<
From version < 35.20 >
edited by Xiaoling
on 2022/06/14 14:16
To version < 63.2 >
edited by Xiaoling
on 2022/07/08 14:18
>
Change comment: There is no comment for this version

Summary

Details

Page properties
Title
... ... @@ -1,1 +1,1 @@
1 -LSE01-LoRaWAN Soil Moisture & EC Sensor User Manual
1 +NSE01 - NB-IoT Soil Moisture & EC Sensor User Manual
Content
... ... @@ -3,9 +3,7 @@
3 3  
4 4  
5 5  
6 -**Table of Contents:**
7 7  
8 -{{toc/}}
9 9  
10 10  
11 11  
... ... @@ -12,63 +12,81 @@
12 12  
13 13  
14 14  
15 -= 1. Introduction =
16 16  
17 -== 1.1 ​What is LoRaWAN Soil Moisture & EC Sensor ==
14 +**Table of Contents:**
18 18  
16 +
17 +
18 +
19 +
20 +
21 += 1.  Introduction =
22 +
23 +== 1.1 ​ What is LoRaWAN Soil Moisture & EC Sensor ==
24 +
19 19  (((
20 20  
21 21  
22 -The Dragino LSE01 is a (% style="color:#4f81bd" %)**LoRaWAN Soil Moisture & EC Sensor**(%%) for IoT of Agriculture. It is designed to measure the soil moisture of saline-alkali soil and loamy soil. The soil sensor uses FDR method to calculate the soil moisture with the compensation from soil temperature and conductivity. It also has been calibrated in factory for Mineral soil type.
23 -)))
28 +Dragino NSE01 is an (% style="color:blue" %)**NB-IOT soil moisture & EC sensor**(%%) for agricultural IoT. Used to measure the soil moisture of saline-alkali soil and loam. The soil sensor uses the FDR method to calculate soil moisture and compensates it with soil temperature and electrical conductivity. It has also been calibrated for mineral soil types at the factory.
24 24  
25 -(((
26 -It detects (% style="color:#4f81bd" %)**Soil Moisture**(%%), (% style="color:#4f81bd" %)**Soil Temperature**(%%) and (% style="color:#4f81bd" %)**Soil Conductivity**(%%), and uploads the value via wireless to LoRaWAN IoT Server.
27 -)))
30 +It can detect (% style="color:blue" %)**Soil Moisture, Soil Temperature and Soil Conductivity**(%%), and upload its value to the server wirelessly.
28 28  
29 -(((
30 -The LoRa wireless technology used in LES01 allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption.
31 -)))
32 +The wireless technology used in NSE01 allows the device to send data at a low data rate and reach ultra-long distances, providing ultra-long-distance spread spectrum Communication.
32 32  
33 -(((
34 -LES01 is powered by (% style="color:#4f81bd" %)**4000mA or 8500mAh Li-SOCI2 battery**(%%), It is designed for long term use up to 10 years.
35 -)))
34 +NSE01 are powered by (% style="color:blue" %)**8500mAh Li-SOCI2**(%%) batteries, which can be used for up to 5 years.  
36 36  
37 -(((
38 -Each LES01 is pre-load with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect after power on.
36 +
39 39  )))
40 40  
41 -
42 42  [[image:1654503236291-817.png]]
43 43  
44 44  
45 -[[image:1654503265560-120.png]]
42 +[[image:1657245163077-232.png]]
46 46  
47 47  
48 48  
49 49  == 1.2 ​Features ==
50 50  
51 -* LoRaWAN 1.0.3 Class A
52 -* Ultra low power consumption
48 +
49 +* NB-IoT Bands: B1/B3/B8/B5/B20/B28 @H-FDD
53 53  * Monitor Soil Moisture
54 54  * Monitor Soil Temperature
55 55  * Monitor Soil Conductivity
56 -* Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865
57 57  * AT Commands to change parameters
58 58  * Uplink on periodically
59 59  * Downlink to change configure
60 60  * IP66 Waterproof Enclosure
61 -* 4000mAh or 8500mAh Battery for long term use
57 +* Ultra-Low Power consumption
58 +* AT Commands to change parameters
59 +* Micro SIM card slot for NB-IoT SIM
60 +* 8500mAh Battery for long term use
62 62  
63 -== 1.3 Specification ==
62 +== 1.3  Specification ==
64 64  
64 +
65 +(% style="color:#037691" %)**Common DC Characteristics:**
66 +
67 +* Supply Voltage: 2.1v ~~ 3.6v
68 +* Operating Temperature: -40 ~~ 85°C
69 +
70 +(% style="color:#037691" %)**NB-IoT Spec:**
71 +
72 +* - B1 @H-FDD: 2100MHz
73 +* - B3 @H-FDD: 1800MHz
74 +* - B8 @H-FDD: 900MHz
75 +* - B5 @H-FDD: 850MHz
76 +* - B20 @H-FDD: 800MHz
77 +* - B28 @H-FDD: 700MHz
78 +
79 +(% style="color:#037691" %)**Probe Specification:**
80 +
65 65  Measure Volume: Base on the centra pin of the probe, a cylinder with 7cm diameter and 10cm height.
66 66  
67 -[[image:image-20220606162220-5.png]]
83 +[[image:image-20220708101224-1.png]]
68 68  
69 69  
70 70  
71 -== ​1.4 Applications ==
87 +== ​1.4  Applications ==
72 72  
73 73  * Smart Agriculture
74 74  
... ... @@ -75,733 +75,579 @@
75 75  (% class="wikigeneratedid" id="H200B1.5FirmwareChangelog" %)
76 76  ​
77 77  
78 -== 1.5 Firmware Change log ==
94 +== 1.5  Pin Definitions ==
79 79  
80 80  
81 -**LSE01 v1.0 :**  Release
97 +[[image:1657246476176-652.png]]
82 82  
83 83  
84 84  
85 -= 2. Configure LSE01 to connect to LoRaWAN network =
101 += 2.  Use NSE01 to communicate with IoT Server =
86 86  
87 -== 2.1 How it works ==
103 +== 2.1  How it works ==
88 88  
105 +
89 89  (((
90 -The LSE01 is configured as LoRaWAN OTAA Class A mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and power on the LSE0150. It will automatically join the network via OTAA and start to send the sensor value
107 +The NSE01 is equipped with a NB-IoT module, the pre-loaded firmware in NSE01 will get environment data from sensors and send the value to local NB-IoT network via the NB-IoT module The NB-IoT network will forward this value to IoT server via the protocol defined by NSE01.
91 91  )))
92 92  
110 +
93 93  (((
94 -In case you can’t set the OTAA keys in the LoRaWAN OTAA server, and you have to use the keys from the server, you can [[use AT Commands >>||anchor="H3.200BUsingtheATCommands"]].
112 +The diagram below shows the working flow in default firmware of NSE01:
95 95  )))
96 96  
115 +[[image:image-20220708101605-2.png]]
97 97  
117 +(((
118 +
119 +)))
98 98  
99 -== 2.2 ​Quick guide to connect to LoRaWAN server (OTAA) ==
100 100  
101 -Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LG308>>url:http://www.dragino.com/products/lora/item/140-lg308.html]] as a LoRaWAN gateway in this example.
102 102  
123 +== 2.2 ​ Configure the NSE01 ==
103 103  
104 -[[image:1654503992078-669.png]]
105 105  
126 +=== 2.2.1 Test Requirement ===
106 106  
107 -The LG308 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
108 108  
129 +To use NSE01 in your city, make sure meet below requirements:
109 109  
110 -(% style="color:blue" %)**Step 1**(%%):  Create a device in TTN with the OTAA keys from LSE01.
131 +* Your local operator has already distributed a NB-IoT Network there.
132 +* The local NB-IoT network used the band that NSE01 supports.
133 +* Your operator is able to distribute the data received in their NB-IoT network to your IoT server.
111 111  
112 -Each LSE01 is shipped with a sticker with the default device EUI as below:
113 -
114 -[[image:image-20220606163732-6.jpeg]]
115 -
116 -You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot:
117 -
118 -**Add APP EUI in the application**
119 -
120 -
121 -[[image:1654504596150-405.png]]
122 -
123 -
124 -
125 -**Add APP KEY and DEV EUI**
126 -
127 -[[image:1654504683289-357.png]]
128 -
129 -
130 -
131 -(% style="color:blue" %)**Step 2**(%%): Power on LSE01
132 -
133 -
134 -Put a Jumper on JP2 to power on the device. ( The Jumper must be in FLASH position).
135 -
136 -[[image:image-20220606163915-7.png]]
137 -
138 -
139 -(% style="color:blue" %)**Step 3**(%%)**:** The LSE01 will auto join to the TTN network. After join success, it will start to upload messages to TTN and you can see the messages in the panel.
140 -
141 -[[image:1654504778294-788.png]]
142 -
143 -
144 -
145 -== 2.3 Uplink Payload ==
146 -
147 -
148 -=== 2.3.1 MOD~=0(Default Mode) ===
149 -
150 -LSE01 will uplink payload via LoRaWAN with below payload format: 
151 -
152 152  (((
153 -Uplink payload includes in total 11 bytes.
136 +Below figure shows our testing structure. Here we have NB-IoT network coverage by China Mobile, the band they use is B8.  The NSE01 will use CoAP((% style="color:red" %)120.24.4.116:5683)(%%) or raw UDP((% style="color:red" %)120.24.4.116:5601)(%%) or MQTT((% style="color:red" %)120.24.4.116:1883)(%%)or TCP((% style="color:red" %)120.24.4.116:5600)(%%)protocol to send data to the test server
154 154  )))
155 155  
156 -(% border="1" cellspacing="10" style="background-color:#ffffcc; width:500px" %)
157 -|(((
158 -**Size**
159 159  
160 -**(bytes)**
161 -)))|**2**|**2**|**2**|**2**|**2**|**1**
162 -|**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(((
163 -Temperature
140 +[[image:1657249419225-449.png]]
164 164  
165 -(Reserve, Ignore now)
166 -)))|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]]|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]]|(((
167 -MOD & Digital Interrupt
168 168  
169 -(Optional)
170 -)))
171 171  
144 +=== 2.2.2 Insert SIM card ===
172 172  
146 +Insert the NB-IoT Card get from your provider.
173 173  
174 -=== 2.3.2 MOD~=1(Original value) ===
148 +User need to take out the NB-IoT module and insert the SIM card like below:
175 175  
176 -This mode can get the original AD value of moisture and original conductivity (with temperature drift compensation).
177 177  
178 -(% border="1" cellspacing="10" style="background-color:#ffffcc; width:500px" %)
179 -|(((
180 -**Size**
151 +[[image:1657249468462-536.png]]
181 181  
182 -**(bytes)**
183 -)))|**2**|**2**|**2**|**2**|**2**|**1**
184 -|**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(((
185 -Temperature
186 186  
187 -(Reserve, Ignore now)
188 -)))|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]](raw)|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]](raw)|(((
189 -MOD & Digital Interrupt
190 190  
191 -(Optional)
192 -)))
155 +=== 2.2.3 Connect USB – TTL to NSE01 to configure it ===
193 193  
194 -
195 -
196 -=== 2.3.3 Battery Info ===
197 -
198 198  (((
199 -Check the battery voltage for LSE01.
200 -)))
201 -
202 202  (((
203 -Ex1: 0x0B45 = 2885mV
159 +User need to configure NSE01 via serial port to set the (% style="color:blue" %)**Server Address** / **Uplink Topic** (%%)to define where and how-to uplink packets. NSE01 support AT Commands, user can use a USB to TTL adapter to connect to NSE01 and use AT Commands to configure it, as below.
204 204  )))
205 -
206 -(((
207 -Ex2: 0x0B49 = 2889mV
208 208  )))
209 209  
210 210  
164 +**Connection:**
211 211  
212 -=== 2.3.4 Soil Moisture ===
166 + (% style="background-color:yellow" %)USB TTL GND <~-~-~-~-> GND
213 213  
214 -(((
215 -Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil.
216 -)))
168 + (% style="background-color:yellow" %)USB TTL TXD <~-~-~-~-> UART_RXD
217 217  
218 -(((
219 -For example, if the data you get from the register is __0x05 0xDC__, the moisture content in the soil is
220 -)))
170 + (% style="background-color:yellow" %)USB TTL RXD <~-~-~-~-> UART_TXD
221 221  
222 -(((
223 -
224 -)))
225 225  
226 -(((
227 -(% style="color:#4f81bd" %)**05DC(H) = 1500(D) /100 = 15%.**
228 -)))
173 +In the PC, use below serial tool settings:
229 229  
175 +* Baud:  (% style="color:green" %)**9600**
176 +* Data bits:** (% style="color:green" %)8(%%)**
177 +* Stop bits: (% style="color:green" %)**1**
178 +* Parity:  (% style="color:green" %)**None**
179 +* Flow Control: (% style="color:green" %)**None**
230 230  
231 -
232 -=== 2.3.5 Soil Temperature ===
233 -
234 234  (((
235 - Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is 0x09 0xEC, the temperature content in the soil is
182 +Make sure the switch is in FLASH position, then power on device by connecting the jumper on NSE01. NSE01 will output system info once power on as below, we can enter the (% style="color:green" %)**password: 12345678**(%%) to access AT Command input.
236 236  )))
237 237  
238 -(((
239 -**Example**:
240 -)))
185 +[[image:image-20220708110657-3.png]]
241 241  
242 -(((
243 -If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/100 = 2.61 °C
244 -)))
187 +(% style="color:red" %)Note: the valid AT Commands can be found at: (%%)[[http:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/]]
245 245  
246 -(((
247 -If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C
248 -)))
249 249  
250 250  
191 +=== 2.2.4 Use CoAP protocol to uplink data ===
251 251  
252 -=== 2.3.6 Soil Conductivity (EC) ===
193 +(% style="color:red" %)Note: if you don't have CoAP server, you can refer this link to set up one: (%%)[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/>>http://wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/]]
253 253  
254 -(((
255 -Obtain (% style="color:#4f81bd" %)**__soluble salt concentration__**(%%) in soil or (% style="color:#4f81bd" %)**__soluble ion concentration in liquid fertilizer__**(%%) or (% style="color:#4f81bd" %)**__planting medium__**(%%). The value range of the register is 0 - 20000(Decimal)( Can be greater than 20000).
256 -)))
257 257  
258 -(((
259 -For example, if the data you get from the register is 0x00 0xC8, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm.
260 -)))
196 +**Use below commands:**
261 261  
262 -(((
263 -Generally, the EC value of irrigation water is less than 800uS / cm.
264 -)))
198 +* (% style="color:blue" %)**AT+PRO=1**  (%%) ~/~/ Set to use CoAP protocol to uplink
199 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5683   ** (%%)~/~/ to set CoAP server address and port
200 +* (% style="color:blue" %)**AT+URI=5,11,"mqtt",11,"coap",12,"0",15,"c=text1",23,"0" ** (%%) ~/~/Set COAP resource path
265 265  
266 -(((
267 -
268 -)))
202 +For parameter description, please refer to AT command set
269 269  
270 -(((
271 -
272 -)))
204 +[[image:1657249793983-486.png]]
273 273  
274 -=== 2.3.7 MOD ===
275 275  
276 -Firmware version at least v2.1 supports changing mode.
207 +After configure the server address and (% style="color:green" %)**reset the device**(%%) (via AT+ATZ ), NSE01 will start to uplink sensor values to CoAP server.
277 277  
278 -For example, bytes[10]=90
209 +[[image:1657249831934-534.png]]
279 279  
280 -mod=(bytes[10]>>7)&0x01=1.
281 281  
282 282  
283 -**Downlink Command:**
213 +=== 2.2.5 Use UDP protocol to uplink data(Default protocol) ===
284 284  
285 -If payload = 0x0A00, workmode=0
215 +This feature is supported since firmware version v1.0.1
286 286  
287 -If** **payload =** **0x0A01, workmode=1
288 288  
218 +* (% style="color:blue" %)**AT+PRO=2   ** (%%) ~/~/ Set to use UDP protocol to uplink
219 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5601   ** (%%) ~/~/ to set UDP server address and port
220 +* (% style="color:blue" %)**AT+CFM=1       ** (%%) ~/~/If the server does not respond, this command is unnecessary
289 289  
222 +[[image:1657249864775-321.png]]
290 290  
291 -=== 2.3.8 ​Decode payload in The Things Network ===
292 292  
293 -While using TTN network, you can add the payload format to decode the payload.
225 +[[image:1657249930215-289.png]]
294 294  
295 295  
296 -[[image:1654505570700-128.png]]
297 297  
298 -(((
299 -The payload decoder function for TTN is here:
300 -)))
229 +=== 2.2.6 Use MQTT protocol to uplink data ===
301 301  
302 -(((
303 -LSE01 TTN Payload Decoder: [[https:~~/~~/www.dropbox.com/sh/si8icbrjlamxqdb/AAACYwjsxxr5fj_vpqRtrETAa?dl=0>>https://www.dropbox.com/sh/si8icbrjlamxqdb/AAACYwjsxxr5fj_vpqRtrETAa?dl=0]]
304 -)))
231 +This feature is supported since firmware version v110
305 305  
306 306  
307 -== 2.4 Uplink Interval ==
234 +* (% style="color:blue" %)**AT+PRO=3   ** (%%) ~/~/Set to use MQTT protocol to uplink
235 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,1883   ** (%%) ~/~/Set MQTT server address and port
236 +* (% style="color:blue" %)**AT+CLIENT=CLIENT       ** (%%)~/~/Set up the CLIENT of MQTT
237 +* (% style="color:blue" %)**AT+UNAME=UNAME                               **(%%)~/~/Set the username of MQTT
238 +* (% style="color:blue" %)**AT+PWD=PWD                                        **(%%)~/~/Set the password of MQTT
239 +* (% style="color:blue" %)**AT+PUBTOPIC=NSE01_PUB                    **(%%)~/~/Set the sending topic of MQTT
240 +* (% style="color:blue" %)**AT+SUBTOPIC=NSE01_SUB          **(%%) ~/~/Set the subscription topic of MQTT
308 308  
309 -The LSE01 by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link: [[Change Uplink Interval>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H4.1ChangeUplinkInterval"]]
242 +[[image:1657249978444-674.png]]
310 310  
311 311  
245 +[[image:1657249990869-686.png]]
312 312  
313 -== 2.5 Downlink Payload ==
314 314  
315 -By default, LSE50 prints the downlink payload to console port.
316 -
317 -[[image:image-20220606165544-8.png]]
318 -
319 -
320 320  (((
321 -**Examples:**
249 +MQTT protocol has a much higher power consumption compare vs UDP / CoAP protocol. Please check the power analyze document and adjust the uplink period to a suitable interval.
322 322  )))
323 323  
324 -(((
325 -
326 -)))
327 327  
328 -* (((
329 -**Set TDC**
330 -)))
331 331  
332 -(((
333 -If the payload=0100003C, it means set the END Node’s TDC to 0x00003C=60(S), while type code is 01.
334 -)))
254 +=== 2.2.7 Use TCP protocol to uplink data ===
335 335  
336 -(((
337 -Payload:    01 00 00 1E    TDC=30S
338 -)))
256 +This feature is supported since firmware version v110
339 339  
340 -(((
341 -Payload:    01 00 00 3C    TDC=60S
342 -)))
343 343  
344 -(((
345 -
346 -)))
259 +* (% style="color:blue" %)**AT+PRO=4   ** (%%) ~/~/ Set to use TCP protocol to uplink
260 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5600   **(%%) ~/~/ to set TCP server address and port
347 347  
348 -* (((
349 -**Reset**
350 -)))
262 +[[image:1657250217799-140.png]]
351 351  
352 -(((
353 -If payload = 0x04FF, it will reset the LSE01
354 -)))
355 355  
265 +[[image:1657250255956-604.png]]
356 356  
357 -* **CFM**
358 358  
359 -Downlink Payload: 05000001, Set AT+CFM=1 or 05000000 , set AT+CFM=0
360 360  
269 +=== 2.2.8 Change Update Interval ===
361 361  
271 +User can use below command to change the (% style="color:green" %)**uplink interval**.
362 362  
363 -== 2.6 ​Show Data in DataCake IoT Server ==
273 +* (% style="color:blue" %)**AT+TDC=600      ** (%%)~/~/ Set Update Interval to 600s
364 364  
365 365  (((
366 -[[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps:
276 +(% style="color:red" %)**NOTE:**
367 367  )))
368 368  
369 369  (((
370 -
280 +(% style="color:red" %)1. By default, the device will send an uplink message every 1 hour.
371 371  )))
372 372  
373 -(((
374 -(% style="color:blue" %)**Step 1**(%%):  Be sure that your device is programmed and properly connected to the network at this time.
375 -)))
376 376  
377 -(((
378 -(% style="color:blue" %)**Step 2**(%%):  To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps:
379 -)))
380 380  
285 +== 2.3  Uplink Payload ==
381 381  
382 -[[image:1654505857935-743.png]]
287 +In this mode, uplink payload includes in total 18 bytes
383 383  
289 +(% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:510px" %)
290 +|=(% style="width: 50px;" %)(((
291 +**Size(bytes)**
292 +)))|=(% style="width: 50px;" %)**6**|=(% style="width: 25px;" %)2|=(% style="width: 25px;" %)**2**|=(% style="width: 80px;" %)**1**|=(% style="width: 80px;" %)**2**|=(% style="width: 80px;" %)**2**|=(% style="width: 80px;" %)**2**|=(% style="width: 40px;" %)**1**
293 +|(% style="width:97px" %)**Value**|(% style="width:83px" %)[[Device ID>>||anchor="H"]]|(% style="width:41px" %)[[Ver>>||anchor="H"]]|(% style="width:46px" %)[[BAT>>||anchor="H"]]|(% style="width:123px" %)[[Signal Strength>>||anchor="H"]]|(% style="width:108px" %)[[Soil Moisture>>||anchor="H"]]|(% style="width:133px" %)[[Soil Temperature>>||anchor="H"]]|(% style="width:159px" %)[[Soil Conductivity(EC)>>||anchor="H"]]|(% style="width:80px" %)[[Interrupt>>||anchor="H"]]
384 384  
385 -[[image:1654505874829-548.png]]
295 +If we use the MQTT client to subscribe to this MQTT topic, we can see the following information when the NSE01 uplink data.
386 386  
387 387  
388 -(% style="color:blue" %)**Step 3**(%%)**:**  Create an account or log in Datacake.
298 +[[image:image-20220708111918-4.png]]
389 389  
390 -(% style="color:blue" %)**Step 4**(%%)**:**  Search the LSE01 and add DevEUI.
391 391  
301 +The payload is ASCII string, representative same HEX:
392 392  
393 -[[image:1654505905236-553.png]]
303 +0x72403155615900640c7817075e0a8c02f900 where:
394 394  
305 +* Device ID: 0x 724031556159 = 724031556159
306 +* Version: 0x0064=100=1.0.0
395 395  
396 -After added, the sensor data arrive TTN, it will also arrive and show in Mydevices.
308 +* BAT: 0x0c78 = 3192 mV = 3.192V
309 +* Singal: 0x17 = 23
310 +* Soil Moisture: 0x075e= 1886 = 18.86  %
311 +* Soil Temperature:0x0a8c =2700=27 °C
312 +* Soil Conductivity(EC) = 0x02f9 =761 uS /cm
313 +* Interrupt: 0x00 = 0
397 397  
398 -[[image:1654505925508-181.png]]
315 +== 2.4  Payload Explanation and Sensor Interface ==
399 399  
400 400  
318 +=== 2.4.1  Device ID ===
401 401  
402 -== 2.7 Frequency Plans ==
320 +By default, the Device ID equal to the last 6 bytes of IMEI.
403 403  
404 -The LSE01 uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.
322 +User can use (% style="color:blue" %)**AT+DEUI**(%%) to set Device ID
405 405  
324 +**Example:**
406 406  
407 -=== 2.7.1 EU863-870 (EU868) ===
326 +AT+DEUI=A84041F15612
408 408  
409 -(% style="color:#037691" %)** Uplink:**
328 +The Device ID is stored in a none-erase area, Upgrade the firmware or run AT+FDR won't erase Device ID.
410 410  
411 -868.1 - SF7BW125 to SF12BW125
412 412  
413 -868.3 - SF7BW125 to SF12BW125 and SF7BW250
414 414  
415 -868.5 - SF7BW125 to SF12BW125
332 +=== 2.4.2  Version Info ===
416 416  
417 -867.1 - SF7BW125 to SF12BW125
334 +Specify the software version: 0x64=100, means firmware version 1.00.
418 418  
419 -867.3 - SF7BW125 to SF12BW125
336 +For example: 0x00 64 : this device is NSE01 with firmware version 1.0.0.
420 420  
421 -867.5 - SF7BW125 to SF12BW125
422 422  
423 -867.7 - SF7BW125 to SF12BW125
424 424  
425 -867.9 - SF7BW125 to SF12BW125
340 +=== 2.4.3  Battery Info ===
426 426  
427 -868.8 - FSK
342 +(((
343 +Check the battery voltage for LSE01.
344 +)))
428 428  
346 +(((
347 +Ex1: 0x0B45 = 2885mV
348 +)))
429 429  
430 -(% style="color:#037691" %)** Downlink:**
350 +(((
351 +Ex2: 0x0B49 = 2889mV
352 +)))
431 431  
432 -Uplink channels 1-9 (RX1)
433 433  
434 -869.525 - SF9BW125 (RX2 downlink only)
435 435  
356 +=== 2.4.4  Signal Strength ===
436 436  
358 +NB-IoT Network signal Strength.
437 437  
438 -=== 2.7.2 US902-928(US915) ===
360 +**Ex1: 0x1d = 29**
439 439  
440 -Used in USA, Canada and South America. Default use CHE=2
362 +(% style="color:blue" %)**0**(%%)  -113dBm or less
441 441  
442 -(% style="color:#037691" %)**Uplink:**
364 +(% style="color:blue" %)**1**(%%)  -111dBm
443 443  
444 -903.9 - SF7BW125 to SF10BW125
366 +(% style="color:blue" %)**2...30**(%%) -109dBm... -53dBm
445 445  
446 -904.1 - SF7BW125 to SF10BW125
368 +(% style="color:blue" %)**31**  (%%) -51dBm or greater
447 447  
448 -904.3 - SF7BW125 to SF10BW125
370 +(% style="color:blue" %)**99**   (%%) Not known or not detectable
449 449  
450 -904.5 - SF7BW125 to SF10BW125
451 451  
452 -904.7 - SF7BW125 to SF10BW125
453 453  
454 -904.9 - SF7BW125 to SF10BW125
374 +=== 2.4. Soil Moisture ===
455 455  
456 -905.1 - SF7BW125 to SF10BW125
376 +(((
377 +Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil.
378 +)))
457 457  
458 -905.3 - SF7BW125 to SF10BW125
380 +(((
381 +For example, if the data you get from the register is **__0x05 0xDC__**, the moisture content in the soil is
382 +)))
459 459  
384 +(((
385 +
386 +)))
460 460  
461 -(% style="color:#037691" %)**Downlink:**
388 +(((
389 +(% style="color:#4f81bd" %)**05DC(H) = 1500(D) /100 = 15%.**
390 +)))
462 462  
463 -923.3 - SF7BW500 to SF12BW500
464 464  
465 -923.9 - SF7BW500 to SF12BW500
466 466  
467 -924.5 - SF7BW500 to SF12BW500
394 +=== 2.4. Soil Temperature ===
468 468  
469 -925.1 - SF7BW500 to SF12BW500
396 +(((
397 + Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is __**0x09 0xEC**__, the temperature content in the soil is
398 +)))
470 470  
471 -925.7 - SF7BW500 to SF12BW500
400 +(((
401 +**Example**:
402 +)))
472 472  
473 -926.3 - SF7BW500 to SF12BW500
404 +(((
405 +If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/100 = 2.61 °C
406 +)))
474 474  
475 -926.9 - SF7BW500 to SF12BW500
408 +(((
409 +If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C
410 +)))
476 476  
477 -927.5 - SF7BW500 to SF12BW500
478 478  
479 -923.3 - SF12BW500(RX2 downlink only)
480 480  
414 +=== 2.4.7  Soil Conductivity (EC) ===
481 481  
416 +(((
417 +Obtain (% style="color:#4f81bd" %)**__soluble salt concentration__**(%%) in soil or (% style="color:#4f81bd" %)**__soluble ion concentration in liquid fertilizer__**(%%) or (% style="color:#4f81bd" %)**__planting medium__**(%%). The value range of the register is 0 - 20000(Decimal)( Can be greater than 20000).
418 +)))
482 482  
483 -=== 2.7.3 CN470-510 (CN470) ===
420 +(((
421 +For example, if the data you get from the register is __**0x00 0xC8**__, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm.
422 +)))
484 484  
485 -Used in China, Default use CHE=1
424 +(((
425 +Generally, the EC value of irrigation water is less than 800uS / cm.
426 +)))
486 486  
487 -(% style="color:#037691" %)**Uplink:**
428 +(((
429 +
430 +)))
488 488  
489 -486.3 - SF7BW125 to SF12BW125
432 +(((
433 +
434 +)))
490 490  
491 -486.5 - SF7BW125 to SF12BW125
436 +=== 2.4. Digital Interrupt ===
492 492  
493 -486.7 - SF7BW125 to SF12BW125
438 +Digital Interrupt refers to pin (% style="color:blue" %)**GPIO_EXTI**(%%), and there are different trigger methods. When there is a trigger, the NSE01 will send a packet to the server.
494 494  
495 -486.9 - SF7BW125 to SF12BW125
440 +The command is:
496 496  
497 -487.1 - SF7BW125 to SF12BW125
442 +(% style="color:blue" %)**AT+INTMOD=3 **(%%) ~/~/(more info about INMOD please refer [[**AT Command Manual**>>url:https://www.dragino.com/downloads/downloads/NB-IoT/NBSN95/DRAGINO_NBSN95-NB_AT%20Commands_v1.1.0.pdf]])**.**
498 498  
499 -487.3 - SF7BW125 to SF12BW125
500 500  
501 -487.5 - SF7BW125 to SF12BW125
445 +The lower four bits of this data field shows if this packet is generated by interrupt or not. [[Click here>>||anchor="H"]] for the hardware and software set up.
502 502  
503 -487.7 - SF7BW125 to SF12BW125
504 504  
448 +Example:
505 505  
506 -(% style="color:#037691" %)**Downlink:**
450 +0x(00): Normal uplink packet.
507 507  
508 -506.7 - SF7BW125 to SF12BW125
452 +0x(01): Interrupt Uplink Packet.
509 509  
510 -506.9 - SF7BW125 to SF12BW125
511 511  
512 -507.1 - SF7BW125 to SF12BW125
513 513  
514 -507.3 - SF7BW125 to SF12BW125
456 +=== 2.4.9  ​+5V Output ===
515 515  
516 -507.5 - SF7BW125 to SF12BW125
458 +NSE01 will enable +5V output before all sampling and disable the +5v after all sampling. 
517 517  
518 -507.7 - SF7BW125 to SF12BW125
519 519  
520 -507.9 - SF7BW125 to SF12BW125
461 +The 5V output time can be controlled by AT Command.
521 521  
522 -508.1 - SF7BW125 to SF12BW125
463 +(% style="color:blue" %)**AT+5VT=1000**
523 523  
524 -505.3 - SF12BW125 (RX2 downlink only)
465 +Means set 5V valid time to have 1000ms. So the real 5V output will actually have 1000ms + sampling time for other sensors.
525 525  
526 526  
527 527  
528 -=== 2.7.4 AU915-928(AU915) ===
469 +== 2.5  Downlink Payload ==
529 529  
530 -Default use CHE=2
471 +By default, NSE01 prints the downlink payload to console port.
531 531  
532 -(% style="color:#037691" %)**Uplink:**
473 +[[image:image-20220708133731-5.png]]
533 533  
534 -916.8 - SF7BW125 to SF12BW125
535 535  
536 -917.0 - SF7BW125 to SF12BW125
537 537  
538 -917.2 - SF7BW125 to SF12BW125
477 +(((
478 +(% style="color:blue" %)**Examples:**
479 +)))
539 539  
540 -917.4 - SF7BW125 to SF12BW125
481 +(((
482 +
483 +)))
541 541  
542 -917.6 - SF7BW125 to SF12BW125
485 +* (((
486 +(% style="color:blue" %)**Set TDC**
487 +)))
543 543  
544 -917.8 - SF7BW125 to SF12BW125
489 +(((
490 +If the payload=0100003C, it means set the END Node's TDC to 0x00003C=60(S), while type code is 01.
491 +)))
545 545  
546 -918.0 - SF7BW125 to SF12BW125
493 +(((
494 +Payload:    01 00 00 1E    TDC=30S
495 +)))
547 547  
548 -918.2 - SF7BW125 to SF12BW125
497 +(((
498 +Payload:    01 00 00 3C    TDC=60S
499 +)))
549 549  
501 +(((
502 +
503 +)))
550 550  
551 -(% style="color:#037691" %)**Downlink:**
505 +* (((
506 +(% style="color:blue" %)**Reset**
507 +)))
552 552  
553 -923.3 - SF7BW500 to SF12BW500
509 +(((
510 +If payload = 0x04FF, it will reset the NSE01
511 +)))
554 554  
555 -923.9 - SF7BW500 to SF12BW500
556 556  
557 -924.5 - SF7BW500 to SF12BW500
514 +* (% style="color:blue" %)**INTMOD**
558 558  
559 -925.1 - SF7BW500 to SF12BW500
516 +Downlink Payload: 06000003, Set AT+INTMOD=3
560 560  
561 -925.7 - SF7BW500 to SF12BW500
562 562  
563 -926.3 - SF7BW500 to SF12BW500
564 564  
565 -926.9 - SF7BW500 to SF12BW500
520 +== 2. ​LED Indicator ==
566 566  
567 -927.5 - SF7BW500 to SF12BW500
522 +(((
523 +The NSE01 has an internal LED which is to show the status of different state.
568 568  
569 -923.3 - SF12BW500(RX2 downlink only)
570 570  
526 +* When power on, NSE01 will detect if sensor probe is connected, if probe detected, LED will blink four times. (no blinks in this step is no probe)
527 +* Then the LED will be on for 1 second means device is boot normally.
528 +* After NSE01 join NB-IoT network. The LED will be ON for 3 seconds.
529 +* For each uplink probe, LED will be on for 500ms.
530 +)))
571 571  
572 572  
573 -=== 2.7.5 AS920-923 & AS923-925 (AS923) ===
574 574  
575 -(% style="color:#037691" %)**Default Uplink channel:**
576 576  
577 -923.2 - SF7BW125 to SF10BW125
535 +== 2.7  Installation in Soil ==
578 578  
579 -923.4 - SF7BW125 to SF10BW125
537 +__**Measurement the soil surface**__
580 580  
539 +Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting. [[https:~~/~~/img.alicdn.com/imgextra/i3/2005165265/O1CN010rj9Oh1olPsQxrdUK_!!2005165265.jpg>>url:https://img.alicdn.com/imgextra/i3/2005165265/O1CN010rj9Oh1olPsQxrdUK_!!2005165265.jpg]]
581 581  
582 -(% style="color:#037691" %)**Additional Uplink Channel**:
541 +[[image:1657259653666-883.png]]
583 583  
584 -(OTAA mode, channel added by JoinAccept message)
585 585  
586 -(% style="color:#037691" %)**AS920~~AS923 for Japan, Malaysia, Singapore**:
544 +(((
545 +
587 587  
588 -922.2 - SF7BW125 to SF10BW125
547 +(((
548 +Dig a hole with diameter > 20CM.
549 +)))
589 589  
590 -922.4 - SF7BW125 to SF10BW125
551 +(((
552 +Horizontal insert the probe to the soil and fill the hole for long term measurement.
553 +)))
554 +)))
591 591  
592 -922.6 - SF7BW125 to SF10BW125
556 +[[image:1654506665940-119.png]]
593 593  
594 -922.8 - SF7BW125 to SF10BW125
558 +(((
559 +
560 +)))
595 595  
596 -923.0 - SF7BW125 to SF10BW125
597 597  
598 -922.0 - SF7BW125 to SF10BW125
563 +== 2. Firmware Change Log ==
599 599  
600 600  
601 -(% style="color:#037691" %)**AS923 ~~ AS925 for Brunei, Cambodia, Hong Kong, Indonesia, Laos, Taiwan, Thailand, Vietnam**:
566 +Download URL & Firmware Change log
602 602  
603 -923.6 - SF7BW125 to SF10BW125
568 +[[www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/Firmware/]]
604 604  
605 -923.8 - SF7BW125 to SF10BW125
606 606  
607 -924.0 - SF7BW125 to SF10BW125
571 +Upgrade Instruction: [[Upgrade_Firmware>>||anchor="H"]]
608 608  
609 -924.2 - SF7BW125 to SF10BW125
610 610  
611 -924.4 - SF7BW125 to SF10BW125
612 612  
613 -924.6 - SF7BW125 to SF10BW125
575 +== 2. Battery Analysis ==
614 614  
577 +=== 2.9.1  ​Battery Type ===
615 615  
616 -(% style="color:#037691" %)** Downlink:**
617 617  
618 -Uplink channels 1-8 (RX1)
580 +The NSE01 battery is a combination of an 8500mAh Li/SOCI2 Battery and a Super Capacitor. The battery is none-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter.
619 619  
620 -923.2 - SF10BW125 (RX2)
621 621  
583 +The battery is designed to last for several years depends on the actually use environment and update interval. 
622 622  
623 623  
624 -=== 2.7.6 KR920-923 (KR920) ===
586 +The battery related documents as below:
625 625  
626 -Default channel:
588 +* [[Battery Dimension>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]
589 +* [[Lithium-Thionyl Chloride Battery>>url:http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]][[ datasheet>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]
590 +* [[Lithium-ion Battery-Capacitor datasheet>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]
627 627  
628 -922.1 - SF7BW125 to SF12BW125
629 -
630 -922.3 - SF7BW125 to SF12BW125
631 -
632 -922.5 - SF7BW125 to SF12BW125
633 -
634 -
635 -(% style="color:#037691" %)**Uplink: (OTAA mode, channel added by JoinAccept message)**
636 -
637 -922.1 - SF7BW125 to SF12BW125
638 -
639 -922.3 - SF7BW125 to SF12BW125
640 -
641 -922.5 - SF7BW125 to SF12BW125
642 -
643 -922.7 - SF7BW125 to SF12BW125
644 -
645 -922.9 - SF7BW125 to SF12BW125
646 -
647 -923.1 - SF7BW125 to SF12BW125
648 -
649 -923.3 - SF7BW125 to SF12BW125
650 -
651 -
652 -(% style="color:#037691" %)**Downlink:**
653 -
654 -Uplink channels 1-7(RX1)
655 -
656 -921.9 - SF12BW125 (RX2 downlink only; SF12BW125 might be changed to SF9BW125)
657 -
658 -
659 -
660 -=== 2.7.7 IN865-867 (IN865) ===
661 -
662 -(% style="color:#037691" %)** Uplink:**
663 -
664 -865.0625 - SF7BW125 to SF12BW125
665 -
666 -865.4025 - SF7BW125 to SF12BW125
667 -
668 -865.9850 - SF7BW125 to SF12BW125
669 -
670 -
671 -(% style="color:#037691" %) **Downlink:**
672 -
673 -Uplink channels 1-3 (RX1)
674 -
675 -866.550 - SF10BW125 (RX2)
676 -
677 -
678 -
679 -
680 -== 2.8 LED Indicator ==
681 -
682 -The LSE01 has an internal LED which is to show the status of different state.
683 -
684 -* Blink once when device power on.
685 -* Solid ON for 5 seconds once device successful Join the network.
686 -* Blink once when device transmit a packet.
687 -
688 -
689 -
690 -
691 -== 2.9 Installation in Soil ==
692 -
693 -**Measurement the soil surface**
694 -
695 -
696 -[[image:1654506634463-199.png]] ​
697 -
698 698  (((
699 -(((
700 -Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting.
593 +[[image:image-20220708140453-6.png]]
701 701  )))
702 -)))
703 703  
704 704  
705 705  
706 -[[image:1654506665940-119.png]]
598 +=== 2.9.2  Power consumption Analyze ===
707 707  
708 708  (((
709 -Dig a hole with diameter > 20CM.
601 +Dragino battery powered product are all runs in Low Power mode. We have an update battery calculator which base on the measurement of the real device. User can use this calculator to check the battery life and calculate the battery life if want to use different transmit interval.
710 710  )))
711 711  
712 -(((
713 -Horizontal insert the probe to the soil and fill the hole for long term measurement.
714 -)))
715 715  
716 -
717 -== 2.10 ​Firmware Change Log ==
718 -
719 719  (((
720 -**Firmware download link:**
606 +Instruction to use as below:
721 721  )))
722 722  
723 723  (((
724 -[[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/]]
610 +(% style="color:blue" %)**Step 1:  **(%%)Downlink the up-to-date DRAGINO_Battery_Life_Prediction_Table.xlsx from: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/]]
725 725  )))
726 726  
727 -(((
728 -
729 -)))
730 730  
731 731  (((
732 -**Firmware Upgrade Method: **[[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome]]
615 +(% style="color:blue" %)**Step 2: **(%%) Open it and choose
733 733  )))
734 734  
735 -(((
736 -
618 +* (((
619 +Product Model
737 737  )))
738 -
739 -(((
740 -**V1.0.**
621 +* (((
622 +Uplink Interval
741 741  )))
624 +* (((
625 +Working Mode
626 +)))
742 742  
743 743  (((
744 -Release
629 +And the Life expectation in difference case will be shown on the right.
745 745  )))
746 746  
632 +[[image:image-20220708141352-7.jpeg]]
747 747  
748 -== 2.11 ​Battery Analysis ==
749 749  
750 -=== 2.11.1 ​Battery Type ===
751 751  
752 -(((
753 -The LSE01 battery is a combination of a 4000mAh Li/SOCI2 Battery and a Super Capacitor. The battery is non-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter.
754 -)))
636 +=== 2.9.3  ​Battery Note ===
755 755  
756 756  (((
757 -The battery is designed to last for more than 5 years for the LSN50.
639 +The Li-SICO battery is designed for small current / long period application. It is not good to use a high current, short period transmit method. The recommended minimum period for use of this battery is 5 minutes. If you use a shorter period time to transmit LoRa, then the battery life may be decreased.
758 758  )))
759 759  
760 -(((
761 -(((
762 -The battery-related documents are as below:
763 -)))
764 -)))
765 765  
766 -* (((
767 -[[Battery Dimension>>url:http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/&file=LSN50-Battery-Dimension.pdf]],
768 -)))
769 -* (((
770 -[[Lithium-Thionyl Chloride Battery  datasheet>>url:https://www.dragino.com/downloads/downloads/datasheet/Battery/ER26500/ER26500_Datasheet-EN.pdf]],
771 -)))
772 -* (((
773 -[[Lithium-ion Battery-Capacitor datasheet>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC_1520_datasheet.jpg]], [[Tech Spec>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC1520%20Technical%20Specification20171123.pdf]]
774 -)))
775 775  
776 - [[image:image-20220610172436-1.png]]
644 +=== 2.9.4  Replace the battery ===
777 777  
778 -
779 -
780 -=== 2.11.2 ​Battery Note ===
781 -
782 782  (((
783 -The Li-SICO battery is designed for small current / long period application. It is not good to use a high current, short period transmit method. The recommended minimum period for use of this battery is 5 minutes. If you use a shorter period time to transmit LoRa, then the battery life may be decreased.
647 +The default battery pack of NSE01 includes a ER26500 plus super capacitor. If user can't find this pack locally, they can find ER26500 or equivalence without the SPC1520 capacitor, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes).
784 784  )))
785 785  
786 786  
787 787  
788 -=== 2.11.3 Replace the battery ===
652 += 3. ​ Access NB-IoT Module =
789 789  
790 790  (((
791 -If Battery is lower than 2.7v, user should replace the battery of LSE01.
655 +Users can directly access the AT command set of the NB-IoT module.
792 792  )))
793 793  
794 794  (((
795 -You can change the battery in the LSE01.The type of battery is not limited as long as the output is between 3v to 3.6v. On the main board, there is a diode (D1) between the battery and the main circuit. If you need to use a battery with less than 3.3v, please remove the D1 and shortcut the two pads of it so there won’t be voltage drop between battery and main board.
659 +The AT Command set can refer the BC35-G NB-IoT Module AT Command: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=datasheet/other_vendors/BC35-G/>>url:https://www.dragino.com/downloads/index.php?dir=datasheet/other_vendors/BC35-G/]]
796 796  )))
797 797  
798 -(((
799 -The default battery pack of LSE01 includes a ER18505 plus super capacitor. If user can’t find this pack locally, they can find ER18505 or equivalence, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes)
800 -)))
662 +[[image:1657261119050-993.png]]
801 801  
664 +[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image002.jpg]]
802 802  
803 803  
804 -= 3. ​Using the AT Commands =
805 805  
806 806  == 3.1 Access AT Commands ==
807 807  
... ... @@ -824,7 +824,7 @@
824 824   [[image:1654502050864-459.png||height="564" width="806"]]
825 825  
826 826  
827 -Below are the available commands, a more detailed AT Command manual can be found at [[AT Command Manual>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/]]: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/]]
689 +Below are the available commands, a more detailed AT Command manual can be found at [[AT Command Manual>>https://www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0]]: [[https:~~/~~/www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0>>https://www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0]]
828 828  
829 829  
830 830  (% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>? **(%%) : Help on <CMD>
... ... @@ -983,8 +983,8 @@
983 983  (((
984 984  Because the end node is now hopping in 72 frequency, it makes it difficult for the devices to Join the TTN network and uplink data. To solve this issue, you can access the device via the AT commands and run:
985 985  
986 -* **(% style="color:#037691" %)AT+CHE=2**
987 -* **(% style="color:#037691" %)ATZ**
848 +* (% style="color:#037691" %)**AT+CHE=2**
849 +* (% style="color:#037691" %)**ATZ**
988 988  )))
989 989  
990 990  (((
... ... @@ -1004,18 +1004,22 @@
1004 1004  [[image:image-20220606154825-4.png]]
1005 1005  
1006 1006  
869 +== 4.2 ​Can I calibrate LSE01 to different soil types? ==
1007 1007  
871 +LSE01 is calibrated for saline-alkali soil and loamy soil. If users want to use it for other soil, they can calibrate the value in the IoT platform base on the value measured by saline-alkali soil and loamy soil. The formula can be found at [[this link>>https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/&file=Calibrate_to_other_Soil_20220605.pdf]].
872 +
873 +
1008 1008  = 5. Trouble Shooting =
1009 1009  
1010 -== 5.1 ​Why I cant join TTN in US915 / AU915 bands? ==
876 +== 5.1 ​Why I can't join TTN in US915 / AU915 bands? ==
1011 1011  
1012 -It is due to channel mapping. Please see the [[Eight Channel Mode>>doc:Main.LoRaWAN Communication Debug.WebHome||anchor="H2.NoticeofUS9152FCN4702FAU915Frequencyband"]] section above for details.
878 +It is due to channel mapping. Please see the [[Eight Channel Mode>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H7.19EightChannelMode"]] section above for details.
1013 1013  
1014 1014  
1015 -== 5.2 AT Command input doesnt work ==
881 +== 5.2 AT Command input doesn't work ==
1016 1016  
1017 1017  (((
1018 -In the case if user can see the console output but cant type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesnt send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.
884 +In the case if user can see the console output but can't type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn't send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.
1019 1019  )))
1020 1020  
1021 1021  
1657245163077-232.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +81.0 KB
Content
1657246476176-652.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +492.6 KB
Content
1657249419225-449.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +81.0 KB
Content
1657249468462-536.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +483.6 KB
Content
1657249793983-486.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +85.8 KB
Content
1657249831934-534.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +72.5 KB
Content
1657249864775-321.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +87.0 KB
Content
1657249930215-289.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +77.3 KB
Content
1657249978444-674.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +139.5 KB
Content
1657249990869-686.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +96.9 KB
Content
1657250217799-140.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +98.7 KB
Content
1657250255956-604.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +99.0 KB
Content
1657259653666-883.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +344.4 KB
Content
1657260785982-288.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +138.2 KB
Content
1657261119050-993.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +126.1 KB
Content
image-20220708101224-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +22.2 KB
Content
image-20220708101605-2.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +87.5 KB
Content
image-20220708110657-3.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +251.7 KB
Content
image-20220708111918-4.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +38.8 KB
Content
image-20220708133731-5.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +8.7 KB
Content
image-20220708140453-6.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +132.7 KB
Content
image-20220708141352-7.jpeg
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +102.7 KB
Content
Copyright ©2010-2022 Dragino Technology Co., LTD. All rights reserved
Dragino Wiki v2.0