687 +AT+<CMD>=?  : Get the value
816 816  
817 -[[image:1654502005655-729.png||height="503" width="801"]]
818 818  
819 -
820 -
821 -In the PC, you need to set the serial baud rate to (% style="color:green" %)**9600**(%%) to access the serial console for LSE01. LSE01 will output system info once power on as below:
822 -
823 -
824 - [[image:1654502050864-459.png||height="564" width="806"]]
825 -
826 -
827 -Below are the available commands, a more detailed AT Command manual can be found at [[AT Command Manual>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/]]: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/]]
828 -
829 -
830 -(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>? **(%%) : Help on <CMD>
831 -
832 -(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD> **(%%) : Run <CMD>
833 -
834 -(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>=<value>**(%%) : Set the value
835 -
836 -(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>=?**(%%)  : Get the value
837 -
838 -
839 839  (% style="color:#037691" %)**General Commands**(%%)      
840 840  
841 -(% style="background-color:#dcdcdc" %)**AT**(%%)  : Attention       
692 +AT  : Attention       
842 842  
843 -(% style="background-color:#dcdcdc" %)**AT?**(%%)  : Short Help     
694 +AT?  : Short Help     
844 844  
845 -(% style="background-color:#dcdcdc" %)**ATZ**(%%)  : MCU Reset    
696 +ATZ  : MCU Reset    
846 846  
847 -(% style="background-color:#dcdcdc" %)**AT+TDC**(%%)  : Application Data Transmission Interval 
698 +AT+TDC  : Application Data Transmission Interval
848 848  
700 +AT+CFG  : Print all configurations
849 849  
850 -(% style="color:#037691" %)**Keys, IDs and EUIs management**
702 +AT+CFGMOD           : Working mode selection
851 851  
852 -(% style="background-color:#dcdcdc" %)**AT+APPEUI**(%%)              : Application EUI      
704 +AT+INTMOD            : Set the trigger interrupt mode
853 853  
854 -(% style="background-color:#dcdcdc" %)**AT+APPKEY**(%%)              : Application Key     
706 +AT+5VT  : Set extend the time of 5V power  
855 855  
856 -(% style="background-color:#dcdcdc" %)**AT+APPSKEY**(%%)            : Application Session Key
708 +AT+PRO  : Choose agreement
857 857  
858 -(% style="background-color:#dcdcdc" %)**AT+DADDR**(%%)              : Device Address     
710 +AT+WEIGRE  : Get weight or set weight to 0
859 859  
860 -(% style="background-color:#dcdcdc" %)**AT+DEUI**(%%)                   : Device EUI     
712 +AT+WEIGAP  : Get or Set the GapValue of weight
861 861  
862 -(% style="background-color:#dcdcdc" %)**AT+NWKID**(%%)               : Network ID (You can enter this command change only after successful network connection
714 +AT+RXDL  : Extend the sending and receiving time
863 863  
864 -(% style="background-color:#dcdcdc" %)**AT+NWKSKEY**(%%)          : Network Session Key Joining and sending date on LoRa network  
716 +AT+CNTFAC  : Get or set counting parameters
865 865  
866 -(% style="background-color:#dcdcdc" %)**AT+CFM**(%%)  : Confirm Mode       
718 +AT+SERVADDR  : Server Address
867 867  
868 -(% style="background-color:#dcdcdc" %)**AT+CFS**(%%)                     : Confirm Status       
869 869  
870 -(% style="background-color:#dcdcdc" %)**AT+JOIN**(%%)  : Join LoRa? Network       
721 +(% style="color:#037691" %)**COAP Management**      
871 871  
872 -(% style="background-color:#dcdcdc" %)**AT+NJM**(%%)  : LoRa? Network Join Mode    
723 +AT+URI            : Resource parameters
873 873  
874 -(% style="background-color:#dcdcdc" %)**AT+NJS**(%%)                     : LoRa? Network Join Status    
875 875  
876 -(% style="background-color:#dcdcdc" %)**AT+RECV**(%%)                  : Print Last Received Data in Raw Format
726 +(% style="color:#037691" %)**UDP Management**
877 877  
878 -(% style="background-color:#dcdcdc" %)**AT+RECVB**(%%)                : Print Last Received Data in Binary Format      
728 +AT+CFM          : Upload confirmation mode (only valid for UDP)
879 879  
880 -(% style="background-color:#dcdcdc" %)**AT+SEND**(%%)                  : Send Text Data      
881 881  
882 -(% style="background-color:#dcdcdc" %)**AT+SENB**(%%)                  : Send Hexadecimal Data
731 +(% style="color:#037691" %)**MQTT Management**
883 883  
733 +AT+CLIENT               : Get or Set MQTT client
884 884  
885 -(% style="color:#037691" %)**LoRa Network Management**
735 +AT+UNAME  : Get or Set MQTT Username
886 886  
887 -(% style="background-color:#dcdcdc" %)**AT+ADR**(%%)          : Adaptive Rate
737 +AT+PWD                  : Get or Set MQTT password
888 888  
889 -(% style="background-color:#dcdcdc" %)**AT+CLASS**(%%)  : LoRa Class(Currently only support class A
739 +AT+PUBTOPI : Get or Set MQTT publish topic
890 890  
891 -(% style="background-color:#dcdcdc" %)**AT+DCS**(%%)  : Duty Cycle Settin
741 +AT+SUBTOPIC  : Get or Set MQTT subscription topic
892 892  
893 -(% style="background-color:#dcdcdc" %)**AT+DR**(%%)  : Data Rate (Can Only be Modified after ADR=0)     
894 894  
895 -(% style="background-color:#dcdcdc" %)**AT+FCD**(%%)  : Frame Counter Downlink       
744 +(% style="color:#037691" %)**Information**          
896 896  
897 -(% style="background-color:#dcdcdc" %)**AT+FCU**(%%)  : Frame Counter Uplink   
746 +AT+FDR  : Factory Data Reset
898 898  
899 -(% style="background-color:#dcdcdc" %)**AT+JN1DL**(%%)  : Join Accept Delay1
748 +AT+PWOR : Serial Access Password
900 900  
901 -(% style="background-color:#dcdcdc" %)**AT+JN2DL**(%%)  : Join Accept Delay2
902 902  
903 -(% style="background-color:#dcdcdc" %)**AT+PNM**(%%)  : Public Network Mode   
904 904  
905 -(% style="background-color:#dcdcdc" %)**AT+RX1DL**(%%)  : Receive Delay1      
752 += ​5.  FAQ =
906 906  
907 -(% style="background-color:#dcdcdc" %)**AT+RX2DL**(%%)  : Receive Delay2      
754 +== 5.1 How to Upgrade Firmware ==
908 908  
909 -(% style="background-color:#dcdcdc" %)**AT+RX2DR**(%%)  : Rx2 Window Data Rate 
910 910  
911 -(% style="background-color:#dcdcdc" %)**AT+RX2FQ**(%%)  : Rx2 Window Frequency
912 -
913 -(% style="background-color:#dcdcdc" %)**AT+TXP**(%%)  : Transmit Power
914 -
915 -(% style="background-color:#dcdcdc" %)**AT+ MOD**(%%)  : Set work mode
916 -
917 -
918 -(% style="color:#037691" %)**Information** 
919 -
920 -(% style="background-color:#dcdcdc" %)**AT+RSSI**(%%)           : RSSI of the Last Received Packet   
921 -
922 -(% style="background-color:#dcdcdc" %)**AT+SNR**(%%)           : SNR of the Last Received Packet   
923 -
924 -(% style="background-color:#dcdcdc" %)**AT+VER**(%%)           : Image Version and Frequency Band       
925 -
926 -(% style="background-color:#dcdcdc" %)**AT+FDR**(%%)           : Factory Data Reset
927 -
928 -(% style="background-color:#dcdcdc" %)**AT+PORT**(%%)  : Application Port    
929 -
930 -(% style="background-color:#dcdcdc" %)**AT+CHS**(%%)  : Get or Set Frequency (Unit: Hz) for Single Channel Mode
931 -
932 - (% style="background-color:#dcdcdc" %)**AT+CHE**(%%)  : Get or Set eight channels mode, Only for US915, AU915, CN470
933 -
934 -
935 -= ​4. FAQ =
936 -
937 -== 4.1 ​How to change the LoRa Frequency Bands/Region? ==
938 -
939 939  (((
940 -You can follow the instructions for [[how to upgrade image>>||anchor="H2.10200BFirmwareChangeLog"]].
941 -When downloading the images, choose the required image file for download. ​
758 +User can upgrade the firmware for 1) bug fix, 2) new feature release.
942 942  )))
943 943  
944 944  (((
945 -
762 +Please see this link for how to upgrade:  [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H2.HardwareUpgradeMethodSupportList>>http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H2.HardwareUpgradeMethodSupportList]]
946 946  )))
947 947  
948 948  (((
949 -How to set up LSE01 to work in 8 channel mode By default, the frequency bands US915, AU915, CN470 work in 72 frequencies. Many gateways are 8 channel gateways, and in this case, the OTAA join time and uplink schedule is long and unpredictable while the end node is hopping in 72 frequencies.
766 +(% style="color:red" %)Notice, NSE01 and LSE01 share the same mother board. They use the same connection and method to update.
950 950  )))
951 951  
952 -(((
953 -
954 -)))
955 955  
956 -(((
957 -You can configure the end node to work in 8 channel mode by using the AT+CHE command. The 500kHz channels are always included for OTAA.
958 -)))
959 959  
960 -(((
961 -
962 -)))
771 += 6.  Trouble Shooting =
963 963  
964 -(((
965 -For example, in **US915** band, the frequency table is as below. By default, the end node will use all channels (0~~71) for OTAA Join process. After the OTAA Join, the end node will use these all channels (0~~71) to send uplink packets.
966 -)))
773 +== 6.1  ​Connection problem when uploading firmware ==
967 967  
968 -[[image:image-20220606154726-3.png]]
969 969  
970 -
971 -When you use the TTN network, the US915 frequency bands use are:
972 -
973 -* 903.9 - SF7BW125 to SF10BW125
974 -* 904.1 - SF7BW125 to SF10BW125
975 -* 904.3 - SF7BW125 to SF10BW125
976 -* 904.5 - SF7BW125 to SF10BW125
977 -* 904.7 - SF7BW125 to SF10BW125
978 -* 904.9 - SF7BW125 to SF10BW125
979 -* 905.1 - SF7BW125 to SF10BW125
980 -* 905.3 - SF7BW125 to SF10BW125
981 -* 904.6 - SF8BW500
982 -
776 +(% class="wikigeneratedid" %)
983 983  (((
984 -Because the end node is now hopping in 72 frequency, it makes it difficult for the devices to Join the TTN network and uplink data. To solve this issue, you can access the device via the AT commands and run:
985 -
986 -* **(% style="color:#037691" %)AT+CHE=2**
987 -* **(% style="color:#037691" %)ATZ**
778 +(% style="font-size:14px" %)**Please see: **(%%)[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H3.3Troubleshooting>>http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H3.3Troubleshooting||style="background-color: rgb(255, 255, 255); font-size: 14px;"]]
988 988  )))
989 989  
990 -(((
991 -
992 992  
993 -to set the end node to work in 8 channel mode. The device will work in Channel 8-15 & 64-71 for OTAA, and channel 8-15 for Uplink.
994 -)))
995 995  
996 -(((
997 -
998 -)))
783 +== 6.2  AT Command input doesn't work ==
999 999  
1000 1000  (((
1001 -The **AU915** band is similar. Below are the AU915 Uplink Channels.
786 +In the case if user can see the console output but can't type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn't send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.
1002 1002  )))
1003 1003  
1004 -[[image:image-20220606154825-4.png]]
1005 1005  
1006 1006  
791 += 7. ​ Order Info =
1007 1007  
1008 -= 5. Trouble Shooting =
1009 1009  
1010 -== 5.1 ​Why I can’t join TTN in US915 / AU915 bands? ==
794 +Part Number**:** (% style="color:#4f81bd" %)**NSE01**
1011 1011  
1012 -It is due to channel mapping. Please see the [[Eight Channel Mode>>doc:Main.LoRaWAN Communication Debug.WebHome||anchor="H2.NoticeofUS9152FCN4702FAU915Frequencyband"]] section above for details.
1013 1013  
1014 -
1015 -== 5.2 AT Command input doesn’t work ==
1016 -
1017 -(((
1018 -In the case if user can see the console output but can’t type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn’t send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.
1019 -)))
1020 -
1021 -
1022 -== 5.3 Device rejoin in at the second uplink packet ==
1023 -
1024 -(% style="color:#4f81bd" %)**Issue describe as below:**
1025 -
1026 -[[image:1654500909990-784.png]]
1027 -
1028 -
1029 -(% style="color:#4f81bd" %)**Cause for this issue:**
1030 -
1031 -(((
1032 -The fuse on LSE01 is not large enough, some of the soil probe require large current up to 5v 800mA, in a short pulse. When this happen, it cause the device reboot so user see rejoin.
1033 -)))
1034 -
1035 -
1036 -(% style="color:#4f81bd" %)**Solution: **
1037 -
1038 -All new shipped LSE01 after 2020-May-30 will have this to fix. For the customer who see this issue, please bypass the fuse as below:
1039 -
1040 -[[image:1654500929571-736.png||height="458" width="832"]]
1041 -
1042 -
1043 -= 6. ​Order Info =
1044 -
1045 -
1046 -Part Number**:** (% style="color:#4f81bd" %)**LSE01-XX-YY**
1047 -
1048 -
1049 -(% style="color:#4f81bd" %)**XX**(%%)**:** The default frequency band
1050 -
1051 -* (% style="color:red" %)**AS923**(%%): LoRaWAN AS923 band
1052 -* (% style="color:red" %)**AU915**(%%): LoRaWAN AU915 band
1053 -* (% style="color:red" %)**EU433**(%%): LoRaWAN EU433 band
1054 -* (% style="color:red" %)**EU868**(%%): LoRaWAN EU868 band
1055 -* (% style="color:red" %)**KR920**(%%): LoRaWAN KR920 band
1056 -* (% style="color:red" %)**US915**(%%): LoRaWAN US915 band
1057 -* (% style="color:red" %)**IN865**(%%):  LoRaWAN IN865 band
1058 -* (% style="color:red" %)**CN470**(%%): LoRaWAN CN470 band
1059 -
1060 -(% style="color:#4f81bd" %)**YY**(%%)**: **Battery Option
1061 -
1062 -* (% style="color:red" %)**4**(%%): 4000mAh battery
1063 -* (% style="color:red" %)**8**(%%): 8500mAh battery
1064 -
1065 1065  (% class="wikigeneratedid" %)
1066 1066  (((
1067 1067  
1068 1068  )))
1069 1069  
1070 -= 7. Packing Info =
802 += 8.  Packing Info =
1071 1071  
1072 1072  (((
1073 1073  
1074 1074  
1075 1075  (% style="color:#037691" %)**Package Includes**:
1076 -)))
1077 1077  
1078 -* (((
1079 -LSE01 LoRaWAN Soil Moisture & EC Sensor x 1
809 +
810 +* NSE01 NB-IoT Soil Moisture & EC Sensor x 1
811 +* External antenna x 1
1080 1080  )))
1081 1081  
1082 1082  (((
... ... @@ -1083,24 +1083,20 @@
1083 1083  
1084 1084  
1085 1085  (% style="color:#037691" %)**Dimension and weight**:
1086 -)))
1087 1087  
1088 -* (((
1089 -Device Size: cm
819 +
820 +* Size: 195 x 125 x 55 mm
821 +* Weight:   420g
1090 1090  )))
1091 -* (((
1092 -Device Weight: g
1093 -)))
1094 -* (((
1095 -Package Size / pcs : cm
1096 -)))
1097 -* (((
1098 -Weight / pcs : g
1099 1099  
824 +(((
1100 1100  
826 +
827 +
828 +
1101 1101  )))
1102 1102  
1103 -= 8. Support =
831 += 9.  Support =
1104 1104  
1105 1105  * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
1106 1106  * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.com]]
1657245163077-232.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +81.0 KB
Content
1657246476176-652.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +492.6 KB
Content
1657249419225-449.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +81.0 KB
Content
1657249468462-536.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +483.6 KB
Content
1657249793983-486.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +85.8 KB
Content
1657249831934-534.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +72.5 KB
Content
1657249864775-321.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +87.0 KB
Content
1657249930215-289.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +77.3 KB
Content
1657249978444-674.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +139.5 KB
Content
1657249990869-686.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +96.9 KB
Content
1657250217799-140.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +98.7 KB
Content
1657250255956-604.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +99.0 KB
Content
1657259653666-883.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +344.4 KB
Content
1657260785982-288.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +138.2 KB
Content
1657261119050-993.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +126.1 KB
Content
1657261278785-153.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +126.1 KB
Content
image-20220708101224-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +22.2 KB
Content
image-20220708101605-2.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +87.5 KB
Content
image-20220708110657-3.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +251.7 KB
Content
image-20220708111918-4.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +38.8 KB
Content
image-20220708133731-5.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +8.7 KB
Content
image-20220708140453-6.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +132.7 KB
Content
image-20220708141352-7.jpeg
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +102.7 KB
Content
Copyright ©2010-2022 Dragino Technology Co., LTD. All rights reserved
Dragino Wiki v2.0