Last modified by Mengting Qiu on 2024/04/02 16:44

From version 35.2
edited by Xiaoling
on 2022/06/10 17:24
Change comment: There is no comment for this version
To version 75.3
edited by Xiaoling
on 2022/07/09 08:58
Change comment: There is no comment for this version

Summary

Details

Page properties
Title
... ... @@ -1,1 +1,1 @@
1 -LSE01-LoRaWAN Soil Moisture & EC Sensor User Manual
1 +NDDS75 NB-IoT Distance Detect Sensor User Manual
Content
... ... @@ -1,776 +1,721 @@
1 1  (% style="text-align:center" %)
2 -[[image:image-20220606151504-2.jpeg||height="554" width="554"]]
2 +[[image:image-20220709085040-1.png||height="542" width="524"]]
3 3  
4 4  
5 5  
6 -**Contents:**
7 7  
8 -{{toc/}}
9 9  
8 +**Table of Contents:**
10 10  
11 11  
12 12  
13 13  
14 14  
15 -= 1. Introduction =
16 16  
17 -== 1.1 ​What is LoRaWAN Soil Moisture & EC Sensor ==
18 18  
19 -(((
20 -The Dragino LSE01 is a (% style="color:#4f81bd" %)**LoRaWAN Soil Moisture & EC Sensor**(%%) for IoT of Agriculture. It is designed to measure the soil moisture of saline-alkali soil and loamy soil. The soil sensor uses FDR method to calculate the soil moisture with the compensation from soil temperature and conductivity. It also has been calibrated in factory for Mineral soil type.
21 -)))
16 += 1.  Introduction =
22 22  
23 -(((
24 -It detects (% style="color:#4f81bd" %)**Soil Moisture**(%%), (% style="color:#4f81bd" %)**Soil Temperature**(%%) and (% style="color:#4f81bd" %)**Soil Conductivity**(%%), and uploads the value via wireless to LoRaWAN IoT Server.
25 -)))
18 +== 1.1 ​ What is NDDS75 Distance Detection Sensor ==
26 26  
27 27  (((
28 -The LoRa wireless technology used in LES01 allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption.
29 -)))
21 +
30 30  
31 31  (((
32 -LES01 is powered by (% style="color:#4f81bd" %)**4000mA or 8500mAh Li-SOCI2 battery**(%%), It is designed for long term use up to 10 years.
24 +The Dragino NDDS75 is a (% style="color:blue" %)**NB-IoT Distance Detection Sensor**(%%) for Internet of Things solution. It is designed to measure the distance between the sensor and a flat object. The distance detection sensor is a module that uses ultrasonic sensing technology for distance measurement, and temperature compensation is performed internally to improve the reliability of data.
25 +\\The NDDS75 can be applied to scenarios such as horizontal distance measurement, liquid level measurement, parking management system, object proximity and presence detection, intelligent trash can management system, robot obstacle avoidance, automatic control, sewer, bottom water level monitoring, etc. It detects the distance between the measured object and the sensor, and uploads the value via wireless to IoT Server via NB-IoT Network.
26 +\\NarrowBand-Internet of Things (NB-IoT) is a standards-based low power wide area (LPWA) technology developed to enable a wide range of new IoT devices and services. NB-IoT significantly improves the power consumption of user devices, system capacity and spectrum efficiency, especially in deep coverage.
27 +\\NDDS75 supports different uplink methods include (% style="color:blue" %)**TCP, MQTT, UDP and CoAP** (%%)for different application requirement.
28 +\\NDDS75 is powered by (% style="color:blue" %)**8500mAh Li-SOCI2 battery**(%%), It is designed for long term use up to 5 years. (Actually Battery life depends on the use environment, update period & uplink method)
29 +\\To use NDDS75, user needs to check if there is NB-IoT coverage in local area and with the bands NDDS75 supports. If the local operate support it, user needs to get a NB-IoT SIM card from local operator and install NDDS75 to get NB-IoT network connection.
33 33  )))
34 34  
35 -(((
36 -Each LES01 is pre-load with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect after power on.
32 +
37 37  )))
38 38  
39 -
40 40  [[image:1654503236291-817.png]]
41 41  
42 42  
43 -[[image:1654503265560-120.png]]
38 +[[image:1657327959271-447.png]]
44 44  
45 45  
46 46  
47 -== 1.2 ​Features ==
42 +== 1.2 ​ Features ==
48 48  
49 -* LoRaWAN 1.0.3 Class A
44 +
45 +* NB-IoT Bands: B1/B3/B8/B5/B20/B28 @H-FDD
50 50  * Ultra low power consumption
51 -* Monitor Soil Moisture
52 -* Monitor Soil Temperature
53 -* Monitor Soil Conductivity
54 -* Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865
47 +* Distance Detection by Ultrasonic technology
48 +* Flat object range 280mm - 7500mm
49 +* Accuracy: ±(1cm+S*0.3%) (S: Distance)
50 +* Cable Length: 25cm
55 55  * AT Commands to change parameters
56 56  * Uplink on periodically
57 57  * Downlink to change configure
58 58  * IP66 Waterproof Enclosure
59 -* 4000mAh or 8500mAh Battery for long term use
55 +* Micro SIM card slot for NB-IoT SIM
56 +* 8500mAh Battery for long term use
60 60  
61 61  
62 -== 1.3 Specification ==
63 63  
64 -Measure Volume: Base on the centra pin of the probe, a cylinder with 7cm diameter and 10cm height.
60 +== 1.3  Specification ==
65 65  
66 -[[image:image-20220606162220-5.png]]
67 67  
63 +(% style="color:#037691" %)**Common DC Characteristics:**
68 68  
65 +* Supply Voltage: 2.1v ~~ 3.6v
66 +* Operating Temperature: -40 ~~ 85°C
69 69  
70 -== ​1.4 Applications ==
68 +(% style="color:#037691" %)**NB-IoT Spec:**
71 71  
72 -* Smart Agriculture
70 +* - B1 @H-FDD: 2100MHz
71 +* - B3 @H-FDD: 1800MHz
72 +* - B8 @H-FDD: 900MHz
73 +* - B5 @H-FDD: 850MHz
74 +* - B20 @H-FDD: 800MHz
75 +* - B28 @H-FDD: 700MHz
73 73  
74 -(% class="wikigeneratedid" id="H200B1.5FirmwareChangelog" %)
75 -​
76 76  
77 -== 1.5 Firmware Change log ==
78 +(% style="color:#037691" %)**Battery:**
78 78  
80 +* Li/SOCI2 un-chargeable battery
81 +* Capacity: 8500mAh
82 +* Self Discharge: <1% / Year @ 25°C
83 +* Max continuously current: 130mA
84 +* Max boost current: 2A, 1 second
79 79  
80 -**LSE01 v1.0 :**  Release
81 81  
87 +(% style="color:#037691" %)**Power Consumption**
82 82  
89 +* STOP Mode: 10uA @ 3.3v
90 +* Max transmit power: 350mA@3.3v
83 83  
84 -= 2. Configure LSE01 to connect to LoRaWAN network =
85 85  
86 -== 2.1 How it works ==
87 87  
88 -(((
89 -The LSE01 is configured as LoRaWAN OTAA Class A mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and power on the LSE0150. It will automatically join the network via OTAA and start to send the sensor value
90 -)))
91 91  
92 -(((
93 -In case you can’t set the OTAA keys in the LoRaWAN OTAA server, and you have to use the keys from the server, you can [[use AT Commands >>||anchor="H3.200BUsingtheATCommands"]].
94 -)))
95 +== ​1.4  Applications ==
95 95  
97 +* Smart Agriculture
96 96  
99 +(% class="wikigeneratedid" id="H200B1.5FirmwareChangelog" %)
100 +​
97 97  
98 -== 2.2 ​Quick guide to connect to LoRaWAN server (OTAA) ==
102 +== 1. Pin Definitions ==
99 99  
100 -Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LG308>>url:http://www.dragino.com/products/lora/item/140-lg308.html]] as a LoRaWAN gateway in this example.
101 101  
105 +[[image:1657246476176-652.png]]
102 102  
103 -[[image:1654503992078-669.png]]
104 104  
105 105  
106 -The LG308 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
109 += 2.  Use NSE01 to communicate with IoT Server =
107 107  
111 +== 2.1  How it works ==
108 108  
109 -**Step 1**: Create a device in TTN with the OTAA keys from LSE01.
110 110  
111 -Each LSE01 is shipped with a sticker with the default device EUI as below:
112 -
113 -[[image:image-20220606163732-6.jpeg]]
114 -
115 -You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot:
116 -
117 -**Add APP EUI in the application**
118 -
119 -
120 -[[image:1654504596150-405.png]]
121 -
122 -
123 -
124 -**Add APP KEY and DEV EUI**
125 -
126 -[[image:1654504683289-357.png]]
127 -
128 -
129 -
130 -**Step 2**: Power on LSE01
131 -
132 -
133 -Put a Jumper on JP2 to power on the device. ( The Jumper must be in FLASH position).
134 -
135 -[[image:image-20220606163915-7.png]]
136 -
137 -
138 -**Step 3:** The LSE01 will auto join to the TTN network. After join success, it will start to upload messages to TTN and you can see the messages in the panel.
139 -
140 -[[image:1654504778294-788.png]]
141 -
142 -
143 -
144 -== 2.3 Uplink Payload ==
145 -
146 -=== ===
147 -
148 -=== 2.3.1 MOD~=0(Default Mode) ===
149 -
150 -LSE01 will uplink payload via LoRaWAN with below payload format: 
151 -
152 152  (((
153 -Uplink payload includes in total 11 bytes.
115 +The NSE01 is equipped with a NB-IoT module, the pre-loaded firmware in NSE01 will get environment data from sensors and send the value to local NB-IoT network via the NB-IoT module.  The NB-IoT network will forward this value to IoT server via the protocol defined by NSE01.
154 154  )))
155 155  
156 -(% border="1" cellspacing="10" style="background-color:#ffffcc; width:500px" %)
157 -|(((
158 -**Size**
159 159  
160 -**(bytes)**
161 -)))|**2**|**2**|**2**|**2**|**2**|**1**
162 -|**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(((
163 -Temperature
164 -
165 -(Reserve, Ignore now)
166 -)))|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]]|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]]|(((
167 -MOD & Digital Interrupt
168 -
169 -(Optional)
119 +(((
120 +The diagram below shows the working flow in default firmware of NSE01:
170 170  )))
171 171  
172 -=== 2.3.2 MOD~=1(Original value) ===
123 +[[image:image-20220708101605-2.png]]
173 173  
174 -This mode can get the original AD value of moisture and original conductivity (with temperature drift compensation).
175 -
176 -(% border="1" cellspacing="10" style="background-color:#ffffcc; width:500px" %)
177 -|(((
178 -**Size**
179 -
180 -**(bytes)**
181 -)))|**2**|**2**|**2**|**2**|**2**|**1**
182 -|**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(((
183 -Temperature
184 -
185 -(Reserve, Ignore now)
186 -)))|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]](raw)|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]](raw)|(((
187 -MOD & Digital Interrupt
188 -
189 -(Optional)
190 -)))
191 -
192 -=== 2.3.3 Battery Info ===
193 -
194 194  (((
195 -Check the battery voltage for LSE01.
126 +
196 196  )))
197 197  
198 -(((
199 -Ex1: 0x0B45 = 2885mV
200 -)))
201 201  
202 -(((
203 -Ex2: 0x0B49 = 2889mV
204 -)))
205 205  
131 +== 2.2 ​ Configure the NSE01 ==
206 206  
207 207  
208 -=== 2.3.4 Soil Moisture ===
134 +=== 2.2.1 Test Requirement ===
209 209  
210 -(((
211 -Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil.
212 -)))
213 213  
214 214  (((
215 -For example, if the data you get from the register is __0x05 0xDC__, the moisture content in the soil is
138 +To use NSE01 in your city, make sure meet below requirements:
216 216  )))
217 217  
218 -(((
219 -
220 -)))
141 +* Your local operator has already distributed a NB-IoT Network there.
142 +* The local NB-IoT network used the band that NSE01 supports.
143 +* Your operator is able to distribute the data received in their NB-IoT network to your IoT server.
221 221  
222 222  (((
223 -(% style="color:#4f81bd" %)**05DC(H) = 1500(D) /100 = 15%.**
146 +Below figure shows our testing structure. Here we have NB-IoT network coverage by China Mobile, the band they use is B8.  The NSE01 will use CoAP((% style="color:red" %)120.24.4.116:5683)(%%) or raw UDP((% style="color:red" %)120.24.4.116:5601)(%%) or MQTT((% style="color:red" %)120.24.4.116:1883)(%%)or TCP((% style="color:red" %)120.24.4.116:5600)(%%)protocol to send data to the test server
224 224  )))
225 225  
226 226  
150 +[[image:1657249419225-449.png]]
227 227  
228 -=== 2.3.5 Soil Temperature ===
229 229  
230 -(((
231 - Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is 0x09 0xEC, the temperature content in the soil is
232 -)))
233 233  
234 -(((
235 -**Example**:
236 -)))
154 +=== 2.2.2 Insert SIM card ===
237 237  
238 238  (((
239 -If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/100 = 2.61 °C
157 +Insert the NB-IoT Card get from your provider.
240 240  )))
241 241  
242 242  (((
243 -If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C
161 +User need to take out the NB-IoT module and insert the SIM card like below:
244 244  )))
245 245  
246 246  
165 +[[image:1657249468462-536.png]]
247 247  
248 -=== 2.3.6 Soil Conductivity (EC) ===
249 249  
250 -(((
251 -Obtain (% style="color:#4f81bd" %)**__soluble salt concentration__**(%%) in soil or (% style="color:#4f81bd" %)**__soluble ion concentration in liquid fertilizer__**(%%) or (% style="color:#4f81bd" %)**__planting medium__**(%%). The value range of the register is 0 - 20000(Decimal)( Can be greater than 20000).
252 -)))
253 253  
254 -(((
255 -For example, if the data you get from the register is 0x00 0xC8, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm.
256 -)))
169 +=== 2.2.3 Connect USB – TTL to NSE01 to configure it ===
257 257  
258 258  (((
259 -Generally, the EC value of irrigation water is less than 800uS / cm.
260 -)))
261 -
262 262  (((
263 -
173 +User need to configure NSE01 via serial port to set the (% style="color:blue" %)**Server Address** / **Uplink Topic** (%%)to define where and how-to uplink packets. NSE01 support AT Commands, user can use a USB to TTL adapter to connect to NSE01 and use AT Commands to configure it, as below.
264 264  )))
265 -
266 -(((
267 -
268 268  )))
269 269  
270 -=== 2.3.7 MOD ===
271 271  
272 -Firmware version at least v2.1 supports changing mode.
178 +**Connection:**
273 273  
274 -For example, bytes[10]=90
180 + (% style="background-color:yellow" %)USB TTL GND <~-~-~-~-> GND
275 275  
276 -mod=(bytes[10]>>7)&0x01=1.
182 + (% style="background-color:yellow" %)USB TTL TXD <~-~-~-~-> UART_RXD
277 277  
184 + (% style="background-color:yellow" %)USB TTL RXD <~-~-~-~-> UART_TXD
278 278  
279 -**Downlink Command:**
280 280  
281 -If payload = 0x0A00, workmode=0
187 +In the PC, use below serial tool settings:
282 282  
283 -If** **payload =** **0x0A01, workmode=1
189 +* Baud:  (% style="color:green" %)**9600**
190 +* Data bits:** (% style="color:green" %)8(%%)**
191 +* Stop bits: (% style="color:green" %)**1**
192 +* Parity:  (% style="color:green" %)**None**
193 +* Flow Control: (% style="color:green" %)**None**
284 284  
285 -
286 -
287 -=== 2.3.8 ​Decode payload in The Things Network ===
288 -
289 -While using TTN network, you can add the payload format to decode the payload.
290 -
291 -
292 -[[image:1654505570700-128.png]]
293 -
294 294  (((
295 -The payload decoder function for TTN is here:
196 +Make sure the switch is in FLASH position, then power on device by connecting the jumper on NSE01. NSE01 will output system info once power on as below, we can enter the (% style="color:green" %)**password: 12345678**(%%) to access AT Command input.
296 296  )))
297 297  
298 -(((
299 -LSE01 TTN Payload Decoder: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Payload_Decoder/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Payload_Decoder/]]
300 -)))
199 +[[image:image-20220708110657-3.png]]
301 301  
302 -
303 -
304 -== 2.4 Uplink Interval ==
305 -
306 -The LSE01 by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link: [[Change Uplink Interval>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H4.1ChangeUplinkInterval"]]
307 -
308 -
309 -
310 -== 2.5 Downlink Payload ==
311 -
312 -By default, LSE50 prints the downlink payload to console port.
313 -
314 -[[image:image-20220606165544-8.png]]
315 -
316 -
317 317  (((
318 -**Examples:**
202 +(% style="color:red" %)Note: the valid AT Commands can be found at: (%%)[[http:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/]]
319 319  )))
320 320  
321 -(((
322 -
323 -)))
324 324  
325 -* (((
326 -**Set TDC**
327 -)))
328 328  
329 -(((
330 -If the payload=0100003C, it means set the END Node’s TDC to 0x00003C=60(S), while type code is 01.
331 -)))
207 +=== 2.2.4 Use CoAP protocol to uplink data ===
332 332  
333 -(((
334 -Payload:    01 00 00 1E    TDC=30S
335 -)))
209 +(% style="color:red" %)Note: if you don't have CoAP server, you can refer this link to set up one: (%%)[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/>>http://wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/]]
336 336  
337 -(((
338 -Payload:    01 00 00 3C    TDC=60S
339 -)))
340 340  
341 -(((
342 -
343 -)))
212 +**Use below commands:**
344 344  
345 -* (((
346 -**Reset**
347 -)))
214 +* (% style="color:blue" %)**AT+PRO=1**  (%%) ~/~/ Set to use CoAP protocol to uplink
215 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5683   ** (%%)~/~/ to set CoAP server address and port
216 +* (% style="color:blue" %)**AT+URI=5,11,"mqtt",11,"coap",12,"0",15,"c=text1",23,"0" ** (%%) ~/~/Set COAP resource path
348 348  
349 -(((
350 -If payload = 0x04FF, it will reset the LSE01
351 -)))
218 +For parameter description, please refer to AT command set
352 352  
220 +[[image:1657249793983-486.png]]
353 353  
354 -* **CFM**
355 355  
356 -Downlink Payload: 05000001, Set AT+CFM=1 or 05000000 , set AT+CFM=0
223 +After configure the server address and (% style="color:green" %)**reset the device**(%%) (via AT+ATZ ), NSE01 will start to uplink sensor values to CoAP server.
357 357  
225 +[[image:1657249831934-534.png]]
358 358  
359 359  
360 -== 2.6 ​Show Data in DataCake IoT Server ==
361 361  
362 -(((
363 -[[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps:
364 -)))
229 +=== 2.2.5 Use UDP protocol to uplink data(Default protocol) ===
365 365  
366 -(((
367 -
368 -)))
231 +This feature is supported since firmware version v1.0.1
369 369  
370 -(((
371 -**Step 1**: Be sure that your device is programmed and properly connected to the network at this time.
372 -)))
373 373  
374 -(((
375 -**Step 2**: To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps:
376 -)))
234 +* (% style="color:blue" %)**AT+PRO=2   ** (%%) ~/~/ Set to use UDP protocol to uplink
235 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5601   ** (%%) ~/~/ to set UDP server address and port
236 +* (% style="color:blue" %)**AT+CFM=1       ** (%%) ~/~/If the server does not respond, this command is unnecessary
377 377  
238 +[[image:1657249864775-321.png]]
378 378  
379 -[[image:1654505857935-743.png]]
380 380  
241 +[[image:1657249930215-289.png]]
381 381  
382 -[[image:1654505874829-548.png]]
383 383  
384 -Step 3: Create an account or log in Datacake.
385 385  
386 -Step 4: Search the LSE01 and add DevEUI.
245 +=== 2.2.6 Use MQTT protocol to uplink data ===
387 387  
247 +This feature is supported since firmware version v110
388 388  
389 -[[image:1654505905236-553.png]]
390 390  
250 +* (% style="color:blue" %)**AT+PRO=3   ** (%%) ~/~/Set to use MQTT protocol to uplink
251 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,1883   ** (%%) ~/~/Set MQTT server address and port
252 +* (% style="color:blue" %)**AT+CLIENT=CLIENT       ** (%%)~/~/Set up the CLIENT of MQTT
253 +* (% style="color:blue" %)**AT+UNAME=UNAME                               **(%%)~/~/Set the username of MQTT
254 +* (% style="color:blue" %)**AT+PWD=PWD                                        **(%%)~/~/Set the password of MQTT
255 +* (% style="color:blue" %)**AT+PUBTOPIC=NSE01_PUB                    **(%%)~/~/Set the sending topic of MQTT
256 +* (% style="color:blue" %)**AT+SUBTOPIC=NSE01_SUB          **(%%) ~/~/Set the subscription topic of MQTT
391 391  
392 -After added, the sensor data arrive TTN, it will also arrive and show in Mydevices.
258 +[[image:1657249978444-674.png]]
393 393  
394 -[[image:1654505925508-181.png]]
395 395  
261 +[[image:1657249990869-686.png]]
396 396  
397 397  
398 -== 2.7 Frequency Plans ==
264 +(((
265 +MQTT protocol has a much higher power consumption compare vs UDP / CoAP protocol. Please check the power analyze document and adjust the uplink period to a suitable interval.
266 +)))
399 399  
400 -The LSE01 uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.
401 401  
402 402  
403 -=== 2.7.1 EU863-870 (EU868) ===
270 +=== 2.2.7 Use TCP protocol to uplink data ===
404 404  
405 -(% style="color:#037691" %)** Uplink:**
272 +This feature is supported since firmware version v110
406 406  
407 -868.1 - SF7BW125 to SF12BW125
408 408  
409 -868.3 - SF7BW125 to SF12BW125 and SF7BW250
275 +* (% style="color:blue" %)**AT+PRO=4   ** (%%) ~/~/ Set to use TCP protocol to uplink
276 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5600   **(%%) ~/~/ to set TCP server address and port
410 410  
411 -868.5 - SF7BW125 to SF12BW125
278 +[[image:1657250217799-140.png]]
412 412  
413 -867.1 - SF7BW125 to SF12BW125
414 414  
415 -867.3 - SF7BW125 to SF12BW125
281 +[[image:1657250255956-604.png]]
416 416  
417 -867.5 - SF7BW125 to SF12BW125
418 418  
419 -867.7 - SF7BW125 to SF12BW125
420 420  
421 -867.9 - SF7BW125 to SF12BW125
285 +=== 2.2.8 Change Update Interval ===
422 422  
423 -868.8 - FSK
287 +User can use below command to change the (% style="color:green" %)**uplink interval**.
424 424  
289 +* (% style="color:blue" %)**AT+TDC=600      ** (%%)~/~/ Set Update Interval to 600s
425 425  
426 -(% style="color:#037691" %)** Downlink:**
291 +(((
292 +(% style="color:red" %)**NOTE:**
293 +)))
427 427  
428 -Uplink channels 1-9 (RX1)
295 +(((
296 +(% style="color:red" %)1. By default, the device will send an uplink message every 1 hour.
297 +)))
429 429  
430 -869.525 - SF9BW125 (RX2 downlink only)
431 431  
432 432  
301 +== 2.3  Uplink Payload ==
433 433  
434 -=== 2.7.2 US902-928(US915) ===
303 +In this mode, uplink payload includes in total 18 bytes
435 435  
436 -Used in USA, Canada and South America. Default use CHE=2
305 +(% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:510px" %)
306 +|=(% style="width: 60px;" %)(((
307 +**Size(bytes)**
308 +)))|=(% style="width: 50px;" %)**6**|=(% style="width: 25px;" %)2|=(% style="width: 25px;" %)**2**|=(% style="width: 70px;" %)**1**|=(% style="width: 60px;" %)**2**|=(% style="width: 80px;" %)**2**|=(% style="width: 90px;" %)**2**|=(% style="width: 50px;" %)**1**
309 +|(% style="width:97px" %)**Value**|(% style="width:83px" %)[[Device ID>>||anchor="H2.4.1A0A0DeviceID"]]|(% style="width:41px" %)[[Ver>>||anchor="H2.4.2A0VersionInfo"]]|(% style="width:46px" %)[[BAT>>||anchor="H2.4.3A0BatteryInfo"]]|(% style="width:123px" %)[[Signal Strength>>||anchor="H2.4.4A0SignalStrength"]]|(% style="width:108px" %)[[Soil Moisture>>||anchor="H2.4.5A0SoilMoisture"]]|(% style="width:133px" %)[[Soil Temperature>>||anchor="H2.4.6A0SoilTemperature"]]|(% style="width:159px" %)[[Soil Conductivity(EC)>>||anchor="H2.4.7A0SoilConductivity28EC29"]]|(% style="width:80px" %)[[Interrupt>>||anchor="H2.4.8A0DigitalInterrupt"]]
437 437  
438 -(% style="color:#037691" %)**Uplink:**
311 +(((
312 +If we use the MQTT client to subscribe to this MQTT topic, we can see the following information when the NSE01 uplink data.
313 +)))
439 439  
440 -903.9 - SF7BW125 to SF10BW125
441 441  
442 -904.1 - SF7BW125 to SF10BW125
316 +[[image:image-20220708111918-4.png]]
443 443  
444 -904.3 - SF7BW125 to SF10BW125
445 445  
446 -904.5 - SF7BW125 to SF10BW125
319 +The payload is ASCII string, representative same HEX:
447 447  
448 -904.7 - SF7BW125 to SF10BW125
321 +0x72403155615900640c7817075e0a8c02f900 where:
449 449  
450 -904.9 - SF7BW125 to SF10BW125
323 +* Device ID: 0x 724031556159 = 724031556159
324 +* Version: 0x0064=100=1.0.0
451 451  
452 -905.1 - SF7BW125 to SF10BW125
326 +* BAT: 0x0c78 = 3192 mV = 3.192V
327 +* Singal: 0x17 = 23
328 +* Soil Moisture: 0x075e= 1886 = 18.86  %
329 +* Soil Temperature:0x0a8c =2700=27 °C
330 +* Soil Conductivity(EC) = 0x02f9 =761 uS /cm
331 +* Interrupt: 0x00 = 0
453 453  
454 -905.3 - SF7BW125 to SF10BW125
333 +== 2.4  Payload Explanation and Sensor Interface ==
455 455  
456 456  
457 -(% style="color:#037691" %)**Downlink:**
336 +=== 2.4.1  Device ID ===
458 458  
459 -923.3 - SF7BW500 to SF12BW500
338 +(((
339 +By default, the Device ID equal to the last 6 bytes of IMEI.
340 +)))
460 460  
461 -923.9 - SF7BW500 to SF12BW500
342 +(((
343 +User can use (% style="color:blue" %)**AT+DEUI**(%%) to set Device ID
344 +)))
462 462  
463 -924.5 - SF7BW500 to SF12BW500
346 +(((
347 +**Example:**
348 +)))
464 464  
465 -925.1 - SF7BW500 to SF12BW500
350 +(((
351 +AT+DEUI=A84041F15612
352 +)))
466 466  
467 -925.7 - SF7BW500 to SF12BW500
354 +(((
355 +The Device ID is stored in a none-erase area, Upgrade the firmware or run AT+FDR won't erase Device ID.
356 +)))
468 468  
469 -926.3 - SF7BW500 to SF12BW500
470 470  
471 -926.9 - SF7BW500 to SF12BW500
472 472  
473 -927.5 - SF7BW500 to SF12BW500
360 +=== 2.4.2  Version Info ===
474 474  
475 -923.3 - SF12BW500(RX2 downlink only)
362 +(((
363 +Specify the software version: 0x64=100, means firmware version 1.00.
364 +)))
476 476  
366 +(((
367 +For example: 0x00 64 : this device is NSE01 with firmware version 1.0.0.
368 +)))
477 477  
478 478  
479 -=== 2.7.3 CN470-510 (CN470) ===
480 480  
481 -Used in China, Default use CHE=1
372 +=== 2.4.3  Battery Info ===
482 482  
483 -(% style="color:#037691" %)**Uplink:**
374 +(((
375 +Check the battery voltage for LSE01.
376 +)))
484 484  
485 -486.3 - SF7BW125 to SF12BW125
378 +(((
379 +Ex1: 0x0B45 = 2885mV
380 +)))
486 486  
487 -486.5 - SF7BW125 to SF12BW125
382 +(((
383 +Ex2: 0x0B49 = 2889mV
384 +)))
488 488  
489 -486.7 - SF7BW125 to SF12BW125
490 490  
491 -486.9 - SF7BW125 to SF12BW125
492 492  
493 -487.1 - SF7BW125 to SF12BW125
388 +=== 2.4. Signal Strength ===
494 494  
495 -487.3 - SF7BW125 to SF12BW125
390 +(((
391 +NB-IoT Network signal Strength.
392 +)))
496 496  
497 -487.5 - SF7BW125 to SF12BW125
394 +(((
395 +**Ex1: 0x1d = 29**
396 +)))
498 498  
499 -487.7 - SF7BW125 to SF12BW125
398 +(((
399 +(% style="color:blue" %)**0**(%%)  -113dBm or less
400 +)))
500 500  
402 +(((
403 +(% style="color:blue" %)**1**(%%)  -111dBm
404 +)))
501 501  
502 -(% style="color:#037691" %)**Downlink:**
406 +(((
407 +(% style="color:blue" %)**2...30**(%%) -109dBm... -53dBm
408 +)))
503 503  
504 -506.7 - SF7BW125 to SF12BW125
410 +(((
411 +(% style="color:blue" %)**31**  (%%) -51dBm or greater
412 +)))
505 505  
506 -506.9 - SF7BW125 to SF12BW125
414 +(((
415 +(% style="color:blue" %)**99**   (%%) Not known or not detectable
416 +)))
507 507  
508 -507.1 - SF7BW125 to SF12BW125
509 509  
510 -507.3 - SF7BW125 to SF12BW125
511 511  
512 -507.5 - SF7BW125 to SF12BW125
420 +=== 2.4.5  Soil Moisture ===
513 513  
514 -507.7 - SF7BW125 to SF12BW125
422 +(((
423 +(((
424 +Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil.
425 +)))
426 +)))
515 515  
516 -507.9 - SF7BW125 to SF12BW125
428 +(((
429 +(((
430 +For example, if the data you get from the register is **__0x05 0xDC__**, the moisture content in the soil is
431 +)))
432 +)))
517 517  
518 -508.1 - SF7BW125 to SF12BW125
434 +(((
435 +
436 +)))
519 519  
520 -505.3 - SF12BW125 (RX2 downlink only)
438 +(((
439 +(% style="color:#4f81bd" %)**05DC(H) = 1500(D) /100 = 15%.**
440 +)))
521 521  
522 522  
523 523  
524 -=== 2.7.4 AU915-928(AU915) ===
444 +=== 2.4.6  Soil Temperature ===
525 525  
526 -Default use CHE=2
446 +(((
447 +Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is __**0x09 0xEC**__, the temperature content in the soil is
448 +)))
527 527  
528 -(% style="color:#037691" %)**Uplink:**
450 +(((
451 +**Example**:
452 +)))
529 529  
530 -916.8 - SF7BW125 to SF12BW125
454 +(((
455 +If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/100 = 2.61 °C
456 +)))
531 531  
532 -917.0 - SF7BW125 to SF12BW125
458 +(((
459 +If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C
460 +)))
533 533  
534 -917.2 - SF7BW125 to SF12BW125
535 535  
536 -917.4 - SF7BW125 to SF12BW125
537 537  
538 -917.6 - SF7BW125 to SF12BW125
464 +=== 2.4.7  Soil Conductivity (EC) ===
539 539  
540 -917.8 - SF7BW125 to SF12BW125
466 +(((
467 +Obtain (% style="color:#4f81bd" %)**__soluble salt concentration__**(%%) in soil or (% style="color:#4f81bd" %)**__soluble ion concentration in liquid fertilizer__**(%%) or (% style="color:#4f81bd" %)**__planting medium__**(%%). The value range of the register is 0 - 20000(Decimal)( Can be greater than 20000).
468 +)))
541 541  
542 -918.0 - SF7BW125 to SF12BW125
470 +(((
471 +For example, if the data you get from the register is __**0x00 0xC8**__, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm.
472 +)))
543 543  
544 -918.2 - SF7BW125 to SF12BW125
474 +(((
475 +Generally, the EC value of irrigation water is less than 800uS / cm.
476 +)))
545 545  
478 +(((
479 +
480 +)))
546 546  
547 -(% style="color:#037691" %)**Downlink:**
482 +(((
483 +
484 +)))
548 548  
549 -923.3 - SF7BW500 to SF12BW500
486 +=== 2.4.8  Digital Interrupt ===
550 550  
551 -923.9 - SF7BW500 to SF12BW500
488 +(((
489 +Digital Interrupt refers to pin (% style="color:blue" %)**GPIO_EXTI**(%%), and there are different trigger methods. When there is a trigger, the NSE01 will send a packet to the server.
490 +)))
552 552  
553 -924.5 - SF7BW500 to SF12BW500
492 +(((
493 +The command is:
494 +)))
554 554  
555 -925.1 - SF7BW500 to SF12BW500
496 +(((
497 +(% style="color:blue" %)**AT+INTMOD=3 **(%%) ~/~/(more info about INMOD please refer [[**AT Command Manual**>>url:https://www.dragino.com/downloads/downloads/NB-IoT/NBSN95/DRAGINO_NBSN95-NB_AT%20Commands_v1.1.0.pdf]])**.**
498 +)))
556 556  
557 -925.7 - SF7BW500 to SF12BW500
558 558  
559 -926.3 - SF7BW500 to SF12BW500
501 +(((
502 +The lower four bits of this data field shows if this packet is generated by interrupt or not. Click here for the hardware and software set up.
503 +)))
560 560  
561 -926.9 - SF7BW500 to SF12BW500
562 562  
563 -927.5 - SF7BW500 to SF12BW500
506 +(((
507 +Example:
508 +)))
564 564  
565 -923.3 - SF12BW500(RX2 downlink only)
510 +(((
511 +0x(00): Normal uplink packet.
512 +)))
566 566  
514 +(((
515 +0x(01): Interrupt Uplink Packet.
516 +)))
567 567  
568 568  
569 -=== 2.7.5 AS920-923 & AS923-925 (AS923) ===
570 570  
571 -(% style="color:#037691" %)**Default Uplink channel:**
520 +=== 2.4.9  ​+5V Output ===
572 572  
573 -923.2 - SF7BW125 to SF10BW125
522 +(((
523 +NSE01 will enable +5V output before all sampling and disable the +5v after all sampling. 
524 +)))
574 574  
575 -923.4 - SF7BW125 to SF10BW125
576 576  
527 +(((
528 +The 5V output time can be controlled by AT Command.
529 +)))
577 577  
578 -(% style="color:#037691" %)**Additional Uplink Channel**:
531 +(((
532 +(% style="color:blue" %)**AT+5VT=1000**
533 +)))
579 579  
580 -(OTAA mode, channel added by JoinAccept message)
535 +(((
536 +Means set 5V valid time to have 1000ms. So the real 5V output will actually have 1000ms + sampling time for other sensors.
537 +)))
581 581  
582 -(% style="color:#037691" %)**AS920~~AS923 for Japan, Malaysia, Singapore**:
583 583  
584 -922.2 - SF7BW125 to SF10BW125
585 585  
586 -922.4 - SF7BW125 to SF10BW125
541 +== 2.5  Downlink Payload ==
587 587  
588 -922.6 - SF7BW125 to SF10BW125
543 +By default, NSE01 prints the downlink payload to console port.
589 589  
590 -922.8 - SF7BW125 to SF10BW125
545 +[[image:image-20220708133731-5.png]]
591 591  
592 -923.0 - SF7BW125 to SF10BW125
593 593  
594 -922.0 - SF7BW125 to SF10BW125
548 +(((
549 +(% style="color:blue" %)**Examples:**
550 +)))
595 595  
552 +(((
553 +
554 +)))
596 596  
597 -(% style="color:#037691" %)**AS923 ~~ AS925 for Brunei, Cambodia, Hong Kong, Indonesia, Laos, Taiwan, Thailand, Vietnam**:
556 +* (((
557 +(% style="color:blue" %)**Set TDC**
558 +)))
598 598  
599 -923.6 - SF7BW125 to SF10BW125
560 +(((
561 +If the payload=0100003C, it means set the END Node's TDC to 0x00003C=60(S), while type code is 01.
562 +)))
600 600  
601 -923.8 - SF7BW125 to SF10BW125
564 +(((
565 +Payload:    01 00 00 1E    TDC=30S
566 +)))
602 602  
603 -924.0 - SF7BW125 to SF10BW125
568 +(((
569 +Payload:    01 00 00 3C    TDC=60S
570 +)))
604 604  
605 -924.2 - SF7BW125 to SF10BW125
572 +(((
573 +
574 +)))
606 606  
607 -924.4 - SF7BW125 to SF10BW125
576 +* (((
577 +(% style="color:blue" %)**Reset**
578 +)))
608 608  
609 -924.6 - SF7BW125 to SF10BW125
580 +(((
581 +If payload = 0x04FF, it will reset the NSE01
582 +)))
610 610  
611 611  
612 -(% style="color:#037691" %)** Downlink:**
585 +* (% style="color:blue" %)**INTMOD**
613 613  
614 -Uplink channels 1-8 (RX1)
587 +(((
588 +Downlink Payload: 06000003, Set AT+INTMOD=3
589 +)))
615 615  
616 -923.2 - SF10BW125 (RX2)
617 617  
618 618  
593 +== 2.6  ​LED Indicator ==
619 619  
620 -=== 2.7.6 KR920-923 (KR920) ===
595 +(((
596 +The NSE01 has an internal LED which is to show the status of different state.
621 621  
622 -Default channel:
623 623  
624 -922.1 - SF7BW125 to SF12BW125
599 +* When power on, NSE01 will detect if sensor probe is connected, if probe detected, LED will blink four times. (no blinks in this step is no probe)
600 +* Then the LED will be on for 1 second means device is boot normally.
601 +* After NSE01 join NB-IoT network. The LED will be ON for 3 seconds.
602 +* For each uplink probe, LED will be on for 500ms.
603 +)))
625 625  
626 -922.3 - SF7BW125 to SF12BW125
627 627  
628 -922.5 - SF7BW125 to SF12BW125
629 629  
630 630  
631 -(% style="color:#037691" %)**Uplink: (OTAA mode, channel added by JoinAccept message)**
608 +== 2.7  Installation in Soil ==
632 632  
633 -922.1 - SF7BW125 to SF12BW125
610 +__**Measurement the soil surface**__
634 634  
635 -922.3 - SF7BW125 to SF12BW125
612 +(((
613 +Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting. [[https:~~/~~/img.alicdn.com/imgextra/i3/2005165265/O1CN010rj9Oh1olPsQxrdUK_!!2005165265.jpg>>url:https://img.alicdn.com/imgextra/i3/2005165265/O1CN010rj9Oh1olPsQxrdUK_!!2005165265.jpg]]
614 +)))
636 636  
637 -922.5 - SF7BW125 to SF12BW125
616 +[[image:1657259653666-883.png]] ​
638 638  
639 -922.7 - SF7BW125 to SF12BW125
640 640  
641 -922.9 - SF7BW125 to SF12BW125
619 +(((
620 +
642 642  
643 -923.1 - SF7BW125 to SF12BW125
622 +(((
623 +Dig a hole with diameter > 20CM.
624 +)))
644 644  
645 -923.3 - SF7BW125 to SF12BW125
626 +(((
627 +Horizontal insert the probe to the soil and fill the hole for long term measurement.
628 +)))
629 +)))
646 646  
631 +[[image:1654506665940-119.png]]
647 647  
648 -(% style="color:#037691" %)**Downlink:**
633 +(((
634 +
635 +)))
649 649  
650 -Uplink channels 1-7(RX1)
651 651  
652 -921.9 - SF12BW125 (RX2 downlink only; SF12BW125 might be changed to SF9BW125)
638 +== 2. Firmware Change Log ==
653 653  
654 654  
641 +Download URL & Firmware Change log
655 655  
656 -=== 2.7.7 IN865-867 (IN865) ===
643 +[[www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/Firmware/]]
657 657  
658 -(% style="color:#037691" %)** Uplink:**
659 659  
660 -865.0625 - SF7BW125 to SF12BW125
646 +Upgrade Instruction: [[Upgrade_Firmware>>||anchor="H5.1200BHowtoUpgradeFirmware"]]
661 661  
662 -865.4025 - SF7BW125 to SF12BW125
663 663  
664 -865.9850 - SF7BW125 to SF12BW125
665 665  
650 +== 2.9  ​Battery Analysis ==
666 666  
667 -(% style="color:#037691" %) **Downlink:**
652 +=== 2.9.1  ​Battery Type ===
668 668  
669 -Uplink channels 1-3 (RX1)
670 670  
671 -866.550 - SF10BW125 (RX2)
672 -
673 -
674 -
675 -
676 -== 2.8 LED Indicator ==
677 -
678 -The LSE01 has an internal LED which is to show the status of different state.
679 -
680 -* Blink once when device power on.
681 -* Solid ON for 5 seconds once device successful Join the network.
682 -* Blink once when device transmit a packet.
683 -
684 -== 2.9 Installation in Soil ==
685 -
686 -**Measurement the soil surface**
687 -
688 -
689 -[[image:1654506634463-199.png]] ​
690 -
691 691  (((
692 -(((
693 -Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting.
656 +The NSE01 battery is a combination of an 8500mAh Li/SOCI2 Battery and a Super Capacitor. The battery is none-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter.
694 694  )))
695 -)))
696 696  
697 697  
698 -[[image:1654506665940-119.png]]
699 -
700 700  (((
701 -Dig a hole with diameter > 20CM.
661 +The battery is designed to last for several years depends on the actually use environment and update interval. 
702 702  )))
703 703  
704 -(((
705 -Horizontal insert the probe to the soil and fill the hole for long term measurement.
706 -)))
707 707  
708 -
709 -== 2.10 ​Firmware Change Log ==
710 -
711 711  (((
712 -**Firmware download link:**
666 +The battery related documents as below:
713 713  )))
714 714  
715 -(((
716 -[[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/]]
717 -)))
669 +* [[Battery Dimension>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]
670 +* [[Lithium-Thionyl Chloride Battery datasheet>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]
671 +* [[Lithium-ion Battery-Capacitor datasheet>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]
718 718  
719 719  (((
720 -
674 +[[image:image-20220708140453-6.png]]
721 721  )))
722 722  
723 -(((
724 -**Firmware Upgrade Method: **[[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome]]
725 -)))
726 726  
727 -(((
728 -
729 -)))
730 730  
731 -(((
732 -**V1.0.**
733 -)))
679 +=== 2.9.2  Power consumption Analyze ===
734 734  
735 735  (((
736 -Release
682 +Dragino battery powered product are all runs in Low Power mode. We have an update battery calculator which base on the measurement of the real device. User can use this calculator to check the battery life and calculate the battery life if want to use different transmit interval.
737 737  )))
738 738  
739 739  
740 -== 2.11 ​Battery Analysis ==
741 -
742 -=== 2.11.1 ​Battery Type ===
743 -
744 744  (((
745 -The LSE01 battery is a combination of a 4000mAh Li/SOCI2 Battery and a Super Capacitor. The battery is non-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter.
687 +Instruction to use as below:
746 746  )))
747 747  
748 748  (((
749 -The battery is designed to last for more than 5 years for the LSN50.
691 +(% style="color:blue" %)**Step 1:  **(%%)Downlink the up-to-date DRAGINO_Battery_Life_Prediction_Table.xlsx from: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/]]
750 750  )))
751 751  
694 +
752 752  (((
753 -(((
754 -The battery-related documents are as below:
696 +(% style="color:blue" %)**Step 2: **(%%) Open it and choose
755 755  )))
756 -)))
757 757  
758 758  * (((
759 -[[Battery Dimension>>url:http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/&file=LSN50-Battery-Dimension.pdf]],
700 +Product Model
760 760  )))
761 761  * (((
762 -[[Lithium-Thionyl Chloride Battery  datasheet>>url:https://www.dragino.com/downloads/downloads/datasheet/Battery/ER26500/ER26500_Datasheet-EN.pdf]],
703 +Uplink Interval
763 763  )))
764 764  * (((
765 -[[Lithium-ion Battery-Capacitor datasheet>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC_1520_datasheet.jpg]], [[Tech Spec>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC1520%20Technical%20Specification20171123.pdf]]
706 +Working Mode
766 766  )))
767 767  
768 - [[image:image-20220610172436-1.png]]
709 +(((
710 +And the Life expectation in difference case will be shown on the right.
711 +)))
769 769  
713 +[[image:image-20220708141352-7.jpeg]]
770 770  
771 771  
772 -=== 2.11.2 ​Battery Note ===
773 773  
717 +=== 2.9.3  ​Battery Note ===
718 +
774 774  (((
775 775  The Li-SICO battery is designed for small current / long period application. It is not good to use a high current, short period transmit method. The recommended minimum period for use of this battery is 5 minutes. If you use a shorter period time to transmit LoRa, then the battery life may be decreased.
776 776  )))
... ... @@ -777,303 +777,176 @@
777 777  
778 778  
779 779  
780 -=== 2.11.3 Replace the battery ===
725 +=== 2.9. Replace the battery ===
781 781  
782 782  (((
783 -If Battery is lower than 2.7v, user should replace the battery of LSE01.
728 +The default battery pack of NSE01 includes a ER26500 plus super capacitor. If user can't find this pack locally, they can find ER26500 or equivalence without the SPC1520 capacitor, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes).
784 784  )))
785 785  
731 +
732 +
733 += 3. ​ Access NB-IoT Module =
734 +
786 786  (((
787 -You can change the battery in the LSE01.The type of battery is not limited as long as the output is between 3v to 3.6v. On the main board, there is a diode (D1) between the battery and the main circuit. If you need to use a battery with less than 3.3v, please remove the D1 and shortcut the two pads of it so there won’t be voltage drop between battery and main board.
736 +Users can directly access the AT command set of the NB-IoT module.
788 788  )))
789 789  
790 790  (((
791 -The default battery pack of LSE01 includes a ER18505 plus super capacitor. If user can’t find this pack locally, they can find ER18505 or equivalence, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes)
740 +The AT Command set can refer the BC35-G NB-IoT Module AT Command: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=datasheet/other_vendors/BC35-G/>>url:https://www.dragino.com/downloads/index.php?dir=datasheet/other_vendors/BC35-G/]] 
792 792  )))
793 793  
743 +[[image:1657261278785-153.png]]
794 794  
795 795  
796 -= 3. ​Using the AT Commands =
797 797  
798 -== 3.1 Access AT Commands ==
747 += 4.  Using the AT Commands =
799 799  
749 +== 4.1  Access AT Commands ==
800 800  
801 -LSE01 supports AT Command set in the stock firmware. You can use a USB to TTL adapter to connect to LSE01 for using AT command, as below.
751 +See this link for detail: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/]]
802 802  
803 -[[image:1654501986557-872.png||height="391" width="800"]]
804 804  
754 +AT+<CMD>?  : Help on <CMD>
805 805  
806 -Or if you have below board, use below connection:
756 +AT+<CMD>         : Run <CMD>
807 807  
758 +AT+<CMD>=<value> : Set the value
808 808  
809 -[[image:1654502005655-729.png||height="503" width="801"]]
760 +AT+<CMD>=?  : Get the value
810 810  
811 811  
812 -
813 -In the PC, you need to set the serial baud rate to (% style="color:green" %)**9600**(%%) to access the serial console for LSE01. LSE01 will output system info once power on as below:
814 -
815 -
816 - [[image:1654502050864-459.png||height="564" width="806"]]
817 -
818 -
819 -Below are the available commands, a more detailed AT Command manual can be found at [[AT Command Manual>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/]]: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/]]
820 -
821 -
822 -(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>? **(%%) : Help on <CMD>
823 -
824 -(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD> **(%%) : Run <CMD>
825 -
826 -(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>=<value>**(%%) : Set the value
827 -
828 -(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>=?**(%%)  : Get the value
829 -
830 -
831 831  (% style="color:#037691" %)**General Commands**(%%)      
832 832  
833 -(% style="background-color:#dcdcdc" %)**AT**(%%)  : Attention       
765 +AT  : Attention       
834 834  
835 -(% style="background-color:#dcdcdc" %)**AT?**(%%)  : Short Help     
767 +AT?  : Short Help     
836 836  
837 -(% style="background-color:#dcdcdc" %)**ATZ**(%%)  : MCU Reset    
769 +ATZ  : MCU Reset    
838 838  
839 -(% style="background-color:#dcdcdc" %)**AT+TDC**(%%)  : Application Data Transmission Interval 
771 +AT+TDC  : Application Data Transmission Interval
840 840  
773 +AT+CFG  : Print all configurations
841 841  
842 -(% style="color:#037691" %)**Keys, IDs and EUIs management**
775 +AT+CFGMOD           : Working mode selection
843 843  
844 -(% style="background-color:#dcdcdc" %)**AT+APPEUI**(%%)              : Application EUI      
777 +AT+INTMOD            : Set the trigger interrupt mode
845 845  
846 -(% style="background-color:#dcdcdc" %)**AT+APPKEY**(%%)              : Application Key     
779 +AT+5VT  : Set extend the time of 5V power  
847 847  
848 -(% style="background-color:#dcdcdc" %)**AT+APPSKEY**(%%)            : Application Session Key
781 +AT+PRO  : Choose agreement
849 849  
850 -(% style="background-color:#dcdcdc" %)**AT+DADDR**(%%)              : Device Address     
783 +AT+WEIGRE  : Get weight or set weight to 0
851 851  
852 -(% style="background-color:#dcdcdc" %)**AT+DEUI**(%%)                   : Device EUI     
785 +AT+WEIGAP  : Get or Set the GapValue of weight
853 853  
854 -(% style="background-color:#dcdcdc" %)**AT+NWKID**(%%)               : Network ID (You can enter this command change only after successful network connection
787 +AT+RXDL  : Extend the sending and receiving time
855 855  
856 -(% style="background-color:#dcdcdc" %)**AT+NWKSKEY**(%%)          : Network Session Key Joining and sending date on LoRa network  
789 +AT+CNTFAC  : Get or set counting parameters
857 857  
858 -(% style="background-color:#dcdcdc" %)**AT+CFM**(%%)  : Confirm Mode       
791 +AT+SERVADDR  : Server Address
859 859  
860 -(% style="background-color:#dcdcdc" %)**AT+CFS**(%%)                     : Confirm Status       
861 861  
862 -(% style="background-color:#dcdcdc" %)**AT+JOIN**(%%)  : Join LoRa? Network       
794 +(% style="color:#037691" %)**COAP Management**      
863 863  
864 -(% style="background-color:#dcdcdc" %)**AT+NJM**(%%)  : LoRa? Network Join Mode    
796 +AT+URI            : Resource parameters
865 865  
866 -(% style="background-color:#dcdcdc" %)**AT+NJS**(%%)                     : LoRa? Network Join Status    
867 867  
868 -(% style="background-color:#dcdcdc" %)**AT+RECV**(%%)                  : Print Last Received Data in Raw Format
799 +(% style="color:#037691" %)**UDP Management**
869 869  
870 -(% style="background-color:#dcdcdc" %)**AT+RECVB**(%%)                : Print Last Received Data in Binary Format      
801 +AT+CFM          : Upload confirmation mode (only valid for UDP)
871 871  
872 -(% style="background-color:#dcdcdc" %)**AT+SEND**(%%)                  : Send Text Data      
873 873  
874 -(% style="background-color:#dcdcdc" %)**AT+SENB**(%%)                  : Send Hexadecimal Data
804 +(% style="color:#037691" %)**MQTT Management**
875 875  
806 +AT+CLIENT               : Get or Set MQTT client
876 876  
877 -(% style="color:#037691" %)**LoRa Network Management**
808 +AT+UNAME  : Get or Set MQTT Username
878 878  
879 -(% style="background-color:#dcdcdc" %)**AT+ADR**(%%)          : Adaptive Rate
810 +AT+PWD                  : Get or Set MQTT password
880 880  
881 -(% style="background-color:#dcdcdc" %)**AT+CLASS**(%%)  : LoRa Class(Currently only support class A
812 +AT+PUBTOPI : Get or Set MQTT publish topic
882 882  
883 -(% style="background-color:#dcdcdc" %)**AT+DCS**(%%)  : Duty Cycle Settin
814 +AT+SUBTOPIC  : Get or Set MQTT subscription topic
884 884  
885 -(% style="background-color:#dcdcdc" %)**AT+DR**(%%)  : Data Rate (Can Only be Modified after ADR=0)     
886 886  
887 -(% style="background-color:#dcdcdc" %)**AT+FCD**(%%)  : Frame Counter Downlink       
817 +(% style="color:#037691" %)**Information**          
888 888  
889 -(% style="background-color:#dcdcdc" %)**AT+FCU**(%%)  : Frame Counter Uplink   
819 +AT+FDR  : Factory Data Reset
890 890  
891 -(% style="background-color:#dcdcdc" %)**AT+JN1DL**(%%)  : Join Accept Delay1
821 +AT+PWOR : Serial Access Password
892 892  
893 -(% style="background-color:#dcdcdc" %)**AT+JN2DL**(%%)  : Join Accept Delay2
894 894  
895 -(% style="background-color:#dcdcdc" %)**AT+PNM**(%%)  : Public Network Mode   
896 896  
897 -(% style="background-color:#dcdcdc" %)**AT+RX1DL**(%%)  : Receive Delay1      
825 += ​5.  FAQ =
898 898  
899 -(% style="background-color:#dcdcdc" %)**AT+RX2DL**(%%)  : Receive Delay2      
827 +== 5.1 How to Upgrade Firmware ==
900 900  
901 -(% style="background-color:#dcdcdc" %)**AT+RX2DR**(%%)  : Rx2 Window Data Rate 
902 902  
903 -(% style="background-color:#dcdcdc" %)**AT+RX2FQ**(%%)  : Rx2 Window Frequency
904 -
905 -(% style="background-color:#dcdcdc" %)**AT+TXP**(%%)  : Transmit Power
906 -
907 -(% style="background-color:#dcdcdc" %)**AT+ MOD**(%%)  : Set work mode
908 -
909 -
910 -(% style="color:#037691" %)**Information** 
911 -
912 -(% style="background-color:#dcdcdc" %)**AT+RSSI**(%%)           : RSSI of the Last Received Packet   
913 -
914 -(% style="background-color:#dcdcdc" %)**AT+SNR**(%%)           : SNR of the Last Received Packet   
915 -
916 -(% style="background-color:#dcdcdc" %)**AT+VER**(%%)           : Image Version and Frequency Band       
917 -
918 -(% style="background-color:#dcdcdc" %)**AT+FDR**(%%)           : Factory Data Reset
919 -
920 -(% style="background-color:#dcdcdc" %)**AT+PORT**(%%)  : Application Port    
921 -
922 -(% style="background-color:#dcdcdc" %)**AT+CHS**(%%)  : Get or Set Frequency (Unit: Hz) for Single Channel Mode
923 -
924 - (% style="background-color:#dcdcdc" %)**AT+CHE**(%%)  : Get or Set eight channels mode, Only for US915, AU915, CN470
925 -
926 -
927 -= ​4. FAQ =
928 -
929 -== 4.1 ​How to change the LoRa Frequency Bands/Region? ==
930 -
931 931  (((
932 -You can follow the instructions for [[how to upgrade image>>||anchor="H2.10200BFirmwareChangeLog"]].
933 -When downloading the images, choose the required image file for download. ​
831 +User can upgrade the firmware for 1) bug fix, 2) new feature release.
934 934  )))
935 935  
936 936  (((
937 -
835 +Please see this link for how to upgrade:  [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H2.HardwareUpgradeMethodSupportList>>http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H2.HardwareUpgradeMethodSupportList]]
938 938  )))
939 939  
940 940  (((
941 -How to set up LSE01 to work in 8 channel mode By default, the frequency bands US915, AU915, CN470 work in 72 frequencies. Many gateways are 8 channel gateways, and in this case, the OTAA join time and uplink schedule is long and unpredictable while the end node is hopping in 72 frequencies.
839 +(% style="color:red" %)Notice, NSE01 and LSE01 share the same mother board. They use the same connection and method to update.
942 942  )))
943 943  
944 -(((
945 -
946 -)))
947 947  
948 -(((
949 -You can configure the end node to work in 8 channel mode by using the AT+CHE command. The 500kHz channels are always included for OTAA.
950 -)))
951 951  
952 -(((
953 -
954 -)))
844 +== 5.2  Can I calibrate NSE01 to different soil types? ==
955 955  
956 956  (((
957 -For example, in **US915** band, the frequency table is as below. By default, the end node will use all channels (0~~71) for OTAA Join process. After the OTAA Join, the end node will use these all channels (0~~71) to send uplink packets.
847 +NSE01 is calibrated for saline-alkali soil and loamy soil. If users want to use it for other soil, they can calibrate the value in the IoT platform base on the value measured by saline-alkali soil and loamy soil. The formula can be found at [[this link>>https://www.dragino.com/downloads/downloads/LoRa_End_Node/LSE01/Calibrate_to_other_Soil_20220605.pdf]].
958 958  )))
959 959  
960 -[[image:image-20220606154726-3.png]]
961 961  
851 += 6.  Trouble Shooting =
962 962  
963 -When you use the TTN network, the US915 frequency bands use are:
853 +== 6.1  ​Connection problem when uploading firmware ==
964 964  
965 -* 903.9 - SF7BW125 to SF10BW125
966 -* 904.1 - SF7BW125 to SF10BW125
967 -* 904.3 - SF7BW125 to SF10BW125
968 -* 904.5 - SF7BW125 to SF10BW125
969 -* 904.7 - SF7BW125 to SF10BW125
970 -* 904.9 - SF7BW125 to SF10BW125
971 -* 905.1 - SF7BW125 to SF10BW125
972 -* 905.3 - SF7BW125 to SF10BW125
973 -* 904.6 - SF8BW500
974 974  
975 975  (((
976 -Because the end node is now hopping in 72 frequency, it makes it difficult for the devices to Join the TTN network and uplink data. To solve this issue, you can access the device via the AT commands and run:
857 +**Please see: **[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H3.3Troubleshooting>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H3.3Troubleshooting]]
977 977  )))
978 978  
979 -(% class="box infomessage" %)
860 +(% class="wikigeneratedid" %)
980 980  (((
981 -**AT+CHE=2**
982 -)))
983 -
984 -(% class="box infomessage" %)
985 -(((
986 -**ATZ**
987 -)))
988 -
989 -(((
990 -to set the end node to work in 8 channel mode. The device will work in Channel 8-15 & 64-71 for OTAA, and channel 8-15 for Uplink.
991 -)))
992 -
993 -(((
994 994  
995 995  )))
996 996  
997 -(((
998 -The **AU915** band is similar. Below are the AU915 Uplink Channels.
999 -)))
1000 1000  
1001 -[[image:image-20220606154825-4.png]]
866 +== 6.2  AT Command input doesn't work ==
1002 1002  
1003 -
1004 -
1005 -= 5. Trouble Shooting =
1006 -
1007 -== 5.1 ​Why I can’t join TTN in US915 / AU915 bands? ==
1008 -
1009 -It is due to channel mapping. Please see the [[Eight Channel Mode>>doc:Main.LoRaWAN Communication Debug.WebHome||anchor="H2.NoticeofUS9152FCN4702FAU915Frequencyband"]] section above for details.
1010 -
1011 -
1012 -== 5.2 AT Command input doesn’t work ==
1013 -
1014 1014  (((
1015 -In the case if user can see the console output but can’t type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn’t send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.
1016 -)))
869 +In the case if user can see the console output but can't type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn't send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.
1017 1017  
1018 -
1019 -== 5.3 Device rejoin in at the second uplink packet ==
1020 -
1021 -(% style="color:#4f81bd" %)**Issue describe as below:**
1022 -
1023 -[[image:1654500909990-784.png]]
1024 -
1025 -
1026 -(% style="color:#4f81bd" %)**Cause for this issue:**
1027 -
1028 -(((
1029 -The fuse on LSE01 is not large enough, some of the soil probe require large current up to 5v 800mA, in a short pulse. When this happen, it cause the device reboot so user see rejoin.
871 +
1030 1030  )))
1031 1031  
1032 1032  
1033 -(% style="color:#4f81bd" %)**Solution: **
875 += 7. ​ Order Info =
1034 1034  
1035 -All new shipped LSE01 after 2020-May-30 will have this to fix. For the customer who see this issue, please bypass the fuse as below:
1036 1036  
1037 -[[image:1654500929571-736.png||height="458" width="832"]]
878 +Part Number**:** (% style="color:#4f81bd" %)**NSE01**
1038 1038  
1039 1039  
1040 -= 6. ​Order Info =
1041 -
1042 -
1043 -Part Number**:** (% style="color:#4f81bd" %)**LSE01-XX-YY**
1044 -
1045 -
1046 -(% style="color:#4f81bd" %)**XX**(%%)**:** The default frequency band
1047 -
1048 -* (% style="color:red" %)**AS923**(%%): LoRaWAN AS923 band
1049 -* (% style="color:red" %)**AU915**(%%): LoRaWAN AU915 band
1050 -* (% style="color:red" %)**EU433**(%%): LoRaWAN EU433 band
1051 -* (% style="color:red" %)**EU868**(%%): LoRaWAN EU868 band
1052 -* (% style="color:red" %)**KR920**(%%): LoRaWAN KR920 band
1053 -* (% style="color:red" %)**US915**(%%): LoRaWAN US915 band
1054 -* (% style="color:red" %)**IN865**(%%):  LoRaWAN IN865 band
1055 -* (% style="color:red" %)**CN470**(%%): LoRaWAN CN470 band
1056 -
1057 -(% style="color:#4f81bd" %)**YY**(%%)**: **Battery Option
1058 -
1059 -* (% style="color:red" %)**4**(%%): 4000mAh battery
1060 -* (% style="color:red" %)**8**(%%): 8500mAh battery
1061 -
1062 1062  (% class="wikigeneratedid" %)
1063 1063  (((
1064 1064  
1065 1065  )))
1066 1066  
1067 -= 7. Packing Info =
886 += 8.  Packing Info =
1068 1068  
1069 1069  (((
1070 1070  
1071 1071  
1072 1072  (% style="color:#037691" %)**Package Includes**:
1073 -)))
1074 1074  
1075 -* (((
1076 -LSE01 LoRaWAN Soil Moisture & EC Sensor x 1
893 +* NSE01 NB-IoT Soil Moisture & EC Sensor x 1
894 +* External antenna x 1
1077 1077  )))
1078 1078  
1079 1079  (((
... ... @@ -1080,25 +1080,19 @@
1080 1080  
1081 1081  
1082 1082  (% style="color:#037691" %)**Dimension and weight**:
1083 -)))
1084 1084  
1085 -* (((
1086 -Device Size: cm
902 +* Size: 195 x 125 x 55 mm
903 +* Weight:   420g
1087 1087  )))
1088 -* (((
1089 -Device Weight: g
1090 -)))
1091 -* (((
1092 -Package Size / pcs : cm
1093 -)))
1094 -* (((
1095 -Weight / pcs : g
1096 1096  
906 +(((
1097 1097  
908 +
909 +
910 +
1098 1098  )))
1099 1099  
1100 -= 8. Support =
913 += 9.  Support =
1101 1101  
1102 1102  * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
1103 1103  * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.com]]
1104 -
1657245163077-232.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +81.0 KB
Content
1657246476176-652.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +492.6 KB
Content
1657249419225-449.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +81.0 KB
Content
1657249468462-536.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +483.6 KB
Content
1657249793983-486.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +85.8 KB
Content
1657249831934-534.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +72.5 KB
Content
1657249864775-321.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +87.0 KB
Content
1657249930215-289.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +77.3 KB
Content
1657249978444-674.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +139.5 KB
Content
1657249990869-686.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +96.9 KB
Content
1657250217799-140.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +98.7 KB
Content
1657250255956-604.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +99.0 KB
Content
1657259653666-883.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +344.4 KB
Content
1657260785982-288.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +138.2 KB
Content
1657261119050-993.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +126.1 KB
Content
1657261278785-153.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +126.1 KB
Content
1657271519014-786.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +71.5 KB
Content
1657327959271-447.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +78.3 KB
Content
image-20220708101224-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +22.2 KB
Content
image-20220708101605-2.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +87.5 KB
Content
image-20220708110657-3.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +251.7 KB
Content
image-20220708111918-4.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +38.8 KB
Content
image-20220708133731-5.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +8.7 KB
Content
image-20220708140453-6.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +132.7 KB
Content
image-20220708141352-7.jpeg
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +102.7 KB
Content
image-20220709084038-1.jpeg
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +72.0 KB
Content
image-20220709084137-2.jpeg
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +72.0 KB
Content
image-20220709084207-3.jpeg
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +72.0 KB
Content
image-20220709084458-4.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +199.5 KB
Content
image-20220709085040-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +200.4 KB
Content