Changes for page N95S31B -- NB-IoT Temperature & Humidity Sensor User Manual
Last modified by Mengting Qiu on 2024/04/02 16:44
Summary
-
Page properties (2 modified, 0 added, 0 removed)
-
Attachments (0 modified, 21 added, 0 removed)
- 1657245163077-232.png
- 1657246476176-652.png
- 1657249419225-449.png
- 1657249468462-536.png
- 1657249793983-486.png
- 1657249831934-534.png
- 1657249864775-321.png
- 1657249930215-289.png
- 1657249978444-674.png
- 1657249990869-686.png
- 1657250217799-140.png
- 1657250255956-604.png
- 1657259653666-883.png
- 1657260785982-288.png
- image-20220708101224-1.png
- image-20220708101605-2.png
- image-20220708110657-3.png
- image-20220708111918-4.png
- image-20220708133731-5.png
- image-20220708140453-6.png
- image-20220708141352-7.jpeg
Details
- Page properties
-
- Title
-
... ... @@ -1,1 +1,1 @@ 1 - LSE01-LoRaWAN Soil Moisture & EC Sensor User Manual1 +NSE01 - NB-IoT Soil Moisture & EC Sensor User Manual - Content
-
... ... @@ -3,9 +3,7 @@ 3 3 4 4 5 5 6 -**Contents:** 7 7 8 -{{toc/}} 9 9 10 10 11 11 ... ... @@ -12,62 +12,81 @@ 12 12 13 13 14 14 15 -= 1. Introduction = 16 16 17 - == 1.1 Whatis LoRaWANSoil Moisture& EC Sensor ==14 +**Table of Contents:** 18 18 19 -((( 20 -The Dragino LSE01 is a (% style="color:#4f81bd" %)**LoRaWAN Soil Moisture & EC Sensor**(%%) for IoT of Agriculture. It is designed to measure the soil moisture of saline-alkali soil and loamy soil. The soil sensor uses FDR method to calculate the soil moisture with the compensation from soil temperature and conductivity. It also has been calibrated in factory for Mineral soil type. 21 -))) 22 22 23 -((( 24 -It detects (% style="color:#4f81bd" %)**Soil Moisture**(%%), (% style="color:#4f81bd" %)**Soil Temperature**(%%) and (% style="color:#4f81bd" %)**Soil Conductivity**(%%), and uploads the value via wireless to LoRaWAN IoT Server. 25 -))) 26 26 27 -((( 28 -The LoRa wireless technology used in LES01 allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption. 29 -))) 30 30 31 -((( 32 -LES01 is powered by (% style="color:#4f81bd" %)**4000mA or 8500mAh Li-SOCI2 battery**(%%), It is designed for long term use up to 10 years. 33 -))) 34 34 20 + 21 += 1. Introduction = 22 + 23 +== 1.1 What is LoRaWAN Soil Moisture & EC Sensor == 24 + 35 35 ((( 36 -Each LES01 is pre-load with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect after power on. 37 -))) 26 + 38 38 28 +Dragino NSE01 is an (% style="color:blue" %)**NB-IOT soil moisture & EC sensor**(%%) for agricultural IoT. Used to measure the soil moisture of saline-alkali soil and loam. The soil sensor uses the FDR method to calculate soil moisture and compensates it with soil temperature and electrical conductivity. It has also been calibrated for mineral soil types at the factory. 39 39 30 +It can detect (% style="color:blue" %)**Soil Moisture, Soil Temperature and Soil Conductivity**(%%), and upload its value to the server wirelessly. 31 + 32 +The wireless technology used in NSE01 allows the device to send data at a low data rate and reach ultra-long distances, providing ultra-long-distance spread spectrum Communication. 33 + 34 +NSE01 are powered by (% style="color:blue" %)**8500mAh Li-SOCI2**(%%) batteries, which can be used for up to 5 years. 35 + 36 + 37 +))) 38 + 40 40 [[image:1654503236291-817.png]] 41 41 42 42 43 -[[image:16545 03265560-120.png]]42 +[[image:1657245163077-232.png]] 44 44 45 45 46 46 47 47 == 1.2 Features == 48 48 49 - * LoRaWAN 1.0.3 Class A50 -* Ultra lowpower consumption48 + 49 +* NB-IoT Bands: B1/B3/B8/B5/B20/B28 @H-FDD 51 51 * Monitor Soil Moisture 52 52 * Monitor Soil Temperature 53 53 * Monitor Soil Conductivity 54 -* Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865 55 55 * AT Commands to change parameters 56 56 * Uplink on periodically 57 57 * Downlink to change configure 58 58 * IP66 Waterproof Enclosure 59 -* 4000mAh or 8500mAh Battery for long term use 57 +* Ultra-Low Power consumption 58 +* AT Commands to change parameters 59 +* Micro SIM card slot for NB-IoT SIM 60 +* 8500mAh Battery for long term use 60 60 62 +== 1.3 Specification == 61 61 62 -== 1.3 Specification == 63 63 65 +(% style="color:#037691" %)**Common DC Characteristics:** 66 + 67 +* Supply Voltage: 2.1v ~~ 3.6v 68 +* Operating Temperature: -40 ~~ 85°C 69 + 70 +(% style="color:#037691" %)**NB-IoT Spec:** 71 + 72 +* - B1 @H-FDD: 2100MHz 73 +* - B3 @H-FDD: 1800MHz 74 +* - B8 @H-FDD: 900MHz 75 +* - B5 @H-FDD: 850MHz 76 +* - B20 @H-FDD: 800MHz 77 +* - B28 @H-FDD: 700MHz 78 + 79 +(% style="color:#037691" %)**Probe Specification:** 80 + 64 64 Measure Volume: Base on the centra pin of the probe, a cylinder with 7cm diameter and 10cm height. 65 65 66 -[[image:image-20220 606162220-5.png]]83 +[[image:image-20220708101224-1.png]] 67 67 68 68 69 69 70 -== 1.4 Applications == 87 +== 1.4 Applications == 71 71 72 72 * Smart Agriculture 73 73 ... ... @@ -74,725 +74,551 @@ 74 74 (% class="wikigeneratedid" id="H200B1.5FirmwareChangelog" %) 75 75 76 76 77 -== 1.5 Firmware Changelog==94 +== 1.5 Pin Definitions == 78 78 79 79 80 - **LSE01v1.0 :** Release97 +[[image:1657246476176-652.png]] 81 81 82 82 83 83 84 -= 2. ConfigureLSE01 to connect toLoRaWANnetwork=101 += 2. Use NSE01 to communicate with IoT Server = 85 85 86 -== 2.1 How it works == 103 +== 2.1 How it works == 87 87 105 + 88 88 ((( 89 -The LSE01 isconfiguredasLoRaWANOTAAClass Amodebydefault.IthasOTAAkeystojoinLoRaWANnetwork.Toconnect a localLoRaWAN network,you need toinputtheOTAAkeysin theLoRaWANserverandpoweronthe LSE0150. It willautomaticallyjointhenetworkviaOTAA and starttosendthesensor value107 +The NSE01 is equipped with a NB-IoT module, the pre-loaded firmware in NSE01 will get environment data from sensors and send the value to local NB-IoT network via the NB-IoT module. The NB-IoT network will forward this value to IoT server via the protocol defined by NSE01. 90 90 ))) 91 91 110 + 92 92 ((( 93 - In case you can’t set the OTAA keys in theLoRaWAN OTAA server,andyouhave tousethe keysfromtheserver, you can [[useAT Commands >>||anchor="H3.200BUsingtheATCommands"]].112 +The diagram below shows the working flow in default firmware of NSE01: 94 94 ))) 95 95 115 +[[image:image-20220708101605-2.png]] 96 96 117 +((( 118 + 119 +))) 97 97 98 -== 2.2 Quick guide to connect to LoRaWAN server (OTAA) == 99 99 100 -Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LG308>>url:http://www.dragino.com/products/lora/item/140-lg308.html]] as a LoRaWAN gateway in this example. 101 101 123 +== 2.2 Configure the NSE01 == 102 102 103 -[[image:1654503992078-669.png]] 104 104 126 +=== 2.2.1 Test Requirement === 105 105 106 -The LG308 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server. 107 107 129 +To use NSE01 in your city, make sure meet below requirements: 108 108 109 -**Step 1**: Create a device in TTN with the OTAA keys from LSE01. 131 +* Your local operator has already distributed a NB-IoT Network there. 132 +* The local NB-IoT network used the band that NSE01 supports. 133 +* Your operator is able to distribute the data received in their NB-IoT network to your IoT server. 110 110 111 -Each LSE01 is shipped with a sticker with the default device EUI as below: 112 - 113 -[[image:image-20220606163732-6.jpeg]] 114 - 115 -You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot: 116 - 117 -**Add APP EUI in the application** 118 - 119 - 120 -[[image:1654504596150-405.png]] 121 - 122 - 123 - 124 -**Add APP KEY and DEV EUI** 125 - 126 -[[image:1654504683289-357.png]] 127 - 128 - 129 - 130 -**Step 2**: Power on LSE01 131 - 132 - 133 -Put a Jumper on JP2 to power on the device. ( The Jumper must be in FLASH position). 134 - 135 -[[image:image-20220606163915-7.png]] 136 - 137 - 138 -**Step 3:** The LSE01 will auto join to the TTN network. After join success, it will start to upload messages to TTN and you can see the messages in the panel. 139 - 140 -[[image:1654504778294-788.png]] 141 - 142 - 143 - 144 -== 2.3 Uplink Payload == 145 - 146 -=== === 147 - 148 -=== 2.3.1 MOD~=0(Default Mode) === 149 - 150 -LSE01 will uplink payload via LoRaWAN with below payload format: 151 - 152 152 ((( 153 - Uplinkpayload includesintotal 11bytes.136 +Below figure shows our testing structure. Here we have NB-IoT network coverage by China Mobile, the band they use is B8. The NSE01 will use CoAP((% style="color:red" %)120.24.4.116:5683)(%%) or raw UDP((% style="color:red" %)120.24.4.116:5601)(%%) or MQTT((% style="color:red" %)120.24.4.116:1883)(%%)or TCP((% style="color:red" %)120.24.4.116:5600)(%%)protocol to send data to the test server 154 154 ))) 155 155 156 -(% border="1" cellspacing="10" style="background-color:#ffffcc; width:500px" %) 157 -|((( 158 -**Size** 159 159 160 -**(bytes)** 161 -)))|**2**|**2**|**2**|**2**|**2**|**1** 162 -|**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|((( 163 -Temperature 140 +[[image:1657249419225-449.png]] 164 164 165 -(Reserve, Ignore now) 166 -)))|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]]|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]]|((( 167 -MOD & Digital Interrupt 168 168 169 -(Optional) 170 -))) 171 171 172 -=== 2. 3.2MOD~=1(Originalvalue)===144 +=== 2.2.2 Insert SIM card === 173 173 174 - Thismodecan get the originalAD valueofistureand original conductivity (with temperaturedrift compensation).146 +Insert the NB-IoT Card get from your provider. 175 175 176 -(% border="1" cellspacing="10" style="background-color:#ffffcc; width:500px" %) 177 -|((( 178 -**Size** 148 +User need to take out the NB-IoT module and insert the SIM card like below: 179 179 180 -**(bytes)** 181 -)))|**2**|**2**|**2**|**2**|**2**|**1** 182 -|**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|((( 183 -Temperature 184 184 185 -(Reserve, Ignore now) 186 -)))|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]](raw)|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]](raw)|((( 187 -MOD & Digital Interrupt 151 +[[image:1657249468462-536.png]] 188 188 189 -(Optional) 190 -))) 191 191 192 -=== 2.3.3 Battery Info === 193 193 194 -((( 195 -Check the battery voltage for LSE01. 196 -))) 155 +=== 2.2.3 Connect USB – TTL to NSE01 to configure it === 197 197 198 198 ((( 199 -Ex1: 0x0B45 = 2885mV 200 -))) 201 - 202 202 ((( 203 -E x2: 0x0B49=2889mV159 +User need to configure NSE01 via serial port to set the (% style="color:blue" %)**Server Address** / **Uplink Topic** (%%)to define where and how-to uplink packets. NSE01 support AT Commands, user can use a USB to TTL adapter to connect to NSE01 and use AT Commands to configure it, as below. 204 204 ))) 205 - 206 - 207 - 208 -=== 2.3.4 Soil Moisture === 209 - 210 -((( 211 -Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil. 212 212 ))) 213 213 214 -((( 215 -For example, if the data you get from the register is __0x05 0xDC__, the moisture content in the soil is 216 -))) 217 217 218 -((( 219 - 220 -))) 164 +**Connection:** 221 221 222 -((( 223 -(% style="color:#4f81bd" %)**05DC(H) = 1500(D) /100 = 15%.** 224 -))) 166 + (% style="background-color:yellow" %)USB TTL GND <~-~-~-~-> GND 225 225 168 + (% style="background-color:yellow" %)USB TTL TXD <~-~-~-~-> UART_RXD 226 226 170 + (% style="background-color:yellow" %)USB TTL RXD <~-~-~-~-> UART_TXD 227 227 228 -=== 2.3.5 Soil Temperature === 229 229 230 -((( 231 - Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is 0x09 0xEC, the temperature content in the soil is 232 -))) 173 +In the PC, use below serial tool settings: 233 233 234 -((( 235 -**Example**: 236 -))) 175 +* Baud: (% style="color:green" %)**9600** 176 +* Data bits:** (% style="color:green" %)8(%%)** 177 +* Stop bits: (% style="color:green" %)**1** 178 +* Parity: (% style="color:green" %)**None** 179 +* Flow Control: (% style="color:green" %)**None** 237 237 238 238 ((( 239 - Ifpayload is0105H:((0x0105&0x8000)>>15===0),temp =0105(H)/100=2.61°C182 +Make sure the switch is in FLASH position, then power on device by connecting the jumper on NSE01. NSE01 will output system info once power on as below, we can enter the (% style="color:green" %)**password: 12345678**(%%) to access AT Command input. 240 240 ))) 241 241 242 -((( 243 -If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C 244 -))) 185 +[[image:image-20220708110657-3.png]] 245 245 187 +(% style="color:red" %)Note: the valid AT Commands can be found at: (%%)[[http:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/]] 246 246 247 247 248 -=== 2.3.6 Soil Conductivity (EC) === 249 249 250 -((( 251 -Obtain (% style="color:#4f81bd" %)**__soluble salt concentration__**(%%) in soil or (% style="color:#4f81bd" %)**__soluble ion concentration in liquid fertilizer__**(%%) or (% style="color:#4f81bd" %)**__planting medium__**(%%). The value range of the register is 0 - 20000(Decimal)( Can be greater than 20000). 252 -))) 191 +=== 2.2.4 Use CoAP protocol to uplink data === 253 253 254 -((( 255 -For example, if the data you get from the register is 0x00 0xC8, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm. 256 -))) 193 +(% style="color:red" %)Note: if you don't have CoAP server, you can refer this link to set up one: (%%)[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/>>http://wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/]] 257 257 258 -((( 259 -Generally, the EC value of irrigation water is less than 800uS / cm. 260 -))) 261 261 262 -((( 263 - 264 -))) 196 +**Use below commands:** 265 265 266 -(( (267 - 268 -)) )198 +* (% style="color:blue" %)**AT+PRO=1** (%%) ~/~/ Set to use CoAP protocol to uplink 199 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5683 ** (%%)~/~/ to set CoAP server address and port 200 +* (% style="color:blue" %)**AT+URI=5,11,"mqtt",11,"coap",12,"0",15,"c=text1",23,"0" ** (%%) ~/~/Set COAP resource path 269 269 270 - ===2.3.7MOD===202 +For parameter description, please refer to AT command set 271 271 272 - Firmwareversion at least v2.1 supports changing mode.204 +[[image:1657249793983-486.png]] 273 273 274 -For example, bytes[10]=90 275 275 276 - mod=(bytes[10]>>7)&0x01=1.207 +After configure the server address and (% style="color:green" %)**reset the device**(%%) (via AT+ATZ ), NSE01 will start to uplink sensor values to CoAP server. 277 277 209 +[[image:1657249831934-534.png]] 278 278 279 -**Downlink Command:** 280 280 281 -If payload = 0x0A00, workmode=0 282 282 283 - If****payload=****0x0A01,workmode=1213 +=== 2.2.5 Use UDP protocol to uplink data(Default protocol) === 284 284 215 +This feature is supported since firmware version v1.0.1 285 285 286 286 287 -=== 2.3.8 Decode payload in The Things Network === 218 +* (% style="color:blue" %)**AT+PRO=2 ** (%%) ~/~/ Set to use UDP protocol to uplink 219 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5601 ** (%%) ~/~/ to set UDP server address and port 220 +* (% style="color:blue" %)**AT+CFM=1 ** (%%) ~/~/If the server does not respond, this command is unnecessary 288 288 289 - While using TTN network, you can add the payload format to decode the payload.222 +[[image:1657249864775-321.png]] 290 290 291 291 292 -[[image:1654 505570700-128.png]]225 +[[image:1657249930215-289.png]] 293 293 294 -((( 295 -The payload decoder function for TTN is here: 296 -))) 297 297 298 -((( 299 -LSE01 TTN Payload Decoder: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Payload_Decoder/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Payload_Decoder/]] 300 -))) 301 301 229 +=== 2.2.6 Use MQTT protocol to uplink data === 302 302 231 +This feature is supported since firmware version v110 303 303 304 -== 2.4 Uplink Interval == 305 305 306 -The LSE01 by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link: [[Change Uplink Interval>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H4.1ChangeUplinkInterval"]] 234 +* (% style="color:blue" %)**AT+PRO=3 ** (%%) ~/~/Set to use MQTT protocol to uplink 235 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,1883 ** (%%) ~/~/Set MQTT server address and port 236 +* (% style="color:blue" %)**AT+CLIENT=CLIENT ** (%%)~/~/Set up the CLIENT of MQTT 237 +* (% style="color:blue" %)**AT+UNAME=UNAME **(%%)~/~/Set the username of MQTT 238 +* (% style="color:blue" %)**AT+PWD=PWD **(%%)~/~/Set the password of MQTT 239 +* (% style="color:blue" %)**AT+PUBTOPIC=NSE01_PUB **(%%)~/~/Set the sending topic of MQTT 240 +* (% style="color:blue" %)**AT+SUBTOPIC=NSE01_SUB **(%%) ~/~/Set the subscription topic of MQTT 307 307 242 +[[image:1657249978444-674.png]] 308 308 309 309 310 - ==2.5 Downlink Payload ==245 +[[image:1657249990869-686.png]] 311 311 312 -By default, LSE50 prints the downlink payload to console port. 313 313 314 -[[image:image-20220606165544-8.png]] 315 - 316 - 317 317 ((( 318 - **Examples:**249 +MQTT protocol has a much higher power consumption compare vs UDP / CoAP protocol. Please check the power analyze document and adjust the uplink period to a suitable interval. 319 319 ))) 320 320 321 -((( 322 - 323 -))) 324 324 325 -* ((( 326 -**Set TDC** 327 -))) 328 328 329 -((( 330 -If the payload=0100003C, it means set the END Node’s TDC to 0x00003C=60(S), while type code is 01. 331 -))) 254 +=== 2.2.7 Use TCP protocol to uplink data === 332 332 333 -((( 334 -Payload: 01 00 00 1E TDC=30S 335 -))) 256 +This feature is supported since firmware version v110 336 336 337 -((( 338 -Payload: 01 00 00 3C TDC=60S 339 -))) 340 340 341 -((( 342 - 343 -))) 259 +* (% style="color:blue" %)**AT+PRO=4 ** (%%) ~/~/ Set to use TCP protocol to uplink 260 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5600 **(%%) ~/~/ to set TCP server address and port 344 344 345 -* ((( 346 -**Reset** 347 -))) 262 +[[image:1657250217799-140.png]] 348 348 349 -((( 350 -If payload = 0x04FF, it will reset the LSE01 351 -))) 352 352 265 +[[image:1657250255956-604.png]] 353 353 354 -* **CFM** 355 355 356 -Downlink Payload: 05000001, Set AT+CFM=1 or 05000000 , set AT+CFM=0 357 357 269 +=== 2.2.8 Change Update Interval === 358 358 271 +User can use below command to change the (% style="color:green" %)**uplink interval**. 359 359 360 - ==2.6ShowDatainDataCake IoT Server==273 +* (% style="color:blue" %)**AT+TDC=600 ** (%%)~/~/ Set Update Interval to 600s 361 361 362 362 ((( 363 - [[DATACAKE>>url:https://datacake.co/]] provides a human friendly interfaceto show the sensordata,once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps:276 +(% style="color:red" %)**NOTE:** 364 364 ))) 365 365 366 366 ((( 367 - 280 +(% style="color:red" %)1. By default, the device will send an uplink message every 1 hour. 368 368 ))) 369 369 370 -((( 371 -**Step 1**: Be sure that your device is programmed and properly connected to the network at this time. 372 -))) 373 373 374 -((( 375 -**Step 2**: To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps: 376 -))) 377 377 285 +== 2.3 Uplink Payload == 378 378 379 - [[image:1654505857935-743.png]]287 +In this mode, uplink payload includes in total 18 bytes 380 380 289 +(% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:510px" %) 290 +|=(% style="width: 50px;" %)((( 291 +**Size(bytes)** 292 +)))|=(% style="width: 50px;" %)**6**|=(% style="width: 25px;" %)2|=(% style="width: 25px;" %)**2**|=(% style="width: 80px;" %)**1**|=(% style="width: 80px;" %)**2**|=(% style="width: 80px;" %)**2**|=(% style="width: 80px;" %)**2**|=(% style="width: 40px;" %)**1** 293 +|(% style="width:97px" %)**Value**|(% style="width:83px" %)[[Device ID>>||anchor="H"]]|(% style="width:41px" %)[[Ver>>||anchor="H"]]|(% style="width:46px" %)[[BAT>>||anchor="H"]]|(% style="width:123px" %)[[Signal Strength>>||anchor="H"]]|(% style="width:108px" %)[[Soil Moisture>>||anchor="H"]]|(% style="width:133px" %)[[Soil Temperature>>||anchor="H"]]|(% style="width:159px" %)[[Soil Conductivity(EC)>>||anchor="H"]]|(% style="width:80px" %)[[Interrupt>>||anchor="H"]] 381 381 382 - [[image:1654505874829-548.png]]295 +If we use the MQTT client to subscribe to this MQTT topic, we can see the following information when the NSE01 uplink data. 383 383 384 -Step 3: Create an account or log in Datacake. 385 385 386 - Step 4:Search theLSE01and add DevEUI.298 +[[image:image-20220708111918-4.png]] 387 387 388 388 389 - [[image:1654505905236-553.png]]301 +The payload is ASCII string, representative same HEX: 390 390 303 +0x72403155615900640c7817075e0a8c02f900 where: 391 391 392 -After added, the sensor data arrive TTN, it will also arrive and show in Mydevices. 305 +* Device ID: 0x 724031556159 = 724031556159 306 +* Version: 0x0064=100=1.0.0 393 393 394 -[[image:1654505925508-181.png]] 308 +* BAT: 0x0c78 = 3192 mV = 3.192V 309 +* Singal: 0x17 = 23 310 +* Soil Moisture: 0x075e= 1886 = 18.86 % 311 +* Soil Temperature:0x0a8c =2700=27 °C 312 +* Soil Conductivity(EC) = 0x02f9 =761 uS /cm 313 +* Interrupt: 0x00 = 0 395 395 315 +== 2.4 Payload Explanation and Sensor Interface == 396 396 397 397 398 -== 2. 7 FrequencyPlans==318 +=== 2.4.1 Device ID === 399 399 400 - TheLSE01 uses OTAA modendbelowfrequency plans by default.Ifuser wanttouse itwithdifferentfrequency plan, pleaserefertheAT commandsets.320 +By default, the Device ID equal to the last 6 bytes of IMEI. 401 401 322 +User can use (% style="color:blue" %)**AT+DEUI**(%%) to set Device ID 402 402 403 - === 2.7.1EU863-870 (EU868) ===324 +**Example:** 404 404 405 - (% style="color:#037691" %)** Uplink:**326 +AT+DEUI=A84041F15612 406 406 407 - 868.1-SF7BW125toSF12BW125328 +The Device ID is stored in a none-erase area, Upgrade the firmware or run AT+FDR won't erase Device ID. 408 408 409 -868.3 - SF7BW125 to SF12BW125 and SF7BW250 410 410 411 -868.5 - SF7BW125 to SF12BW125 412 412 413 - 867.1- SF7BW125toSF12BW125332 +=== 2.4.2 Version Info === 414 414 415 - 867.3-SF7BW125toSF12BW125334 +Specify the software version: 0x64=100, means firmware version 1.00. 416 416 417 - 867.5-SF7BW125toSF12BW125336 +For example: 0x00 64 : this device is NSE01 with firmware version 1.0.0. 418 418 419 -867.7 - SF7BW125 to SF12BW125 420 420 421 -867.9 - SF7BW125 to SF12BW125 422 422 423 - 868.8-FSK340 +=== 2.4.3 Battery Info === 424 424 342 +((( 343 +Check the battery voltage for LSE01. 344 +))) 425 425 426 -(% style="color:#037691" %)** Downlink:** 346 +((( 347 +Ex1: 0x0B45 = 2885mV 348 +))) 427 427 428 -Uplink channels 1-9 (RX1) 350 +((( 351 +Ex2: 0x0B49 = 2889mV 352 +))) 429 429 430 -869.525 - SF9BW125 (RX2 downlink only) 431 431 432 432 356 +=== 2.4.4 Signal Strength === 433 433 434 - ===2.7.2US902-928(US915)===358 +NB-IoT Network signal Strength. 435 435 436 - Usedin USA, Canadaand South America. Default use CHE=2360 +**Ex1: 0x1d = 29** 437 437 438 -(% style="color: #037691" %)**Uplink:**362 +(% style="color:blue" %)**0**(%%) -113dBm or less 439 439 440 - 903.9-SF7BW125toSF10BW125364 +(% style="color:blue" %)**1**(%%) -111dBm 441 441 442 - 904.1- SF7BW125toSF10BW125366 +(% style="color:blue" %)**2...30**(%%) -109dBm... -53dBm 443 443 444 - 904.3-SF7BW125toSF10BW125368 +(% style="color:blue" %)**31** (%%) -51dBm or greater 445 445 446 -9 04.5-SF7BW125toSF10BW125370 +(% style="color:blue" %)**99** (%%) Not known or not detectable 447 447 448 -904.7 - SF7BW125 to SF10BW125 449 449 450 -904.9 - SF7BW125 to SF10BW125 451 451 452 - 905.1- SF7BW125toSF10BW125374 +=== 2.4.5 Soil Moisture === 453 453 454 -905.3 - SF7BW125 to SF10BW125 376 +((( 377 +Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil. 378 +))) 455 455 380 +((( 381 +For example, if the data you get from the register is **__0x05 0xDC__**, the moisture content in the soil is 382 +))) 456 456 457 -(% style="color:#037691" %)**Downlink:** 384 +((( 385 + 386 +))) 458 458 459 -923.3 - SF7BW500 to SF12BW500 388 +((( 389 +(% style="color:#4f81bd" %)**05DC(H) = 1500(D) /100 = 15%.** 390 +))) 460 460 461 -923.9 - SF7BW500 to SF12BW500 462 462 463 -924.5 - SF7BW500 to SF12BW500 464 464 465 - 925.1-SF7BW500toSF12BW500394 +=== 2.4.6 Soil Temperature === 466 466 467 -925.7 - SF7BW500 to SF12BW500 396 +((( 397 + Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is __**0x09 0xEC**__, the temperature content in the soil is 398 +))) 468 468 469 -926.3 - SF7BW500 to SF12BW500 400 +((( 401 +**Example**: 402 +))) 470 470 471 -926.9 - SF7BW500 to SF12BW500 404 +((( 405 +If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/100 = 2.61 °C 406 +))) 472 472 473 -927.5 - SF7BW500 to SF12BW500 408 +((( 409 +If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C 410 +))) 474 474 475 -923.3 - SF12BW500(RX2 downlink only) 476 476 477 477 414 +=== 2.4.7 Soil Conductivity (EC) === 478 478 479 -=== 2.7.3 CN470-510 (CN470) === 416 +((( 417 +Obtain (% style="color:#4f81bd" %)**__soluble salt concentration__**(%%) in soil or (% style="color:#4f81bd" %)**__soluble ion concentration in liquid fertilizer__**(%%) or (% style="color:#4f81bd" %)**__planting medium__**(%%). The value range of the register is 0 - 20000(Decimal)( Can be greater than 20000). 418 +))) 480 480 481 -Used in China, Default use CHE=1 420 +((( 421 +For example, if the data you get from the register is __**0x00 0xC8**__, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm. 422 +))) 482 482 483 -(% style="color:#037691" %)**Uplink:** 424 +((( 425 +Generally, the EC value of irrigation water is less than 800uS / cm. 426 +))) 484 484 485 -486.3 - SF7BW125 to SF12BW125 428 +((( 429 + 430 +))) 486 486 487 -486.5 - SF7BW125 to SF12BW125 432 +((( 433 + 434 +))) 488 488 489 -4 86.7-SF7BW125toSF12BW125436 +=== 2.4.8 Digital Interrupt === 490 490 491 - 486.9-SF7BW125toSF12BW125438 +Digital Interrupt refers to pin (% style="color:blue" %)**GPIO_EXTI**(%%), and there are different trigger methods. When there is a trigger, the NSE01 will send a packet to the server. 492 492 493 - 487.1- SF7BW125 toSF12BW125440 +The command is: 494 494 495 - 487.3-SF7BW125to SF12BW125442 +(% style="color:blue" %)**AT+INTMOD=3 **(%%) ~/~/(more info about INMOD please refer [[**AT Command Manual**>>url:https://www.dragino.com/downloads/downloads/NB-IoT/NBSN95/DRAGINO_NBSN95-NB_AT%20Commands_v1.1.0.pdf]])**.** 496 496 497 -487.5 - SF7BW125 to SF12BW125 498 498 499 - 487.7-SF7BW125toSF12BW125445 +The lower four bits of this data field shows if this packet is generated by interrupt or not. [[Click here>>||anchor="H"]] for the hardware and software set up. 500 500 501 501 502 - (% style="color:#037691" %)**Downlink:**448 +Example: 503 503 504 - 506.7-SF7BW125to SF12BW125450 +0x(00): Normal uplink packet. 505 505 506 - 506.9 - SF7BW125toSF12BW125452 +0x(01): Interrupt Uplink Packet. 507 507 508 -507.1 - SF7BW125 to SF12BW125 509 509 510 -507.3 - SF7BW125 to SF12BW125 511 511 512 - 507.5- SF7BW125 toSF12BW125456 +=== 2.4.9 +5V Output === 513 513 514 - 507.7-SF7BW125 toSF12BW125458 +NSE01 will enable +5V output before all sampling and disable the +5v after all sampling. 515 515 516 -507.9 - SF7BW125 to SF12BW125 517 517 518 -5 08.1-SF7BW125toSF12BW125461 +The 5V output time can be controlled by AT Command. 519 519 520 - 505.3 - SF12BW125(RX2downlinkonly)463 +(% style="color:blue" %)**AT+5VT=1000** 521 521 465 +Means set 5V valid time to have 1000ms. So the real 5V output will actually have 1000ms + sampling time for other sensors. 522 522 523 523 524 -=== 2.7.4 AU915-928(AU915) === 525 525 526 -D efaultuse CHE=2469 +== 2.5 Downlink Payload == 527 527 528 - (% style="color:#037691"%)**Uplink:**471 +By default, NSE01 prints the downlink payload to console port. 529 529 530 - 916.8-SF7BW125 to SF12BW125473 +[[image:image-20220708133731-5.png]] 531 531 532 -917.0 - SF7BW125 to SF12BW125 533 533 534 -917.2 - SF7BW125 to SF12BW125 535 535 536 -917.4 - SF7BW125 to SF12BW125 477 +((( 478 +(% style="color:blue" %)**Examples:** 479 +))) 537 537 538 -917.6 - SF7BW125 to SF12BW125 481 +((( 482 + 483 +))) 539 539 540 -917.8 - SF7BW125 to SF12BW125 485 +* ((( 486 +(% style="color:blue" %)**Set TDC** 487 +))) 541 541 542 -918.0 - SF7BW125 to SF12BW125 489 +((( 490 +If the payload=0100003C, it means set the END Node's TDC to 0x00003C=60(S), while type code is 01. 491 +))) 543 543 544 -918.2 - SF7BW125 to SF12BW125 493 +((( 494 +Payload: 01 00 00 1E TDC=30S 495 +))) 545 545 497 +((( 498 +Payload: 01 00 00 3C TDC=60S 499 +))) 546 546 547 -(% style="color:#037691" %)**Downlink:** 501 +((( 502 + 503 +))) 548 548 549 -923.3 - SF7BW500 to SF12BW500 505 +* ((( 506 +(% style="color:blue" %)**Reset** 507 +))) 550 550 551 -923.9 - SF7BW500 to SF12BW500 509 +((( 510 +If payload = 0x04FF, it will reset the NSE01 511 +))) 552 552 553 -924.5 - SF7BW500 to SF12BW500 554 554 555 - 925.1-SF7BW500toSF12BW500514 +* (% style="color:blue" %)**INTMOD** 556 556 557 - 925.7-SF7BW500 toSF12BW500516 +Downlink Payload: 06000003, Set AT+INTMOD=3 558 558 559 -926.3 - SF7BW500 to SF12BW500 560 560 561 -926.9 - SF7BW500 to SF12BW500 562 562 563 - 927.5-SF7BW500toSF12BW500520 +== 2.6 LED Indicator == 564 564 565 -923.3 - SF12BW500(RX2 downlink only) 522 +((( 523 +The NSE01 has an internal LED which is to show the status of different state. 566 566 567 567 526 +* When power on, NSE01 will detect if sensor probe is connected, if probe detected, LED will blink four times. (no blinks in this step is no probe) 527 +* Then the LED will be on for 1 second means device is boot normally. 528 +* After NSE01 join NB-IoT network. The LED will be ON for 3 seconds. 529 +* For each uplink probe, LED will be on for 500ms. 530 +))) 568 568 569 -=== 2.7.5 AS920-923 & AS923-925 (AS923) === 570 570 571 -(% style="color:#037691" %)**Default Uplink channel:** 572 572 573 -923.2 - SF7BW125 to SF10BW125 574 574 575 - 923.4 - SF7BW125to SF10BW125535 +== 2.7 Installation in Soil == 576 576 537 +__**Measurement the soil surface**__ 577 577 578 - (%style="color:#037691"%)**AdditionalUplinkChannel**:539 +Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting. [[https:~~/~~/img.alicdn.com/imgextra/i3/2005165265/O1CN010rj9Oh1olPsQxrdUK_!!2005165265.jpg>>url:https://img.alicdn.com/imgextra/i3/2005165265/O1CN010rj9Oh1olPsQxrdUK_!!2005165265.jpg]] 579 579 580 - (OTAA mode, channel added by JoinAcceptmessage)541 +[[image:1657259653666-883.png]] 581 581 582 -(% style="color:#037691" %)**AS920~~AS923 for Japan, Malaysia, Singapore**: 583 583 584 -922.2 - SF7BW125 to SF10BW125 544 +((( 545 + 585 585 586 -922.4 - SF7BW125 to SF10BW125 547 +((( 548 +Dig a hole with diameter > 20CM. 549 +))) 587 587 588 -922.6 - SF7BW125 to SF10BW125 551 +((( 552 +Horizontal insert the probe to the soil and fill the hole for long term measurement. 553 +))) 554 +))) 589 589 590 - 922.8 - SF7BW125to SF10BW125556 +[[image:1654506665940-119.png]] 591 591 592 -923.0 - SF7BW125 to SF10BW125 558 +((( 559 + 560 +))) 593 593 594 -922.0 - SF7BW125 to SF10BW125 595 595 563 +== 2.8 Firmware Change Log == 596 596 597 -(% style="color:#037691" %)**AS923 ~~ AS925 for Brunei, Cambodia, Hong Kong, Indonesia, Laos, Taiwan, Thailand, Vietnam**: 598 598 599 - 923.6-SF7BW125toSF10BW125566 +Download URL & Firmware Change log 600 600 601 - 923.8-F7BW125toSF10BW125568 +[[www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/Firmware/]] 602 602 603 -924.0 - SF7BW125 to SF10BW125 604 604 605 - 924.2- SF7BW125toSF10BW125571 +Upgrade Instruction: [[Upgrade_Firmware>>||anchor="H"]] 606 606 607 -924.4 - SF7BW125 to SF10BW125 608 608 609 -924.6 - SF7BW125 to SF10BW125 610 610 575 +== 2.9 Battery Analysis == 611 611 612 - (%style="color:#037691"%)**Downlink:**577 +=== 2.9.1 Battery Type === 613 613 614 -Uplink channels 1-8 (RX1) 615 615 616 - 923.2-SF10BW125 (RX2)580 +The NSE01 battery is a combination of an 8500mAh Li/SOCI2 Battery and a Super Capacitor. The battery is none-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter. 617 617 618 618 583 +The battery is designed to last for several years depends on the actually use environment and update interval. 619 619 620 -=== 2.7.6 KR920-923 (KR920) === 621 621 622 - Default channel:586 +The battery related documents as below: 623 623 624 -922.1 - SF7BW125 to SF12BW125 588 +* [[Battery Dimension>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]] 589 +* [[Lithium-Thionyl Chloride Battery>>url:http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]][[ datasheet>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]] 590 +* [[Lithium-ion Battery-Capacitor datasheet>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]] 625 625 626 -922.3 - SF7BW125 to SF12BW125 627 - 628 -922.5 - SF7BW125 to SF12BW125 629 - 630 - 631 -(% style="color:#037691" %)**Uplink: (OTAA mode, channel added by JoinAccept message)** 632 - 633 -922.1 - SF7BW125 to SF12BW125 634 - 635 -922.3 - SF7BW125 to SF12BW125 636 - 637 -922.5 - SF7BW125 to SF12BW125 638 - 639 -922.7 - SF7BW125 to SF12BW125 640 - 641 -922.9 - SF7BW125 to SF12BW125 642 - 643 -923.1 - SF7BW125 to SF12BW125 644 - 645 -923.3 - SF7BW125 to SF12BW125 646 - 647 - 648 -(% style="color:#037691" %)**Downlink:** 649 - 650 -Uplink channels 1-7(RX1) 651 - 652 -921.9 - SF12BW125 (RX2 downlink only; SF12BW125 might be changed to SF9BW125) 653 - 654 - 655 - 656 -=== 2.7.7 IN865-867 (IN865) === 657 - 658 -(% style="color:#037691" %)** Uplink:** 659 - 660 -865.0625 - SF7BW125 to SF12BW125 661 - 662 -865.4025 - SF7BW125 to SF12BW125 663 - 664 -865.9850 - SF7BW125 to SF12BW125 665 - 666 - 667 -(% style="color:#037691" %) **Downlink:** 668 - 669 -Uplink channels 1-3 (RX1) 670 - 671 -866.550 - SF10BW125 (RX2) 672 - 673 - 674 - 675 - 676 -== 2.8 LED Indicator == 677 - 678 -The LSE01 has an internal LED which is to show the status of different state. 679 - 680 -* Blink once when device power on. 681 -* Solid ON for 5 seconds once device successful Join the network. 682 -* Blink once when device transmit a packet. 683 - 684 -== 2.9 Installation in Soil == 685 - 686 -**Measurement the soil surface** 687 - 688 - 689 -[[image:1654506634463-199.png]] 690 - 691 691 ((( 692 -((( 693 -Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting. 593 +[[image:image-20220708140453-6.png]] 694 694 ))) 695 -))) 696 696 697 697 698 -[[image:1654506665940-119.png]] 699 699 700 -((( 701 -Dig a hole with diameter > 20CM. 702 -))) 598 +=== 2.9.2 Power consumption Analyze === 703 703 704 -((( 705 -Horizontal insert the probe to the soil and fill the hole for long term measurement. 706 -))) 600 +Dragino battery powered product are all runs in Low Power mode. We have an update battery calculator which base on the measurement of the real device. User can use this calculator to check the battery life and calculate the battery life if want to use different transmit interval. 707 707 708 708 709 - ==2.10FirmwareChangeLog ==603 +Instruction to use as below: 710 710 711 -((( 712 -**Firmware download link:** 713 -))) 714 714 715 -((( 716 -[[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/]] 717 -))) 606 +Step 1: Downlink the up-to-date DRAGINO_Battery_Life_Prediction_Table.xlsx from: 718 718 719 -((( 720 - 721 -))) 608 +[[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/]] 722 722 723 -((( 724 -**Firmware Upgrade Method: **[[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome]] 725 -))) 726 726 727 -((( 728 - 729 -))) 611 +Step 2: Open it and choose 730 730 731 - (((732 -* *V1.0.**733 - )))613 +* Product Model 614 +* Uplink Interval 615 +* Working Mode 734 734 735 -((( 736 -Release 737 -))) 617 +And the Life expectation in difference case will be shown on the right. 738 738 619 +[[image:image-20220708141352-7.jpeg]] 739 739 740 -== 2.11 Battery Analysis == 741 741 742 -=== 2.11.1 Battery Type === 743 743 744 -((( 745 -The LSE01 battery is a combination of a 4000mAh Li/SOCI2 Battery and a Super Capacitor. The battery is non-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter. 746 -))) 623 +=== 2.9.3 Battery Note === 747 747 748 748 ((( 749 -The battery is designed to last for more than 5 years for the LSN50. 750 -))) 751 - 752 -((( 753 -((( 754 -The battery-related documents are as below: 755 -))) 756 -))) 757 - 758 -* ((( 759 -[[Battery Dimension>>url:http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/&file=LSN50-Battery-Dimension.pdf]], 760 -))) 761 -* ((( 762 -[[Lithium-Thionyl Chloride Battery datasheet>>url:https://www.dragino.com/downloads/downloads/datasheet/Battery/ER26500/ER26500_Datasheet-EN.pdf]], 763 -))) 764 -* ((( 765 -[[Lithium-ion Battery-Capacitor datasheet>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC_1520_datasheet.jpg]], [[Tech Spec>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC1520%20Technical%20Specification20171123.pdf]] 766 -))) 767 - 768 - [[image:image-20220610172436-1.png]] 769 - 770 - 771 - 772 -=== 2.11.2 Battery Note === 773 - 774 -((( 775 775 The Li-SICO battery is designed for small current / long period application. It is not good to use a high current, short period transmit method. The recommended minimum period for use of this battery is 5 minutes. If you use a shorter period time to transmit LoRa, then the battery life may be decreased. 776 776 ))) 777 777 778 778 779 779 780 -=== 2. 11.3Replace the battery ===631 +=== 2.9.4 Replace the battery === 781 781 782 782 ((( 783 - IfBattery is lower than 2.7v,usershouldreplace the battery ofLSE01.634 +The default battery pack of NSE01 includes a ER26500 plus super capacitor. If user can't find this pack locally, they can find ER26500 or equivalence without the SPC1520 capacitor, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes). 784 784 ))) 785 785 786 -((( 787 -You can change the battery in the LSE01.The type of battery is not limited as long as the output is between 3v to 3.6v. On the main board, there is a diode (D1) between the battery and the main circuit. If you need to use a battery with less than 3.3v, please remove the D1 and shortcut the two pads of it so there won’t be voltage drop between battery and main board. 788 -))) 789 789 790 -((( 791 -The default battery pack of LSE01 includes a ER18505 plus super capacitor. If user can’t find this pack locally, they can find ER18505 or equivalence, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes) 792 -))) 793 793 794 - 795 - 796 796 = 3. Using the AT Commands = 797 797 798 798 == 3.1 Access AT Commands == ... ... @@ -816,7 +816,7 @@ 816 816 [[image:1654502050864-459.png||height="564" width="806"]] 817 817 818 818 819 -Below are the available commands, a more detailed AT Command manual can be found at [[AT Command Manual>> url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/]]: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/]]662 +Below are the available commands, a more detailed AT Command manual can be found at [[AT Command Manual>>https://www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0]]: [[https:~~/~~/www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0>>https://www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0]] 820 820 821 821 822 822 (% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>? **(%%) : Help on <CMD> ... ... @@ -974,19 +974,14 @@ 974 974 975 975 ((( 976 976 Because the end node is now hopping in 72 frequency, it makes it difficult for the devices to Join the TTN network and uplink data. To solve this issue, you can access the device via the AT commands and run: 977 -))) 978 978 979 -(% class="box infomessage" %) 980 -((( 981 -**AT+CHE=2** 821 +* (% style="color:#037691" %)**AT+CHE=2** 822 +* (% style="color:#037691" %)**ATZ** 982 982 ))) 983 983 984 -(% class="box infomessage" %) 985 985 ((( 986 -**ATZ** 987 -))) 826 + 988 988 989 -((( 990 990 to set the end node to work in 8 channel mode. The device will work in Channel 8-15 & 64-71 for OTAA, and channel 8-15 for Uplink. 991 991 ))) 992 992 ... ... @@ -1001,18 +1001,22 @@ 1001 1001 [[image:image-20220606154825-4.png]] 1002 1002 1003 1003 842 +== 4.2 Can I calibrate LSE01 to different soil types? == 1004 1004 844 +LSE01 is calibrated for saline-alkali soil and loamy soil. If users want to use it for other soil, they can calibrate the value in the IoT platform base on the value measured by saline-alkali soil and loamy soil. The formula can be found at [[this link>>https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/&file=Calibrate_to_other_Soil_20220605.pdf]]. 845 + 846 + 1005 1005 = 5. Trouble Shooting = 1006 1006 1007 -== 5.1 Why I can ’t join TTN in US915 / AU915 bands? ==849 +== 5.1 Why I can't join TTN in US915 / AU915 bands? == 1008 1008 1009 -It is due to channel mapping. Please see the [[Eight Channel Mode>>doc:Main. LoRaWANCommunication Debug.WebHome||anchor="H2.NoticeofUS9152FCN4702FAU915Frequencyband"]] section above for details.851 +It is due to channel mapping. Please see the [[Eight Channel Mode>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H7.19EightChannelMode"]] section above for details. 1010 1010 1011 1011 1012 -== 5.2 AT Command input doesn ’t work ==854 +== 5.2 AT Command input doesn't work == 1013 1013 1014 1014 ((( 1015 -In the case if user can see the console output but can ’t type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn’t send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.857 +In the case if user can see the console output but can't type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn't send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string. 1016 1016 ))) 1017 1017 1018 1018 ... ... @@ -1101,4 +1101,3 @@ 1101 1101 1102 1102 * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule. 1103 1103 * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.com]] 1104 -
- 1657245163077-232.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +81.0 KB - Content
- 1657246476176-652.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +492.6 KB - Content
- 1657249419225-449.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +81.0 KB - Content
- 1657249468462-536.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +483.6 KB - Content
- 1657249793983-486.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +85.8 KB - Content
- 1657249831934-534.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +72.5 KB - Content
- 1657249864775-321.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +87.0 KB - Content
- 1657249930215-289.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +77.3 KB - Content
- 1657249978444-674.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +139.5 KB - Content
- 1657249990869-686.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +96.9 KB - Content
- 1657250217799-140.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +98.7 KB - Content
- 1657250255956-604.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +99.0 KB - Content
- 1657259653666-883.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +344.4 KB - Content
- 1657260785982-288.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +138.2 KB - Content
- image-20220708101224-1.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +22.2 KB - Content
- image-20220708101605-2.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +87.5 KB - Content
- image-20220708110657-3.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +251.7 KB - Content
- image-20220708111918-4.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +38.8 KB - Content
- image-20220708133731-5.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +8.7 KB - Content
- image-20220708140453-6.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +132.7 KB - Content
- image-20220708141352-7.jpeg
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +102.7 KB - Content