<
From version < 35.16 >
edited by Xiaoling
on 2022/06/14 14:13
To version < 65.15 >
edited by Xiaoling
on 2022/07/08 15:52
>
Change comment: There is no comment for this version

Summary

Details

Page properties
Title
... ... @@ -1,1 +1,1 @@
1 -LSE01-LoRaWAN Soil Moisture & EC Sensor User Manual
1 +NSE01 - NB-IoT Soil Moisture & EC Sensor User Manual
Content
... ... @@ -3,6 +3,14 @@
3 3  
4 4  
5 5  
6 +
7 +
8 +
9 +
10 +
11 +
12 +
13 +
6 6  **Table of Contents:**
7 7  
8 8  {{toc/}}
... ... @@ -12,63 +12,81 @@
12 12  
13 13  
14 14  
15 -= 1. Introduction =
16 16  
17 -== 1.1 ​What is LoRaWAN Soil Moisture & EC Sensor ==
24 += 1.  Introduction =
18 18  
26 +== 1.1 ​ What is LoRaWAN Soil Moisture & EC Sensor ==
27 +
19 19  (((
20 20  
21 21  
22 -The Dragino LSE01 is a (% style="color:#4f81bd" %)**LoRaWAN Soil Moisture & EC Sensor**(%%) for IoT of Agriculture. It is designed to measure the soil moisture of saline-alkali soil and loamy soil. The soil sensor uses FDR method to calculate the soil moisture with the compensation from soil temperature and conductivity. It also has been calibrated in factory for Mineral soil type.
31 +(((
32 +Dragino NSE01 is an (% style="color:blue" %)**NB-IOT soil moisture & EC sensor**(%%) for agricultural IoT. Used to measure the soil moisture of saline-alkali soil and loam. The soil sensor uses the FDR method to calculate soil moisture and compensates it with soil temperature and electrical conductivity. It has also been calibrated for mineral soil types at the factory.
23 23  )))
24 24  
25 25  (((
26 -It detects (% style="color:#4f81bd" %)**Soil Moisture**(%%), (% style="color:#4f81bd" %)**Soil Temperature**(%%) and (% style="color:#4f81bd" %)**Soil Conductivity**(%%), and uploads the value via wireless to LoRaWAN IoT Server.
36 +It can detect (% style="color:blue" %)**Soil Moisture, Soil Temperature and Soil Conductivity**(%%), and upload its value to the server wirelessly.
27 27  )))
28 28  
29 29  (((
30 -The LoRa wireless technology used in LES01 allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption.
40 +The wireless technology used in NSE01 allows the device to send data at a low data rate and reach ultra-long distances, providing ultra-long-distance spread spectrum Communication.
31 31  )))
32 32  
33 33  (((
34 -LES01 is powered by (% style="color:#4f81bd" %)**4000mA or 8500mAh Li-SOCI2 battery**(%%), It is designed for long term use up to 10 years.
44 +NSE01 are powered by (% style="color:blue" %)**8500mAh Li-SOCI2**(%%) batteries, which can be used for up to 5 years.  
35 35  )))
36 36  
37 -(((
38 -Each LES01 is pre-load with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect after power on.
47 +
39 39  )))
40 40  
41 -
42 42  [[image:1654503236291-817.png]]
43 43  
44 44  
45 -[[image:1654503265560-120.png]]
53 +[[image:1657245163077-232.png]]
46 46  
47 47  
48 48  
49 -== 1.2 ​Features ==
57 +== 1.2 ​ Features ==
50 50  
51 -* LoRaWAN 1.0.3 Class A
52 -* Ultra low power consumption
59 +* NB-IoT Bands: B1/B3/B8/B5/B20/B28 @H-FDD
53 53  * Monitor Soil Moisture
54 54  * Monitor Soil Temperature
55 55  * Monitor Soil Conductivity
56 -* Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865
57 57  * AT Commands to change parameters
58 58  * Uplink on periodically
59 59  * Downlink to change configure
60 60  * IP66 Waterproof Enclosure
61 -* 4000mAh or 8500mAh Battery for long term use
67 +* Ultra-Low Power consumption
68 +* AT Commands to change parameters
69 +* Micro SIM card slot for NB-IoT SIM
70 +* 8500mAh Battery for long term use
62 62  
63 -== 1.3 Specification ==
72 +== 1.3  Specification ==
64 64  
74 +
75 +(% style="color:#037691" %)**Common DC Characteristics:**
76 +
77 +* Supply Voltage: 2.1v ~~ 3.6v
78 +* Operating Temperature: -40 ~~ 85°C
79 +
80 +(% style="color:#037691" %)**NB-IoT Spec:**
81 +
82 +* - B1 @H-FDD: 2100MHz
83 +* - B3 @H-FDD: 1800MHz
84 +* - B8 @H-FDD: 900MHz
85 +* - B5 @H-FDD: 850MHz
86 +* - B20 @H-FDD: 800MHz
87 +* - B28 @H-FDD: 700MHz
88 +
89 +Probe(% style="color:#037691" %)** Specification:**
90 +
65 65  Measure Volume: Base on the centra pin of the probe, a cylinder with 7cm diameter and 10cm height.
66 66  
67 -[[image:image-20220606162220-5.png]]
93 +[[image:image-20220708101224-1.png]]
68 68  
69 69  
70 70  
71 -== ​1.4 Applications ==
97 +== ​1.4  Applications ==
72 72  
73 73  * Smart Agriculture
74 74  
... ... @@ -75,1013 +75,774 @@
75 75  (% class="wikigeneratedid" id="H200B1.5FirmwareChangelog" %)
76 76  ​
77 77  
78 -== 1.5 Firmware Change log ==
104 +== 1.5  Pin Definitions ==
79 79  
80 80  
81 -**LSE01 v1.0 :**  Release
107 +[[image:1657246476176-652.png]]
82 82  
83 83  
84 84  
85 -= 2. Configure LSE01 to connect to LoRaWAN network =
111 += 2.  Use NSE01 to communicate with IoT Server =
86 86  
87 -== 2.1 How it works ==
113 +== 2.1  How it works ==
88 88  
115 +
89 89  (((
90 -The LSE01 is configured as LoRaWAN OTAA Class A mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and power on the LSE0150. It will automatically join the network via OTAA and start to send the sensor value
117 +The NSE01 is equipped with a NB-IoT module, the pre-loaded firmware in NSE01 will get environment data from sensors and send the value to local NB-IoT network via the NB-IoT module The NB-IoT network will forward this value to IoT server via the protocol defined by NSE01.
91 91  )))
92 92  
120 +
93 93  (((
94 -In case you can’t set the OTAA keys in the LoRaWAN OTAA server, and you have to use the keys from the server, you can [[use AT Commands >>||anchor="H3.200BUsingtheATCommands"]].
122 +The diagram below shows the working flow in default firmware of NSE01:
95 95  )))
96 96  
125 +[[image:image-20220708101605-2.png]]
97 97  
127 +(((
128 +
129 +)))
98 98  
99 -== 2.2 ​Quick guide to connect to LoRaWAN server (OTAA) ==
100 100  
101 -Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LG308>>url:http://www.dragino.com/products/lora/item/140-lg308.html]] as a LoRaWAN gateway in this example.
102 102  
133 +== 2.2 ​ Configure the NSE01 ==
103 103  
104 -[[image:1654503992078-669.png]]
105 105  
136 +=== 2.2.1 Test Requirement ===
106 106  
107 -The LG308 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
108 108  
139 +(((
140 +To use NSE01 in your city, make sure meet below requirements:
141 +)))
109 109  
110 -(% style="color:blue" %)**Step 1**(%%):  Create a device in TTN with the OTAA keys from LSE01.
143 +* Your local operator has already distributed a NB-IoT Network there.
144 +* The local NB-IoT network used the band that NSE01 supports.
145 +* Your operator is able to distribute the data received in their NB-IoT network to your IoT server.
111 111  
112 -Each LSE01 is shipped with a sticker with the default device EUI as below:
147 +(((
148 +Below figure shows our testing structure. Here we have NB-IoT network coverage by China Mobile, the band they use is B8.  The NSE01 will use CoAP((% style="color:red" %)120.24.4.116:5683)(%%) or raw UDP((% style="color:red" %)120.24.4.116:5601)(%%) or MQTT((% style="color:red" %)120.24.4.116:1883)(%%)or TCP((% style="color:red" %)120.24.4.116:5600)(%%)protocol to send data to the test server
149 +)))
113 113  
114 -[[image:image-20220606163732-6.jpeg]]
115 115  
116 -You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot:
152 +[[image:1657249419225-449.png]]
117 117  
118 -**Add APP EUI in the application**
119 119  
120 120  
121 -[[image:1654504596150-405.png]]
156 +=== 2.2.2 Insert SIM card ===
122 122  
158 +(((
159 +Insert the NB-IoT Card get from your provider.
160 +)))
123 123  
162 +(((
163 +User need to take out the NB-IoT module and insert the SIM card like below:
164 +)))
124 124  
125 -**Add APP KEY and DEV EUI**
126 126  
127 -[[image:1654504683289-357.png]]
167 +[[image:1657249468462-536.png]]
128 128  
129 129  
130 130  
131 -(% style="color:blue" %)**Step 2**(%%): Power on LSE01
171 +=== 2.2.3 Connect USB TTL to NSE01 to configure it ===
132 132  
173 +(((
174 +(((
175 +User need to configure NSE01 via serial port to set the (% style="color:blue" %)**Server Address** / **Uplink Topic** (%%)to define where and how-to uplink packets. NSE01 support AT Commands, user can use a USB to TTL adapter to connect to NSE01 and use AT Commands to configure it, as below.
176 +)))
177 +)))
133 133  
134 -Put a Jumper on JP2 to power on the device. ( The Jumper must be in FLASH position).
135 135  
136 -[[image:image-20220606163915-7.png]]
180 +**Connection:**
137 137  
182 + (% style="background-color:yellow" %)USB TTL GND <~-~-~-~-> GND
138 138  
139 -(% style="color:blue" %)**Step 3**(%%)**:** The LSE01 will auto join to the TTN network. After join success, it will start to upload messages to TTN and you can see the messages in the panel.
184 + (% style="background-color:yellow" %)USB TTL TXD <~-~-~-~-> UART_RXD
140 140  
141 -[[image:1654504778294-788.png]]
186 + (% style="background-color:yellow" %)USB TTL RXD <~-~-~-~-> UART_TXD
142 142  
143 143  
189 +In the PC, use below serial tool settings:
144 144  
145 -== 2.3 Uplink Payload ==
191 +* Baud:  (% style="color:green" %)**9600**
192 +* Data bits:** (% style="color:green" %)8(%%)**
193 +* Stop bits: (% style="color:green" %)**1**
194 +* Parity:  (% style="color:green" %)**None**
195 +* Flow Control: (% style="color:green" %)**None**
146 146  
197 +(((
198 +Make sure the switch is in FLASH position, then power on device by connecting the jumper on NSE01. NSE01 will output system info once power on as below, we can enter the (% style="color:green" %)**password: 12345678**(%%) to access AT Command input.
199 +)))
147 147  
148 -=== 2.3.1 MOD~=0(Default Mode) ===
201 +[[image:image-20220708110657-3.png]]
149 149  
150 -LSE01 will uplink payload via LoRaWAN with below payload format: 
151 -
152 152  (((
153 -Uplink payload includes in total 11 bytes.
204 +(% style="color:red" %)Note: the valid AT Commands can be found at: (%%)[[http:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/]]
154 154  )))
155 155  
156 -(% border="1" cellspacing="10" style="background-color:#ffffcc; width:500px" %)
157 -|(((
158 -**Size**
159 159  
160 -**(bytes)**
161 -)))|**2**|**2**|**2**|**2**|**2**|**1**
162 -|**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(((
163 -Temperature
164 164  
165 -(Reserve, Ignore now)
166 -)))|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]]|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]]|(((
167 -MOD & Digital Interrupt
209 +=== 2.2.4 Use CoAP protocol to uplink data ===
168 168  
169 -(Optional)
170 -)))
211 +(% style="color:red" %)Note: if you don't have CoAP server, you can refer this link to set up one: (%%)[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/>>http://wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/]]
171 171  
172 172  
214 +**Use below commands:**
173 173  
174 -=== 2.3.2 MOD~=1(Original value) ===
216 +* (% style="color:blue" %)**AT+PRO=1**  (%%) ~/~/ Set to use CoAP protocol to uplink
217 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5683   ** (%%)~/~/ to set CoAP server address and port
218 +* (% style="color:blue" %)**AT+URI=5,11,"mqtt",11,"coap",12,"0",15,"c=text1",23,"0" ** (%%) ~/~/Set COAP resource path
175 175  
176 -This mode can get the original AD value of moisture and original conductivity (with temperature drift compensation).
220 +For parameter description, please refer to AT command set
177 177  
178 -(% border="1" cellspacing="10" style="background-color:#ffffcc; width:500px" %)
179 -|(((
180 -**Size**
222 +[[image:1657249793983-486.png]]
181 181  
182 -**(bytes)**
183 -)))|**2**|**2**|**2**|**2**|**2**|**1**
184 -|**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(((
185 -Temperature
186 186  
187 -(Reserve, Ignore now)
188 -)))|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]](raw)|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]](raw)|(((
189 -MOD & Digital Interrupt
225 +After configure the server address and (% style="color:green" %)**reset the device**(%%) (via AT+ATZ ), NSE01 will start to uplink sensor values to CoAP server.
190 190  
191 -(Optional)
192 -)))
227 +[[image:1657249831934-534.png]]
193 193  
194 194  
195 195  
196 -=== 2.3.3 Battery Info ===
231 +=== 2.2.5 Use UDP protocol to uplink data(Default protocol) ===
197 197  
198 -(((
199 -Check the battery voltage for LSE01.
200 -)))
233 +This feature is supported since firmware version v1.0.1
201 201  
202 -(((
203 -Ex1: 0x0B45 = 2885mV
204 -)))
205 205  
206 -(((
207 -Ex2: 0x0B49 = 2889mV
208 -)))
236 +* (% style="color:blue" %)**AT+PRO=2   ** (%%) ~/~/ Set to use UDP protocol to uplink
237 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5601   ** (%%) ~/~/ to set UDP server address and port
238 +* (% style="color:blue" %)**AT+CFM=1       ** (%%) ~/~/If the server does not respond, this command is unnecessary
209 209  
240 +[[image:1657249864775-321.png]]
210 210  
211 211  
212 -=== 2.3.4 Soil Moisture ===
243 +[[image:1657249930215-289.png]]
213 213  
214 -(((
215 -Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil.
216 -)))
217 217  
218 -(((
219 -For example, if the data you get from the register is __0x05 0xDC__, the moisture content in the soil is
220 -)))
221 221  
222 -(((
223 -
224 -)))
247 +=== 2.2.6 Use MQTT protocol to uplink data ===
225 225  
226 -(((
227 -(% style="color:#4f81bd" %)**05DC(H) = 1500(D) /100 = 15%.**
228 -)))
249 +This feature is supported since firmware version v110
229 229  
230 230  
252 +* (% style="color:blue" %)**AT+PRO=3   ** (%%) ~/~/Set to use MQTT protocol to uplink
253 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,1883   ** (%%) ~/~/Set MQTT server address and port
254 +* (% style="color:blue" %)**AT+CLIENT=CLIENT       ** (%%)~/~/Set up the CLIENT of MQTT
255 +* (% style="color:blue" %)**AT+UNAME=UNAME                               **(%%)~/~/Set the username of MQTT
256 +* (% style="color:blue" %)**AT+PWD=PWD                                        **(%%)~/~/Set the password of MQTT
257 +* (% style="color:blue" %)**AT+PUBTOPIC=NSE01_PUB                    **(%%)~/~/Set the sending topic of MQTT
258 +* (% style="color:blue" %)**AT+SUBTOPIC=NSE01_SUB          **(%%) ~/~/Set the subscription topic of MQTT
231 231  
232 -=== 2.3.5 Soil Temperature ===
260 +[[image:1657249978444-674.png]]
233 233  
234 -(((
235 - Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is 0x09 0xEC, the temperature content in the soil is
236 -)))
237 237  
238 -(((
239 -**Example**:
240 -)))
263 +[[image:1657249990869-686.png]]
241 241  
242 -(((
243 -If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/100 = 2.61 °C
244 -)))
245 245  
246 246  (((
247 -If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C
267 +MQTT protocol has a much higher power consumption compare vs UDP / CoAP protocol. Please check the power analyze document and adjust the uplink period to a suitable interval.
248 248  )))
249 249  
250 250  
251 251  
252 -=== 2.3.6 Soil Conductivity (EC) ===
272 +=== 2.2.7 Use TCP protocol to uplink data ===
253 253  
254 -(((
255 -Obtain (% style="color:#4f81bd" %)**__soluble salt concentration__**(%%) in soil or (% style="color:#4f81bd" %)**__soluble ion concentration in liquid fertilizer__**(%%) or (% style="color:#4f81bd" %)**__planting medium__**(%%). The value range of the register is 0 - 20000(Decimal)( Can be greater than 20000).
256 -)))
274 +This feature is supported since firmware version v110
257 257  
258 -(((
259 -For example, if the data you get from the register is 0x00 0xC8, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm.
260 -)))
261 261  
262 -(((
263 -Generally, the EC value of irrigation water is less than 800uS / cm.
264 -)))
277 +* (% style="color:blue" %)**AT+PRO=4   ** (%%) ~/~/ Set to use TCP protocol to uplink
278 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5600   **(%%) ~/~/ to set TCP server address and port
265 265  
266 -(((
267 -
268 -)))
280 +[[image:1657250217799-140.png]]
269 269  
270 -(((
271 -
272 -)))
273 273  
274 -=== 2.3.7 MOD ===
283 +[[image:1657250255956-604.png]]
275 275  
276 -Firmware version at least v2.1 supports changing mode.
277 277  
278 -For example, bytes[10]=90
279 279  
280 -mod=(bytes[10]>>7)&0x01=1.
287 +=== 2.2.8 Change Update Interval ===
281 281  
289 +User can use below command to change the (% style="color:green" %)**uplink interval**.
282 282  
283 -**Downlink Command:**
291 +* (% style="color:blue" %)**AT+TDC=600      ** (%%)~/~/ Set Update Interval to 600s
284 284  
285 -If payload = 0x0A00, workmode=0
293 +(((
294 +(% style="color:red" %)**NOTE:**
295 +)))
286 286  
287 -If** **payload =** **0x0A01, workmode=1
297 +(((
298 +(% style="color:red" %)1. By default, the device will send an uplink message every 1 hour.
299 +)))
288 288  
289 289  
290 290  
291 -=== 2.3.8 ​Decode payload in The Things Network ===
303 +== 2.3  Uplink Payload ==
292 292  
293 -While using TTN network, you can add the payload format to decode the payload.
305 +In this mode, uplink payload includes in total 18 bytes
294 294  
307 +(% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:510px" %)
308 +|=(% style="width: 60px;" %)(((
309 +**Size(bytes)**
310 +)))|=(% style="width: 50px;" %)**6**|=(% style="width: 25px;" %)2|=(% style="width: 25px;" %)**2**|=(% style="width: 70px;" %)**1**|=(% style="width: 60px;" %)**2**|=(% style="width: 80px;" %)**2**|=(% style="width: 90px;" %)**2**|=(% style="width: 50px;" %)**1**
311 +|(% style="width:97px" %)**Value**|(% style="width:83px" %)[[Device ID>>||anchor="H2.4.1A0A0DeviceID"]]|(% style="width:41px" %)[[Ver>>||anchor="H2.4.2A0VersionInfo"]]|(% style="width:46px" %)[[BAT>>||anchor="H2.4.3A0BatteryInfo"]]|(% style="width:123px" %)[[Signal Strength>>||anchor="H2.4.4A0SignalStrength"]]|(% style="width:108px" %)[[Soil Moisture>>||anchor="H2.4.5A0SoilMoisture"]]|(% style="width:133px" %)[[Soil Temperature>>||anchor="H2.4.6A0SoilTemperature"]]|(% style="width:159px" %)[[Soil Conductivity(EC)>>||anchor="H2.4.7A0SoilConductivity28EC29"]]|(% style="width:80px" %)[[Interrupt>>||anchor="H2.4.8A0DigitalInterrupt"]]
295 295  
296 -[[image:1654505570700-128.png]]
297 -
298 298  (((
299 -The payload decoder function for TTN is here:
314 +If we use the MQTT client to subscribe to this MQTT topic, we can see the following information when the NSE01 uplink data.
300 300  )))
301 301  
302 -(((
303 -LSE01 TTN Payload Decoder: [[https:~~/~~/www.dropbox.com/sh/si8icbrjlamxqdb/AAACYwjsxxr5fj_vpqRtrETAa?dl=0>>https://www.dropbox.com/sh/si8icbrjlamxqdb/AAACYwjsxxr5fj_vpqRtrETAa?dl=0]]
304 -)))
305 305  
318 +[[image:image-20220708111918-4.png]]
306 306  
307 -== 2.4 Uplink Interval ==
308 308  
309 -The LSE01 by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link: [[Change Uplink Interval>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H4.1ChangeUplinkInterval"]]
321 +The payload is ASCII string, representative same HEX:
310 310  
323 +0x72403155615900640c7817075e0a8c02f900 where:
311 311  
325 +* Device ID: 0x 724031556159 = 724031556159
326 +* Version: 0x0064=100=1.0.0
312 312  
313 -== 2.5 Downlink Payload ==
328 +* BAT: 0x0c78 = 3192 mV = 3.192V
329 +* Singal: 0x17 = 23
330 +* Soil Moisture: 0x075e= 1886 = 18.86  %
331 +* Soil Temperature:0x0a8c =2700=27 °C
332 +* Soil Conductivity(EC) = 0x02f9 =761 uS /cm
333 +* Interrupt: 0x00 = 0
314 314  
315 -By default, LSE50 prints the downlink payload to console port.
316 316  
317 -[[image:image-20220606165544-8.png]]
318 318  
319 319  
338 +== 2.4  Payload Explanation and Sensor Interface ==
339 +
340 +
341 +=== 2.4.1  Device ID ===
342 +
320 320  (((
321 -**Examples:**
344 +By default, the Device ID equal to the last 6 bytes of IMEI.
322 322  )))
323 323  
324 324  (((
325 -
348 +User can use (% style="color:blue" %)**AT+DEUI**(%%) to set Device ID
326 326  )))
327 327  
328 -* (((
329 -**Set TDC**
351 +(((
352 +**Example:**
330 330  )))
331 331  
332 332  (((
333 -If the payload=0100003C, it means set the END Node’s TDC to 0x00003C=60(S), while type code is 01.
356 +AT+DEUI=A84041F15612
334 334  )))
335 335  
336 336  (((
337 -Payload:    01 00 00 1E    TDC=30S
360 +The Device ID is stored in a none-erase area, Upgrade the firmware or run AT+FDR won't erase Device ID.
338 338  )))
339 339  
363 +
364 +
365 +=== 2.4.2  Version Info ===
366 +
340 340  (((
341 -Payload:    01 00 00 3C    TDC=60S
368 +Specify the software version: 0x64=100, means firmware version 1.00.
342 342  )))
343 343  
344 344  (((
345 -
372 +For example: 0x00 64 : this device is NSE01 with firmware version 1.0.0.
346 346  )))
347 347  
348 -* (((
349 -**Reset**
375 +
376 +
377 +=== 2.4.3  Battery Info ===
378 +
379 +(((
380 +Check the battery voltage for LSE01.
350 350  )))
351 351  
352 352  (((
353 -If payload = 0x04FF, it will reset the LSE01
384 +Ex1: 0x0B45 = 2885mV
354 354  )))
355 355  
387 +(((
388 +Ex2: 0x0B49 = 2889mV
389 +)))
356 356  
357 -* **CFM**
358 358  
359 -Downlink Payload: 05000001, Set AT+CFM=1 or 05000000 , set AT+CFM=0
360 360  
393 +=== 2.4.4  Signal Strength ===
361 361  
395 +(((
396 +NB-IoT Network signal Strength.
397 +)))
362 362  
363 -== 2.6 ​Show Data in DataCake IoT Server ==
399 +(((
400 +**Ex1: 0x1d = 29**
401 +)))
364 364  
365 365  (((
366 -[[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps:
404 +(% style="color:blue" %)**0**(%%)  -113dBm or less
367 367  )))
368 368  
369 369  (((
370 -
408 +(% style="color:blue" %)**1**(%%)  -111dBm
371 371  )))
372 372  
373 373  (((
374 -(% style="color:blue" %)**Step 1**(%%) Be sure that your device is programmed and properly connected to the network at this time.
412 +(% style="color:blue" %)**2...30**(%%) -109dBm... -53dBm
375 375  )))
376 376  
377 377  (((
378 -(% style="color:blue" %)**Step 2**(%%) To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps:
416 +(% style="color:blue" %)**31**  (%%) -51dBm or greater
379 379  )))
380 380  
419 +(((
420 +(% style="color:blue" %)**99**   (%%) Not known or not detectable
421 +)))
381 381  
382 -[[image:1654505857935-743.png]]
383 383  
384 384  
385 -[[image:1654505874829-548.png]]
425 +=== 2.4.5  Soil Moisture ===
386 386  
427 +(((
428 +(((
429 +Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil.
430 +)))
431 +)))
387 387  
388 -(% style="color:blue" %)**Step 3**(%%)**:**  Create an account or log in Datacake.
433 +(((
434 +(((
435 +For example, if the data you get from the register is **__0x05 0xDC__**, the moisture content in the soil is
436 +)))
437 +)))
389 389  
390 -(% style="color:blue" %)**Step 4**(%%)**:**  Search the LSE01 and add DevEUI.
439 +(((
440 +
441 +)))
391 391  
443 +(((
444 +(% style="color:#4f81bd" %)**05DC(H) = 1500(D) /100 = 15%.**
445 +)))
392 392  
393 -[[image:1654505905236-553.png]]
394 394  
395 395  
396 -After added, the sensor data arrive TTN, it will also arrive and show in Mydevices.
449 +=== 2.4.6  Soil Temperature ===
397 397  
398 -[[image:1654505925508-181.png]]
451 +(((
452 +Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is __**0x09 0xEC**__, the temperature content in the soil is
453 +)))
399 399  
455 +(((
456 +**Example**:
457 +)))
400 400  
459 +(((
460 +If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/100 = 2.61 °C
461 +)))
401 401  
402 -== 2.7 Frequency Plans ==
463 +(((
464 +If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C
465 +)))
403 403  
404 -The LSE01 uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.
405 405  
406 406  
407 -=== 2.7.1 EU863-870 (EU868) ===
469 +=== 2.4.7  Soil Conductivity (EC) ===
408 408  
409 -(% style="color:#037691" %)** Uplink:**
471 +(((
472 +Obtain (% style="color:#4f81bd" %)**__soluble salt concentration__**(%%) in soil or (% style="color:#4f81bd" %)**__soluble ion concentration in liquid fertilizer__**(%%) or (% style="color:#4f81bd" %)**__planting medium__**(%%). The value range of the register is 0 - 20000(Decimal)( Can be greater than 20000).
473 +)))
410 410  
411 -868.1 - SF7BW125 to SF12BW125
475 +(((
476 +For example, if the data you get from the register is __**0x00 0xC8**__, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm.
477 +)))
412 412  
413 -868.3 - SF7BW125 to SF12BW125 and SF7BW250
479 +(((
480 +Generally, the EC value of irrigation water is less than 800uS / cm.
481 +)))
414 414  
415 -868.5 - SF7BW125 to SF12BW125
483 +(((
484 +
485 +)))
416 416  
417 -867.1 - SF7BW125 to SF12BW125
487 +(((
488 +
489 +)))
418 418  
419 -867.3 - SF7BW125 to SF12BW125
491 +=== 2.4.8  Digital Interrupt ===
420 420  
421 -867.5 - SF7BW125 to SF12BW125
493 +(((
494 +Digital Interrupt refers to pin (% style="color:blue" %)**GPIO_EXTI**(%%), and there are different trigger methods. When there is a trigger, the NSE01 will send a packet to the server.
495 +)))
422 422  
423 -867.7 - SF7BW125 to SF12BW125
497 +(((
498 +The command is:
499 +)))
424 424  
425 -867.9 - SF7BW125 to SF12BW125
501 +(((
502 +(% style="color:blue" %)**AT+INTMOD=3 **(%%) ~/~/(more info about INMOD please refer [[**AT Command Manual**>>url:https://www.dragino.com/downloads/downloads/NB-IoT/NBSN95/DRAGINO_NBSN95-NB_AT%20Commands_v1.1.0.pdf]])**.**
503 +)))
426 426  
427 -868.8 - FSK
428 428  
506 +(((
507 +The lower four bits of this data field shows if this packet is generated by interrupt or not. Click here for the hardware and software set up.
508 +)))
429 429  
430 -(% style="color:#037691" %)** Downlink:**
431 431  
432 -Uplink channels 1-9 (RX1)
511 +(((
512 +Example:
513 +)))
433 433  
434 -869.525 - SF9BW125 (RX2 downlink only)
515 +(((
516 +0x(00): Normal uplink packet.
517 +)))
435 435  
519 +(((
520 +0x(01): Interrupt Uplink Packet.
521 +)))
436 436  
437 437  
438 -=== 2.7.2 US902-928(US915) ===
439 439  
440 -Used in USA, Canada and South America. Default use CHE=2
525 +=== 2.4.9  ​+5V Output ===
441 441  
442 -(% style="color:#037691" %)**Uplink:**
527 +NSE01 will enable +5V output before all sampling and disable the +5v after all sampling. 
443 443  
444 -903.9 - SF7BW125 to SF10BW125
445 445  
446 -904.1 - SF7BW125 to SF10BW125
530 +The 5V output time can be controlled by AT Command.
447 447  
448 -904.3 - SF7BW125 to SF10BW125
532 +(% style="color:blue" %)**AT+5VT=1000**
449 449  
450 -904.5 - SF7BW125 to SF10BW125
534 +Means set 5V valid time to have 1000ms. So the real 5V output will actually have 1000ms + sampling time for other sensors.
451 451  
452 -904.7 - SF7BW125 to SF10BW125
453 453  
454 -904.9 - SF7BW125 to SF10BW125
455 455  
456 -905.1 - SF7BW125 to SF10BW125
538 +== 2.5  Downlink Payload ==
457 457  
458 -905.3 - SF7BW125 to SF10BW125
540 +By default, NSE01 prints the downlink payload to console port.
459 459  
542 +[[image:image-20220708133731-5.png]]
460 460  
461 -(% style="color:#037691" %)**Downlink:**
462 462  
463 -923.3 - SF7BW500 to SF12BW500
545 +(((
546 +(% style="color:blue" %)**Examples:**
547 +)))
464 464  
465 -923.9 - SF7BW500 to SF12BW500
549 +(((
550 +
551 +)))
466 466  
467 -924.5 - SF7BW500 to SF12BW500
553 +* (((
554 +(% style="color:blue" %)**Set TDC**
555 +)))
468 468  
469 -925.1 - SF7BW500 to SF12BW500
557 +(((
558 +If the payload=0100003C, it means set the END Node's TDC to 0x00003C=60(S), while type code is 01.
559 +)))
470 470  
471 -925.7 - SF7BW500 to SF12BW500
561 +(((
562 +Payload:    01 00 00 1E    TDC=30S
563 +)))
472 472  
473 -926.3 - SF7BW500 to SF12BW500
565 +(((
566 +Payload:    01 00 00 3C    TDC=60S
567 +)))
474 474  
475 -926.9 - SF7BW500 to SF12BW500
569 +(((
570 +
571 +)))
476 476  
477 -927.5 - SF7BW500 to SF12BW500
573 +* (((
574 +(% style="color:blue" %)**Reset**
575 +)))
478 478  
479 -923.3 - SF12BW500(RX2 downlink only)
577 +(((
578 +If payload = 0x04FF, it will reset the NSE01
579 +)))
480 480  
481 481  
582 +* (% style="color:blue" %)**INTMOD**
482 482  
483 -=== 2.7.3 CN470-510 (CN470) ===
584 +Downlink Payload: 06000003, Set AT+INTMOD=3
484 484  
485 -Used in China, Default use CHE=1
486 486  
487 -(% style="color:#037691" %)**Uplink:**
488 488  
489 -486.3 - SF7BW125 to SF12BW125
588 +== 2.6  ​LED Indicator ==
490 490  
491 -486.5 - SF7BW125 to SF12BW125
590 +(((
591 +The NSE01 has an internal LED which is to show the status of different state.
492 492  
493 -486.7 - SF7BW125 to SF12BW125
494 494  
495 -486.9 - SF7BW125 to SF12BW125
594 +* When power on, NSE01 will detect if sensor probe is connected, if probe detected, LED will blink four times. (no blinks in this step is no probe)
595 +* Then the LED will be on for 1 second means device is boot normally.
596 +* After NSE01 join NB-IoT network. The LED will be ON for 3 seconds.
597 +* For each uplink probe, LED will be on for 500ms.
598 +)))
496 496  
497 -487.1 - SF7BW125 to SF12BW125
498 498  
499 -487.3 - SF7BW125 to SF12BW125
500 500  
501 -487.5 - SF7BW125 to SF12BW125
502 502  
503 -487.7 - SF7BW125 to SF12BW125
603 +== 2.7  Installation in Soil ==
504 504  
605 +__**Measurement the soil surface**__
505 505  
506 -(% style="color:#037691" %)**Downlink:**
607 +Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting. [[https:~~/~~/img.alicdn.com/imgextra/i3/2005165265/O1CN010rj9Oh1olPsQxrdUK_!!2005165265.jpg>>url:https://img.alicdn.com/imgextra/i3/2005165265/O1CN010rj9Oh1olPsQxrdUK_!!2005165265.jpg]]
507 507  
508 -506.7 - SF7BW125 to SF12BW125
609 +[[image:1657259653666-883.png]] ​
509 509  
510 -506.9 - SF7BW125 to SF12BW125
511 511  
512 -507.1 - SF7BW125 to SF12BW125
612 +(((
613 +
513 513  
514 -507.3 - SF7BW125 to SF12BW125
615 +(((
616 +Dig a hole with diameter > 20CM.
617 +)))
515 515  
516 -507.5 - SF7BW125 to SF12BW125
619 +(((
620 +Horizontal insert the probe to the soil and fill the hole for long term measurement.
621 +)))
622 +)))
517 517  
518 -507.7 - SF7BW125 to SF12BW125
624 +[[image:1654506665940-119.png]]
519 519  
520 -507.9 - SF7BW125 to SF12BW125
626 +(((
627 +
628 +)))
521 521  
522 -508.1 - SF7BW125 to SF12BW125
523 523  
524 -505.3 - SF12BW125 (RX2 downlink only)
631 +== 2.8  ​Firmware Change Log ==
525 525  
526 526  
634 +Download URL & Firmware Change log
527 527  
528 -=== 2.7.4 AU915-928(AU915) ===
636 +[[www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/Firmware/]]
529 529  
530 -Default use CHE=2
531 531  
532 -(% style="color:#037691" %)**Uplink:**
639 +Upgrade Instruction: [[Upgrade_Firmware>>||anchor="H5.1200BHowtoUpgradeFirmware"]]
533 533  
534 -916.8 - SF7BW125 to SF12BW125
535 535  
536 -917.0 - SF7BW125 to SF12BW125
537 537  
538 -917.2 - SF7BW125 to SF12BW125
643 +== 2.9  ​Battery Analysis ==
539 539  
540 -917.4 - SF7BW125 to SF12BW125
645 +=== 2.9.1  ​Battery Type ===
541 541  
542 -917.6 - SF7BW125 to SF12BW125
543 543  
544 -917.8 - SF7BW125 to SF12BW125
648 +The NSE01 battery is a combination of an 8500mAh Li/SOCI2 Battery and a Super Capacitor. The battery is none-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter.
545 545  
546 -918.0 - SF7BW125 to SF12BW125
547 547  
548 -918.2 - SF7BW125 to SF12BW125
651 +The battery is designed to last for several years depends on the actually use environment and update interval. 
549 549  
550 550  
551 -(% style="color:#037691" %)**Downlink:**
654 +The battery related documents as below:
552 552  
553 -923.3 - SF7BW500 to SF12BW500
656 +* [[Battery Dimension>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]
657 +* [[Lithium-Thionyl Chloride Battery datasheet>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]
658 +* [[Lithium-ion Battery-Capacitor datasheet>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]
554 554  
555 -923.9 - SF7BW500 to SF12BW500
556 -
557 -924.5 - SF7BW500 to SF12BW500
558 -
559 -925.1 - SF7BW500 to SF12BW500
560 -
561 -925.7 - SF7BW500 to SF12BW500
562 -
563 -926.3 - SF7BW500 to SF12BW500
564 -
565 -926.9 - SF7BW500 to SF12BW500
566 -
567 -927.5 - SF7BW500 to SF12BW500
568 -
569 -923.3 - SF12BW500(RX2 downlink only)
570 -
571 -
572 -
573 -=== 2.7.5 AS920-923 & AS923-925 (AS923) ===
574 -
575 -(% style="color:#037691" %)**Default Uplink channel:**
576 -
577 -923.2 - SF7BW125 to SF10BW125
578 -
579 -923.4 - SF7BW125 to SF10BW125
580 -
581 -
582 -(% style="color:#037691" %)**Additional Uplink Channel**:
583 -
584 -(OTAA mode, channel added by JoinAccept message)
585 -
586 -(% style="color:#037691" %)**AS920~~AS923 for Japan, Malaysia, Singapore**:
587 -
588 -922.2 - SF7BW125 to SF10BW125
589 -
590 -922.4 - SF7BW125 to SF10BW125
591 -
592 -922.6 - SF7BW125 to SF10BW125
593 -
594 -922.8 - SF7BW125 to SF10BW125
595 -
596 -923.0 - SF7BW125 to SF10BW125
597 -
598 -922.0 - SF7BW125 to SF10BW125
599 -
600 -
601 -(% style="color:#037691" %)**AS923 ~~ AS925 for Brunei, Cambodia, Hong Kong, Indonesia, Laos, Taiwan, Thailand, Vietnam**:
602 -
603 -923.6 - SF7BW125 to SF10BW125
604 -
605 -923.8 - SF7BW125 to SF10BW125
606 -
607 -924.0 - SF7BW125 to SF10BW125
608 -
609 -924.2 - SF7BW125 to SF10BW125
610 -
611 -924.4 - SF7BW125 to SF10BW125
612 -
613 -924.6 - SF7BW125 to SF10BW125
614 -
615 -
616 -(% style="color:#037691" %)** Downlink:**
617 -
618 -Uplink channels 1-8 (RX1)
619 -
620 -923.2 - SF10BW125 (RX2)
621 -
622 -
623 -
624 -=== 2.7.6 KR920-923 (KR920) ===
625 -
626 -Default channel:
627 -
628 -922.1 - SF7BW125 to SF12BW125
629 -
630 -922.3 - SF7BW125 to SF12BW125
631 -
632 -922.5 - SF7BW125 to SF12BW125
633 -
634 -
635 -(% style="color:#037691" %)**Uplink: (OTAA mode, channel added by JoinAccept message)**
636 -
637 -922.1 - SF7BW125 to SF12BW125
638 -
639 -922.3 - SF7BW125 to SF12BW125
640 -
641 -922.5 - SF7BW125 to SF12BW125
642 -
643 -922.7 - SF7BW125 to SF12BW125
644 -
645 -922.9 - SF7BW125 to SF12BW125
646 -
647 -923.1 - SF7BW125 to SF12BW125
648 -
649 -923.3 - SF7BW125 to SF12BW125
650 -
651 -
652 -(% style="color:#037691" %)**Downlink:**
653 -
654 -Uplink channels 1-7(RX1)
655 -
656 -921.9 - SF12BW125 (RX2 downlink only; SF12BW125 might be changed to SF9BW125)
657 -
658 -
659 -
660 -=== 2.7.7 IN865-867 (IN865) ===
661 -
662 -(% style="color:#037691" %)** Uplink:**
663 -
664 -865.0625 - SF7BW125 to SF12BW125
665 -
666 -865.4025 - SF7BW125 to SF12BW125
667 -
668 -865.9850 - SF7BW125 to SF12BW125
669 -
670 -
671 -(% style="color:#037691" %) **Downlink:**
672 -
673 -Uplink channels 1-3 (RX1)
674 -
675 -866.550 - SF10BW125 (RX2)
676 -
677 -
678 -
679 -
680 -== 2.8 LED Indicator ==
681 -
682 -The LSE01 has an internal LED which is to show the status of different state.
683 -
684 -* Blink once when device power on.
685 -* Solid ON for 5 seconds once device successful Join the network.
686 -* Blink once when device transmit a packet.
687 -
688 -
689 -
690 -
691 -
692 -== 2.9 Installation in Soil ==
693 -
694 -**Measurement the soil surface**
695 -
696 -
697 -[[image:1654506634463-199.png]] ​
698 -
699 699  (((
700 -(((
701 -Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting.
661 +[[image:image-20220708140453-6.png]]
702 702  )))
703 -)))
704 704  
705 705  
706 -[[image:1654506665940-119.png]]
707 707  
708 -(((
709 -Dig a hole with diameter > 20CM.
710 -)))
666 +=== 2.9.2  Power consumption Analyze ===
711 711  
712 712  (((
713 -Horizontal insert the probe to the soil and fill the hole for long term measurement.
669 +Dragino battery powered product are all runs in Low Power mode. We have an update battery calculator which base on the measurement of the real device. User can use this calculator to check the battery life and calculate the battery life if want to use different transmit interval.
714 714  )))
715 715  
716 716  
717 -== 2.10 ​Firmware Change Log ==
718 -
719 719  (((
720 -**Firmware download link:**
674 +Instruction to use as below:
721 721  )))
722 722  
723 723  (((
724 -[[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/]]
678 +(% style="color:blue" %)**Step 1:  **(%%)Downlink the up-to-date DRAGINO_Battery_Life_Prediction_Table.xlsx from: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/]]
725 725  )))
726 726  
727 -(((
728 -
729 -)))
730 730  
731 731  (((
732 -**Firmware Upgrade Method: **[[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome]]
683 +(% style="color:blue" %)**Step 2: **(%%) Open it and choose
733 733  )))
734 734  
735 -(((
736 -
686 +* (((
687 +Product Model
737 737  )))
738 -
739 -(((
740 -**V1.0.**
689 +* (((
690 +Uplink Interval
741 741  )))
692 +* (((
693 +Working Mode
694 +)))
742 742  
743 743  (((
744 -Release
697 +And the Life expectation in difference case will be shown on the right.
745 745  )))
746 746  
700 +[[image:image-20220708141352-7.jpeg]]
747 747  
748 -== 2.11 ​Battery Analysis ==
749 749  
750 -=== 2.11.1 ​Battery Type ===
751 751  
752 -(((
753 -The LSE01 battery is a combination of a 4000mAh Li/SOCI2 Battery and a Super Capacitor. The battery is non-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter.
754 -)))
704 +=== 2.9.3  ​Battery Note ===
755 755  
756 756  (((
757 -The battery is designed to last for more than 5 years for the LSN50.
707 +The Li-SICO battery is designed for small current / long period application. It is not good to use a high current, short period transmit method. The recommended minimum period for use of this battery is 5 minutes. If you use a shorter period time to transmit LoRa, then the battery life may be decreased.
758 758  )))
759 759  
760 -(((
761 -(((
762 -The battery-related documents are as below:
763 -)))
764 -)))
765 765  
766 -* (((
767 -[[Battery Dimension>>url:http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/&file=LSN50-Battery-Dimension.pdf]],
768 -)))
769 -* (((
770 -[[Lithium-Thionyl Chloride Battery  datasheet>>url:https://www.dragino.com/downloads/downloads/datasheet/Battery/ER26500/ER26500_Datasheet-EN.pdf]],
771 -)))
772 -* (((
773 -[[Lithium-ion Battery-Capacitor datasheet>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC_1520_datasheet.jpg]], [[Tech Spec>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC1520%20Technical%20Specification20171123.pdf]]
774 -)))
775 775  
776 - [[image:image-20220610172436-1.png]]
712 +=== 2.9.4  Replace the battery ===
777 777  
778 -
779 -
780 -=== 2.11.2 ​Battery Note ===
781 -
782 782  (((
783 -The Li-SICO battery is designed for small current / long period application. It is not good to use a high current, short period transmit method. The recommended minimum period for use of this battery is 5 minutes. If you use a shorter period time to transmit LoRa, then the battery life may be decreased.
715 +The default battery pack of NSE01 includes a ER26500 plus super capacitor. If user can't find this pack locally, they can find ER26500 or equivalence without the SPC1520 capacitor, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes).
784 784  )))
785 785  
786 786  
787 787  
788 -=== 2.11.3 Replace the battery ===
720 += 3. ​ Access NB-IoT Module =
789 789  
790 790  (((
791 -If Battery is lower than 2.7v, user should replace the battery of LSE01.
723 +Users can directly access the AT command set of the NB-IoT module.
792 792  )))
793 793  
794 794  (((
795 -You can change the battery in the LSE01.The type of battery is not limited as long as the output is between 3v to 3.6v. On the main board, there is a diode (D1) between the battery and the main circuit. If you need to use a battery with less than 3.3v, please remove the D1 and shortcut the two pads of it so there won’t be voltage drop between battery and main board.
727 +The AT Command set can refer the BC35-G NB-IoT Module AT Command: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=datasheet/other_vendors/BC35-G/>>url:https://www.dragino.com/downloads/index.php?dir=datasheet/other_vendors/BC35-G/]] 
796 796  )))
797 797  
798 -(((
799 -The default battery pack of LSE01 includes a ER18505 plus super capacitor. If user can’t find this pack locally, they can find ER18505 or equivalence, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes)
800 -)))
730 +[[image:1657261278785-153.png]]
801 801  
802 802  
803 803  
804 -= 3. Using the AT Commands =
734 += 4.  Using the AT Commands =
805 805  
806 -== 3.1 Access AT Commands ==
736 +== 4.1  Access AT Commands ==
807 807  
738 +See this link for detail: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/]]
808 808  
809 -LSE01 supports AT Command set in the stock firmware. You can use a USB to TTL adapter to connect to LSE01 for using AT command, as below.
810 810  
811 -[[image:1654501986557-872.png||height="391" width="800"]]
741 +AT+<CMD>?  : Help on <CMD>
812 812  
743 +AT+<CMD>         : Run <CMD>
813 813  
814 -Or if you have below board, use below connection:
745 +AT+<CMD>=<value> : Set the value
815 815  
747 +AT+<CMD>=?  : Get the value
816 816  
817 -[[image:1654502005655-729.png||height="503" width="801"]]
818 818  
819 -
820 -
821 -In the PC, you need to set the serial baud rate to (% style="color:green" %)**9600**(%%) to access the serial console for LSE01. LSE01 will output system info once power on as below:
822 -
823 -
824 - [[image:1654502050864-459.png||height="564" width="806"]]
825 -
826 -
827 -Below are the available commands, a more detailed AT Command manual can be found at [[AT Command Manual>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/]]: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/]]
828 -
829 -
830 -(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>? **(%%) : Help on <CMD>
831 -
832 -(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD> **(%%) : Run <CMD>
833 -
834 -(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>=<value>**(%%) : Set the value
835 -
836 -(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>=?**(%%)  : Get the value
837 -
838 -
839 839  (% style="color:#037691" %)**General Commands**(%%)      
840 840  
841 -(% style="background-color:#dcdcdc" %)**AT**(%%)  : Attention       
752 +AT  : Attention       
842 842  
843 -(% style="background-color:#dcdcdc" %)**AT?**(%%)  : Short Help     
754 +AT?  : Short Help     
844 844  
845 -(% style="background-color:#dcdcdc" %)**ATZ**(%%)  : MCU Reset    
756 +ATZ  : MCU Reset    
846 846  
847 -(% style="background-color:#dcdcdc" %)**AT+TDC**(%%)  : Application Data Transmission Interval 
758 +AT+TDC  : Application Data Transmission Interval
848 848  
760 +AT+CFG  : Print all configurations
849 849  
850 -(% style="color:#037691" %)**Keys, IDs and EUIs management**
762 +AT+CFGMOD           : Working mode selection
851 851  
852 -(% style="background-color:#dcdcdc" %)**AT+APPEUI**(%%)              : Application EUI      
764 +AT+INTMOD            : Set the trigger interrupt mode
853 853  
854 -(% style="background-color:#dcdcdc" %)**AT+APPKEY**(%%)              : Application Key     
766 +AT+5VT  : Set extend the time of 5V power  
855 855  
856 -(% style="background-color:#dcdcdc" %)**AT+APPSKEY**(%%)            : Application Session Key
768 +AT+PRO  : Choose agreement
857 857  
858 -(% style="background-color:#dcdcdc" %)**AT+DADDR**(%%)              : Device Address     
770 +AT+WEIGRE  : Get weight or set weight to 0
859 859  
860 -(% style="background-color:#dcdcdc" %)**AT+DEUI**(%%)                   : Device EUI     
772 +AT+WEIGAP  : Get or Set the GapValue of weight
861 861  
862 -(% style="background-color:#dcdcdc" %)**AT+NWKID**(%%)               : Network ID (You can enter this command change only after successful network connection
774 +AT+RXDL  : Extend the sending and receiving time
863 863  
864 -(% style="background-color:#dcdcdc" %)**AT+NWKSKEY**(%%)          : Network Session Key Joining and sending date on LoRa network  
776 +AT+CNTFAC  : Get or set counting parameters
865 865  
866 -(% style="background-color:#dcdcdc" %)**AT+CFM**(%%)  : Confirm Mode       
778 +AT+SERVADDR  : Server Address
867 867  
868 -(% style="background-color:#dcdcdc" %)**AT+CFS**(%%)                     : Confirm Status       
869 869  
870 -(% style="background-color:#dcdcdc" %)**AT+JOIN**(%%)  : Join LoRa? Network       
781 +(% style="color:#037691" %)**COAP Management**      
871 871  
872 -(% style="background-color:#dcdcdc" %)**AT+NJM**(%%)  : LoRa? Network Join Mode    
783 +AT+URI            : Resource parameters
873 873  
874 -(% style="background-color:#dcdcdc" %)**AT+NJS**(%%)                     : LoRa? Network Join Status    
875 875  
876 -(% style="background-color:#dcdcdc" %)**AT+RECV**(%%)                  : Print Last Received Data in Raw Format
786 +(% style="color:#037691" %)**UDP Management**
877 877  
878 -(% style="background-color:#dcdcdc" %)**AT+RECVB**(%%)                : Print Last Received Data in Binary Format      
788 +AT+CFM          : Upload confirmation mode (only valid for UDP)
879 879  
880 -(% style="background-color:#dcdcdc" %)**AT+SEND**(%%)                  : Send Text Data      
881 881  
882 -(% style="background-color:#dcdcdc" %)**AT+SENB**(%%)                  : Send Hexadecimal Data
791 +(% style="color:#037691" %)**MQTT Management**
883 883  
793 +AT+CLIENT               : Get or Set MQTT client
884 884  
885 -(% style="color:#037691" %)**LoRa Network Management**
795 +AT+UNAME  : Get or Set MQTT Username
886 886  
887 -(% style="background-color:#dcdcdc" %)**AT+ADR**(%%)          : Adaptive Rate
797 +AT+PWD                  : Get or Set MQTT password
888 888  
889 -(% style="background-color:#dcdcdc" %)**AT+CLASS**(%%)  : LoRa Class(Currently only support class A
799 +AT+PUBTOPI : Get or Set MQTT publish topic
890 890  
891 -(% style="background-color:#dcdcdc" %)**AT+DCS**(%%)  : Duty Cycle Settin
801 +AT+SUBTOPIC  : Get or Set MQTT subscription topic
892 892  
893 -(% style="background-color:#dcdcdc" %)**AT+DR**(%%)  : Data Rate (Can Only be Modified after ADR=0)     
894 894  
895 -(% style="background-color:#dcdcdc" %)**AT+FCD**(%%)  : Frame Counter Downlink       
804 +(% style="color:#037691" %)**Information**          
896 896  
897 -(% style="background-color:#dcdcdc" %)**AT+FCU**(%%)  : Frame Counter Uplink   
806 +AT+FDR  : Factory Data Reset
898 898  
899 -(% style="background-color:#dcdcdc" %)**AT+JN1DL**(%%)  : Join Accept Delay1
808 +AT+PWOR : Serial Access Password
900 900  
901 -(% style="background-color:#dcdcdc" %)**AT+JN2DL**(%%)  : Join Accept Delay2
902 902  
903 -(% style="background-color:#dcdcdc" %)**AT+PNM**(%%)  : Public Network Mode   
904 904  
905 -(% style="background-color:#dcdcdc" %)**AT+RX1DL**(%%)  : Receive Delay1      
812 += ​5.  FAQ =
906 906  
907 -(% style="background-color:#dcdcdc" %)**AT+RX2DL**(%%)  : Receive Delay2      
814 +== 5.1 How to Upgrade Firmware ==
908 908  
909 -(% style="background-color:#dcdcdc" %)**AT+RX2DR**(%%)  : Rx2 Window Data Rate 
910 910  
911 -(% style="background-color:#dcdcdc" %)**AT+RX2FQ**(%%)  : Rx2 Window Frequency
912 -
913 -(% style="background-color:#dcdcdc" %)**AT+TXP**(%%)  : Transmit Power
914 -
915 -(% style="background-color:#dcdcdc" %)**AT+ MOD**(%%)  : Set work mode
916 -
917 -
918 -(% style="color:#037691" %)**Information** 
919 -
920 -(% style="background-color:#dcdcdc" %)**AT+RSSI**(%%)           : RSSI of the Last Received Packet   
921 -
922 -(% style="background-color:#dcdcdc" %)**AT+SNR**(%%)           : SNR of the Last Received Packet   
923 -
924 -(% style="background-color:#dcdcdc" %)**AT+VER**(%%)           : Image Version and Frequency Band       
925 -
926 -(% style="background-color:#dcdcdc" %)**AT+FDR**(%%)           : Factory Data Reset
927 -
928 -(% style="background-color:#dcdcdc" %)**AT+PORT**(%%)  : Application Port    
929 -
930 -(% style="background-color:#dcdcdc" %)**AT+CHS**(%%)  : Get or Set Frequency (Unit: Hz) for Single Channel Mode
931 -
932 - (% style="background-color:#dcdcdc" %)**AT+CHE**(%%)  : Get or Set eight channels mode, Only for US915, AU915, CN470
933 -
934 -
935 -= ​4. FAQ =
936 -
937 -== 4.1 ​How to change the LoRa Frequency Bands/Region? ==
938 -
939 939  (((
940 -You can follow the instructions for [[how to upgrade image>>||anchor="H2.10200BFirmwareChangeLog"]].
941 -When downloading the images, choose the required image file for download. ​
818 +User can upgrade the firmware for 1) bug fix, 2) new feature release.
942 942  )))
943 943  
944 944  (((
945 -
822 +Please see this link for how to upgrade:  [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H2.HardwareUpgradeMethodSupportList>>http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H2.HardwareUpgradeMethodSupportList]]
946 946  )))
947 947  
948 948  (((
949 -How to set up LSE01 to work in 8 channel mode By default, the frequency bands US915, AU915, CN470 work in 72 frequencies. Many gateways are 8 channel gateways, and in this case, the OTAA join time and uplink schedule is long and unpredictable while the end node is hopping in 72 frequencies.
826 +(% style="color:red" %)Notice, NSE01 and LSE01 share the same mother board. They use the same connection and method to update.
950 950  )))
951 951  
952 -(((
953 -
954 -)))
955 955  
956 -(((
957 -You can configure the end node to work in 8 channel mode by using the AT+CHE command. The 500kHz channels are always included for OTAA.
958 -)))
959 959  
960 -(((
961 -
962 -)))
831 += 6.  Trouble Shooting =
963 963  
964 -(((
965 -For example, in **US915** band, the frequency table is as below. By default, the end node will use all channels (0~~71) for OTAA Join process. After the OTAA Join, the end node will use these all channels (0~~71) to send uplink packets.
966 -)))
833 +== 6.1  ​Connection problem when uploading firmware ==
967 967  
968 -[[image:image-20220606154726-3.png]]
969 969  
970 -
971 -When you use the TTN network, the US915 frequency bands use are:
972 -
973 -* 903.9 - SF7BW125 to SF10BW125
974 -* 904.1 - SF7BW125 to SF10BW125
975 -* 904.3 - SF7BW125 to SF10BW125
976 -* 904.5 - SF7BW125 to SF10BW125
977 -* 904.7 - SF7BW125 to SF10BW125
978 -* 904.9 - SF7BW125 to SF10BW125
979 -* 905.1 - SF7BW125 to SF10BW125
980 -* 905.3 - SF7BW125 to SF10BW125
981 -* 904.6 - SF8BW500
982 -
836 +(% class="wikigeneratedid" %)
983 983  (((
984 -Because the end node is now hopping in 72 frequency, it makes it difficult for the devices to Join the TTN network and uplink data. To solve this issue, you can access the device via the AT commands and run:
838 +(% style="font-size:14px" %)**Please see: **(%%)[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H3.3Troubleshooting>>http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H3.3Troubleshooting||style="background-color: rgb(255, 255, 255); font-size: 14px;"]]
985 985  )))
986 986  
987 -(% class="box infomessage" %)
988 -(((
989 -**AT+CHE=2**
990 -)))
991 991  
992 -(% class="box infomessage" %)
993 -(((
994 -**ATZ**
995 -)))
996 996  
997 -(((
998 -to set the end node to work in 8 channel mode. The device will work in Channel 8-15 & 64-71 for OTAA, and channel 8-15 for Uplink.
999 -)))
843 +== 6.2  AT Command input doesn't work ==
1000 1000  
1001 1001  (((
1002 -
846 +In the case if user can see the console output but can't type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn't send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.
1003 1003  )))
1004 1004  
1005 -(((
1006 -The **AU915** band is similar. Below are the AU915 Uplink Channels.
1007 -)))
1008 1008  
1009 -[[image:image-20220606154825-4.png]]
1010 1010  
851 += 7. ​ Order Info =
1011 1011  
1012 1012  
1013 -= 5. Trouble Shooting =
854 +Part Number**:** (% style="color:#4f81bd" %)**NSE01**
1014 1014  
1015 -== 5.1 ​Why I can’t join TTN in US915 / AU915 bands? ==
1016 1016  
1017 -It is due to channel mapping. Please see the [[Eight Channel Mode>>doc:Main.LoRaWAN Communication Debug.WebHome||anchor="H2.NoticeofUS9152FCN4702FAU915Frequencyband"]] section above for details.
1018 -
1019 -
1020 -== 5.2 AT Command input doesn’t work ==
1021 -
1022 -(((
1023 -In the case if user can see the console output but can’t type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn’t send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.
1024 -)))
1025 -
1026 -
1027 -== 5.3 Device rejoin in at the second uplink packet ==
1028 -
1029 -(% style="color:#4f81bd" %)**Issue describe as below:**
1030 -
1031 -[[image:1654500909990-784.png]]
1032 -
1033 -
1034 -(% style="color:#4f81bd" %)**Cause for this issue:**
1035 -
1036 -(((
1037 -The fuse on LSE01 is not large enough, some of the soil probe require large current up to 5v 800mA, in a short pulse. When this happen, it cause the device reboot so user see rejoin.
1038 -)))
1039 -
1040 -
1041 -(% style="color:#4f81bd" %)**Solution: **
1042 -
1043 -All new shipped LSE01 after 2020-May-30 will have this to fix. For the customer who see this issue, please bypass the fuse as below:
1044 -
1045 -[[image:1654500929571-736.png||height="458" width="832"]]
1046 -
1047 -
1048 -= 6. ​Order Info =
1049 -
1050 -
1051 -Part Number**:** (% style="color:#4f81bd" %)**LSE01-XX-YY**
1052 -
1053 -
1054 -(% style="color:#4f81bd" %)**XX**(%%)**:** The default frequency band
1055 -
1056 -* (% style="color:red" %)**AS923**(%%): LoRaWAN AS923 band
1057 -* (% style="color:red" %)**AU915**(%%): LoRaWAN AU915 band
1058 -* (% style="color:red" %)**EU433**(%%): LoRaWAN EU433 band
1059 -* (% style="color:red" %)**EU868**(%%): LoRaWAN EU868 band
1060 -* (% style="color:red" %)**KR920**(%%): LoRaWAN KR920 band
1061 -* (% style="color:red" %)**US915**(%%): LoRaWAN US915 band
1062 -* (% style="color:red" %)**IN865**(%%):  LoRaWAN IN865 band
1063 -* (% style="color:red" %)**CN470**(%%): LoRaWAN CN470 band
1064 -
1065 -(% style="color:#4f81bd" %)**YY**(%%)**: **Battery Option
1066 -
1067 -* (% style="color:red" %)**4**(%%): 4000mAh battery
1068 -* (% style="color:red" %)**8**(%%): 8500mAh battery
1069 -
1070 1070  (% class="wikigeneratedid" %)
1071 1071  (((
1072 1072  
1073 1073  )))
1074 1074  
1075 -= 7. Packing Info =
862 += 8.  Packing Info =
1076 1076  
1077 1077  (((
1078 1078  
1079 1079  
1080 1080  (% style="color:#037691" %)**Package Includes**:
1081 -)))
1082 1082  
1083 -* (((
1084 -LSE01 LoRaWAN Soil Moisture & EC Sensor x 1
869 +
870 +* NSE01 NB-IoT Soil Moisture & EC Sensor x 1
871 +* External antenna x 1
1085 1085  )))
1086 1086  
1087 1087  (((
... ... @@ -1088,24 +1088,20 @@
1088 1088  
1089 1089  
1090 1090  (% style="color:#037691" %)**Dimension and weight**:
1091 -)))
1092 1092  
1093 -* (((
1094 -Device Size: cm
879 +
880 +* Size: 195 x 125 x 55 mm
881 +* Weight:   420g
1095 1095  )))
1096 -* (((
1097 -Device Weight: g
1098 -)))
1099 -* (((
1100 -Package Size / pcs : cm
1101 -)))
1102 -* (((
1103 -Weight / pcs : g
1104 1104  
884 +(((
1105 1105  
886 +
887 +
888 +
1106 1106  )))
1107 1107  
1108 -= 8. Support =
891 += 9.  Support =
1109 1109  
1110 1110  * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
1111 1111  * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.com]]
1657245163077-232.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +81.0 KB
Content
1657246476176-652.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +492.6 KB
Content
1657249419225-449.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +81.0 KB
Content
1657249468462-536.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +483.6 KB
Content
1657249793983-486.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +85.8 KB
Content
1657249831934-534.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +72.5 KB
Content
1657249864775-321.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +87.0 KB
Content
1657249930215-289.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +77.3 KB
Content
1657249978444-674.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +139.5 KB
Content
1657249990869-686.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +96.9 KB
Content
1657250217799-140.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +98.7 KB
Content
1657250255956-604.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +99.0 KB
Content
1657259653666-883.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +344.4 KB
Content
1657260785982-288.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +138.2 KB
Content
1657261119050-993.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +126.1 KB
Content
1657261278785-153.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +126.1 KB
Content
image-20220708101224-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +22.2 KB
Content
image-20220708101605-2.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +87.5 KB
Content
image-20220708110657-3.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +251.7 KB
Content
image-20220708111918-4.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +38.8 KB
Content
image-20220708133731-5.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +8.7 KB
Content
image-20220708140453-6.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +132.7 KB
Content
image-20220708141352-7.jpeg
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +102.7 KB
Content
Copyright ©2010-2022 Dragino Technology Co., LTD. All rights reserved
Dragino Wiki v2.0