Last modified by Mengting Qiu on 2024/04/02 16:44

From version 35.2
edited by Xiaoling
on 2022/06/10 17:24
Change comment: There is no comment for this version
To version 77.3
edited by Xiaoling
on 2022/07/09 09:05
Change comment: There is no comment for this version

Summary

Details

Page properties
Title
... ... @@ -1,1 +1,1 @@
1 -LSE01-LoRaWAN Soil Moisture & EC Sensor User Manual
1 +NDDS75 NB-IoT Distance Detect Sensor User Manual
Content
... ... @@ -1,776 +1,731 @@
1 1  (% style="text-align:center" %)
2 -[[image:image-20220606151504-2.jpeg||height="554" width="554"]]
2 +[[image:image-20220709085040-1.png||height="542" width="524"]]
3 3  
4 4  
5 5  
6 -**Contents:**
7 7  
8 -{{toc/}}
9 9  
8 +**Table of Contents:**
10 10  
11 11  
12 12  
13 13  
14 14  
15 -= 1. Introduction =
16 16  
17 -== 1.1 ​What is LoRaWAN Soil Moisture & EC Sensor ==
18 18  
19 -(((
20 -The Dragino LSE01 is a (% style="color:#4f81bd" %)**LoRaWAN Soil Moisture & EC Sensor**(%%) for IoT of Agriculture. It is designed to measure the soil moisture of saline-alkali soil and loamy soil. The soil sensor uses FDR method to calculate the soil moisture with the compensation from soil temperature and conductivity. It also has been calibrated in factory for Mineral soil type.
21 -)))
16 += 1.  Introduction =
22 22  
23 -(((
24 -It detects (% style="color:#4f81bd" %)**Soil Moisture**(%%), (% style="color:#4f81bd" %)**Soil Temperature**(%%) and (% style="color:#4f81bd" %)**Soil Conductivity**(%%), and uploads the value via wireless to LoRaWAN IoT Server.
25 -)))
18 +== 1.1 ​ What is NDDS75 Distance Detection Sensor ==
26 26  
27 27  (((
28 -The LoRa wireless technology used in LES01 allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption.
29 -)))
21 +
30 30  
31 31  (((
32 -LES01 is powered by (% style="color:#4f81bd" %)**4000mA or 8500mAh Li-SOCI2 battery**(%%), It is designed for long term use up to 10 years.
24 +The Dragino NDDS75 is a (% style="color:blue" %)**NB-IoT Distance Detection Sensor**(%%) for Internet of Things solution. It is designed to measure the distance between the sensor and a flat object. The distance detection sensor is a module that uses ultrasonic sensing technology for distance measurement, and temperature compensation is performed internally to improve the reliability of data.
25 +\\The NDDS75 can be applied to scenarios such as horizontal distance measurement, liquid level measurement, parking management system, object proximity and presence detection, intelligent trash can management system, robot obstacle avoidance, automatic control, sewer, bottom water level monitoring, etc. It detects the distance between the measured object and the sensor, and uploads the value via wireless to IoT Server via NB-IoT Network.
26 +\\NarrowBand-Internet of Things (NB-IoT) is a standards-based low power wide area (LPWA) technology developed to enable a wide range of new IoT devices and services. NB-IoT significantly improves the power consumption of user devices, system capacity and spectrum efficiency, especially in deep coverage.
27 +\\NDDS75 supports different uplink methods include (% style="color:blue" %)**TCP, MQTT, UDP and CoAP** (%%)for different application requirement.
28 +\\NDDS75 is powered by (% style="color:blue" %)**8500mAh Li-SOCI2 battery**(%%), It is designed for long term use up to 5 years. (Actually Battery life depends on the use environment, update period & uplink method)
29 +\\To use NDDS75, user needs to check if there is NB-IoT coverage in local area and with the bands NDDS75 supports. If the local operate support it, user needs to get a NB-IoT SIM card from local operator and install NDDS75 to get NB-IoT network connection.
33 33  )))
34 34  
35 -(((
36 -Each LES01 is pre-load with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect after power on.
32 +
37 37  )))
38 38  
39 -
40 40  [[image:1654503236291-817.png]]
41 41  
42 42  
43 -[[image:1654503265560-120.png]]
38 +[[image:1657327959271-447.png]]
44 44  
45 45  
46 46  
47 -== 1.2 ​Features ==
42 +== 1.2 ​ Features ==
48 48  
49 -* LoRaWAN 1.0.3 Class A
44 +
45 +* NB-IoT Bands: B1/B3/B8/B5/B20/B28 @H-FDD
50 50  * Ultra low power consumption
51 -* Monitor Soil Moisture
52 -* Monitor Soil Temperature
53 -* Monitor Soil Conductivity
54 -* Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865
47 +* Distance Detection by Ultrasonic technology
48 +* Flat object range 280mm - 7500mm
49 +* Accuracy: ±(1cm+S*0.3%) (S: Distance)
50 +* Cable Length: 25cm
55 55  * AT Commands to change parameters
56 56  * Uplink on periodically
57 57  * Downlink to change configure
58 58  * IP66 Waterproof Enclosure
59 -* 4000mAh or 8500mAh Battery for long term use
55 +* Micro SIM card slot for NB-IoT SIM
56 +* 8500mAh Battery for long term use
60 60  
61 61  
62 -== 1.3 Specification ==
63 63  
64 -Measure Volume: Base on the centra pin of the probe, a cylinder with 7cm diameter and 10cm height.
60 +== 1.3  Specification ==
65 65  
66 -[[image:image-20220606162220-5.png]]
67 67  
63 +(% style="color:#037691" %)**Common DC Characteristics:**
68 68  
65 +* Supply Voltage: 2.1v ~~ 3.6v
66 +* Operating Temperature: -40 ~~ 85°C
69 69  
70 -== ​1.4 Applications ==
68 +(% style="color:#037691" %)**NB-IoT Spec:**
71 71  
72 -* Smart Agriculture
70 +* - B1 @H-FDD: 2100MHz
71 +* - B3 @H-FDD: 1800MHz
72 +* - B8 @H-FDD: 900MHz
73 +* - B5 @H-FDD: 850MHz
74 +* - B20 @H-FDD: 800MHz
75 +* - B28 @H-FDD: 700MHz
73 73  
74 -(% class="wikigeneratedid" id="H200B1.5FirmwareChangelog" %)
75 -​
76 76  
77 -== 1.5 Firmware Change log ==
78 +(% style="color:#037691" %)**Battery:**
78 78  
80 +* Li/SOCI2 un-chargeable battery
81 +* Capacity: 8500mAh
82 +* Self Discharge: <1% / Year @ 25°C
83 +* Max continuously current: 130mA
84 +* Max boost current: 2A, 1 second
79 79  
80 -**LSE01 v1.0 :**  Release
81 81  
87 +(% style="color:#037691" %)**Power Consumption**
82 82  
89 +* STOP Mode: 10uA @ 3.3v
90 +* Max transmit power: 350mA@3.3v
83 83  
84 -= 2. Configure LSE01 to connect to LoRaWAN network =
85 85  
86 -== 2.1 How it works ==
87 87  
88 -(((
89 -The LSE01 is configured as LoRaWAN OTAA Class A mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and power on the LSE0150. It will automatically join the network via OTAA and start to send the sensor value
90 -)))
91 91  
92 -(((
93 -In case you can’t set the OTAA keys in the LoRaWAN OTAA server, and you have to use the keys from the server, you can [[use AT Commands >>||anchor="H3.200BUsingtheATCommands"]].
94 -)))
95 +== ​1.4  Applications ==
95 95  
97 +* Smart Buildings & Home Automation
98 +* Logistics and Supply Chain Management
99 +* Smart Metering
100 +* Smart Agriculture
101 +* Smart Cities
102 +* Smart Factory
96 96  
104 +(% class="wikigeneratedid" id="H200B1.5FirmwareChangelog" %)
105 +​
97 97  
98 -== 2.2 ​Quick guide to connect to LoRaWAN server (OTAA) ==
99 99  
100 -Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LG308>>url:http://www.dragino.com/products/lora/item/140-lg308.html]] as a LoRaWAN gateway in this example.
101 101  
109 +== 1.5  Pin Definitions ==
102 102  
103 -[[image:1654503992078-669.png]]
104 104  
112 +[[image:1657328609906-564.png]]
105 105  
106 -The LG308 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
107 107  
108 108  
109 -**Step 1**: Create a device in TTN with the OTAA keys from LSE01.
110 110  
111 -Each LSE01 is shipped with a sticker with the default device EUI as below:
117 += 2.  Use NSE01 to communicate with IoT Server =
112 112  
113 -[[image:image-20220606163732-6.jpeg]]
119 +== 2.1  How it works ==
114 114  
115 -You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot:
116 -
117 -**Add APP EUI in the application**
118 -
119 -
120 -[[image:1654504596150-405.png]]
121 -
122 -
123 -
124 -**Add APP KEY and DEV EUI**
125 -
126 -[[image:1654504683289-357.png]]
127 -
128 -
129 -
130 -**Step 2**: Power on LSE01
131 -
132 -
133 -Put a Jumper on JP2 to power on the device. ( The Jumper must be in FLASH position).
134 -
135 -[[image:image-20220606163915-7.png]]
136 -
137 -
138 -**Step 3:** The LSE01 will auto join to the TTN network. After join success, it will start to upload messages to TTN and you can see the messages in the panel.
139 -
140 -[[image:1654504778294-788.png]]
141 -
142 -
143 -
144 -== 2.3 Uplink Payload ==
145 -
146 -=== ===
147 -
148 -=== 2.3.1 MOD~=0(Default Mode) ===
149 -
150 -LSE01 will uplink payload via LoRaWAN with below payload format: 
151 -
152 152  (((
153 -Uplink payload includes in total 11 bytes.
122 +The NDDS75 is equipped with a NB-IoT module, the pre-loaded firmware in NDDS75 will get environment data from sensors and send the value to local NB-IoT network via the NB-IoT module.  The NB-IoT network will forward this value to IoT server via the protocol defined by NDDS75.
154 154  )))
155 155  
156 -(% border="1" cellspacing="10" style="background-color:#ffffcc; width:500px" %)
157 -|(((
158 -**Size**
159 159  
160 -**(bytes)**
161 -)))|**2**|**2**|**2**|**2**|**2**|**1**
162 -|**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(((
163 -Temperature
164 -
165 -(Reserve, Ignore now)
166 -)))|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]]|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]]|(((
167 -MOD & Digital Interrupt
168 -
169 -(Optional)
170 -)))
171 -
172 -=== 2.3.2 MOD~=1(Original value) ===
173 -
174 -This mode can get the original AD value of moisture and original conductivity (with temperature drift compensation).
175 -
176 -(% border="1" cellspacing="10" style="background-color:#ffffcc; width:500px" %)
177 -|(((
178 -**Size**
179 -
180 -**(bytes)**
181 -)))|**2**|**2**|**2**|**2**|**2**|**1**
182 -|**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(((
183 -Temperature
184 -
185 -(Reserve, Ignore now)
186 -)))|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]](raw)|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]](raw)|(((
187 -MOD & Digital Interrupt
188 -
189 -(Optional)
190 -)))
191 -
192 -=== 2.3.3 Battery Info ===
193 -
194 194  (((
195 -Check the battery voltage for LSE01.
127 +The diagram below shows the working flow in default firmware of NDDS75:
196 196  )))
197 197  
198 198  (((
199 -Ex1: 0x0B45 = 2885mV
131 +
200 200  )))
201 201  
202 -(((
203 -Ex2: 0x0B49 = 2889mV
204 -)))
134 +[[image:1657328659945-416.png]]
205 205  
206 -
207 -
208 -=== 2.3.4 Soil Moisture ===
209 -
210 210  (((
211 -Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil.
212 -)))
213 -
214 -(((
215 -For example, if the data you get from the register is __0x05 0xDC__, the moisture content in the soil is
216 -)))
217 -
218 -(((
219 219  
220 220  )))
221 221  
222 -(((
223 -(% style="color:#4f81bd" %)**05DC(H) = 1500(D) /100 = 15%.**
224 -)))
225 225  
141 +== 2.2 ​ Configure the NSE01 ==
226 226  
227 227  
228 -=== 2.3.5 Soil Temperature ===
144 +=== 2.2.1 Test Requirement ===
229 229  
230 -(((
231 - Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is 0x09 0xEC, the temperature content in the soil is
232 -)))
233 233  
234 234  (((
235 -**Example**:
148 +To use NSE01 in your city, make sure meet below requirements:
236 236  )))
237 237  
238 -(((
239 -If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/100 = 2.61 °C
240 -)))
151 +* Your local operator has already distributed a NB-IoT Network there.
152 +* The local NB-IoT network used the band that NSE01 supports.
153 +* Your operator is able to distribute the data received in their NB-IoT network to your IoT server.
241 241  
242 242  (((
243 -If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C
156 +Below figure shows our testing structure. Here we have NB-IoT network coverage by China Mobile, the band they use is B8.  The NSE01 will use CoAP((% style="color:red" %)120.24.4.116:5683)(%%) or raw UDP((% style="color:red" %)120.24.4.116:5601)(%%) or MQTT((% style="color:red" %)120.24.4.116:1883)(%%)or TCP((% style="color:red" %)120.24.4.116:5600)(%%)protocol to send data to the test server
244 244  )))
245 245  
246 246  
160 +[[image:1657249419225-449.png]]
247 247  
248 -=== 2.3.6 Soil Conductivity (EC) ===
249 249  
250 -(((
251 -Obtain (% style="color:#4f81bd" %)**__soluble salt concentration__**(%%) in soil or (% style="color:#4f81bd" %)**__soluble ion concentration in liquid fertilizer__**(%%) or (% style="color:#4f81bd" %)**__planting medium__**(%%). The value range of the register is 0 - 20000(Decimal)( Can be greater than 20000).
252 -)))
253 253  
254 -(((
255 -For example, if the data you get from the register is 0x00 0xC8, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm.
256 -)))
164 +=== 2.2.2 Insert SIM card ===
257 257  
258 258  (((
259 -Generally, the EC value of irrigation water is less than 800uS / cm.
167 +Insert the NB-IoT Card get from your provider.
260 260  )))
261 261  
262 262  (((
263 -
171 +User need to take out the NB-IoT module and insert the SIM card like below:
264 264  )))
265 265  
266 -(((
267 -
268 -)))
269 269  
270 -=== 2.3.7 MOD ===
175 +[[image:1657249468462-536.png]]
271 271  
272 -Firmware version at least v2.1 supports changing mode.
273 273  
274 -For example, bytes[10]=90
275 275  
276 -mod=(bytes[10]>>7)&0x01=1.
179 +=== 2.2.3 Connect USB – TTL to NSE01 to configure it ===
277 277  
278 -
279 -**Downlink Command:**
280 -
281 -If payload = 0x0A00, workmode=0
282 -
283 -If** **payload =** **0x0A01, workmode=1
284 -
285 -
286 -
287 -=== 2.3.8 ​Decode payload in The Things Network ===
288 -
289 -While using TTN network, you can add the payload format to decode the payload.
290 -
291 -
292 -[[image:1654505570700-128.png]]
293 -
294 294  (((
295 -The payload decoder function for TTN is here:
296 -)))
297 -
298 298  (((
299 -LSE01 TTN Payload Decoder: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Payload_Decoder/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Payload_Decoder/]]
183 +User need to configure NSE01 via serial port to set the (% style="color:blue" %)**Server Address** / **Uplink Topic** (%%)to define where and how-to uplink packets. NSE01 support AT Commands, user can use a USB to TTL adapter to connect to NSE01 and use AT Commands to configure it, as below.
300 300  )))
185 +)))
301 301  
302 302  
188 +**Connection:**
303 303  
304 -== 2.4 Uplink Interval ==
190 + (% style="background-color:yellow" %)USB TTL GND <~-~-~-~-> GND
305 305  
306 -The LSE01 by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link: [[Change Uplink Interval>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H4.1ChangeUplinkInterval"]]
192 + (% style="background-color:yellow" %)USB TTL TXD <~-~-~-~-> UART_RXD
307 307  
194 + (% style="background-color:yellow" %)USB TTL RXD <~-~-~-~-> UART_TXD
308 308  
309 309  
310 -== 2.5 Downlink Payload ==
197 +In the PC, use below serial tool settings:
311 311  
312 -By default, LSE50 prints the downlink payload to console port.
199 +* Baud:  (% style="color:green" %)**9600**
200 +* Data bits:** (% style="color:green" %)8(%%)**
201 +* Stop bits: (% style="color:green" %)**1**
202 +* Parity:  (% style="color:green" %)**None**
203 +* Flow Control: (% style="color:green" %)**None**
313 313  
314 -[[image:image-20220606165544-8.png]]
315 -
316 -
317 317  (((
318 -**Examples:**
206 +Make sure the switch is in FLASH position, then power on device by connecting the jumper on NSE01. NSE01 will output system info once power on as below, we can enter the (% style="color:green" %)**password: 12345678**(%%) to access AT Command input.
319 319  )))
320 320  
321 -(((
322 -
323 -)))
209 +[[image:image-20220708110657-3.png]]
324 324  
325 -* (((
326 -**Set TDC**
327 -)))
328 -
329 329  (((
330 -If the payload=0100003C, it means set the END Node’s TDC to 0x00003C=60(S), while type code is 01.
212 +(% style="color:red" %)Note: the valid AT Commands can be found at: (%%)[[http:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/]]
331 331  )))
332 332  
333 -(((
334 -Payload:    01 00 00 1E    TDC=30S
335 -)))
336 336  
337 -(((
338 -Payload:    01 00 00 3C    TDC=60S
339 -)))
340 340  
341 -(((
342 -
343 -)))
217 +=== 2.2.4 Use CoAP protocol to uplink data ===
344 344  
345 -* (((
346 -**Reset**
347 -)))
219 +(% style="color:red" %)Note: if you don't have CoAP server, you can refer this link to set up one: (%%)[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/>>http://wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/]]
348 348  
349 -(((
350 -If payload = 0x04FF, it will reset the LSE01
351 -)))
352 352  
222 +**Use below commands:**
353 353  
354 -* **CFM**
224 +* (% style="color:blue" %)**AT+PRO=1**  (%%) ~/~/ Set to use CoAP protocol to uplink
225 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5683   ** (%%)~/~/ to set CoAP server address and port
226 +* (% style="color:blue" %)**AT+URI=5,11,"mqtt",11,"coap",12,"0",15,"c=text1",23,"0" ** (%%) ~/~/Set COAP resource path
355 355  
356 -Downlink Payload: 05000001, Set AT+CFM=1 or 05000000 , set AT+CFM=0
228 +For parameter description, please refer to AT command set
357 357  
230 +[[image:1657249793983-486.png]]
358 358  
359 359  
360 -== 2.6 ​Show Data in DataCake IoT Server ==
233 +After configure the server address and (% style="color:green" %)**reset the device**(%%) (via AT+ATZ ), NSE01 will start to uplink sensor values to CoAP server.
361 361  
362 -(((
363 -[[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps:
364 -)))
235 +[[image:1657249831934-534.png]]
365 365  
366 -(((
367 -
368 -)))
369 369  
370 -(((
371 -**Step 1**: Be sure that your device is programmed and properly connected to the network at this time.
372 -)))
373 373  
374 -(((
375 -**Step 2**: To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps:
376 -)))
239 +=== 2.2.5 Use UDP protocol to uplink data(Default protocol) ===
377 377  
241 +This feature is supported since firmware version v1.0.1
378 378  
379 -[[image:1654505857935-743.png]]
380 380  
244 +* (% style="color:blue" %)**AT+PRO=2   ** (%%) ~/~/ Set to use UDP protocol to uplink
245 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5601   ** (%%) ~/~/ to set UDP server address and port
246 +* (% style="color:blue" %)**AT+CFM=1       ** (%%) ~/~/If the server does not respond, this command is unnecessary
381 381  
382 -[[image:1654505874829-548.png]]
248 +[[image:1657249864775-321.png]]
383 383  
384 -Step 3: Create an account or log in Datacake.
385 385  
386 -Step 4: Search the LSE01 and add DevEUI.
251 +[[image:1657249930215-289.png]]
387 387  
388 388  
389 -[[image:1654505905236-553.png]]
390 390  
255 +=== 2.2.6 Use MQTT protocol to uplink data ===
391 391  
392 -After added, the sensor data arrive TTN, it will also arrive and show in Mydevices.
257 +This feature is supported since firmware version v110
393 393  
394 -[[image:1654505925508-181.png]]
395 395  
260 +* (% style="color:blue" %)**AT+PRO=3   ** (%%) ~/~/Set to use MQTT protocol to uplink
261 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,1883   ** (%%) ~/~/Set MQTT server address and port
262 +* (% style="color:blue" %)**AT+CLIENT=CLIENT       ** (%%)~/~/Set up the CLIENT of MQTT
263 +* (% style="color:blue" %)**AT+UNAME=UNAME                               **(%%)~/~/Set the username of MQTT
264 +* (% style="color:blue" %)**AT+PWD=PWD                                        **(%%)~/~/Set the password of MQTT
265 +* (% style="color:blue" %)**AT+PUBTOPIC=NSE01_PUB                    **(%%)~/~/Set the sending topic of MQTT
266 +* (% style="color:blue" %)**AT+SUBTOPIC=NSE01_SUB          **(%%) ~/~/Set the subscription topic of MQTT
396 396  
268 +[[image:1657249978444-674.png]]
397 397  
398 -== 2.7 Frequency Plans ==
399 399  
400 -The LSE01 uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.
271 +[[image:1657249990869-686.png]]
401 401  
402 402  
403 -=== 2.7.1 EU863-870 (EU868) ===
274 +(((
275 +MQTT protocol has a much higher power consumption compare vs UDP / CoAP protocol. Please check the power analyze document and adjust the uplink period to a suitable interval.
276 +)))
404 404  
405 -(% style="color:#037691" %)** Uplink:**
406 406  
407 -868.1 - SF7BW125 to SF12BW125
408 408  
409 -868.3 - SF7BW125 to SF12BW125 and SF7BW250
280 +=== 2.2.7 Use TCP protocol to uplink data ===
410 410  
411 -868.5 - SF7BW125 to SF12BW125
282 +This feature is supported since firmware version v110
412 412  
413 -867.1 - SF7BW125 to SF12BW125
414 414  
415 -867.3 - SF7BW125 to SF12BW125
285 +* (% style="color:blue" %)**AT+PRO=4   ** (%%) ~/~/ Set to use TCP protocol to uplink
286 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5600   **(%%) ~/~/ to set TCP server address and port
416 416  
417 -867.5 - SF7BW125 to SF12BW125
288 +[[image:1657250217799-140.png]]
418 418  
419 -867.7 - SF7BW125 to SF12BW125
420 420  
421 -867.9 - SF7BW125 to SF12BW125
291 +[[image:1657250255956-604.png]]
422 422  
423 -868.8 - FSK
424 424  
425 425  
426 -(% style="color:#037691" %)** Downlink:**
295 +=== 2.2.8 Change Update Interval ===
427 427  
428 -Uplink channels 1-9 (RX1)
297 +User can use below command to change the (% style="color:green" %)**uplink interval**.
429 429  
430 -869.525 - SF9BW125 (RX2 downlink only)
299 +* (% style="color:blue" %)**AT+TDC=600      ** (%%)~/~/ Set Update Interval to 600s
431 431  
301 +(((
302 +(% style="color:red" %)**NOTE:**
303 +)))
432 432  
305 +(((
306 +(% style="color:red" %)1. By default, the device will send an uplink message every 1 hour.
307 +)))
433 433  
434 -=== 2.7.2 US902-928(US915) ===
435 435  
436 -Used in USA, Canada and South America. Default use CHE=2
437 437  
438 -(% style="color:#037691" %)**Uplink:**
311 +== 2.3  Uplink Payload ==
439 439  
440 -903.9 - SF7BW125 to SF10BW125
313 +In this mode, uplink payload includes in total 18 bytes
441 441  
442 -904.1 - SF7BW125 to SF10BW125
315 +(% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:510px" %)
316 +|=(% style="width: 60px;" %)(((
317 +**Size(bytes)**
318 +)))|=(% style="width: 50px;" %)**6**|=(% style="width: 25px;" %)2|=(% style="width: 25px;" %)**2**|=(% style="width: 70px;" %)**1**|=(% style="width: 60px;" %)**2**|=(% style="width: 80px;" %)**2**|=(% style="width: 90px;" %)**2**|=(% style="width: 50px;" %)**1**
319 +|(% style="width:97px" %)**Value**|(% style="width:83px" %)[[Device ID>>||anchor="H2.4.1A0A0DeviceID"]]|(% style="width:41px" %)[[Ver>>||anchor="H2.4.2A0VersionInfo"]]|(% style="width:46px" %)[[BAT>>||anchor="H2.4.3A0BatteryInfo"]]|(% style="width:123px" %)[[Signal Strength>>||anchor="H2.4.4A0SignalStrength"]]|(% style="width:108px" %)[[Soil Moisture>>||anchor="H2.4.5A0SoilMoisture"]]|(% style="width:133px" %)[[Soil Temperature>>||anchor="H2.4.6A0SoilTemperature"]]|(% style="width:159px" %)[[Soil Conductivity(EC)>>||anchor="H2.4.7A0SoilConductivity28EC29"]]|(% style="width:80px" %)[[Interrupt>>||anchor="H2.4.8A0DigitalInterrupt"]]
443 443  
444 -904.3 - SF7BW125 to SF10BW125
321 +(((
322 +If we use the MQTT client to subscribe to this MQTT topic, we can see the following information when the NSE01 uplink data.
323 +)))
445 445  
446 -904.5 - SF7BW125 to SF10BW125
447 447  
448 -904.7 - SF7BW125 to SF10BW125
326 +[[image:image-20220708111918-4.png]]
449 449  
450 -904.9 - SF7BW125 to SF10BW125
451 451  
452 -905.1 - SF7BW125 to SF10BW125
329 +The payload is ASCII string, representative same HEX:
453 453  
454 -905.3 - SF7BW125 to SF10BW125
331 +0x72403155615900640c7817075e0a8c02f900 where:
455 455  
333 +* Device ID: 0x 724031556159 = 724031556159
334 +* Version: 0x0064=100=1.0.0
456 456  
457 -(% style="color:#037691" %)**Downlink:**
336 +* BAT: 0x0c78 = 3192 mV = 3.192V
337 +* Singal: 0x17 = 23
338 +* Soil Moisture: 0x075e= 1886 = 18.86  %
339 +* Soil Temperature:0x0a8c =2700=27 °C
340 +* Soil Conductivity(EC) = 0x02f9 =761 uS /cm
341 +* Interrupt: 0x00 = 0
458 458  
459 -923.3 - SF7BW500 to SF12BW500
343 +== 2. Payload Explanation and Sensor Interface ==
460 460  
461 -923.9 - SF7BW500 to SF12BW500
462 462  
463 -924.5 - SF7BW500 to SF12BW500
346 +=== 2.4.1  Device ID ===
464 464  
465 -925.1 - SF7BW500 to SF12BW500
348 +(((
349 +By default, the Device ID equal to the last 6 bytes of IMEI.
350 +)))
466 466  
467 -925.7 - SF7BW500 to SF12BW500
352 +(((
353 +User can use (% style="color:blue" %)**AT+DEUI**(%%) to set Device ID
354 +)))
468 468  
469 -926.3 - SF7BW500 to SF12BW500
356 +(((
357 +**Example:**
358 +)))
470 470  
471 -926.9 - SF7BW500 to SF12BW500
360 +(((
361 +AT+DEUI=A84041F15612
362 +)))
472 472  
473 -927.5 - SF7BW500 to SF12BW500
364 +(((
365 +The Device ID is stored in a none-erase area, Upgrade the firmware or run AT+FDR won't erase Device ID.
366 +)))
474 474  
475 -923.3 - SF12BW500(RX2 downlink only)
476 476  
477 477  
370 +=== 2.4.2  Version Info ===
478 478  
479 -=== 2.7.3 CN470-510 (CN470) ===
372 +(((
373 +Specify the software version: 0x64=100, means firmware version 1.00.
374 +)))
480 480  
481 -Used in China, Default use CHE=1
376 +(((
377 +For example: 0x00 64 : this device is NSE01 with firmware version 1.0.0.
378 +)))
482 482  
483 -(% style="color:#037691" %)**Uplink:**
484 484  
485 -486.3 - SF7BW125 to SF12BW125
486 486  
487 -486.5 - SF7BW125 to SF12BW125
382 +=== 2.4. Battery Info ===
488 488  
489 -486.7 - SF7BW125 to SF12BW125
384 +(((
385 +Check the battery voltage for LSE01.
386 +)))
490 490  
491 -486.9 - SF7BW125 to SF12BW125
388 +(((
389 +Ex1: 0x0B45 = 2885mV
390 +)))
492 492  
493 -487.1 - SF7BW125 to SF12BW125
392 +(((
393 +Ex2: 0x0B49 = 2889mV
394 +)))
494 494  
495 -487.3 - SF7BW125 to SF12BW125
496 496  
497 -487.5 - SF7BW125 to SF12BW125
498 498  
499 -487.7 - SF7BW125 to SF12BW125
398 +=== 2.4. Signal Strength ===
500 500  
400 +(((
401 +NB-IoT Network signal Strength.
402 +)))
501 501  
502 -(% style="color:#037691" %)**Downlink:**
404 +(((
405 +**Ex1: 0x1d = 29**
406 +)))
503 503  
504 -506.7 - SF7BW125 to SF12BW125
408 +(((
409 +(% style="color:blue" %)**0**(%%)  -113dBm or less
410 +)))
505 505  
506 -506.9 - SF7BW125 to SF12BW125
412 +(((
413 +(% style="color:blue" %)**1**(%%)  -111dBm
414 +)))
507 507  
508 -507.1 - SF7BW125 to SF12BW125
416 +(((
417 +(% style="color:blue" %)**2...30**(%%) -109dBm... -53dBm
418 +)))
509 509  
510 -507.3 - SF7BW125 to SF12BW125
420 +(((
421 +(% style="color:blue" %)**31**  (%%) -51dBm or greater
422 +)))
511 511  
512 -507.5 - SF7BW125 to SF12BW125
424 +(((
425 +(% style="color:blue" %)**99**   (%%) Not known or not detectable
426 +)))
513 513  
514 -507.7 - SF7BW125 to SF12BW125
515 515  
516 -507.9 - SF7BW125 to SF12BW125
517 517  
518 -508.1 - SF7BW125 to SF12BW125
430 +=== 2.4.5  Soil Moisture ===
519 519  
520 -505.3 - SF12BW125 (RX2 downlink only)
432 +(((
433 +(((
434 +Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil.
435 +)))
436 +)))
521 521  
438 +(((
439 +(((
440 +For example, if the data you get from the register is **__0x05 0xDC__**, the moisture content in the soil is
441 +)))
442 +)))
522 522  
444 +(((
445 +
446 +)))
523 523  
524 -=== 2.7.4 AU915-928(AU915) ===
448 +(((
449 +(% style="color:#4f81bd" %)**05DC(H) = 1500(D) /100 = 15%.**
450 +)))
525 525  
526 -Default use CHE=2
527 527  
528 -(% style="color:#037691" %)**Uplink:**
529 529  
530 -916.8 - SF7BW125 to SF12BW125
454 +=== 2.4.6  Soil Temperature ===
531 531  
532 -917.0 - SF7BW125 to SF12BW125
456 +(((
457 +Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is __**0x09 0xEC**__, the temperature content in the soil is
458 +)))
533 533  
534 -917.2 - SF7BW125 to SF12BW125
460 +(((
461 +**Example**:
462 +)))
535 535  
536 -917.4 - SF7BW125 to SF12BW125
464 +(((
465 +If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/100 = 2.61 °C
466 +)))
537 537  
538 -917.6 - SF7BW125 to SF12BW125
468 +(((
469 +If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C
470 +)))
539 539  
540 -917.8 - SF7BW125 to SF12BW125
541 541  
542 -918.0 - SF7BW125 to SF12BW125
543 543  
544 -918.2 - SF7BW125 to SF12BW125
474 +=== 2.4.7  Soil Conductivity (EC) ===
545 545  
476 +(((
477 +Obtain (% style="color:#4f81bd" %)**__soluble salt concentration__**(%%) in soil or (% style="color:#4f81bd" %)**__soluble ion concentration in liquid fertilizer__**(%%) or (% style="color:#4f81bd" %)**__planting medium__**(%%). The value range of the register is 0 - 20000(Decimal)( Can be greater than 20000).
478 +)))
546 546  
547 -(% style="color:#037691" %)**Downlink:**
480 +(((
481 +For example, if the data you get from the register is __**0x00 0xC8**__, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm.
482 +)))
548 548  
549 -923.3 - SF7BW500 to SF12BW500
484 +(((
485 +Generally, the EC value of irrigation water is less than 800uS / cm.
486 +)))
550 550  
551 -923.9 - SF7BW500 to SF12BW500
488 +(((
489 +
490 +)))
552 552  
553 -924.5 - SF7BW500 to SF12BW500
492 +(((
493 +
494 +)))
554 554  
555 -925.1 - SF7BW500 to SF12BW500
496 +=== 2.4.8  Digital Interrupt ===
556 556  
557 -925.7 - SF7BW500 to SF12BW500
498 +(((
499 +Digital Interrupt refers to pin (% style="color:blue" %)**GPIO_EXTI**(%%), and there are different trigger methods. When there is a trigger, the NSE01 will send a packet to the server.
500 +)))
558 558  
559 -926.3 - SF7BW500 to SF12BW500
502 +(((
503 +The command is:
504 +)))
560 560  
561 -926.9 - SF7BW500 to SF12BW500
506 +(((
507 +(% style="color:blue" %)**AT+INTMOD=3 **(%%) ~/~/(more info about INMOD please refer [[**AT Command Manual**>>url:https://www.dragino.com/downloads/downloads/NB-IoT/NBSN95/DRAGINO_NBSN95-NB_AT%20Commands_v1.1.0.pdf]])**.**
508 +)))
562 562  
563 -927.5 - SF7BW500 to SF12BW500
564 564  
565 -923.3 - SF12BW500(RX2 downlink only)
511 +(((
512 +The lower four bits of this data field shows if this packet is generated by interrupt or not. Click here for the hardware and software set up.
513 +)))
566 566  
567 567  
516 +(((
517 +Example:
518 +)))
568 568  
569 -=== 2.7.5 AS920-923 & AS923-925 (AS923) ===
520 +(((
521 +0x(00): Normal uplink packet.
522 +)))
570 570  
571 -(% style="color:#037691" %)**Default Uplink channel:**
524 +(((
525 +0x(01): Interrupt Uplink Packet.
526 +)))
572 572  
573 -923.2 - SF7BW125 to SF10BW125
574 574  
575 -923.4 - SF7BW125 to SF10BW125
576 576  
530 +=== 2.4.9  ​+5V Output ===
577 577  
578 -(% style="color:#037691" %)**Additional Uplink Channel**:
532 +(((
533 +NSE01 will enable +5V output before all sampling and disable the +5v after all sampling. 
534 +)))
579 579  
580 -(OTAA mode, channel added by JoinAccept message)
581 581  
582 -(% style="color:#037691" %)**AS920~~AS923 for Japan, Malaysia, Singapore**:
537 +(((
538 +The 5V output time can be controlled by AT Command.
539 +)))
583 583  
584 -922.2 - SF7BW125 to SF10BW125
541 +(((
542 +(% style="color:blue" %)**AT+5VT=1000**
543 +)))
585 585  
586 -922.4 - SF7BW125 to SF10BW125
545 +(((
546 +Means set 5V valid time to have 1000ms. So the real 5V output will actually have 1000ms + sampling time for other sensors.
547 +)))
587 587  
588 -922.6 - SF7BW125 to SF10BW125
589 589  
590 -922.8 - SF7BW125 to SF10BW125
591 591  
592 -923.0 - SF7BW125 to SF10BW125
551 +== 2.5  Downlink Payload ==
593 593  
594 -922.0 - SF7BW125 to SF10BW125
553 +By default, NSE01 prints the downlink payload to console port.
595 595  
555 +[[image:image-20220708133731-5.png]]
596 596  
597 -(% style="color:#037691" %)**AS923 ~~ AS925 for Brunei, Cambodia, Hong Kong, Indonesia, Laos, Taiwan, Thailand, Vietnam**:
598 598  
599 -923.6 - SF7BW125 to SF10BW125
558 +(((
559 +(% style="color:blue" %)**Examples:**
560 +)))
600 600  
601 -923.8 - SF7BW125 to SF10BW125
562 +(((
563 +
564 +)))
602 602  
603 -924.0 - SF7BW125 to SF10BW125
566 +* (((
567 +(% style="color:blue" %)**Set TDC**
568 +)))
604 604  
605 -924.2 - SF7BW125 to SF10BW125
570 +(((
571 +If the payload=0100003C, it means set the END Node's TDC to 0x00003C=60(S), while type code is 01.
572 +)))
606 606  
607 -924.4 - SF7BW125 to SF10BW125
574 +(((
575 +Payload:    01 00 00 1E    TDC=30S
576 +)))
608 608  
609 -924.6 - SF7BW125 to SF10BW125
578 +(((
579 +Payload:    01 00 00 3C    TDC=60S
580 +)))
610 610  
582 +(((
583 +
584 +)))
611 611  
612 -(% style="color:#037691" %)** Downlink:**
586 +* (((
587 +(% style="color:blue" %)**Reset**
588 +)))
613 613  
614 -Uplink channels 1-8 (RX1)
590 +(((
591 +If payload = 0x04FF, it will reset the NSE01
592 +)))
615 615  
616 -923.2 - SF10BW125 (RX2)
617 617  
595 +* (% style="color:blue" %)**INTMOD**
618 618  
597 +(((
598 +Downlink Payload: 06000003, Set AT+INTMOD=3
599 +)))
619 619  
620 -=== 2.7.6 KR920-923 (KR920) ===
621 621  
622 -Default channel:
623 623  
624 -922.1 - SF7BW125 to SF12BW125
603 +== 2. ​LED Indicator ==
625 625  
626 -922.3 - SF7BW125 to SF12BW125
605 +(((
606 +The NSE01 has an internal LED which is to show the status of different state.
627 627  
628 -922.5 - SF7BW125 to SF12BW125
629 629  
609 +* When power on, NSE01 will detect if sensor probe is connected, if probe detected, LED will blink four times. (no blinks in this step is no probe)
610 +* Then the LED will be on for 1 second means device is boot normally.
611 +* After NSE01 join NB-IoT network. The LED will be ON for 3 seconds.
612 +* For each uplink probe, LED will be on for 500ms.
613 +)))
630 630  
631 -(% style="color:#037691" %)**Uplink: (OTAA mode, channel added by JoinAccept message)**
632 632  
633 -922.1 - SF7BW125 to SF12BW125
634 634  
635 -922.3 - SF7BW125 to SF12BW125
636 636  
637 -922.5 - SF7BW125 to SF12BW125
618 +== 2.7  Installation in Soil ==
638 638  
639 -922.7 - SF7BW125 to SF12BW125
620 +__**Measurement the soil surface**__
640 640  
641 -922.9 - SF7BW125 to SF12BW125
622 +(((
623 +Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting. [[https:~~/~~/img.alicdn.com/imgextra/i3/2005165265/O1CN010rj9Oh1olPsQxrdUK_!!2005165265.jpg>>url:https://img.alicdn.com/imgextra/i3/2005165265/O1CN010rj9Oh1olPsQxrdUK_!!2005165265.jpg]]
624 +)))
642 642  
643 -923.1 - SF7BW125 to SF12BW125
626 +[[image:1657259653666-883.png]] ​
644 644  
645 -923.3 - SF7BW125 to SF12BW125
646 646  
629 +(((
630 +
647 647  
648 -(% style="color:#037691" %)**Downlink:**
632 +(((
633 +Dig a hole with diameter > 20CM.
634 +)))
649 649  
650 -Uplink channels 1-7(RX1)
636 +(((
637 +Horizontal insert the probe to the soil and fill the hole for long term measurement.
638 +)))
639 +)))
651 651  
652 -921.9 - SF12BW125 (RX2 downlink only; SF12BW125 might be changed to SF9BW125)
641 +[[image:1654506665940-119.png]]
653 653  
643 +(((
644 +
645 +)))
654 654  
655 655  
656 -=== 2.7.7 IN865-867 (IN865) ===
648 +== 2.8  ​Firmware Change Log ==
657 657  
658 -(% style="color:#037691" %)** Uplink:**
659 659  
660 -865.0625 - SF7BW125 to SF12BW125
651 +Download URL & Firmware Change log
661 661  
662 -865.4025 - SF7BW125 to SF12BW125
653 +[[www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/Firmware/]]
663 663  
664 -865.9850 - SF7BW125 to SF12BW125
665 665  
656 +Upgrade Instruction: [[Upgrade_Firmware>>||anchor="H5.1200BHowtoUpgradeFirmware"]]
666 666  
667 -(% style="color:#037691" %) **Downlink:**
668 668  
669 -Uplink channels 1-3 (RX1)
670 670  
671 -866.550 - SF10BW125 (RX2)
660 +== 2. Battery Analysis ==
672 672  
662 +=== 2.9.1  ​Battery Type ===
673 673  
674 674  
675 -
676 -== 2.8 LED Indicator ==
677 -
678 -The LSE01 has an internal LED which is to show the status of different state.
679 -
680 -* Blink once when device power on.
681 -* Solid ON for 5 seconds once device successful Join the network.
682 -* Blink once when device transmit a packet.
683 -
684 -== 2.9 Installation in Soil ==
685 -
686 -**Measurement the soil surface**
687 -
688 -
689 -[[image:1654506634463-199.png]] ​
690 -
691 691  (((
692 -(((
693 -Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting.
666 +The NSE01 battery is a combination of an 8500mAh Li/SOCI2 Battery and a Super Capacitor. The battery is none-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter.
694 694  )))
695 -)))
696 696  
697 697  
698 -[[image:1654506665940-119.png]]
699 -
700 700  (((
701 -Dig a hole with diameter > 20CM.
671 +The battery is designed to last for several years depends on the actually use environment and update interval. 
702 702  )))
703 703  
704 -(((
705 -Horizontal insert the probe to the soil and fill the hole for long term measurement.
706 -)))
707 707  
708 -
709 -== 2.10 ​Firmware Change Log ==
710 -
711 711  (((
712 -**Firmware download link:**
676 +The battery related documents as below:
713 713  )))
714 714  
715 -(((
716 -[[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/]]
717 -)))
679 +* [[Battery Dimension>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]
680 +* [[Lithium-Thionyl Chloride Battery datasheet>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]
681 +* [[Lithium-ion Battery-Capacitor datasheet>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]
718 718  
719 719  (((
720 -
684 +[[image:image-20220708140453-6.png]]
721 721  )))
722 722  
723 -(((
724 -**Firmware Upgrade Method: **[[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome]]
725 -)))
726 726  
727 -(((
728 -
729 -)))
730 730  
731 -(((
732 -**V1.0.**
733 -)))
689 +=== 2.9.2  Power consumption Analyze ===
734 734  
735 735  (((
736 -Release
692 +Dragino battery powered product are all runs in Low Power mode. We have an update battery calculator which base on the measurement of the real device. User can use this calculator to check the battery life and calculate the battery life if want to use different transmit interval.
737 737  )))
738 738  
739 739  
740 -== 2.11 ​Battery Analysis ==
741 -
742 -=== 2.11.1 ​Battery Type ===
743 -
744 744  (((
745 -The LSE01 battery is a combination of a 4000mAh Li/SOCI2 Battery and a Super Capacitor. The battery is non-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter.
697 +Instruction to use as below:
746 746  )))
747 747  
748 748  (((
749 -The battery is designed to last for more than 5 years for the LSN50.
701 +(% style="color:blue" %)**Step 1:  **(%%)Downlink the up-to-date DRAGINO_Battery_Life_Prediction_Table.xlsx from: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/]]
750 750  )))
751 751  
704 +
752 752  (((
753 -(((
754 -The battery-related documents are as below:
706 +(% style="color:blue" %)**Step 2: **(%%) Open it and choose
755 755  )))
756 -)))
757 757  
758 758  * (((
759 -[[Battery Dimension>>url:http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/&file=LSN50-Battery-Dimension.pdf]],
710 +Product Model
760 760  )))
761 761  * (((
762 -[[Lithium-Thionyl Chloride Battery  datasheet>>url:https://www.dragino.com/downloads/downloads/datasheet/Battery/ER26500/ER26500_Datasheet-EN.pdf]],
713 +Uplink Interval
763 763  )))
764 764  * (((
765 -[[Lithium-ion Battery-Capacitor datasheet>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC_1520_datasheet.jpg]], [[Tech Spec>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC1520%20Technical%20Specification20171123.pdf]]
716 +Working Mode
766 766  )))
767 767  
768 - [[image:image-20220610172436-1.png]]
719 +(((
720 +And the Life expectation in difference case will be shown on the right.
721 +)))
769 769  
723 +[[image:image-20220708141352-7.jpeg]]
770 770  
771 771  
772 -=== 2.11.2 ​Battery Note ===
773 773  
727 +=== 2.9.3  ​Battery Note ===
728 +
774 774  (((
775 775  The Li-SICO battery is designed for small current / long period application. It is not good to use a high current, short period transmit method. The recommended minimum period for use of this battery is 5 minutes. If you use a shorter period time to transmit LoRa, then the battery life may be decreased.
776 776  )))
... ... @@ -777,303 +777,176 @@
777 777  
778 778  
779 779  
780 -=== 2.11.3 Replace the battery ===
735 +=== 2.9. Replace the battery ===
781 781  
782 782  (((
783 -If Battery is lower than 2.7v, user should replace the battery of LSE01.
738 +The default battery pack of NSE01 includes a ER26500 plus super capacitor. If user can't find this pack locally, they can find ER26500 or equivalence without the SPC1520 capacitor, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes).
784 784  )))
785 785  
741 +
742 +
743 += 3. ​ Access NB-IoT Module =
744 +
786 786  (((
787 -You can change the battery in the LSE01.The type of battery is not limited as long as the output is between 3v to 3.6v. On the main board, there is a diode (D1) between the battery and the main circuit. If you need to use a battery with less than 3.3v, please remove the D1 and shortcut the two pads of it so there won’t be voltage drop between battery and main board.
746 +Users can directly access the AT command set of the NB-IoT module.
788 788  )))
789 789  
790 790  (((
791 -The default battery pack of LSE01 includes a ER18505 plus super capacitor. If user can’t find this pack locally, they can find ER18505 or equivalence, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes)
750 +The AT Command set can refer the BC35-G NB-IoT Module AT Command: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=datasheet/other_vendors/BC35-G/>>url:https://www.dragino.com/downloads/index.php?dir=datasheet/other_vendors/BC35-G/]] 
792 792  )))
793 793  
753 +[[image:1657261278785-153.png]]
794 794  
795 795  
796 -= 3. ​Using the AT Commands =
797 797  
798 -== 3.1 Access AT Commands ==
757 += 4.  Using the AT Commands =
799 799  
759 +== 4.1  Access AT Commands ==
800 800  
801 -LSE01 supports AT Command set in the stock firmware. You can use a USB to TTL adapter to connect to LSE01 for using AT command, as below.
761 +See this link for detail: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/]]
802 802  
803 -[[image:1654501986557-872.png||height="391" width="800"]]
804 804  
764 +AT+<CMD>?  : Help on <CMD>
805 805  
806 -Or if you have below board, use below connection:
766 +AT+<CMD>         : Run <CMD>
807 807  
768 +AT+<CMD>=<value> : Set the value
808 808  
809 -[[image:1654502005655-729.png||height="503" width="801"]]
770 +AT+<CMD>=?  : Get the value
810 810  
811 811  
812 -
813 -In the PC, you need to set the serial baud rate to (% style="color:green" %)**9600**(%%) to access the serial console for LSE01. LSE01 will output system info once power on as below:
814 -
815 -
816 - [[image:1654502050864-459.png||height="564" width="806"]]
817 -
818 -
819 -Below are the available commands, a more detailed AT Command manual can be found at [[AT Command Manual>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/]]: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/]]
820 -
821 -
822 -(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>? **(%%) : Help on <CMD>
823 -
824 -(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD> **(%%) : Run <CMD>
825 -
826 -(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>=<value>**(%%) : Set the value
827 -
828 -(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>=?**(%%)  : Get the value
829 -
830 -
831 831  (% style="color:#037691" %)**General Commands**(%%)      
832 832  
833 -(% style="background-color:#dcdcdc" %)**AT**(%%)  : Attention       
775 +AT  : Attention       
834 834  
835 -(% style="background-color:#dcdcdc" %)**AT?**(%%)  : Short Help     
777 +AT?  : Short Help     
836 836  
837 -(% style="background-color:#dcdcdc" %)**ATZ**(%%)  : MCU Reset    
779 +ATZ  : MCU Reset    
838 838  
839 -(% style="background-color:#dcdcdc" %)**AT+TDC**(%%)  : Application Data Transmission Interval 
781 +AT+TDC  : Application Data Transmission Interval
840 840  
783 +AT+CFG  : Print all configurations
841 841  
842 -(% style="color:#037691" %)**Keys, IDs and EUIs management**
785 +AT+CFGMOD           : Working mode selection
843 843  
844 -(% style="background-color:#dcdcdc" %)**AT+APPEUI**(%%)              : Application EUI      
787 +AT+INTMOD            : Set the trigger interrupt mode
845 845  
846 -(% style="background-color:#dcdcdc" %)**AT+APPKEY**(%%)              : Application Key     
789 +AT+5VT  : Set extend the time of 5V power  
847 847  
848 -(% style="background-color:#dcdcdc" %)**AT+APPSKEY**(%%)            : Application Session Key
791 +AT+PRO  : Choose agreement
849 849  
850 -(% style="background-color:#dcdcdc" %)**AT+DADDR**(%%)              : Device Address     
793 +AT+WEIGRE  : Get weight or set weight to 0
851 851  
852 -(% style="background-color:#dcdcdc" %)**AT+DEUI**(%%)                   : Device EUI     
795 +AT+WEIGAP  : Get or Set the GapValue of weight
853 853  
854 -(% style="background-color:#dcdcdc" %)**AT+NWKID**(%%)               : Network ID (You can enter this command change only after successful network connection
797 +AT+RXDL  : Extend the sending and receiving time
855 855  
856 -(% style="background-color:#dcdcdc" %)**AT+NWKSKEY**(%%)          : Network Session Key Joining and sending date on LoRa network  
799 +AT+CNTFAC  : Get or set counting parameters
857 857  
858 -(% style="background-color:#dcdcdc" %)**AT+CFM**(%%)  : Confirm Mode       
801 +AT+SERVADDR  : Server Address
859 859  
860 -(% style="background-color:#dcdcdc" %)**AT+CFS**(%%)                     : Confirm Status       
861 861  
862 -(% style="background-color:#dcdcdc" %)**AT+JOIN**(%%)  : Join LoRa? Network       
804 +(% style="color:#037691" %)**COAP Management**      
863 863  
864 -(% style="background-color:#dcdcdc" %)**AT+NJM**(%%)  : LoRa? Network Join Mode    
806 +AT+URI            : Resource parameters
865 865  
866 -(% style="background-color:#dcdcdc" %)**AT+NJS**(%%)                     : LoRa? Network Join Status    
867 867  
868 -(% style="background-color:#dcdcdc" %)**AT+RECV**(%%)                  : Print Last Received Data in Raw Format
809 +(% style="color:#037691" %)**UDP Management**
869 869  
870 -(% style="background-color:#dcdcdc" %)**AT+RECVB**(%%)                : Print Last Received Data in Binary Format      
811 +AT+CFM          : Upload confirmation mode (only valid for UDP)
871 871  
872 -(% style="background-color:#dcdcdc" %)**AT+SEND**(%%)                  : Send Text Data      
873 873  
874 -(% style="background-color:#dcdcdc" %)**AT+SENB**(%%)                  : Send Hexadecimal Data
814 +(% style="color:#037691" %)**MQTT Management**
875 875  
816 +AT+CLIENT               : Get or Set MQTT client
876 876  
877 -(% style="color:#037691" %)**LoRa Network Management**
818 +AT+UNAME  : Get or Set MQTT Username
878 878  
879 -(% style="background-color:#dcdcdc" %)**AT+ADR**(%%)          : Adaptive Rate
820 +AT+PWD                  : Get or Set MQTT password
880 880  
881 -(% style="background-color:#dcdcdc" %)**AT+CLASS**(%%)  : LoRa Class(Currently only support class A
822 +AT+PUBTOPI : Get or Set MQTT publish topic
882 882  
883 -(% style="background-color:#dcdcdc" %)**AT+DCS**(%%)  : Duty Cycle Settin
824 +AT+SUBTOPIC  : Get or Set MQTT subscription topic
884 884  
885 -(% style="background-color:#dcdcdc" %)**AT+DR**(%%)  : Data Rate (Can Only be Modified after ADR=0)     
886 886  
887 -(% style="background-color:#dcdcdc" %)**AT+FCD**(%%)  : Frame Counter Downlink       
827 +(% style="color:#037691" %)**Information**          
888 888  
889 -(% style="background-color:#dcdcdc" %)**AT+FCU**(%%)  : Frame Counter Uplink   
829 +AT+FDR  : Factory Data Reset
890 890  
891 -(% style="background-color:#dcdcdc" %)**AT+JN1DL**(%%)  : Join Accept Delay1
831 +AT+PWOR : Serial Access Password
892 892  
893 -(% style="background-color:#dcdcdc" %)**AT+JN2DL**(%%)  : Join Accept Delay2
894 894  
895 -(% style="background-color:#dcdcdc" %)**AT+PNM**(%%)  : Public Network Mode   
896 896  
897 -(% style="background-color:#dcdcdc" %)**AT+RX1DL**(%%)  : Receive Delay1      
835 += ​5.  FAQ =
898 898  
899 -(% style="background-color:#dcdcdc" %)**AT+RX2DL**(%%)  : Receive Delay2      
837 +== 5.1 How to Upgrade Firmware ==
900 900  
901 -(% style="background-color:#dcdcdc" %)**AT+RX2DR**(%%)  : Rx2 Window Data Rate 
902 902  
903 -(% style="background-color:#dcdcdc" %)**AT+RX2FQ**(%%)  : Rx2 Window Frequency
904 -
905 -(% style="background-color:#dcdcdc" %)**AT+TXP**(%%)  : Transmit Power
906 -
907 -(% style="background-color:#dcdcdc" %)**AT+ MOD**(%%)  : Set work mode
908 -
909 -
910 -(% style="color:#037691" %)**Information** 
911 -
912 -(% style="background-color:#dcdcdc" %)**AT+RSSI**(%%)           : RSSI of the Last Received Packet   
913 -
914 -(% style="background-color:#dcdcdc" %)**AT+SNR**(%%)           : SNR of the Last Received Packet   
915 -
916 -(% style="background-color:#dcdcdc" %)**AT+VER**(%%)           : Image Version and Frequency Band       
917 -
918 -(% style="background-color:#dcdcdc" %)**AT+FDR**(%%)           : Factory Data Reset
919 -
920 -(% style="background-color:#dcdcdc" %)**AT+PORT**(%%)  : Application Port    
921 -
922 -(% style="background-color:#dcdcdc" %)**AT+CHS**(%%)  : Get or Set Frequency (Unit: Hz) for Single Channel Mode
923 -
924 - (% style="background-color:#dcdcdc" %)**AT+CHE**(%%)  : Get or Set eight channels mode, Only for US915, AU915, CN470
925 -
926 -
927 -= ​4. FAQ =
928 -
929 -== 4.1 ​How to change the LoRa Frequency Bands/Region? ==
930 -
931 931  (((
932 -You can follow the instructions for [[how to upgrade image>>||anchor="H2.10200BFirmwareChangeLog"]].
933 -When downloading the images, choose the required image file for download. ​
841 +User can upgrade the firmware for 1) bug fix, 2) new feature release.
934 934  )))
935 935  
936 936  (((
937 -
845 +Please see this link for how to upgrade:  [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H2.HardwareUpgradeMethodSupportList>>http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H2.HardwareUpgradeMethodSupportList]]
938 938  )))
939 939  
940 940  (((
941 -How to set up LSE01 to work in 8 channel mode By default, the frequency bands US915, AU915, CN470 work in 72 frequencies. Many gateways are 8 channel gateways, and in this case, the OTAA join time and uplink schedule is long and unpredictable while the end node is hopping in 72 frequencies.
849 +(% style="color:red" %)Notice, NSE01 and LSE01 share the same mother board. They use the same connection and method to update.
942 942  )))
943 943  
944 -(((
945 -
946 -)))
947 947  
948 -(((
949 -You can configure the end node to work in 8 channel mode by using the AT+CHE command. The 500kHz channels are always included for OTAA.
950 -)))
951 951  
952 -(((
953 -
954 -)))
854 +== 5.2  Can I calibrate NSE01 to different soil types? ==
955 955  
956 956  (((
957 -For example, in **US915** band, the frequency table is as below. By default, the end node will use all channels (0~~71) for OTAA Join process. After the OTAA Join, the end node will use these all channels (0~~71) to send uplink packets.
857 +NSE01 is calibrated for saline-alkali soil and loamy soil. If users want to use it for other soil, they can calibrate the value in the IoT platform base on the value measured by saline-alkali soil and loamy soil. The formula can be found at [[this link>>https://www.dragino.com/downloads/downloads/LoRa_End_Node/LSE01/Calibrate_to_other_Soil_20220605.pdf]].
958 958  )))
959 959  
960 -[[image:image-20220606154726-3.png]]
961 961  
861 += 6.  Trouble Shooting =
962 962  
963 -When you use the TTN network, the US915 frequency bands use are:
863 +== 6.1  ​Connection problem when uploading firmware ==
964 964  
965 -* 903.9 - SF7BW125 to SF10BW125
966 -* 904.1 - SF7BW125 to SF10BW125
967 -* 904.3 - SF7BW125 to SF10BW125
968 -* 904.5 - SF7BW125 to SF10BW125
969 -* 904.7 - SF7BW125 to SF10BW125
970 -* 904.9 - SF7BW125 to SF10BW125
971 -* 905.1 - SF7BW125 to SF10BW125
972 -* 905.3 - SF7BW125 to SF10BW125
973 -* 904.6 - SF8BW500
974 974  
975 975  (((
976 -Because the end node is now hopping in 72 frequency, it makes it difficult for the devices to Join the TTN network and uplink data. To solve this issue, you can access the device via the AT commands and run:
867 +**Please see: **[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H3.3Troubleshooting>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H3.3Troubleshooting]]
977 977  )))
978 978  
979 -(% class="box infomessage" %)
870 +(% class="wikigeneratedid" %)
980 980  (((
981 -**AT+CHE=2**
982 -)))
983 -
984 -(% class="box infomessage" %)
985 -(((
986 -**ATZ**
987 -)))
988 -
989 -(((
990 -to set the end node to work in 8 channel mode. The device will work in Channel 8-15 & 64-71 for OTAA, and channel 8-15 for Uplink.
991 -)))
992 -
993 -(((
994 994  
995 995  )))
996 996  
997 -(((
998 -The **AU915** band is similar. Below are the AU915 Uplink Channels.
999 -)))
1000 1000  
1001 -[[image:image-20220606154825-4.png]]
876 +== 6.2  AT Command input doesn't work ==
1002 1002  
1003 -
1004 -
1005 -= 5. Trouble Shooting =
1006 -
1007 -== 5.1 ​Why I can’t join TTN in US915 / AU915 bands? ==
1008 -
1009 -It is due to channel mapping. Please see the [[Eight Channel Mode>>doc:Main.LoRaWAN Communication Debug.WebHome||anchor="H2.NoticeofUS9152FCN4702FAU915Frequencyband"]] section above for details.
1010 -
1011 -
1012 -== 5.2 AT Command input doesn’t work ==
1013 -
1014 1014  (((
1015 -In the case if user can see the console output but can’t type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn’t send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.
1016 -)))
879 +In the case if user can see the console output but can't type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn't send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.
1017 1017  
1018 -
1019 -== 5.3 Device rejoin in at the second uplink packet ==
1020 -
1021 -(% style="color:#4f81bd" %)**Issue describe as below:**
1022 -
1023 -[[image:1654500909990-784.png]]
1024 -
1025 -
1026 -(% style="color:#4f81bd" %)**Cause for this issue:**
1027 -
1028 -(((
1029 -The fuse on LSE01 is not large enough, some of the soil probe require large current up to 5v 800mA, in a short pulse. When this happen, it cause the device reboot so user see rejoin.
881 +
1030 1030  )))
1031 1031  
1032 1032  
1033 -(% style="color:#4f81bd" %)**Solution: **
885 += 7. ​ Order Info =
1034 1034  
1035 -All new shipped LSE01 after 2020-May-30 will have this to fix. For the customer who see this issue, please bypass the fuse as below:
1036 1036  
1037 -[[image:1654500929571-736.png||height="458" width="832"]]
888 +Part Number**:** (% style="color:#4f81bd" %)**NSE01**
1038 1038  
1039 1039  
1040 -= 6. ​Order Info =
1041 -
1042 -
1043 -Part Number**:** (% style="color:#4f81bd" %)**LSE01-XX-YY**
1044 -
1045 -
1046 -(% style="color:#4f81bd" %)**XX**(%%)**:** The default frequency band
1047 -
1048 -* (% style="color:red" %)**AS923**(%%): LoRaWAN AS923 band
1049 -* (% style="color:red" %)**AU915**(%%): LoRaWAN AU915 band
1050 -* (% style="color:red" %)**EU433**(%%): LoRaWAN EU433 band
1051 -* (% style="color:red" %)**EU868**(%%): LoRaWAN EU868 band
1052 -* (% style="color:red" %)**KR920**(%%): LoRaWAN KR920 band
1053 -* (% style="color:red" %)**US915**(%%): LoRaWAN US915 band
1054 -* (% style="color:red" %)**IN865**(%%):  LoRaWAN IN865 band
1055 -* (% style="color:red" %)**CN470**(%%): LoRaWAN CN470 band
1056 -
1057 -(% style="color:#4f81bd" %)**YY**(%%)**: **Battery Option
1058 -
1059 -* (% style="color:red" %)**4**(%%): 4000mAh battery
1060 -* (% style="color:red" %)**8**(%%): 8500mAh battery
1061 -
1062 1062  (% class="wikigeneratedid" %)
1063 1063  (((
1064 1064  
1065 1065  )))
1066 1066  
1067 -= 7. Packing Info =
896 += 8.  Packing Info =
1068 1068  
1069 1069  (((
1070 1070  
1071 1071  
1072 1072  (% style="color:#037691" %)**Package Includes**:
1073 -)))
1074 1074  
1075 -* (((
1076 -LSE01 LoRaWAN Soil Moisture & EC Sensor x 1
903 +* NSE01 NB-IoT Soil Moisture & EC Sensor x 1
904 +* External antenna x 1
1077 1077  )))
1078 1078  
1079 1079  (((
... ... @@ -1080,25 +1080,19 @@
1080 1080  
1081 1081  
1082 1082  (% style="color:#037691" %)**Dimension and weight**:
1083 -)))
1084 1084  
1085 -* (((
1086 -Device Size: cm
912 +* Size: 195 x 125 x 55 mm
913 +* Weight:   420g
1087 1087  )))
1088 -* (((
1089 -Device Weight: g
1090 -)))
1091 -* (((
1092 -Package Size / pcs : cm
1093 -)))
1094 -* (((
1095 -Weight / pcs : g
1096 1096  
916 +(((
1097 1097  
918 +
919 +
920 +
1098 1098  )))
1099 1099  
1100 -= 8. Support =
923 += 9.  Support =
1101 1101  
1102 1102  * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
1103 1103  * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.com]]
1104 -
1657245163077-232.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +81.0 KB
Content
1657246476176-652.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +492.6 KB
Content
1657249419225-449.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +81.0 KB
Content
1657249468462-536.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +483.6 KB
Content
1657249793983-486.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +85.8 KB
Content
1657249831934-534.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +72.5 KB
Content
1657249864775-321.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +87.0 KB
Content
1657249930215-289.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +77.3 KB
Content
1657249978444-674.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +139.5 KB
Content
1657249990869-686.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +96.9 KB
Content
1657250217799-140.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +98.7 KB
Content
1657250255956-604.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +99.0 KB
Content
1657259653666-883.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +344.4 KB
Content
1657260785982-288.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +138.2 KB
Content
1657261119050-993.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +126.1 KB
Content
1657261278785-153.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +126.1 KB
Content
1657271519014-786.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +71.5 KB
Content
1657327959271-447.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +78.3 KB
Content
1657328609906-564.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +492.6 KB
Content
1657328659945-416.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +78.8 KB
Content
image-20220708101224-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +22.2 KB
Content
image-20220708101605-2.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +87.5 KB
Content
image-20220708110657-3.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +251.7 KB
Content
image-20220708111918-4.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +38.8 KB
Content
image-20220708133731-5.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +8.7 KB
Content
image-20220708140453-6.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +132.7 KB
Content
image-20220708141352-7.jpeg
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +102.7 KB
Content
image-20220709084038-1.jpeg
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +72.0 KB
Content
image-20220709084137-2.jpeg
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +72.0 KB
Content
image-20220709084207-3.jpeg
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +72.0 KB
Content
image-20220709084458-4.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +199.5 KB
Content
image-20220709085040-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +200.4 KB
Content