<
From version < 35.17 >
edited by Xiaoling
on 2022/06/14 14:13
To version < 65.22 >
edited by Xiaoling
on 2022/07/08 16:35
>
Change comment: There is no comment for this version

Summary

Details

Page properties
Title
... ... @@ -1,1 +1,1 @@
1 -LSE01-LoRaWAN Soil Moisture & EC Sensor User Manual
1 +NSE01 - NB-IoT Soil Moisture & EC Sensor User Manual
Content
... ... @@ -3,6 +3,14 @@
3 3  
4 4  
5 5  
6 +
7 +
8 +
9 +
10 +
11 +
12 +
13 +
6 6  **Table of Contents:**
7 7  
8 8  {{toc/}}
... ... @@ -12,772 +12,710 @@
12 12  
13 13  
14 14  
15 -= 1. Introduction =
16 16  
17 -== 1.1 ​What is LoRaWAN Soil Moisture & EC Sensor ==
24 += 1.  Introduction =
18 18  
26 +== 1.1 ​ What is LoRaWAN Soil Moisture & EC Sensor ==
27 +
19 19  (((
20 20  
21 21  
22 -The Dragino LSE01 is a (% style="color:#4f81bd" %)**LoRaWAN Soil Moisture & EC Sensor**(%%) for IoT of Agriculture. It is designed to measure the soil moisture of saline-alkali soil and loamy soil. The soil sensor uses FDR method to calculate the soil moisture with the compensation from soil temperature and conductivity. It also has been calibrated in factory for Mineral soil type.
31 +(((
32 +Dragino NSE01 is an (% style="color:blue" %)**NB-IOT soil moisture & EC sensor**(%%) for agricultural IoT. Used to measure the soil moisture of saline-alkali soil and loam. The soil sensor uses the FDR method to calculate soil moisture and compensates it with soil temperature and electrical conductivity. It has also been calibrated for mineral soil types at the factory.
23 23  )))
24 24  
25 25  (((
26 -It detects (% style="color:#4f81bd" %)**Soil Moisture**(%%), (% style="color:#4f81bd" %)**Soil Temperature**(%%) and (% style="color:#4f81bd" %)**Soil Conductivity**(%%), and uploads the value via wireless to LoRaWAN IoT Server.
36 +It can detect (% style="color:blue" %)**Soil Moisture, Soil Temperature and Soil Conductivity**(%%), and upload its value to the server wirelessly.
27 27  )))
28 28  
29 29  (((
30 -The LoRa wireless technology used in LES01 allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption.
40 +The wireless technology used in NSE01 allows the device to send data at a low data rate and reach ultra-long distances, providing ultra-long-distance spread spectrum Communication.
31 31  )))
32 32  
33 33  (((
34 -LES01 is powered by (% style="color:#4f81bd" %)**4000mA or 8500mAh Li-SOCI2 battery**(%%), It is designed for long term use up to 10 years.
44 +NSE01 are powered by (% style="color:blue" %)**8500mAh Li-SOCI2**(%%) batteries, which can be used for up to 5 years.  
35 35  )))
36 36  
37 -(((
38 -Each LES01 is pre-load with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect after power on.
47 +
39 39  )))
40 40  
41 -
42 42  [[image:1654503236291-817.png]]
43 43  
44 44  
45 -[[image:1654503265560-120.png]]
53 +[[image:1657245163077-232.png]]
46 46  
47 47  
48 48  
49 -== 1.2 ​Features ==
57 +== 1.2 ​ Features ==
50 50  
51 -* LoRaWAN 1.0.3 Class A
52 -* Ultra low power consumption
59 +* NB-IoT Bands: B1/B3/B8/B5/B20/B28 @H-FDD
53 53  * Monitor Soil Moisture
54 54  * Monitor Soil Temperature
55 55  * Monitor Soil Conductivity
56 -* Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865
57 57  * AT Commands to change parameters
58 58  * Uplink on periodically
59 59  * Downlink to change configure
60 60  * IP66 Waterproof Enclosure
61 -* 4000mAh or 8500mAh Battery for long term use
67 +* Ultra-Low Power consumption
68 +* AT Commands to change parameters
69 +* Micro SIM card slot for NB-IoT SIM
70 +* 8500mAh Battery for long term use
62 62  
63 -== 1.3 Specification ==
64 64  
65 -Measure Volume: Base on the centra pin of the probe, a cylinder with 7cm diameter and 10cm height.
66 66  
67 -[[image:image-20220606162220-5.png]]
68 68  
75 +== 1.3  Specification ==
69 69  
70 70  
71 -== ​1.4 Applications ==
78 +(% style="color:#037691" %)**Common DC Characteristics:**
72 72  
73 -* Smart Agriculture
80 +* Supply Voltage: 2.1v ~~ 3.6v
81 +* Operating Temperature: -40 ~~ 85°C
74 74  
75 -(% class="wikigeneratedid" id="H200B1.5FirmwareChangelog" %)
76 -​
83 +(% style="color:#037691" %)**NB-IoT Spec:**
77 77  
78 -== 1.5 Firmware Change log ==
85 +* - B1 @H-FDD: 2100MHz
86 +* - B3 @H-FDD: 1800MHz
87 +* - B8 @H-FDD: 900MHz
88 +* - B5 @H-FDD: 850MHz
89 +* - B20 @H-FDD: 800MHz
90 +* - B28 @H-FDD: 700MHz
79 79  
92 +Probe(% style="color:#037691" %)** Specification:**
80 80  
81 -**LSE01 v1.0 :**  Release
94 +Measure Volume: Base on the centra pin of the probe, a cylinder with 7cm diameter and 10cm height.
82 82  
96 +[[image:image-20220708101224-1.png]]
83 83  
84 84  
85 -= 2. Configure LSE01 to connect to LoRaWAN network =
86 86  
87 -== 2.1 How it works ==
100 +== 1.4  Applications ==
88 88  
89 -(((
90 -The LSE01 is configured as LoRaWAN OTAA Class A mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and power on the LSE0150. It will automatically join the network via OTAA and start to send the sensor value
91 -)))
102 +* Smart Agriculture
92 92  
93 -(((
94 -In case you can’t set the OTAA keys in the LoRaWAN OTAA server, and you have to use the keys from the server, you can [[use AT Commands >>||anchor="H3.200BUsingtheATCommands"]].
95 -)))
104 +(% class="wikigeneratedid" id="H200B1.5FirmwareChangelog" %)
105 +​
96 96  
107 +== 1.5  Pin Definitions ==
97 97  
98 98  
99 -== 2.2 ​Quick guide to connect to LoRaWAN server (OTAA) ==
110 +[[image:1657246476176-652.png]]
100 100  
101 -Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LG308>>url:http://www.dragino.com/products/lora/item/140-lg308.html]] as a LoRaWAN gateway in this example.
102 102  
103 103  
104 -[[image:1654503992078-669.png]]
114 += 2.  Use NSE01 to communicate with IoT Server =
105 105  
116 +== 2.1  How it works ==
106 106  
107 -The LG308 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
108 108  
109 -
110 -(% style="color:blue" %)**Step 1**(%%):  Create a device in TTN with the OTAA keys from LSE01.
111 -
112 -Each LSE01 is shipped with a sticker with the default device EUI as below:
113 -
114 -[[image:image-20220606163732-6.jpeg]]
115 -
116 -You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot:
117 -
118 -**Add APP EUI in the application**
119 -
120 -
121 -[[image:1654504596150-405.png]]
122 -
123 -
124 -
125 -**Add APP KEY and DEV EUI**
126 -
127 -[[image:1654504683289-357.png]]
128 -
129 -
130 -
131 -(% style="color:blue" %)**Step 2**(%%): Power on LSE01
132 -
133 -
134 -Put a Jumper on JP2 to power on the device. ( The Jumper must be in FLASH position).
135 -
136 -[[image:image-20220606163915-7.png]]
137 -
138 -
139 -(% style="color:blue" %)**Step 3**(%%)**:** The LSE01 will auto join to the TTN network. After join success, it will start to upload messages to TTN and you can see the messages in the panel.
140 -
141 -[[image:1654504778294-788.png]]
142 -
143 -
144 -
145 -== 2.3 Uplink Payload ==
146 -
147 -
148 -=== 2.3.1 MOD~=0(Default Mode) ===
149 -
150 -LSE01 will uplink payload via LoRaWAN with below payload format: 
151 -
152 152  (((
153 -Uplink payload includes in total 11 bytes.
120 +The NSE01 is equipped with a NB-IoT module, the pre-loaded firmware in NSE01 will get environment data from sensors and send the value to local NB-IoT network via the NB-IoT module.  The NB-IoT network will forward this value to IoT server via the protocol defined by NSE01.
154 154  )))
155 155  
156 -(% border="1" cellspacing="10" style="background-color:#ffffcc; width:500px" %)
157 -|(((
158 -**Size**
159 159  
160 -**(bytes)**
161 -)))|**2**|**2**|**2**|**2**|**2**|**1**
162 -|**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(((
163 -Temperature
164 -
165 -(Reserve, Ignore now)
166 -)))|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]]|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]]|(((
167 -MOD & Digital Interrupt
168 -
169 -(Optional)
124 +(((
125 +The diagram below shows the working flow in default firmware of NSE01:
170 170  )))
171 171  
128 +[[image:image-20220708101605-2.png]]
172 172  
173 -
174 -=== 2.3.2 MOD~=1(Original value) ===
175 -
176 -This mode can get the original AD value of moisture and original conductivity (with temperature drift compensation).
177 -
178 -(% border="1" cellspacing="10" style="background-color:#ffffcc; width:500px" %)
179 -|(((
180 -**Size**
181 -
182 -**(bytes)**
183 -)))|**2**|**2**|**2**|**2**|**2**|**1**
184 -|**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(((
185 -Temperature
186 -
187 -(Reserve, Ignore now)
188 -)))|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]](raw)|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]](raw)|(((
189 -MOD & Digital Interrupt
190 -
191 -(Optional)
192 -)))
193 -
194 -
195 -
196 -=== 2.3.3 Battery Info ===
197 -
198 198  (((
199 -Check the battery voltage for LSE01.
131 +
200 200  )))
201 201  
202 -(((
203 -Ex1: 0x0B45 = 2885mV
204 -)))
205 205  
206 -(((
207 -Ex2: 0x0B49 = 2889mV
208 -)))
209 209  
136 +== 2.2 ​ Configure the NSE01 ==
210 210  
211 211  
212 -=== 2.3.4 Soil Moisture ===
139 +=== 2.2.1 Test Requirement ===
213 213  
214 -(((
215 -Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil.
216 -)))
217 217  
218 218  (((
219 -For example, if the data you get from the register is __0x05 0xDC__, the moisture content in the soil is
143 +To use NSE01 in your city, make sure meet below requirements:
220 220  )))
221 221  
222 -(((
223 -
224 -)))
146 +* Your local operator has already distributed a NB-IoT Network there.
147 +* The local NB-IoT network used the band that NSE01 supports.
148 +* Your operator is able to distribute the data received in their NB-IoT network to your IoT server.
225 225  
226 226  (((
227 -(% style="color:#4f81bd" %)**05DC(H) = 1500(D) /100 = 15%.**
151 +Below figure shows our testing structure. Here we have NB-IoT network coverage by China Mobile, the band they use is B8.  The NSE01 will use CoAP((% style="color:red" %)120.24.4.116:5683)(%%) or raw UDP((% style="color:red" %)120.24.4.116:5601)(%%) or MQTT((% style="color:red" %)120.24.4.116:1883)(%%)or TCP((% style="color:red" %)120.24.4.116:5600)(%%)protocol to send data to the test server
228 228  )))
229 229  
230 230  
155 +[[image:1657249419225-449.png]]
231 231  
232 -=== 2.3.5 Soil Temperature ===
233 233  
234 -(((
235 - Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is 0x09 0xEC, the temperature content in the soil is
236 -)))
237 237  
238 -(((
239 -**Example**:
240 -)))
159 +=== 2.2.2 Insert SIM card ===
241 241  
242 242  (((
243 -If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/100 = 2.61 °C
162 +Insert the NB-IoT Card get from your provider.
244 244  )))
245 245  
246 246  (((
247 -If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C
166 +User need to take out the NB-IoT module and insert the SIM card like below:
248 248  )))
249 249  
250 250  
170 +[[image:1657249468462-536.png]]
251 251  
252 -=== 2.3.6 Soil Conductivity (EC) ===
253 253  
254 -(((
255 -Obtain (% style="color:#4f81bd" %)**__soluble salt concentration__**(%%) in soil or (% style="color:#4f81bd" %)**__soluble ion concentration in liquid fertilizer__**(%%) or (% style="color:#4f81bd" %)**__planting medium__**(%%). The value range of the register is 0 - 20000(Decimal)( Can be greater than 20000).
256 -)))
257 257  
258 -(((
259 -For example, if the data you get from the register is 0x00 0xC8, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm.
260 -)))
174 +=== 2.2.3 Connect USB – TTL to NSE01 to configure it ===
261 261  
262 262  (((
263 -Generally, the EC value of irrigation water is less than 800uS / cm.
264 -)))
265 -
266 266  (((
267 -
178 +User need to configure NSE01 via serial port to set the (% style="color:blue" %)**Server Address** / **Uplink Topic** (%%)to define where and how-to uplink packets. NSE01 support AT Commands, user can use a USB to TTL adapter to connect to NSE01 and use AT Commands to configure it, as below.
268 268  )))
269 -
270 -(((
271 -
272 272  )))
273 273  
274 -=== 2.3.7 MOD ===
275 275  
276 -Firmware version at least v2.1 supports changing mode.
183 +**Connection:**
277 277  
278 -For example, bytes[10]=90
185 + (% style="background-color:yellow" %)USB TTL GND <~-~-~-~-> GND
279 279  
280 -mod=(bytes[10]>>7)&0x01=1.
187 + (% style="background-color:yellow" %)USB TTL TXD <~-~-~-~-> UART_RXD
281 281  
189 + (% style="background-color:yellow" %)USB TTL RXD <~-~-~-~-> UART_TXD
282 282  
283 -**Downlink Command:**
284 284  
285 -If payload = 0x0A00, workmode=0
192 +In the PC, use below serial tool settings:
286 286  
287 -If** **payload =** **0x0A01, workmode=1
194 +* Baud:  (% style="color:green" %)**9600**
195 +* Data bits:** (% style="color:green" %)8(%%)**
196 +* Stop bits: (% style="color:green" %)**1**
197 +* Parity:  (% style="color:green" %)**None**
198 +* Flow Control: (% style="color:green" %)**None**
288 288  
289 -
290 -
291 -=== 2.3.8 ​Decode payload in The Things Network ===
292 -
293 -While using TTN network, you can add the payload format to decode the payload.
294 -
295 -
296 -[[image:1654505570700-128.png]]
297 -
298 298  (((
299 -The payload decoder function for TTN is here:
201 +Make sure the switch is in FLASH position, then power on device by connecting the jumper on NSE01. NSE01 will output system info once power on as below, we can enter the (% style="color:green" %)**password: 12345678**(%%) to access AT Command input.
300 300  )))
301 301  
302 -(((
303 -LSE01 TTN Payload Decoder: [[https:~~/~~/www.dropbox.com/sh/si8icbrjlamxqdb/AAACYwjsxxr5fj_vpqRtrETAa?dl=0>>https://www.dropbox.com/sh/si8icbrjlamxqdb/AAACYwjsxxr5fj_vpqRtrETAa?dl=0]]
304 -)))
204 +[[image:image-20220708110657-3.png]]
305 305  
306 -
307 -== 2.4 Uplink Interval ==
308 -
309 -The LSE01 by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link: [[Change Uplink Interval>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H4.1ChangeUplinkInterval"]]
310 -
311 -
312 -
313 -== 2.5 Downlink Payload ==
314 -
315 -By default, LSE50 prints the downlink payload to console port.
316 -
317 -[[image:image-20220606165544-8.png]]
318 -
319 -
320 320  (((
321 -**Examples:**
207 +(% style="color:red" %)Note: the valid AT Commands can be found at: (%%)[[http:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/]]
322 322  )))
323 323  
324 -(((
325 -
326 -)))
327 327  
328 -* (((
329 -**Set TDC**
330 -)))
331 331  
332 -(((
333 -If the payload=0100003C, it means set the END Node’s TDC to 0x00003C=60(S), while type code is 01.
334 -)))
212 +=== 2.2.4 Use CoAP protocol to uplink data ===
335 335  
336 -(((
337 -Payload:    01 00 00 1E    TDC=30S
338 -)))
214 +(% style="color:red" %)Note: if you don't have CoAP server, you can refer this link to set up one: (%%)[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/>>http://wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/]]
339 339  
340 -(((
341 -Payload:    01 00 00 3C    TDC=60S
342 -)))
343 343  
344 -(((
345 -
346 -)))
217 +**Use below commands:**
347 347  
348 -* (((
349 -**Reset**
350 -)))
219 +* (% style="color:blue" %)**AT+PRO=1**  (%%) ~/~/ Set to use CoAP protocol to uplink
220 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5683   ** (%%)~/~/ to set CoAP server address and port
221 +* (% style="color:blue" %)**AT+URI=5,11,"mqtt",11,"coap",12,"0",15,"c=text1",23,"0" ** (%%) ~/~/Set COAP resource path
351 351  
352 -(((
353 -If payload = 0x04FF, it will reset the LSE01
354 -)))
223 +For parameter description, please refer to AT command set
355 355  
225 +[[image:1657249793983-486.png]]
356 356  
357 -* **CFM**
358 358  
359 -Downlink Payload: 05000001, Set AT+CFM=1 or 05000000 , set AT+CFM=0
228 +After configure the server address and (% style="color:green" %)**reset the device**(%%) (via AT+ATZ ), NSE01 will start to uplink sensor values to CoAP server.
360 360  
230 +[[image:1657249831934-534.png]]
361 361  
362 362  
363 -== 2.6 ​Show Data in DataCake IoT Server ==
364 364  
365 -(((
366 -[[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps:
367 -)))
234 +=== 2.2.5 Use UDP protocol to uplink data(Default protocol) ===
368 368  
369 -(((
370 -
371 -)))
236 +This feature is supported since firmware version v1.0.1
372 372  
373 -(((
374 -(% style="color:blue" %)**Step 1**(%%):  Be sure that your device is programmed and properly connected to the network at this time.
375 -)))
376 376  
377 -(((
378 -(% style="color:blue" %)**Step 2**(%%) To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps:
379 -)))
239 +* (% style="color:blue" %)**AT+PRO=2   ** (%%) ~/~/ Set to use UDP protocol to uplink
240 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5601   ** (%%) ~/~/ to set UDP server address and port
241 +* (% style="color:blue" %)**AT+CFM=1       ** (%%) ~/~/If the server does not respond, this command is unnecessary
380 380  
243 +[[image:1657249864775-321.png]]
381 381  
382 -[[image:1654505857935-743.png]]
383 383  
246 +[[image:1657249930215-289.png]]
384 384  
385 -[[image:1654505874829-548.png]]
386 386  
387 387  
388 -(% style="color:blue" %)**Step 3**(%%)**:**  Create an account or log in Datacake.
250 +=== 2.2.6 Use MQTT protocol to uplink data ===
389 389  
390 -(% style="color:blue" %)**Step 4**(%%)**:**  Search the LSE01 and add DevEUI.
252 +This feature is supported since firmware version v110
391 391  
392 392  
393 -[[image:1654505905236-553.png]]
255 +* (% style="color:blue" %)**AT+PRO=3   ** (%%) ~/~/Set to use MQTT protocol to uplink
256 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,1883   ** (%%) ~/~/Set MQTT server address and port
257 +* (% style="color:blue" %)**AT+CLIENT=CLIENT       ** (%%)~/~/Set up the CLIENT of MQTT
258 +* (% style="color:blue" %)**AT+UNAME=UNAME                               **(%%)~/~/Set the username of MQTT
259 +* (% style="color:blue" %)**AT+PWD=PWD                                        **(%%)~/~/Set the password of MQTT
260 +* (% style="color:blue" %)**AT+PUBTOPIC=NSE01_PUB                    **(%%)~/~/Set the sending topic of MQTT
261 +* (% style="color:blue" %)**AT+SUBTOPIC=NSE01_SUB          **(%%) ~/~/Set the subscription topic of MQTT
394 394  
263 +[[image:1657249978444-674.png]]
395 395  
396 -After added, the sensor data arrive TTN, it will also arrive and show in Mydevices.
397 397  
398 -[[image:1654505925508-181.png]]
266 +[[image:1657249990869-686.png]]
399 399  
400 400  
269 +(((
270 +MQTT protocol has a much higher power consumption compare vs UDP / CoAP protocol. Please check the power analyze document and adjust the uplink period to a suitable interval.
271 +)))
401 401  
402 -== 2.7 Frequency Plans ==
403 403  
404 -The LSE01 uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.
405 405  
275 +=== 2.2.7 Use TCP protocol to uplink data ===
406 406  
407 -=== 2.7.1 EU863-870 (EU868) ===
277 +This feature is supported since firmware version v110
408 408  
409 -(% style="color:#037691" %)** Uplink:**
410 410  
411 -868.1 - SF7BW125 to SF12BW125
280 +* (% style="color:blue" %)**AT+PRO=4   ** (%%) ~/~/ Set to use TCP protocol to uplink
281 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5600   **(%%) ~/~/ to set TCP server address and port
412 412  
413 -868.3 - SF7BW125 to SF12BW125 and SF7BW250
283 +[[image:1657250217799-140.png]]
414 414  
415 -868.5 - SF7BW125 to SF12BW125
416 416  
417 -867.1 - SF7BW125 to SF12BW125
286 +[[image:1657250255956-604.png]]
418 418  
419 -867.3 - SF7BW125 to SF12BW125
420 420  
421 -867.5 - SF7BW125 to SF12BW125
422 422  
423 -867.7 - SF7BW125 to SF12BW125
290 +=== 2.2.8 Change Update Interval ===
424 424  
425 -867.9 - SF7BW125 to SF12BW125
292 +User can use below command to change the (% style="color:green" %)**uplink interval**.
426 426  
427 -868.8 - FSK
294 +* (% style="color:blue" %)**AT+TDC=600      ** (%%)~/~/ Set Update Interval to 600s
428 428  
296 +(((
297 +(% style="color:red" %)**NOTE:**
298 +)))
429 429  
430 -(% style="color:#037691" %)** Downlink:**
300 +(((
301 +(% style="color:red" %)1. By default, the device will send an uplink message every 1 hour.
302 +)))
431 431  
432 -Uplink channels 1-9 (RX1)
433 433  
434 -869.525 - SF9BW125 (RX2 downlink only)
435 435  
306 +== 2.3  Uplink Payload ==
436 436  
308 +In this mode, uplink payload includes in total 18 bytes
437 437  
438 -=== 2.7.2 US902-928(US915) ===
310 +(% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:510px" %)
311 +|=(% style="width: 60px;" %)(((
312 +**Size(bytes)**
313 +)))|=(% style="width: 50px;" %)**6**|=(% style="width: 25px;" %)2|=(% style="width: 25px;" %)**2**|=(% style="width: 70px;" %)**1**|=(% style="width: 60px;" %)**2**|=(% style="width: 80px;" %)**2**|=(% style="width: 90px;" %)**2**|=(% style="width: 50px;" %)**1**
314 +|(% style="width:97px" %)**Value**|(% style="width:83px" %)[[Device ID>>||anchor="H2.4.1A0A0DeviceID"]]|(% style="width:41px" %)[[Ver>>||anchor="H2.4.2A0VersionInfo"]]|(% style="width:46px" %)[[BAT>>||anchor="H2.4.3A0BatteryInfo"]]|(% style="width:123px" %)[[Signal Strength>>||anchor="H2.4.4A0SignalStrength"]]|(% style="width:108px" %)[[Soil Moisture>>||anchor="H2.4.5A0SoilMoisture"]]|(% style="width:133px" %)[[Soil Temperature>>||anchor="H2.4.6A0SoilTemperature"]]|(% style="width:159px" %)[[Soil Conductivity(EC)>>||anchor="H2.4.7A0SoilConductivity28EC29"]]|(% style="width:80px" %)[[Interrupt>>||anchor="H2.4.8A0DigitalInterrupt"]]
439 439  
440 -Used in USA, Canada and South America. Default use CHE=2
316 +(((
317 +If we use the MQTT client to subscribe to this MQTT topic, we can see the following information when the NSE01 uplink data.
318 +)))
441 441  
442 -(% style="color:#037691" %)**Uplink:**
443 443  
444 -903.9 - SF7BW125 to SF10BW125
321 +[[image:image-20220708111918-4.png]]
445 445  
446 -904.1 - SF7BW125 to SF10BW125
447 447  
448 -904.3 - SF7BW125 to SF10BW125
324 +The payload is ASCII string, representative same HEX:
449 449  
450 -904.5 - SF7BW125 to SF10BW125
326 +0x72403155615900640c7817075e0a8c02f900 where:
451 451  
452 -904.7 - SF7BW125 to SF10BW125
328 +* Device ID: 0x 724031556159 = 724031556159
329 +* Version: 0x0064=100=1.0.0
453 453  
454 -904.9 - SF7BW125 to SF10BW125
331 +* BAT: 0x0c78 = 3192 mV = 3.192V
332 +* Singal: 0x17 = 23
333 +* Soil Moisture: 0x075e= 1886 = 18.86  %
334 +* Soil Temperature:0x0a8c =2700=27 °C
335 +* Soil Conductivity(EC) = 0x02f9 =761 uS /cm
336 +* Interrupt: 0x00 = 0
455 455  
456 -905.1 - SF7BW125 to SF10BW125
457 457  
458 -905.3 - SF7BW125 to SF10BW125
459 459  
460 460  
461 -(% style="color:#037691" %)**Downlink:**
341 +== 2.4  Payload Explanation and Sensor Interface ==
462 462  
463 -923.3 - SF7BW500 to SF12BW500
464 464  
465 -923.9 - SF7BW500 to SF12BW500
344 +=== 2.4.1  Device ID ===
466 466  
467 -924.5 - SF7BW500 to SF12BW500
346 +(((
347 +By default, the Device ID equal to the last 6 bytes of IMEI.
348 +)))
468 468  
469 -925.1 - SF7BW500 to SF12BW500
350 +(((
351 +User can use (% style="color:blue" %)**AT+DEUI**(%%) to set Device ID
352 +)))
470 470  
471 -925.7 - SF7BW500 to SF12BW500
354 +(((
355 +**Example:**
356 +)))
472 472  
473 -926.3 - SF7BW500 to SF12BW500
358 +(((
359 +AT+DEUI=A84041F15612
360 +)))
474 474  
475 -926.9 - SF7BW500 to SF12BW500
362 +(((
363 +The Device ID is stored in a none-erase area, Upgrade the firmware or run AT+FDR won't erase Device ID.
364 +)))
476 476  
477 -927.5 - SF7BW500 to SF12BW500
478 478  
479 -923.3 - SF12BW500(RX2 downlink only)
480 480  
368 +=== 2.4.2  Version Info ===
481 481  
370 +(((
371 +Specify the software version: 0x64=100, means firmware version 1.00.
372 +)))
482 482  
483 -=== 2.7.3 CN470-510 (CN470) ===
374 +(((
375 +For example: 0x00 64 : this device is NSE01 with firmware version 1.0.0.
376 +)))
484 484  
485 -Used in China, Default use CHE=1
486 486  
487 -(% style="color:#037691" %)**Uplink:**
488 488  
489 -486.3 - SF7BW125 to SF12BW125
380 +=== 2.4.3  Battery Info ===
490 490  
491 -486.5 - SF7BW125 to SF12BW125
382 +(((
383 +Check the battery voltage for LSE01.
384 +)))
492 492  
493 -486.7 - SF7BW125 to SF12BW125
386 +(((
387 +Ex1: 0x0B45 = 2885mV
388 +)))
494 494  
495 -486.9 - SF7BW125 to SF12BW125
390 +(((
391 +Ex2: 0x0B49 = 2889mV
392 +)))
496 496  
497 -487.1 - SF7BW125 to SF12BW125
498 498  
499 -487.3 - SF7BW125 to SF12BW125
500 500  
501 -487.5 - SF7BW125 to SF12BW125
396 +=== 2.4. Signal Strength ===
502 502  
503 -487.7 - SF7BW125 to SF12BW125
398 +(((
399 +NB-IoT Network signal Strength.
400 +)))
504 504  
402 +(((
403 +**Ex1: 0x1d = 29**
404 +)))
505 505  
506 -(% style="color:#037691" %)**Downlink:**
406 +(((
407 +(% style="color:blue" %)**0**(%%)  -113dBm or less
408 +)))
507 507  
508 -506.7 - SF7BW125 to SF12BW125
410 +(((
411 +(% style="color:blue" %)**1**(%%)  -111dBm
412 +)))
509 509  
510 -506.9 - SF7BW125 to SF12BW125
414 +(((
415 +(% style="color:blue" %)**2...30**(%%) -109dBm... -53dBm
416 +)))
511 511  
512 -507.1 - SF7BW125 to SF12BW125
418 +(((
419 +(% style="color:blue" %)**31**  (%%) -51dBm or greater
420 +)))
513 513  
514 -507.3 - SF7BW125 to SF12BW125
422 +(((
423 +(% style="color:blue" %)**99**   (%%) Not known or not detectable
424 +)))
515 515  
516 -507.5 - SF7BW125 to SF12BW125
517 517  
518 -507.7 - SF7BW125 to SF12BW125
519 519  
520 -507.9 - SF7BW125 to SF12BW125
428 +=== 2.4.5  Soil Moisture ===
521 521  
522 -508.1 - SF7BW125 to SF12BW125
430 +(((
431 +(((
432 +Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil.
433 +)))
434 +)))
523 523  
524 -505.3 - SF12BW125 (RX2 downlink only)
436 +(((
437 +(((
438 +For example, if the data you get from the register is **__0x05 0xDC__**, the moisture content in the soil is
439 +)))
440 +)))
525 525  
442 +(((
443 +
444 +)))
526 526  
446 +(((
447 +(% style="color:#4f81bd" %)**05DC(H) = 1500(D) /100 = 15%.**
448 +)))
527 527  
528 -=== 2.7.4 AU915-928(AU915) ===
529 529  
530 -Default use CHE=2
531 531  
532 -(% style="color:#037691" %)**Uplink:**
452 +=== 2.4.6  Soil Temperature ===
533 533  
534 -916.8 - SF7BW125 to SF12BW125
454 +(((
455 +Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is __**0x09 0xEC**__, the temperature content in the soil is
456 +)))
535 535  
536 -917.0 - SF7BW125 to SF12BW125
458 +(((
459 +**Example**:
460 +)))
537 537  
538 -917.2 - SF7BW125 to SF12BW125
462 +(((
463 +If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/100 = 2.61 °C
464 +)))
539 539  
540 -917.4 - SF7BW125 to SF12BW125
466 +(((
467 +If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C
468 +)))
541 541  
542 -917.6 - SF7BW125 to SF12BW125
543 543  
544 -917.8 - SF7BW125 to SF12BW125
545 545  
546 -918.0 - SF7BW125 to SF12BW125
472 +=== 2.4.7  Soil Conductivity (EC) ===
547 547  
548 -918.2 - SF7BW125 to SF12BW125
474 +(((
475 +Obtain (% style="color:#4f81bd" %)**__soluble salt concentration__**(%%) in soil or (% style="color:#4f81bd" %)**__soluble ion concentration in liquid fertilizer__**(%%) or (% style="color:#4f81bd" %)**__planting medium__**(%%). The value range of the register is 0 - 20000(Decimal)( Can be greater than 20000).
476 +)))
549 549  
478 +(((
479 +For example, if the data you get from the register is __**0x00 0xC8**__, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm.
480 +)))
550 550  
551 -(% style="color:#037691" %)**Downlink:**
482 +(((
483 +Generally, the EC value of irrigation water is less than 800uS / cm.
484 +)))
552 552  
553 -923.3 - SF7BW500 to SF12BW500
486 +(((
487 +
488 +)))
554 554  
555 -923.9 - SF7BW500 to SF12BW500
490 +(((
491 +
492 +)))
556 556  
557 -924.5 - SF7BW500 to SF12BW500
494 +=== 2.4. Digital Interrupt ===
558 558  
559 -925.1 - SF7BW500 to SF12BW500
496 +(((
497 +Digital Interrupt refers to pin (% style="color:blue" %)**GPIO_EXTI**(%%), and there are different trigger methods. When there is a trigger, the NSE01 will send a packet to the server.
498 +)))
560 560  
561 -925.7 - SF7BW500 to SF12BW500
500 +(((
501 +The command is:
502 +)))
562 562  
563 -926.3 - SF7BW500 to SF12BW500
504 +(((
505 +(% style="color:blue" %)**AT+INTMOD=3 **(%%) ~/~/(more info about INMOD please refer [[**AT Command Manual**>>url:https://www.dragino.com/downloads/downloads/NB-IoT/NBSN95/DRAGINO_NBSN95-NB_AT%20Commands_v1.1.0.pdf]])**.**
506 +)))
564 564  
565 -926.9 - SF7BW500 to SF12BW500
566 566  
567 -927.5 - SF7BW500 to SF12BW500
509 +(((
510 +The lower four bits of this data field shows if this packet is generated by interrupt or not. Click here for the hardware and software set up.
511 +)))
568 568  
569 -923.3 - SF12BW500(RX2 downlink only)
570 570  
514 +(((
515 +Example:
516 +)))
571 571  
518 +(((
519 +0x(00): Normal uplink packet.
520 +)))
572 572  
573 -=== 2.7.5 AS920-923 & AS923-925 (AS923) ===
522 +(((
523 +0x(01): Interrupt Uplink Packet.
524 +)))
574 574  
575 -(% style="color:#037691" %)**Default Uplink channel:**
576 576  
577 -923.2 - SF7BW125 to SF10BW125
578 578  
579 -923.4 - SF7BW125 to SF10BW125
528 +=== 2.4.9  ​+5V Output ===
580 580  
530 +(((
531 +NSE01 will enable +5V output before all sampling and disable the +5v after all sampling. 
532 +)))
581 581  
582 -(% style="color:#037691" %)**Additional Uplink Channel**:
583 583  
584 -(OTAA mode, channel added by JoinAccept message)
535 +(((
536 +The 5V output time can be controlled by AT Command.
537 +)))
585 585  
586 -(% style="color:#037691" %)**AS920~~AS923 for Japan, Malaysia, Singapore**:
539 +(((
540 +(% style="color:blue" %)**AT+5VT=1000**
541 +)))
587 587  
588 -922.2 - SF7BW125 to SF10BW125
543 +(((
544 +Means set 5V valid time to have 1000ms. So the real 5V output will actually have 1000ms + sampling time for other sensors.
545 +)))
589 589  
590 -922.4 - SF7BW125 to SF10BW125
591 591  
592 -922.6 - SF7BW125 to SF10BW125
593 593  
594 -922.8 - SF7BW125 to SF10BW125
549 +== 2.5  Downlink Payload ==
595 595  
596 -923.0 - SF7BW125 to SF10BW125
551 +By default, NSE01 prints the downlink payload to console port.
597 597  
598 -922.0 - SF7BW125 to SF10BW125
553 +[[image:image-20220708133731-5.png]]
599 599  
600 600  
601 -(% style="color:#037691" %)**AS923 ~~ AS925 for Brunei, Cambodia, Hong Kong, Indonesia, Laos, Taiwan, Thailand, Vietnam**:
556 +(((
557 +(% style="color:blue" %)**Examples:**
558 +)))
602 602  
603 -923.6 - SF7BW125 to SF10BW125
560 +(((
561 +
562 +)))
604 604  
605 -923.8 - SF7BW125 to SF10BW125
564 +* (((
565 +(% style="color:blue" %)**Set TDC**
566 +)))
606 606  
607 -924.0 - SF7BW125 to SF10BW125
568 +(((
569 +If the payload=0100003C, it means set the END Node's TDC to 0x00003C=60(S), while type code is 01.
570 +)))
608 608  
609 -924.2 - SF7BW125 to SF10BW125
572 +(((
573 +Payload:    01 00 00 1E    TDC=30S
574 +)))
610 610  
611 -924.4 - SF7BW125 to SF10BW125
576 +(((
577 +Payload:    01 00 00 3C    TDC=60S
578 +)))
612 612  
613 -924.6 - SF7BW125 to SF10BW125
580 +(((
581 +
582 +)))
614 614  
584 +* (((
585 +(% style="color:blue" %)**Reset**
586 +)))
615 615  
616 -(% style="color:#037691" %)** Downlink:**
588 +(((
589 +If payload = 0x04FF, it will reset the NSE01
590 +)))
617 617  
618 -Uplink channels 1-8 (RX1)
619 619  
620 -923.2 - SF10BW125 (RX2)
593 +* (% style="color:blue" %)**INTMOD**
621 621  
595 +(((
596 +Downlink Payload: 06000003, Set AT+INTMOD=3
597 +)))
622 622  
623 623  
624 -=== 2.7.6 KR920-923 (KR920) ===
625 625  
626 -Default channel:
601 +== 2.6  ​LED Indicator ==
627 627  
628 -922.1 - SF7BW125 to SF12BW125
603 +(((
604 +The NSE01 has an internal LED which is to show the status of different state.
629 629  
630 -922.3 - SF7BW125 to SF12BW125
631 631  
632 -922.5 - SF7BW125 to SF12BW125
607 +* When power on, NSE01 will detect if sensor probe is connected, if probe detected, LED will blink four times. (no blinks in this step is no probe)
608 +* Then the LED will be on for 1 second means device is boot normally.
609 +* After NSE01 join NB-IoT network. The LED will be ON for 3 seconds.
610 +* For each uplink probe, LED will be on for 500ms.
611 +)))
633 633  
634 634  
635 -(% style="color:#037691" %)**Uplink: (OTAA mode, channel added by JoinAccept message)**
636 636  
637 -922.1 - SF7BW125 to SF12BW125
638 638  
639 -922.3 - SF7BW125 to SF12BW125
616 +== 2.7  Installation in Soil ==
640 640  
641 -922.5 - SF7BW125 to SF12BW125
618 +__**Measurement the soil surface**__
642 642  
643 -922.7 - SF7BW125 to SF12BW125
620 +(((
621 +Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting. [[https:~~/~~/img.alicdn.com/imgextra/i3/2005165265/O1CN010rj9Oh1olPsQxrdUK_!!2005165265.jpg>>url:https://img.alicdn.com/imgextra/i3/2005165265/O1CN010rj9Oh1olPsQxrdUK_!!2005165265.jpg]]
622 +)))
644 644  
645 -922.9 - SF7BW125 to SF12BW125
624 +[[image:1657259653666-883.png]] ​
646 646  
647 -923.1 - SF7BW125 to SF12BW125
648 648  
649 -923.3 - SF7BW125 to SF12BW125
627 +(((
628 +
650 650  
630 +(((
631 +Dig a hole with diameter > 20CM.
632 +)))
651 651  
652 -(% style="color:#037691" %)**Downlink:**
634 +(((
635 +Horizontal insert the probe to the soil and fill the hole for long term measurement.
636 +)))
637 +)))
653 653  
654 -Uplink channels 1-7(RX1)
639 +[[image:1654506665940-119.png]]
655 655  
656 -921.9 - SF12BW125 (RX2 downlink only; SF12BW125 might be changed to SF9BW125)
641 +(((
642 +
643 +)))
657 657  
658 658  
646 +== 2.8  ​Firmware Change Log ==
659 659  
660 -=== 2.7.7 IN865-867 (IN865) ===
661 661  
662 -(% style="color:#037691" %)** Uplink:**
649 +Download URL & Firmware Change log
663 663  
664 -865.0625 - SF7BW125 to SF12BW125
651 +[[www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/Firmware/]]
665 665  
666 -865.4025 - SF7BW125 to SF12BW125
667 667  
668 -865.9850 - SF7BW125 to SF12BW125
654 +Upgrade Instruction: [[Upgrade_Firmware>>||anchor="H5.1200BHowtoUpgradeFirmware"]]
669 669  
670 670  
671 -(% style="color:#037691" %) **Downlink:**
672 672  
673 -Uplink channels 1-3 (RX1)
658 +== 2.9  ​Battery Analysis ==
674 674  
675 -866.550 - SF10BW125 (RX2)
660 +=== 2.9.1  ​Battery Type ===
676 676  
677 677  
678 -
679 -
680 -== 2.8 LED Indicator ==
681 -
682 -The LSE01 has an internal LED which is to show the status of different state.
683 -
684 -* Blink once when device power on.
685 -* Solid ON for 5 seconds once device successful Join the network.
686 -* Blink once when device transmit a packet.
687 -
688 -
689 -
690 -
691 -== 2.9 Installation in Soil ==
692 -
693 -**Measurement the soil surface**
694 -
695 -
696 -[[image:1654506634463-199.png]] ​
697 -
698 698  (((
699 -(((
700 -Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting.
664 +The NSE01 battery is a combination of an 8500mAh Li/SOCI2 Battery and a Super Capacitor. The battery is none-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter.
701 701  )))
702 -)))
703 703  
704 704  
705 -[[image:1654506665940-119.png]]
706 -
707 707  (((
708 -Dig a hole with diameter > 20CM.
669 +The battery is designed to last for several years depends on the actually use environment and update interval. 
709 709  )))
710 710  
711 -(((
712 -Horizontal insert the probe to the soil and fill the hole for long term measurement.
713 -)))
714 714  
715 -
716 -== 2.10 ​Firmware Change Log ==
717 -
718 718  (((
719 -**Firmware download link:**
674 +The battery related documents as below:
720 720  )))
721 721  
722 -(((
723 -[[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/]]
724 -)))
677 +* [[Battery Dimension>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]
678 +* [[Lithium-Thionyl Chloride Battery datasheet>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]
679 +* [[Lithium-ion Battery-Capacitor datasheet>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]
725 725  
726 726  (((
727 -
682 +[[image:image-20220708140453-6.png]]
728 728  )))
729 729  
730 -(((
731 -**Firmware Upgrade Method: **[[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome]]
732 -)))
733 733  
734 -(((
735 -
736 -)))
737 737  
738 -(((
739 -**V1.0.**
740 -)))
687 +=== 2.9.2  Power consumption Analyze ===
741 741  
742 742  (((
743 -Release
690 +Dragino battery powered product are all runs in Low Power mode. We have an update battery calculator which base on the measurement of the real device. User can use this calculator to check the battery life and calculate the battery life if want to use different transmit interval.
744 744  )))
745 745  
746 746  
747 -== 2.11 ​Battery Analysis ==
748 -
749 -=== 2.11.1 ​Battery Type ===
750 -
751 751  (((
752 -The LSE01 battery is a combination of a 4000mAh Li/SOCI2 Battery and a Super Capacitor. The battery is non-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter.
695 +Instruction to use as below:
753 753  )))
754 754  
755 755  (((
756 -The battery is designed to last for more than 5 years for the LSN50.
699 +(% style="color:blue" %)**Step 1:  **(%%)Downlink the up-to-date DRAGINO_Battery_Life_Prediction_Table.xlsx from: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/]]
757 757  )))
758 758  
702 +
759 759  (((
760 -(((
761 -The battery-related documents are as below:
704 +(% style="color:blue" %)**Step 2: **(%%) Open it and choose
762 762  )))
763 -)))
764 764  
765 765  * (((
766 -[[Battery Dimension>>url:http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/&file=LSN50-Battery-Dimension.pdf]],
708 +Product Model
767 767  )))
768 768  * (((
769 -[[Lithium-Thionyl Chloride Battery  datasheet>>url:https://www.dragino.com/downloads/downloads/datasheet/Battery/ER26500/ER26500_Datasheet-EN.pdf]],
711 +Uplink Interval
770 770  )))
771 771  * (((
772 -[[Lithium-ion Battery-Capacitor datasheet>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC_1520_datasheet.jpg]], [[Tech Spec>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC1520%20Technical%20Specification20171123.pdf]]
714 +Working Mode
773 773  )))
774 774  
775 - [[image:image-20220610172436-1.png]]
717 +(((
718 +And the Life expectation in difference case will be shown on the right.
719 +)))
776 776  
721 +[[image:image-20220708141352-7.jpeg]]
777 777  
778 778  
779 -=== 2.11.2 ​Battery Note ===
780 780  
725 +=== 2.9.3  ​Battery Note ===
726 +
781 781  (((
782 782  The Li-SICO battery is designed for small current / long period application. It is not good to use a high current, short period transmit method. The recommended minimum period for use of this battery is 5 minutes. If you use a shorter period time to transmit LoRa, then the battery life may be decreased.
783 783  )))
... ... @@ -784,303 +784,173 @@
784 784  
785 785  
786 786  
787 -=== 2.11.3 Replace the battery ===
733 +=== 2.9. Replace the battery ===
788 788  
789 789  (((
790 -If Battery is lower than 2.7v, user should replace the battery of LSE01.
736 +The default battery pack of NSE01 includes a ER26500 plus super capacitor. If user can't find this pack locally, they can find ER26500 or equivalence without the SPC1520 capacitor, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes).
791 791  )))
792 792  
739 +
740 +
741 += 3. ​ Access NB-IoT Module =
742 +
793 793  (((
794 -You can change the battery in the LSE01.The type of battery is not limited as long as the output is between 3v to 3.6v. On the main board, there is a diode (D1) between the battery and the main circuit. If you need to use a battery with less than 3.3v, please remove the D1 and shortcut the two pads of it so there won’t be voltage drop between battery and main board.
744 +Users can directly access the AT command set of the NB-IoT module.
795 795  )))
796 796  
797 797  (((
798 -The default battery pack of LSE01 includes a ER18505 plus super capacitor. If user can’t find this pack locally, they can find ER18505 or equivalence, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes)
748 +The AT Command set can refer the BC35-G NB-IoT Module AT Command: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=datasheet/other_vendors/BC35-G/>>url:https://www.dragino.com/downloads/index.php?dir=datasheet/other_vendors/BC35-G/]] 
799 799  )))
800 800  
751 +[[image:1657261278785-153.png]]
801 801  
802 802  
803 -= 3. ​Using the AT Commands =
804 804  
805 -== 3.1 Access AT Commands ==
755 += 4.  Using the AT Commands =
806 806  
757 +== 4.1  Access AT Commands ==
807 807  
808 -LSE01 supports AT Command set in the stock firmware. You can use a USB to TTL adapter to connect to LSE01 for using AT command, as below.
759 +See this link for detail: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/]]
809 809  
810 -[[image:1654501986557-872.png||height="391" width="800"]]
811 811  
762 +AT+<CMD>?  : Help on <CMD>
812 812  
813 -Or if you have below board, use below connection:
764 +AT+<CMD>         : Run <CMD>
814 814  
766 +AT+<CMD>=<value> : Set the value
815 815  
816 -[[image:1654502005655-729.png||height="503" width="801"]]
768 +AT+<CMD>=?  : Get the value
817 817  
818 818  
819 -
820 -In the PC, you need to set the serial baud rate to (% style="color:green" %)**9600**(%%) to access the serial console for LSE01. LSE01 will output system info once power on as below:
821 -
822 -
823 - [[image:1654502050864-459.png||height="564" width="806"]]
824 -
825 -
826 -Below are the available commands, a more detailed AT Command manual can be found at [[AT Command Manual>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/]]: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/]]
827 -
828 -
829 -(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>? **(%%) : Help on <CMD>
830 -
831 -(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD> **(%%) : Run <CMD>
832 -
833 -(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>=<value>**(%%) : Set the value
834 -
835 -(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>=?**(%%)  : Get the value
836 -
837 -
838 838  (% style="color:#037691" %)**General Commands**(%%)      
839 839  
840 -(% style="background-color:#dcdcdc" %)**AT**(%%)  : Attention       
773 +AT  : Attention       
841 841  
842 -(% style="background-color:#dcdcdc" %)**AT?**(%%)  : Short Help     
775 +AT?  : Short Help     
843 843  
844 -(% style="background-color:#dcdcdc" %)**ATZ**(%%)  : MCU Reset    
777 +ATZ  : MCU Reset    
845 845  
846 -(% style="background-color:#dcdcdc" %)**AT+TDC**(%%)  : Application Data Transmission Interval 
779 +AT+TDC  : Application Data Transmission Interval
847 847  
781 +AT+CFG  : Print all configurations
848 848  
849 -(% style="color:#037691" %)**Keys, IDs and EUIs management**
783 +AT+CFGMOD           : Working mode selection
850 850  
851 -(% style="background-color:#dcdcdc" %)**AT+APPEUI**(%%)              : Application EUI      
785 +AT+INTMOD            : Set the trigger interrupt mode
852 852  
853 -(% style="background-color:#dcdcdc" %)**AT+APPKEY**(%%)              : Application Key     
787 +AT+5VT  : Set extend the time of 5V power  
854 854  
855 -(% style="background-color:#dcdcdc" %)**AT+APPSKEY**(%%)            : Application Session Key
789 +AT+PRO  : Choose agreement
856 856  
857 -(% style="background-color:#dcdcdc" %)**AT+DADDR**(%%)              : Device Address     
791 +AT+WEIGRE  : Get weight or set weight to 0
858 858  
859 -(% style="background-color:#dcdcdc" %)**AT+DEUI**(%%)                   : Device EUI     
793 +AT+WEIGAP  : Get or Set the GapValue of weight
860 860  
861 -(% style="background-color:#dcdcdc" %)**AT+NWKID**(%%)               : Network ID (You can enter this command change only after successful network connection
795 +AT+RXDL  : Extend the sending and receiving time
862 862  
863 -(% style="background-color:#dcdcdc" %)**AT+NWKSKEY**(%%)          : Network Session Key Joining and sending date on LoRa network  
797 +AT+CNTFAC  : Get or set counting parameters
864 864  
865 -(% style="background-color:#dcdcdc" %)**AT+CFM**(%%)  : Confirm Mode       
799 +AT+SERVADDR  : Server Address
866 866  
867 -(% style="background-color:#dcdcdc" %)**AT+CFS**(%%)                     : Confirm Status       
868 868  
869 -(% style="background-color:#dcdcdc" %)**AT+JOIN**(%%)  : Join LoRa? Network       
802 +(% style="color:#037691" %)**COAP Management**      
870 870  
871 -(% style="background-color:#dcdcdc" %)**AT+NJM**(%%)  : LoRa? Network Join Mode    
804 +AT+URI            : Resource parameters
872 872  
873 -(% style="background-color:#dcdcdc" %)**AT+NJS**(%%)                     : LoRa? Network Join Status    
874 874  
875 -(% style="background-color:#dcdcdc" %)**AT+RECV**(%%)                  : Print Last Received Data in Raw Format
807 +(% style="color:#037691" %)**UDP Management**
876 876  
877 -(% style="background-color:#dcdcdc" %)**AT+RECVB**(%%)                : Print Last Received Data in Binary Format      
809 +AT+CFM          : Upload confirmation mode (only valid for UDP)
878 878  
879 -(% style="background-color:#dcdcdc" %)**AT+SEND**(%%)                  : Send Text Data      
880 880  
881 -(% style="background-color:#dcdcdc" %)**AT+SENB**(%%)                  : Send Hexadecimal Data
812 +(% style="color:#037691" %)**MQTT Management**
882 882  
814 +AT+CLIENT               : Get or Set MQTT client
883 883  
884 -(% style="color:#037691" %)**LoRa Network Management**
816 +AT+UNAME  : Get or Set MQTT Username
885 885  
886 -(% style="background-color:#dcdcdc" %)**AT+ADR**(%%)          : Adaptive Rate
818 +AT+PWD                  : Get or Set MQTT password
887 887  
888 -(% style="background-color:#dcdcdc" %)**AT+CLASS**(%%)  : LoRa Class(Currently only support class A
820 +AT+PUBTOPI : Get or Set MQTT publish topic
889 889  
890 -(% style="background-color:#dcdcdc" %)**AT+DCS**(%%)  : Duty Cycle Settin
822 +AT+SUBTOPIC  : Get or Set MQTT subscription topic
891 891  
892 -(% style="background-color:#dcdcdc" %)**AT+DR**(%%)  : Data Rate (Can Only be Modified after ADR=0)     
893 893  
894 -(% style="background-color:#dcdcdc" %)**AT+FCD**(%%)  : Frame Counter Downlink       
825 +(% style="color:#037691" %)**Information**          
895 895  
896 -(% style="background-color:#dcdcdc" %)**AT+FCU**(%%)  : Frame Counter Uplink   
827 +AT+FDR  : Factory Data Reset
897 897  
898 -(% style="background-color:#dcdcdc" %)**AT+JN1DL**(%%)  : Join Accept Delay1
829 +AT+PWOR : Serial Access Password
899 899  
900 -(% style="background-color:#dcdcdc" %)**AT+JN2DL**(%%)  : Join Accept Delay2
901 901  
902 -(% style="background-color:#dcdcdc" %)**AT+PNM**(%%)  : Public Network Mode   
903 903  
904 -(% style="background-color:#dcdcdc" %)**AT+RX1DL**(%%)  : Receive Delay1      
833 += ​5.  FAQ =
905 905  
906 -(% style="background-color:#dcdcdc" %)**AT+RX2DL**(%%)  : Receive Delay2      
835 +== 5.1 How to Upgrade Firmware ==
907 907  
908 -(% style="background-color:#dcdcdc" %)**AT+RX2DR**(%%)  : Rx2 Window Data Rate 
909 909  
910 -(% style="background-color:#dcdcdc" %)**AT+RX2FQ**(%%)  : Rx2 Window Frequency
911 -
912 -(% style="background-color:#dcdcdc" %)**AT+TXP**(%%)  : Transmit Power
913 -
914 -(% style="background-color:#dcdcdc" %)**AT+ MOD**(%%)  : Set work mode
915 -
916 -
917 -(% style="color:#037691" %)**Information** 
918 -
919 -(% style="background-color:#dcdcdc" %)**AT+RSSI**(%%)           : RSSI of the Last Received Packet   
920 -
921 -(% style="background-color:#dcdcdc" %)**AT+SNR**(%%)           : SNR of the Last Received Packet   
922 -
923 -(% style="background-color:#dcdcdc" %)**AT+VER**(%%)           : Image Version and Frequency Band       
924 -
925 -(% style="background-color:#dcdcdc" %)**AT+FDR**(%%)           : Factory Data Reset
926 -
927 -(% style="background-color:#dcdcdc" %)**AT+PORT**(%%)  : Application Port    
928 -
929 -(% style="background-color:#dcdcdc" %)**AT+CHS**(%%)  : Get or Set Frequency (Unit: Hz) for Single Channel Mode
930 -
931 - (% style="background-color:#dcdcdc" %)**AT+CHE**(%%)  : Get or Set eight channels mode, Only for US915, AU915, CN470
932 -
933 -
934 -= ​4. FAQ =
935 -
936 -== 4.1 ​How to change the LoRa Frequency Bands/Region? ==
937 -
938 938  (((
939 -You can follow the instructions for [[how to upgrade image>>||anchor="H2.10200BFirmwareChangeLog"]].
940 -When downloading the images, choose the required image file for download. ​
839 +User can upgrade the firmware for 1) bug fix, 2) new feature release.
941 941  )))
942 942  
943 943  (((
944 -
843 +Please see this link for how to upgrade:  [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H2.HardwareUpgradeMethodSupportList>>http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H2.HardwareUpgradeMethodSupportList]]
945 945  )))
946 946  
947 947  (((
948 -How to set up LSE01 to work in 8 channel mode By default, the frequency bands US915, AU915, CN470 work in 72 frequencies. Many gateways are 8 channel gateways, and in this case, the OTAA join time and uplink schedule is long and unpredictable while the end node is hopping in 72 frequencies.
847 +(% style="color:red" %)Notice, NSE01 and LSE01 share the same mother board. They use the same connection and method to update.
949 949  )))
950 950  
951 -(((
952 -
953 -)))
954 954  
955 -(((
956 -You can configure the end node to work in 8 channel mode by using the AT+CHE command. The 500kHz channels are always included for OTAA.
957 -)))
958 958  
959 -(((
960 -
961 -)))
852 += 6.  Trouble Shooting =
962 962  
963 -(((
964 -For example, in **US915** band, the frequency table is as below. By default, the end node will use all channels (0~~71) for OTAA Join process. After the OTAA Join, the end node will use these all channels (0~~71) to send uplink packets.
965 -)))
854 +== 6.1  ​Connection problem when uploading firmware ==
966 966  
967 -[[image:image-20220606154726-3.png]]
968 968  
969 -
970 -When you use the TTN network, the US915 frequency bands use are:
971 -
972 -* 903.9 - SF7BW125 to SF10BW125
973 -* 904.1 - SF7BW125 to SF10BW125
974 -* 904.3 - SF7BW125 to SF10BW125
975 -* 904.5 - SF7BW125 to SF10BW125
976 -* 904.7 - SF7BW125 to SF10BW125
977 -* 904.9 - SF7BW125 to SF10BW125
978 -* 905.1 - SF7BW125 to SF10BW125
979 -* 905.3 - SF7BW125 to SF10BW125
980 -* 904.6 - SF8BW500
981 -
982 982  (((
983 -Because the end node is now hopping in 72 frequency, it makes it difficult for the devices to Join the TTN network and uplink data. To solve this issue, you can access the device via the AT commands and run:
858 +**Please see: **[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H3.3Troubleshooting>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H3.3Troubleshooting]]
984 984  )))
985 985  
986 -(% class="box infomessage" %)
861 +(% class="wikigeneratedid" %)
987 987  (((
988 -**AT+CHE=2**
989 -)))
990 -
991 -(% class="box infomessage" %)
992 -(((
993 -**ATZ**
994 -)))
995 -
996 -(((
997 -to set the end node to work in 8 channel mode. The device will work in Channel 8-15 & 64-71 for OTAA, and channel 8-15 for Uplink.
998 -)))
999 -
1000 -(((
1001 1001  
1002 1002  )))
1003 1003  
1004 -(((
1005 -The **AU915** band is similar. Below are the AU915 Uplink Channels.
1006 -)))
1007 1007  
1008 -[[image:image-20220606154825-4.png]]
867 +== 6.2  AT Command input doesn't work ==
1009 1009  
1010 -
1011 -
1012 -= 5. Trouble Shooting =
1013 -
1014 -== 5.1 ​Why I can’t join TTN in US915 / AU915 bands? ==
1015 -
1016 -It is due to channel mapping. Please see the [[Eight Channel Mode>>doc:Main.LoRaWAN Communication Debug.WebHome||anchor="H2.NoticeofUS9152FCN4702FAU915Frequencyband"]] section above for details.
1017 -
1018 -
1019 -== 5.2 AT Command input doesn’t work ==
1020 -
1021 1021  (((
1022 -In the case if user can see the console output but can’t type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn’t send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.
1023 -)))
870 +In the case if user can see the console output but can't type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn't send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.
1024 1024  
1025 1025  
1026 -== 5.3 Device rejoin in at the second uplink packet ==
873 +== 6.3  Can I calibrate NSE01 to different soil types? ==
1027 1027  
1028 -(% style="color:#4f81bd" %)**Issue describe as below:**
1029 -
1030 -[[image:1654500909990-784.png]]
1031 -
1032 -
1033 -(% style="color:#4f81bd" %)**Cause for this issue:**
1034 -
1035 -(((
1036 -The fuse on LSE01 is not large enough, some of the soil probe require large current up to 5v 800mA, in a short pulse. When this happen, it cause the device reboot so user see rejoin.
875 +NSE01 is calibrated for saline-alkali soil and loamy soil. If users want to use it for other soil, they can calibrate the value in the IoT platform base on the value measured by saline-alkali soil and loamy soil. The formula can be found at [[this link>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/&file=Calibrate_to_other_Soil.pdf]].
1037 1037  )))
1038 1038  
1039 1039  
1040 -(% style="color:#4f81bd" %)**Solution: **
1041 1041  
1042 -All new shipped LSE01 after 2020-May-30 will have this to fix. For the customer who see this issue, please bypass the fuse as below:
880 += 7. ​ Order Info =
1043 1043  
1044 -[[image:1654500929571-736.png||height="458" width="832"]]
1045 1045  
883 +Part Number**:** (% style="color:#4f81bd" %)**NSE01**
1046 1046  
1047 -= 6. ​Order Info =
1048 1048  
1049 -
1050 -Part Number**:** (% style="color:#4f81bd" %)**LSE01-XX-YY**
1051 -
1052 -
1053 -(% style="color:#4f81bd" %)**XX**(%%)**:** The default frequency band
1054 -
1055 -* (% style="color:red" %)**AS923**(%%): LoRaWAN AS923 band
1056 -* (% style="color:red" %)**AU915**(%%): LoRaWAN AU915 band
1057 -* (% style="color:red" %)**EU433**(%%): LoRaWAN EU433 band
1058 -* (% style="color:red" %)**EU868**(%%): LoRaWAN EU868 band
1059 -* (% style="color:red" %)**KR920**(%%): LoRaWAN KR920 band
1060 -* (% style="color:red" %)**US915**(%%): LoRaWAN US915 band
1061 -* (% style="color:red" %)**IN865**(%%):  LoRaWAN IN865 band
1062 -* (% style="color:red" %)**CN470**(%%): LoRaWAN CN470 band
1063 -
1064 -(% style="color:#4f81bd" %)**YY**(%%)**: **Battery Option
1065 -
1066 -* (% style="color:red" %)**4**(%%): 4000mAh battery
1067 -* (% style="color:red" %)**8**(%%): 8500mAh battery
1068 -
1069 1069  (% class="wikigeneratedid" %)
1070 1070  (((
1071 1071  
1072 1072  )))
1073 1073  
1074 -= 7. Packing Info =
891 += 8.  Packing Info =
1075 1075  
1076 1076  (((
1077 1077  
1078 1078  
1079 1079  (% style="color:#037691" %)**Package Includes**:
1080 -)))
1081 1081  
1082 -* (((
1083 -LSE01 LoRaWAN Soil Moisture & EC Sensor x 1
898 +* NSE01 NB-IoT Soil Moisture & EC Sensor x 1
899 +* External antenna x 1
1084 1084  )))
1085 1085  
1086 1086  (((
... ... @@ -1087,24 +1087,19 @@
1087 1087  
1088 1088  
1089 1089  (% style="color:#037691" %)**Dimension and weight**:
1090 -)))
1091 1091  
1092 -* (((
1093 -Device Size: cm
907 +* Size: 195 x 125 x 55 mm
908 +* Weight:   420g
1094 1094  )))
1095 -* (((
1096 -Device Weight: g
1097 -)))
1098 -* (((
1099 -Package Size / pcs : cm
1100 -)))
1101 -* (((
1102 -Weight / pcs : g
1103 1103  
911 +(((
1104 1104  
913 +
914 +
915 +
1105 1105  )))
1106 1106  
1107 -= 8. Support =
918 += 9.  Support =
1108 1108  
1109 1109  * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
1110 1110  * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.com]]
1657245163077-232.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +81.0 KB
Content
1657246476176-652.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +492.6 KB
Content
1657249419225-449.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +81.0 KB
Content
1657249468462-536.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +483.6 KB
Content
1657249793983-486.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +85.8 KB
Content
1657249831934-534.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +72.5 KB
Content
1657249864775-321.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +87.0 KB
Content
1657249930215-289.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +77.3 KB
Content
1657249978444-674.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +139.5 KB
Content
1657249990869-686.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +96.9 KB
Content
1657250217799-140.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +98.7 KB
Content
1657250255956-604.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +99.0 KB
Content
1657259653666-883.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +344.4 KB
Content
1657260785982-288.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +138.2 KB
Content
1657261119050-993.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +126.1 KB
Content
1657261278785-153.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +126.1 KB
Content
image-20220708101224-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +22.2 KB
Content
image-20220708101605-2.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +87.5 KB
Content
image-20220708110657-3.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +251.7 KB
Content
image-20220708111918-4.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +38.8 KB
Content
image-20220708133731-5.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +8.7 KB
Content
image-20220708140453-6.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +132.7 KB
Content
image-20220708141352-7.jpeg
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +102.7 KB
Content
Copyright ©2010-2022 Dragino Technology Co., LTD. All rights reserved
Dragino Wiki v2.0