Last modified by Mengting Qiu on 2024/04/02 16:44

From version 35.15
edited by Xiaoling
on 2022/06/14 14:12
Change comment: There is no comment for this version
To version 75.4
edited by Xiaoling
on 2022/07/09 09:02
Change comment: There is no comment for this version

Summary

Details

Page properties
Title
... ... @@ -1,1 +1,1 @@
1 -LSE01-LoRaWAN Soil Moisture & EC Sensor User Manual
1 +NDDS75 NB-IoT Distance Detect Sensor User Manual
Content
... ... @@ -1,11 +1,12 @@
1 1  (% style="text-align:center" %)
2 -[[image:image-20220606151504-2.jpeg||height="554" width="554"]]
2 +[[image:image-20220709085040-1.png||height="542" width="524"]]
3 3  
4 4  
5 5  
6 +
7 +
6 6  **Table of Contents:**
7 7  
8 -{{toc/}}
9 9  
10 10  
11 11  
... ... @@ -12,769 +12,716 @@
12 12  
13 13  
14 14  
15 -= 1. Introduction =
16 += 1.  Introduction =
16 16  
17 -== 1.1 ​What is LoRaWAN Soil Moisture & EC Sensor ==
18 +== 1.1 ​ What is NDDS75 Distance Detection Sensor ==
18 18  
19 19  (((
20 20  
21 21  
22 -The Dragino LSE01 is a (% style="color:#4f81bd" %)**LoRaWAN Soil Moisture & EC Sensor**(%%) for IoT of Agriculture. It is designed to measure the soil moisture of saline-alkali soil and loamy soil. The soil sensor uses FDR method to calculate the soil moisture with the compensation from soil temperature and conductivity. It also has been calibrated in factory for Mineral soil type.
23 -)))
24 -
25 25  (((
26 -It detects (% style="color:#4f81bd" %)**Soil Moisture**(%%), (% style="color:#4f81bd" %)**Soil Temperature**(%%) and (% style="color:#4f81bd" %)**Soil Conductivity**(%%), and uploads the value via wireless to LoRaWAN IoT Server.
24 +The Dragino NDDS75 is a (% style="color:blue" %)**NB-IoT Distance Detection Sensor**(%%) for Internet of Things solution. It is designed to measure the distance between the sensor and a flat object. The distance detection sensor is a module that uses ultrasonic sensing technology for distance measurement, and temperature compensation is performed internally to improve the reliability of data.
25 +\\The NDDS75 can be applied to scenarios such as horizontal distance measurement, liquid level measurement, parking management system, object proximity and presence detection, intelligent trash can management system, robot obstacle avoidance, automatic control, sewer, bottom water level monitoring, etc. It detects the distance between the measured object and the sensor, and uploads the value via wireless to IoT Server via NB-IoT Network.
26 +\\NarrowBand-Internet of Things (NB-IoT) is a standards-based low power wide area (LPWA) technology developed to enable a wide range of new IoT devices and services. NB-IoT significantly improves the power consumption of user devices, system capacity and spectrum efficiency, especially in deep coverage.
27 +\\NDDS75 supports different uplink methods include (% style="color:blue" %)**TCP, MQTT, UDP and CoAP** (%%)for different application requirement.
28 +\\NDDS75 is powered by (% style="color:blue" %)**8500mAh Li-SOCI2 battery**(%%), It is designed for long term use up to 5 years. (Actually Battery life depends on the use environment, update period & uplink method)
29 +\\To use NDDS75, user needs to check if there is NB-IoT coverage in local area and with the bands NDDS75 supports. If the local operate support it, user needs to get a NB-IoT SIM card from local operator and install NDDS75 to get NB-IoT network connection.
27 27  )))
28 28  
29 -(((
30 -The LoRa wireless technology used in LES01 allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption.
32 +
31 31  )))
32 32  
33 -(((
34 -LES01 is powered by (% style="color:#4f81bd" %)**4000mA or 8500mAh Li-SOCI2 battery**(%%), It is designed for long term use up to 10 years.
35 -)))
36 -
37 -(((
38 -Each LES01 is pre-load with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect after power on.
39 -)))
40 -
41 -
42 42  [[image:1654503236291-817.png]]
43 43  
44 44  
45 -[[image:1654503265560-120.png]]
38 +[[image:1657327959271-447.png]]
46 46  
47 47  
48 48  
49 -== 1.2 ​Features ==
42 +== 1.2 ​ Features ==
50 50  
51 -* LoRaWAN 1.0.3 Class A
44 +
45 +* NB-IoT Bands: B1/B3/B8/B5/B20/B28 @H-FDD
52 52  * Ultra low power consumption
53 -* Monitor Soil Moisture
54 -* Monitor Soil Temperature
55 -* Monitor Soil Conductivity
56 -* Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865
47 +* Distance Detection by Ultrasonic technology
48 +* Flat object range 280mm - 7500mm
49 +* Accuracy: ±(1cm+S*0.3%) (S: Distance)
50 +* Cable Length: 25cm
57 57  * AT Commands to change parameters
58 58  * Uplink on periodically
59 59  * Downlink to change configure
60 60  * IP66 Waterproof Enclosure
61 -* 4000mAh or 8500mAh Battery for long term use
55 +* Micro SIM card slot for NB-IoT SIM
56 +* 8500mAh Battery for long term use
62 62  
63 -== 1.3 Specification ==
64 64  
65 -Measure Volume: Base on the centra pin of the probe, a cylinder with 7cm diameter and 10cm height.
66 66  
67 -[[image:image-20220606162220-5.png]]
60 +== 1.3  Specification ==
68 68  
69 69  
63 +(% style="color:#037691" %)**Common DC Characteristics:**
70 70  
71 -== ​1.4 Applications ==
65 +* Supply Voltage: 2.1v ~~ 3.6v
66 +* Operating Temperature: -40 ~~ 85°C
72 72  
73 -* Smart Agriculture
68 +(% style="color:#037691" %)**NB-IoT Spec:**
74 74  
75 -(% class="wikigeneratedid" id="H200B1.5FirmwareChangelog" %)
76 -​
70 +* - B1 @H-FDD: 2100MHz
71 +* - B3 @H-FDD: 1800MHz
72 +* - B8 @H-FDD: 900MHz
73 +* - B5 @H-FDD: 850MHz
74 +* - B20 @H-FDD: 800MHz
75 +* - B28 @H-FDD: 700MHz
77 77  
78 -== 1.5 Firmware Change log ==
79 79  
78 +(% style="color:#037691" %)**Battery:**
80 80  
81 -**LSE01 v1.0 :**  Release
80 +* Li/SOCI2 un-chargeable battery
81 +* Capacity: 8500mAh
82 +* Self Discharge: <1% / Year @ 25°C
83 +* Max continuously current: 130mA
84 +* Max boost current: 2A, 1 second
82 82  
83 83  
87 +(% style="color:#037691" %)**Power Consumption**
84 84  
85 -= 2. Configure LSE01 to connect to LoRaWAN network =
89 +* STOP Mode: 10uA @ 3.3v
90 +* Max transmit power: 350mA@3.3v
86 86  
87 -== 2.1 How it works ==
88 88  
89 -(((
90 -The LSE01 is configured as LoRaWAN OTAA Class A mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and power on the LSE0150. It will automatically join the network via OTAA and start to send the sensor value
91 -)))
92 92  
93 -(((
94 -In case you can’t set the OTAA keys in the LoRaWAN OTAA server, and you have to use the keys from the server, you can [[use AT Commands >>||anchor="H3.200BUsingtheATCommands"]].
95 -)))
96 96  
95 +== ​1.4  Applications ==
97 97  
97 +* Smart Buildings & Home Automation
98 +* Logistics and Supply Chain Management
99 +* Smart Metering
100 +* Smart Agriculture
101 +* Smart Cities
102 +* Smart Factory
98 98  
99 -== 2.2 ​Quick guide to connect to LoRaWAN server (OTAA) ==
104 +(% class="wikigeneratedid" id="H200B1.5FirmwareChangelog" %)
105 +​
100 100  
101 -Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LG308>>url:http://www.dragino.com/products/lora/item/140-lg308.html]] as a LoRaWAN gateway in this example.
102 102  
103 103  
104 -[[image:1654503992078-669.png]]
109 +== 1.5  Pin Definitions ==
105 105  
106 106  
107 -The LG308 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
112 +[[image:1657246476176-652.png]]
108 108  
109 109  
110 -(% style="color:blue" %)**Step 1**(%%):  Create a device in TTN with the OTAA keys from LSE01.
111 111  
112 -Each LSE01 is shipped with a sticker with the default device EUI as below:
116 += 2.  Use NSE01 to communicate with IoT Server =
113 113  
114 -[[image:image-20220606163732-6.jpeg]]
118 +== 2.1  How it works ==
115 115  
116 -You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot:
117 117  
118 -**Add APP EUI in the application**
119 -
120 -
121 -[[image:1654504596150-405.png]]
122 -
123 -
124 -
125 -**Add APP KEY and DEV EUI**
126 -
127 -[[image:1654504683289-357.png]]
128 -
129 -
130 -
131 -(% style="color:blue" %)**Step 2**(%%): Power on LSE01
132 -
133 -
134 -Put a Jumper on JP2 to power on the device. ( The Jumper must be in FLASH position).
135 -
136 -[[image:image-20220606163915-7.png]]
137 -
138 -
139 -(% style="color:blue" %)**Step 3**(%%)**:** The LSE01 will auto join to the TTN network. After join success, it will start to upload messages to TTN and you can see the messages in the panel.
140 -
141 -[[image:1654504778294-788.png]]
142 -
143 -
144 -
145 -== 2.3 Uplink Payload ==
146 -
147 -
148 -=== 2.3.1 MOD~=0(Default Mode) ===
149 -
150 -LSE01 will uplink payload via LoRaWAN with below payload format: 
151 -
152 152  (((
153 -Uplink payload includes in total 11 bytes.
122 +The NSE01 is equipped with a NB-IoT module, the pre-loaded firmware in NSE01 will get environment data from sensors and send the value to local NB-IoT network via the NB-IoT module.  The NB-IoT network will forward this value to IoT server via the protocol defined by NSE01.
154 154  )))
155 155  
156 -(% border="1" cellspacing="10" style="background-color:#ffffcc; width:500px" %)
157 -|(((
158 -**Size**
159 159  
160 -**(bytes)**
161 -)))|**2**|**2**|**2**|**2**|**2**|**1**
162 -|**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(((
163 -Temperature
164 -
165 -(Reserve, Ignore now)
166 -)))|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]]|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]]|(((
167 -MOD & Digital Interrupt
168 -
169 -(Optional)
126 +(((
127 +The diagram below shows the working flow in default firmware of NSE01:
170 170  )))
171 171  
130 +[[image:image-20220708101605-2.png]]
172 172  
173 -
174 -=== 2.3.2 MOD~=1(Original value) ===
175 -
176 -This mode can get the original AD value of moisture and original conductivity (with temperature drift compensation).
177 -
178 -(% border="1" cellspacing="10" style="background-color:#ffffcc; width:500px" %)
179 -|(((
180 -**Size**
181 -
182 -**(bytes)**
183 -)))|**2**|**2**|**2**|**2**|**2**|**1**
184 -|**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(((
185 -Temperature
186 -
187 -(Reserve, Ignore now)
188 -)))|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]](raw)|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]](raw)|(((
189 -MOD & Digital Interrupt
190 -
191 -(Optional)
192 -)))
193 -
194 -
195 -
196 -=== 2.3.3 Battery Info ===
197 -
198 198  (((
199 -Check the battery voltage for LSE01.
133 +
200 200  )))
201 201  
202 -(((
203 -Ex1: 0x0B45 = 2885mV
204 -)))
205 205  
206 -(((
207 -Ex2: 0x0B49 = 2889mV
208 -)))
209 209  
138 +== 2.2 ​ Configure the NSE01 ==
210 210  
211 211  
212 -=== 2.3.4 Soil Moisture ===
141 +=== 2.2.1 Test Requirement ===
213 213  
214 -(((
215 -Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil.
216 -)))
217 217  
218 218  (((
219 -For example, if the data you get from the register is __0x05 0xDC__, the moisture content in the soil is
145 +To use NSE01 in your city, make sure meet below requirements:
220 220  )))
221 221  
222 -(((
223 -
224 -)))
148 +* Your local operator has already distributed a NB-IoT Network there.
149 +* The local NB-IoT network used the band that NSE01 supports.
150 +* Your operator is able to distribute the data received in their NB-IoT network to your IoT server.
225 225  
226 226  (((
227 -(% style="color:#4f81bd" %)**05DC(H) = 1500(D) /100 = 15%.**
153 +Below figure shows our testing structure. Here we have NB-IoT network coverage by China Mobile, the band they use is B8.  The NSE01 will use CoAP((% style="color:red" %)120.24.4.116:5683)(%%) or raw UDP((% style="color:red" %)120.24.4.116:5601)(%%) or MQTT((% style="color:red" %)120.24.4.116:1883)(%%)or TCP((% style="color:red" %)120.24.4.116:5600)(%%)protocol to send data to the test server
228 228  )))
229 229  
230 230  
157 +[[image:1657249419225-449.png]]
231 231  
232 -=== 2.3.5 Soil Temperature ===
233 233  
234 -(((
235 - Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is 0x09 0xEC, the temperature content in the soil is
236 -)))
237 237  
238 -(((
239 -**Example**:
240 -)))
161 +=== 2.2.2 Insert SIM card ===
241 241  
242 242  (((
243 -If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/100 = 2.61 °C
164 +Insert the NB-IoT Card get from your provider.
244 244  )))
245 245  
246 246  (((
247 -If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C
168 +User need to take out the NB-IoT module and insert the SIM card like below:
248 248  )))
249 249  
250 250  
172 +[[image:1657249468462-536.png]]
251 251  
252 -=== 2.3.6 Soil Conductivity (EC) ===
253 253  
254 -(((
255 -Obtain (% style="color:#4f81bd" %)**__soluble salt concentration__**(%%) in soil or (% style="color:#4f81bd" %)**__soluble ion concentration in liquid fertilizer__**(%%) or (% style="color:#4f81bd" %)**__planting medium__**(%%). The value range of the register is 0 - 20000(Decimal)( Can be greater than 20000).
256 -)))
257 257  
258 -(((
259 -For example, if the data you get from the register is 0x00 0xC8, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm.
260 -)))
176 +=== 2.2.3 Connect USB – TTL to NSE01 to configure it ===
261 261  
262 262  (((
263 -Generally, the EC value of irrigation water is less than 800uS / cm.
264 -)))
265 -
266 266  (((
267 -
180 +User need to configure NSE01 via serial port to set the (% style="color:blue" %)**Server Address** / **Uplink Topic** (%%)to define where and how-to uplink packets. NSE01 support AT Commands, user can use a USB to TTL adapter to connect to NSE01 and use AT Commands to configure it, as below.
268 268  )))
269 -
270 -(((
271 -
272 272  )))
273 273  
274 -=== 2.3.7 MOD ===
275 275  
276 -Firmware version at least v2.1 supports changing mode.
185 +**Connection:**
277 277  
278 -For example, bytes[10]=90
187 + (% style="background-color:yellow" %)USB TTL GND <~-~-~-~-> GND
279 279  
280 -mod=(bytes[10]>>7)&0x01=1.
189 + (% style="background-color:yellow" %)USB TTL TXD <~-~-~-~-> UART_RXD
281 281  
191 + (% style="background-color:yellow" %)USB TTL RXD <~-~-~-~-> UART_TXD
282 282  
283 -**Downlink Command:**
284 284  
285 -If payload = 0x0A00, workmode=0
194 +In the PC, use below serial tool settings:
286 286  
287 -If** **payload =** **0x0A01, workmode=1
196 +* Baud:  (% style="color:green" %)**9600**
197 +* Data bits:** (% style="color:green" %)8(%%)**
198 +* Stop bits: (% style="color:green" %)**1**
199 +* Parity:  (% style="color:green" %)**None**
200 +* Flow Control: (% style="color:green" %)**None**
288 288  
289 -
290 -
291 -=== 2.3.8 ​Decode payload in The Things Network ===
292 -
293 -While using TTN network, you can add the payload format to decode the payload.
294 -
295 -
296 -[[image:1654505570700-128.png]]
297 -
298 298  (((
299 -The payload decoder function for TTN is here:
203 +Make sure the switch is in FLASH position, then power on device by connecting the jumper on NSE01. NSE01 will output system info once power on as below, we can enter the (% style="color:green" %)**password: 12345678**(%%) to access AT Command input.
300 300  )))
301 301  
302 -(((
303 -LSE01 TTN Payload Decoder: [[https:~~/~~/www.dropbox.com/sh/si8icbrjlamxqdb/AAACYwjsxxr5fj_vpqRtrETAa?dl=0>>https://www.dropbox.com/sh/si8icbrjlamxqdb/AAACYwjsxxr5fj_vpqRtrETAa?dl=0]]
304 -)))
206 +[[image:image-20220708110657-3.png]]
305 305  
306 -
307 -== 2.4 Uplink Interval ==
308 -
309 -The LSE01 by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link: [[Change Uplink Interval>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H4.1ChangeUplinkInterval"]]
310 -
311 -
312 -
313 -== 2.5 Downlink Payload ==
314 -
315 -By default, LSE50 prints the downlink payload to console port.
316 -
317 -[[image:image-20220606165544-8.png]]
318 -
319 -
320 320  (((
321 -**Examples:**
209 +(% style="color:red" %)Note: the valid AT Commands can be found at: (%%)[[http:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/]]
322 322  )))
323 323  
324 -(((
325 -
326 -)))
327 327  
328 -* (((
329 -**Set TDC**
330 -)))
331 331  
332 -(((
333 -If the payload=0100003C, it means set the END Node’s TDC to 0x00003C=60(S), while type code is 01.
334 -)))
214 +=== 2.2.4 Use CoAP protocol to uplink data ===
335 335  
336 -(((
337 -Payload:    01 00 00 1E    TDC=30S
338 -)))
216 +(% style="color:red" %)Note: if you don't have CoAP server, you can refer this link to set up one: (%%)[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/>>http://wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/]]
339 339  
340 -(((
341 -Payload:    01 00 00 3C    TDC=60S
342 -)))
343 343  
344 -(((
345 -
346 -)))
219 +**Use below commands:**
347 347  
348 -* (((
349 -**Reset**
350 -)))
221 +* (% style="color:blue" %)**AT+PRO=1**  (%%) ~/~/ Set to use CoAP protocol to uplink
222 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5683   ** (%%)~/~/ to set CoAP server address and port
223 +* (% style="color:blue" %)**AT+URI=5,11,"mqtt",11,"coap",12,"0",15,"c=text1",23,"0" ** (%%) ~/~/Set COAP resource path
351 351  
352 -(((
353 -If payload = 0x04FF, it will reset the LSE01
354 -)))
225 +For parameter description, please refer to AT command set
355 355  
227 +[[image:1657249793983-486.png]]
356 356  
357 -* **CFM**
358 358  
359 -Downlink Payload: 05000001, Set AT+CFM=1 or 05000000 , set AT+CFM=0
230 +After configure the server address and (% style="color:green" %)**reset the device**(%%) (via AT+ATZ ), NSE01 will start to uplink sensor values to CoAP server.
360 360  
232 +[[image:1657249831934-534.png]]
361 361  
362 362  
363 -== 2.6 ​Show Data in DataCake IoT Server ==
364 364  
365 -(((
366 -[[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps:
367 -)))
236 +=== 2.2.5 Use UDP protocol to uplink data(Default protocol) ===
368 368  
369 -(((
370 -
371 -)))
238 +This feature is supported since firmware version v1.0.1
372 372  
373 -(((
374 -(% style="color:blue" %)**Step 1**(%%):  Be sure that your device is programmed and properly connected to the network at this time.
375 -)))
376 376  
377 -(((
378 -(% style="color:blue" %)**Step 2**(%%) To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps:
379 -)))
241 +* (% style="color:blue" %)**AT+PRO=2   ** (%%) ~/~/ Set to use UDP protocol to uplink
242 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5601   ** (%%) ~/~/ to set UDP server address and port
243 +* (% style="color:blue" %)**AT+CFM=1       ** (%%) ~/~/If the server does not respond, this command is unnecessary
380 380  
245 +[[image:1657249864775-321.png]]
381 381  
382 -[[image:1654505857935-743.png]]
383 383  
248 +[[image:1657249930215-289.png]]
384 384  
385 -[[image:1654505874829-548.png]]
386 386  
387 387  
388 -(% style="color:blue" %)**Step 3**(%%)**:**  Create an account or log in Datacake.
252 +=== 2.2.6 Use MQTT protocol to uplink data ===
389 389  
390 -(% style="color:blue" %)**Step 4**(%%)**:**  Search the LSE01 and add DevEUI.
254 +This feature is supported since firmware version v110
391 391  
392 392  
393 -[[image:1654505905236-553.png]]
257 +* (% style="color:blue" %)**AT+PRO=3   ** (%%) ~/~/Set to use MQTT protocol to uplink
258 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,1883   ** (%%) ~/~/Set MQTT server address and port
259 +* (% style="color:blue" %)**AT+CLIENT=CLIENT       ** (%%)~/~/Set up the CLIENT of MQTT
260 +* (% style="color:blue" %)**AT+UNAME=UNAME                               **(%%)~/~/Set the username of MQTT
261 +* (% style="color:blue" %)**AT+PWD=PWD                                        **(%%)~/~/Set the password of MQTT
262 +* (% style="color:blue" %)**AT+PUBTOPIC=NSE01_PUB                    **(%%)~/~/Set the sending topic of MQTT
263 +* (% style="color:blue" %)**AT+SUBTOPIC=NSE01_SUB          **(%%) ~/~/Set the subscription topic of MQTT
394 394  
265 +[[image:1657249978444-674.png]]
395 395  
396 -After added, the sensor data arrive TTN, it will also arrive and show in Mydevices.
397 397  
398 -[[image:1654505925508-181.png]]
268 +[[image:1657249990869-686.png]]
399 399  
400 400  
271 +(((
272 +MQTT protocol has a much higher power consumption compare vs UDP / CoAP protocol. Please check the power analyze document and adjust the uplink period to a suitable interval.
273 +)))
401 401  
402 -== 2.7 Frequency Plans ==
403 403  
404 -The LSE01 uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.
405 405  
277 +=== 2.2.7 Use TCP protocol to uplink data ===
406 406  
407 -=== 2.7.1 EU863-870 (EU868) ===
279 +This feature is supported since firmware version v110
408 408  
409 -(% style="color:#037691" %)** Uplink:**
410 410  
411 -868.1 - SF7BW125 to SF12BW125
282 +* (% style="color:blue" %)**AT+PRO=4   ** (%%) ~/~/ Set to use TCP protocol to uplink
283 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5600   **(%%) ~/~/ to set TCP server address and port
412 412  
413 -868.3 - SF7BW125 to SF12BW125 and SF7BW250
285 +[[image:1657250217799-140.png]]
414 414  
415 -868.5 - SF7BW125 to SF12BW125
416 416  
417 -867.1 - SF7BW125 to SF12BW125
288 +[[image:1657250255956-604.png]]
418 418  
419 -867.3 - SF7BW125 to SF12BW125
420 420  
421 -867.5 - SF7BW125 to SF12BW125
422 422  
423 -867.7 - SF7BW125 to SF12BW125
292 +=== 2.2.8 Change Update Interval ===
424 424  
425 -867.9 - SF7BW125 to SF12BW125
294 +User can use below command to change the (% style="color:green" %)**uplink interval**.
426 426  
427 -868.8 - FSK
296 +* (% style="color:blue" %)**AT+TDC=600      ** (%%)~/~/ Set Update Interval to 600s
428 428  
298 +(((
299 +(% style="color:red" %)**NOTE:**
300 +)))
429 429  
430 -(% style="color:#037691" %)** Downlink:**
302 +(((
303 +(% style="color:red" %)1. By default, the device will send an uplink message every 1 hour.
304 +)))
431 431  
432 -Uplink channels 1-9 (RX1)
433 433  
434 -869.525 - SF9BW125 (RX2 downlink only)
435 435  
308 +== 2.3  Uplink Payload ==
436 436  
310 +In this mode, uplink payload includes in total 18 bytes
437 437  
438 -=== 2.7.2 US902-928(US915) ===
312 +(% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:510px" %)
313 +|=(% style="width: 60px;" %)(((
314 +**Size(bytes)**
315 +)))|=(% style="width: 50px;" %)**6**|=(% style="width: 25px;" %)2|=(% style="width: 25px;" %)**2**|=(% style="width: 70px;" %)**1**|=(% style="width: 60px;" %)**2**|=(% style="width: 80px;" %)**2**|=(% style="width: 90px;" %)**2**|=(% style="width: 50px;" %)**1**
316 +|(% style="width:97px" %)**Value**|(% style="width:83px" %)[[Device ID>>||anchor="H2.4.1A0A0DeviceID"]]|(% style="width:41px" %)[[Ver>>||anchor="H2.4.2A0VersionInfo"]]|(% style="width:46px" %)[[BAT>>||anchor="H2.4.3A0BatteryInfo"]]|(% style="width:123px" %)[[Signal Strength>>||anchor="H2.4.4A0SignalStrength"]]|(% style="width:108px" %)[[Soil Moisture>>||anchor="H2.4.5A0SoilMoisture"]]|(% style="width:133px" %)[[Soil Temperature>>||anchor="H2.4.6A0SoilTemperature"]]|(% style="width:159px" %)[[Soil Conductivity(EC)>>||anchor="H2.4.7A0SoilConductivity28EC29"]]|(% style="width:80px" %)[[Interrupt>>||anchor="H2.4.8A0DigitalInterrupt"]]
439 439  
440 -Used in USA, Canada and South America. Default use CHE=2
318 +(((
319 +If we use the MQTT client to subscribe to this MQTT topic, we can see the following information when the NSE01 uplink data.
320 +)))
441 441  
442 -(% style="color:#037691" %)**Uplink:**
443 443  
444 -903.9 - SF7BW125 to SF10BW125
323 +[[image:image-20220708111918-4.png]]
445 445  
446 -904.1 - SF7BW125 to SF10BW125
447 447  
448 -904.3 - SF7BW125 to SF10BW125
326 +The payload is ASCII string, representative same HEX:
449 449  
450 -904.5 - SF7BW125 to SF10BW125
328 +0x72403155615900640c7817075e0a8c02f900 where:
451 451  
452 -904.7 - SF7BW125 to SF10BW125
330 +* Device ID: 0x 724031556159 = 724031556159
331 +* Version: 0x0064=100=1.0.0
453 453  
454 -904.9 - SF7BW125 to SF10BW125
333 +* BAT: 0x0c78 = 3192 mV = 3.192V
334 +* Singal: 0x17 = 23
335 +* Soil Moisture: 0x075e= 1886 = 18.86  %
336 +* Soil Temperature:0x0a8c =2700=27 °C
337 +* Soil Conductivity(EC) = 0x02f9 =761 uS /cm
338 +* Interrupt: 0x00 = 0
455 455  
456 -905.1 - SF7BW125 to SF10BW125
340 +== 2.4  Payload Explanation and Sensor Interface ==
457 457  
458 -905.3 - SF7BW125 to SF10BW125
459 459  
343 +=== 2.4.1  Device ID ===
460 460  
461 -(% style="color:#037691" %)**Downlink:**
345 +(((
346 +By default, the Device ID equal to the last 6 bytes of IMEI.
347 +)))
462 462  
463 -923.3 - SF7BW500 to SF12BW500
349 +(((
350 +User can use (% style="color:blue" %)**AT+DEUI**(%%) to set Device ID
351 +)))
464 464  
465 -923.9 - SF7BW500 to SF12BW500
353 +(((
354 +**Example:**
355 +)))
466 466  
467 -924.5 - SF7BW500 to SF12BW500
357 +(((
358 +AT+DEUI=A84041F15612
359 +)))
468 468  
469 -925.1 - SF7BW500 to SF12BW500
361 +(((
362 +The Device ID is stored in a none-erase area, Upgrade the firmware or run AT+FDR won't erase Device ID.
363 +)))
470 470  
471 -925.7 - SF7BW500 to SF12BW500
472 472  
473 -926.3 - SF7BW500 to SF12BW500
474 474  
475 -926.9 - SF7BW500 to SF12BW500
367 +=== 2.4.2  Version Info ===
476 476  
477 -927.5 - SF7BW500 to SF12BW500
369 +(((
370 +Specify the software version: 0x64=100, means firmware version 1.00.
371 +)))
478 478  
479 -923.3 - SF12BW500(RX2 downlink only)
373 +(((
374 +For example: 0x00 64 : this device is NSE01 with firmware version 1.0.0.
375 +)))
480 480  
481 481  
482 482  
483 -=== 2.7.3 CN470-510 (CN470) ===
379 +=== 2.4.3  Battery Info ===
484 484  
485 -Used in China, Default use CHE=1
381 +(((
382 +Check the battery voltage for LSE01.
383 +)))
486 486  
487 -(% style="color:#037691" %)**Uplink:**
385 +(((
386 +Ex1: 0x0B45 = 2885mV
387 +)))
488 488  
489 -486.3 - SF7BW125 to SF12BW125
389 +(((
390 +Ex2: 0x0B49 = 2889mV
391 +)))
490 490  
491 -486.5 - SF7BW125 to SF12BW125
492 492  
493 -486.7 - SF7BW125 to SF12BW125
494 494  
495 -486.9 - SF7BW125 to SF12BW125
395 +=== 2.4. Signal Strength ===
496 496  
497 -487.1 - SF7BW125 to SF12BW125
397 +(((
398 +NB-IoT Network signal Strength.
399 +)))
498 498  
499 -487.3 - SF7BW125 to SF12BW125
401 +(((
402 +**Ex1: 0x1d = 29**
403 +)))
500 500  
501 -487.5 - SF7BW125 to SF12BW125
405 +(((
406 +(% style="color:blue" %)**0**(%%)  -113dBm or less
407 +)))
502 502  
503 -487.7 - SF7BW125 to SF12BW125
409 +(((
410 +(% style="color:blue" %)**1**(%%)  -111dBm
411 +)))
504 504  
413 +(((
414 +(% style="color:blue" %)**2...30**(%%) -109dBm... -53dBm
415 +)))
505 505  
506 -(% style="color:#037691" %)**Downlink:**
417 +(((
418 +(% style="color:blue" %)**31**  (%%) -51dBm or greater
419 +)))
507 507  
508 -506.7 - SF7BW125 to SF12BW125
421 +(((
422 +(% style="color:blue" %)**99**   (%%) Not known or not detectable
423 +)))
509 509  
510 -506.9 - SF7BW125 to SF12BW125
511 511  
512 -507.1 - SF7BW125 to SF12BW125
513 513  
514 -507.3 - SF7BW125 to SF12BW125
427 +=== 2.4.5  Soil Moisture ===
515 515  
516 -507.5 - SF7BW125 to SF12BW125
429 +(((
430 +(((
431 +Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil.
432 +)))
433 +)))
517 517  
518 -507.7 - SF7BW125 to SF12BW125
435 +(((
436 +(((
437 +For example, if the data you get from the register is **__0x05 0xDC__**, the moisture content in the soil is
438 +)))
439 +)))
519 519  
520 -507.9 - SF7BW125 to SF12BW125
441 +(((
442 +
443 +)))
521 521  
522 -508.1 - SF7BW125 to SF12BW125
445 +(((
446 +(% style="color:#4f81bd" %)**05DC(H) = 1500(D) /100 = 15%.**
447 +)))
523 523  
524 -505.3 - SF12BW125 (RX2 downlink only)
525 525  
526 526  
451 +=== 2.4.6  Soil Temperature ===
527 527  
528 -=== 2.7.4 AU915-928(AU915) ===
453 +(((
454 +Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is __**0x09 0xEC**__, the temperature content in the soil is
455 +)))
529 529  
530 -Default use CHE=2
457 +(((
458 +**Example**:
459 +)))
531 531  
532 -(% style="color:#037691" %)**Uplink:**
461 +(((
462 +If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/100 = 2.61 °C
463 +)))
533 533  
534 -916.8 - SF7BW125 to SF12BW125
465 +(((
466 +If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C
467 +)))
535 535  
536 -917.0 - SF7BW125 to SF12BW125
537 537  
538 -917.2 - SF7BW125 to SF12BW125
539 539  
540 -917.4 - SF7BW125 to SF12BW125
471 +=== 2.4.7  Soil Conductivity (EC) ===
541 541  
542 -917.6 - SF7BW125 to SF12BW125
473 +(((
474 +Obtain (% style="color:#4f81bd" %)**__soluble salt concentration__**(%%) in soil or (% style="color:#4f81bd" %)**__soluble ion concentration in liquid fertilizer__**(%%) or (% style="color:#4f81bd" %)**__planting medium__**(%%). The value range of the register is 0 - 20000(Decimal)( Can be greater than 20000).
475 +)))
543 543  
544 -917.8 - SF7BW125 to SF12BW125
477 +(((
478 +For example, if the data you get from the register is __**0x00 0xC8**__, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm.
479 +)))
545 545  
546 -918.0 - SF7BW125 to SF12BW125
481 +(((
482 +Generally, the EC value of irrigation water is less than 800uS / cm.
483 +)))
547 547  
548 -918.2 - SF7BW125 to SF12BW125
485 +(((
486 +
487 +)))
549 549  
489 +(((
490 +
491 +)))
550 550  
551 -(% style="color:#037691" %)**Downlink:**
493 +=== 2.4.8  Digital Interrupt ===
552 552  
553 -923.3 - SF7BW500 to SF12BW500
495 +(((
496 +Digital Interrupt refers to pin (% style="color:blue" %)**GPIO_EXTI**(%%), and there are different trigger methods. When there is a trigger, the NSE01 will send a packet to the server.
497 +)))
554 554  
555 -923.9 - SF7BW500 to SF12BW500
499 +(((
500 +The command is:
501 +)))
556 556  
557 -924.5 - SF7BW500 to SF12BW500
503 +(((
504 +(% style="color:blue" %)**AT+INTMOD=3 **(%%) ~/~/(more info about INMOD please refer [[**AT Command Manual**>>url:https://www.dragino.com/downloads/downloads/NB-IoT/NBSN95/DRAGINO_NBSN95-NB_AT%20Commands_v1.1.0.pdf]])**.**
505 +)))
558 558  
559 -925.1 - SF7BW500 to SF12BW500
560 560  
561 -925.7 - SF7BW500 to SF12BW500
508 +(((
509 +The lower four bits of this data field shows if this packet is generated by interrupt or not. Click here for the hardware and software set up.
510 +)))
562 562  
563 -926.3 - SF7BW500 to SF12BW500
564 564  
565 -926.9 - SF7BW500 to SF12BW500
513 +(((
514 +Example:
515 +)))
566 566  
567 -927.5 - SF7BW500 to SF12BW500
517 +(((
518 +0x(00): Normal uplink packet.
519 +)))
568 568  
569 -923.3 - SF12BW500(RX2 downlink only)
521 +(((
522 +0x(01): Interrupt Uplink Packet.
523 +)))
570 570  
571 571  
572 572  
573 -=== 2.7.5 AS920-923 & AS923-925 (AS923) ===
527 +=== 2.4.9  ​+5V Output ===
574 574  
575 -(% style="color:#037691" %)**Default Uplink channel:**
529 +(((
530 +NSE01 will enable +5V output before all sampling and disable the +5v after all sampling. 
531 +)))
576 576  
577 -923.2 - SF7BW125 to SF10BW125
578 578  
579 -923.4 - SF7BW125 to SF10BW125
534 +(((
535 +The 5V output time can be controlled by AT Command.
536 +)))
580 580  
538 +(((
539 +(% style="color:blue" %)**AT+5VT=1000**
540 +)))
581 581  
582 -(% style="color:#037691" %)**Additional Uplink Channel**:
542 +(((
543 +Means set 5V valid time to have 1000ms. So the real 5V output will actually have 1000ms + sampling time for other sensors.
544 +)))
583 583  
584 -(OTAA mode, channel added by JoinAccept message)
585 585  
586 -(% style="color:#037691" %)**AS920~~AS923 for Japan, Malaysia, Singapore**:
587 587  
588 -922.2 - SF7BW125 to SF10BW125
548 +== 2.5  Downlink Payload ==
589 589  
590 -922.4 - SF7BW125 to SF10BW125
550 +By default, NSE01 prints the downlink payload to console port.
591 591  
592 -922.6 - SF7BW125 to SF10BW125
552 +[[image:image-20220708133731-5.png]]
593 593  
594 -922.8 - SF7BW125 to SF10BW125
595 595  
596 -923.0 - SF7BW125 to SF10BW125
555 +(((
556 +(% style="color:blue" %)**Examples:**
557 +)))
597 597  
598 -922.0 - SF7BW125 to SF10BW125
559 +(((
560 +
561 +)))
599 599  
563 +* (((
564 +(% style="color:blue" %)**Set TDC**
565 +)))
600 600  
601 -(% style="color:#037691" %)**AS923 ~~ AS925 for Brunei, Cambodia, Hong Kong, Indonesia, Laos, Taiwan, Thailand, Vietnam**:
567 +(((
568 +If the payload=0100003C, it means set the END Node's TDC to 0x00003C=60(S), while type code is 01.
569 +)))
602 602  
603 -923.6 - SF7BW125 to SF10BW125
571 +(((
572 +Payload:    01 00 00 1E    TDC=30S
573 +)))
604 604  
605 -923.8 - SF7BW125 to SF10BW125
575 +(((
576 +Payload:    01 00 00 3C    TDC=60S
577 +)))
606 606  
607 -924.0 - SF7BW125 to SF10BW125
579 +(((
580 +
581 +)))
608 608  
609 -924.2 - SF7BW125 to SF10BW125
583 +* (((
584 +(% style="color:blue" %)**Reset**
585 +)))
610 610  
611 -924.4 - SF7BW125 to SF10BW125
587 +(((
588 +If payload = 0x04FF, it will reset the NSE01
589 +)))
612 612  
613 -924.6 - SF7BW125 to SF10BW125
614 614  
592 +* (% style="color:blue" %)**INTMOD**
615 615  
616 -(% style="color:#037691" %)** Downlink:**
594 +(((
595 +Downlink Payload: 06000003, Set AT+INTMOD=3
596 +)))
617 617  
618 -Uplink channels 1-8 (RX1)
619 619  
620 -923.2 - SF10BW125 (RX2)
621 621  
600 +== 2.6  ​LED Indicator ==
622 622  
602 +(((
603 +The NSE01 has an internal LED which is to show the status of different state.
623 623  
624 -=== 2.7.6 KR920-923 (KR920) ===
625 625  
626 -Default channel:
606 +* When power on, NSE01 will detect if sensor probe is connected, if probe detected, LED will blink four times. (no blinks in this step is no probe)
607 +* Then the LED will be on for 1 second means device is boot normally.
608 +* After NSE01 join NB-IoT network. The LED will be ON for 3 seconds.
609 +* For each uplink probe, LED will be on for 500ms.
610 +)))
627 627  
628 -922.1 - SF7BW125 to SF12BW125
629 629  
630 -922.3 - SF7BW125 to SF12BW125
631 631  
632 -922.5 - SF7BW125 to SF12BW125
633 633  
615 +== 2.7  Installation in Soil ==
634 634  
635 -(% style="color:#037691" %)**Uplink: (OTAA mode, channel added by JoinAccept message)**
617 +__**Measurement the soil surface**__
636 636  
637 -922.1 - SF7BW125 to SF12BW125
619 +(((
620 +Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting. [[https:~~/~~/img.alicdn.com/imgextra/i3/2005165265/O1CN010rj9Oh1olPsQxrdUK_!!2005165265.jpg>>url:https://img.alicdn.com/imgextra/i3/2005165265/O1CN010rj9Oh1olPsQxrdUK_!!2005165265.jpg]]
621 +)))
638 638  
639 -922.3 - SF7BW125 to SF12BW125
623 +[[image:1657259653666-883.png]] ​
640 640  
641 -922.5 - SF7BW125 to SF12BW125
642 642  
643 -922.7 - SF7BW125 to SF12BW125
626 +(((
627 +
644 644  
645 -922.9 - SF7BW125 to SF12BW125
629 +(((
630 +Dig a hole with diameter > 20CM.
631 +)))
646 646  
647 -923.1 - SF7BW125 to SF12BW125
633 +(((
634 +Horizontal insert the probe to the soil and fill the hole for long term measurement.
635 +)))
636 +)))
648 648  
649 -923.3 - SF7BW125 to SF12BW125
638 +[[image:1654506665940-119.png]]
650 650  
640 +(((
641 +
642 +)))
651 651  
652 -(% style="color:#037691" %)**Downlink:**
653 653  
654 -Uplink channels 1-7(RX1)
645 +== 2.8  ​Firmware Change Log ==
655 655  
656 -921.9 - SF12BW125 (RX2 downlink only; SF12BW125 might be changed to SF9BW125)
657 657  
648 +Download URL & Firmware Change log
658 658  
650 +[[www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/Firmware/]]
659 659  
660 -=== 2.7.7 IN865-867 (IN865) ===
661 661  
662 -(% style="color:#037691" %)** Uplink:**
653 +Upgrade Instruction: [[Upgrade_Firmware>>||anchor="H5.1200BHowtoUpgradeFirmware"]]
663 663  
664 -865.0625 - SF7BW125 to SF12BW125
665 665  
666 -865.4025 - SF7BW125 to SF12BW125
667 667  
668 -865.9850 - SF7BW125 to SF12BW125
657 +== 2.9  Battery Analysis ==
669 669  
659 +=== 2.9.1  ​Battery Type ===
670 670  
671 -(% style="color:#037691" %) **Downlink:**
672 672  
673 -Uplink channels 1-3 (RX1)
674 -
675 -866.550 - SF10BW125 (RX2)
676 -
677 -
678 -
679 -
680 -== 2.8 LED Indicator ==
681 -
682 -The LSE01 has an internal LED which is to show the status of different state.
683 -
684 -* Blink once when device power on.
685 -* Solid ON for 5 seconds once device successful Join the network.
686 -* Blink once when device transmit a packet.
687 -
688 -== 2.9 Installation in Soil ==
689 -
690 -**Measurement the soil surface**
691 -
692 -
693 -[[image:1654506634463-199.png]] ​
694 -
695 695  (((
696 -(((
697 -Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting.
663 +The NSE01 battery is a combination of an 8500mAh Li/SOCI2 Battery and a Super Capacitor. The battery is none-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter.
698 698  )))
699 -)))
700 700  
701 701  
702 -[[image:1654506665940-119.png]]
703 -
704 704  (((
705 -Dig a hole with diameter > 20CM.
668 +The battery is designed to last for several years depends on the actually use environment and update interval. 
706 706  )))
707 707  
708 -(((
709 -Horizontal insert the probe to the soil and fill the hole for long term measurement.
710 -)))
711 711  
712 -
713 -== 2.10 ​Firmware Change Log ==
714 -
715 715  (((
716 -**Firmware download link:**
673 +The battery related documents as below:
717 717  )))
718 718  
719 -(((
720 -[[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/]]
721 -)))
676 +* [[Battery Dimension>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]
677 +* [[Lithium-Thionyl Chloride Battery datasheet>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]
678 +* [[Lithium-ion Battery-Capacitor datasheet>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]
722 722  
723 723  (((
724 -
681 +[[image:image-20220708140453-6.png]]
725 725  )))
726 726  
727 -(((
728 -**Firmware Upgrade Method: **[[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome]]
729 -)))
730 730  
731 -(((
732 -
733 -)))
734 734  
735 -(((
736 -**V1.0.**
737 -)))
686 +=== 2.9.2  Power consumption Analyze ===
738 738  
739 739  (((
740 -Release
689 +Dragino battery powered product are all runs in Low Power mode. We have an update battery calculator which base on the measurement of the real device. User can use this calculator to check the battery life and calculate the battery life if want to use different transmit interval.
741 741  )))
742 742  
743 743  
744 -== 2.11 ​Battery Analysis ==
745 -
746 -=== 2.11.1 ​Battery Type ===
747 -
748 748  (((
749 -The LSE01 battery is a combination of a 4000mAh Li/SOCI2 Battery and a Super Capacitor. The battery is non-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter.
694 +Instruction to use as below:
750 750  )))
751 751  
752 752  (((
753 -The battery is designed to last for more than 5 years for the LSN50.
698 +(% style="color:blue" %)**Step 1:  **(%%)Downlink the up-to-date DRAGINO_Battery_Life_Prediction_Table.xlsx from: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/]]
754 754  )))
755 755  
701 +
756 756  (((
757 -(((
758 -The battery-related documents are as below:
703 +(% style="color:blue" %)**Step 2: **(%%) Open it and choose
759 759  )))
760 -)))
761 761  
762 762  * (((
763 -[[Battery Dimension>>url:http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/&file=LSN50-Battery-Dimension.pdf]],
707 +Product Model
764 764  )))
765 765  * (((
766 -[[Lithium-Thionyl Chloride Battery  datasheet>>url:https://www.dragino.com/downloads/downloads/datasheet/Battery/ER26500/ER26500_Datasheet-EN.pdf]],
710 +Uplink Interval
767 767  )))
768 768  * (((
769 -[[Lithium-ion Battery-Capacitor datasheet>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC_1520_datasheet.jpg]], [[Tech Spec>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC1520%20Technical%20Specification20171123.pdf]]
713 +Working Mode
770 770  )))
771 771  
772 - [[image:image-20220610172436-1.png]]
716 +(((
717 +And the Life expectation in difference case will be shown on the right.
718 +)))
773 773  
720 +[[image:image-20220708141352-7.jpeg]]
774 774  
775 775  
776 -=== 2.11.2 ​Battery Note ===
777 777  
724 +=== 2.9.3  ​Battery Note ===
725 +
778 778  (((
779 779  The Li-SICO battery is designed for small current / long period application. It is not good to use a high current, short period transmit method. The recommended minimum period for use of this battery is 5 minutes. If you use a shorter period time to transmit LoRa, then the battery life may be decreased.
780 780  )))
... ... @@ -781,303 +781,176 @@
781 781  
782 782  
783 783  
784 -=== 2.11.3 Replace the battery ===
732 +=== 2.9. Replace the battery ===
785 785  
786 786  (((
787 -If Battery is lower than 2.7v, user should replace the battery of LSE01.
735 +The default battery pack of NSE01 includes a ER26500 plus super capacitor. If user can't find this pack locally, they can find ER26500 or equivalence without the SPC1520 capacitor, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes).
788 788  )))
789 789  
738 +
739 +
740 += 3. ​ Access NB-IoT Module =
741 +
790 790  (((
791 -You can change the battery in the LSE01.The type of battery is not limited as long as the output is between 3v to 3.6v. On the main board, there is a diode (D1) between the battery and the main circuit. If you need to use a battery with less than 3.3v, please remove the D1 and shortcut the two pads of it so there won’t be voltage drop between battery and main board.
743 +Users can directly access the AT command set of the NB-IoT module.
792 792  )))
793 793  
794 794  (((
795 -The default battery pack of LSE01 includes a ER18505 plus super capacitor. If user can’t find this pack locally, they can find ER18505 or equivalence, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes)
747 +The AT Command set can refer the BC35-G NB-IoT Module AT Command: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=datasheet/other_vendors/BC35-G/>>url:https://www.dragino.com/downloads/index.php?dir=datasheet/other_vendors/BC35-G/]] 
796 796  )))
797 797  
750 +[[image:1657261278785-153.png]]
798 798  
799 799  
800 -= 3. ​Using the AT Commands =
801 801  
802 -== 3.1 Access AT Commands ==
754 += 4.  Using the AT Commands =
803 803  
756 +== 4.1  Access AT Commands ==
804 804  
805 -LSE01 supports AT Command set in the stock firmware. You can use a USB to TTL adapter to connect to LSE01 for using AT command, as below.
758 +See this link for detail: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/]]
806 806  
807 -[[image:1654501986557-872.png||height="391" width="800"]]
808 808  
761 +AT+<CMD>?  : Help on <CMD>
809 809  
810 -Or if you have below board, use below connection:
763 +AT+<CMD>         : Run <CMD>
811 811  
765 +AT+<CMD>=<value> : Set the value
812 812  
813 -[[image:1654502005655-729.png||height="503" width="801"]]
767 +AT+<CMD>=?  : Get the value
814 814  
815 815  
816 -
817 -In the PC, you need to set the serial baud rate to (% style="color:green" %)**9600**(%%) to access the serial console for LSE01. LSE01 will output system info once power on as below:
818 -
819 -
820 - [[image:1654502050864-459.png||height="564" width="806"]]
821 -
822 -
823 -Below are the available commands, a more detailed AT Command manual can be found at [[AT Command Manual>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/]]: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/]]
824 -
825 -
826 -(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>? **(%%) : Help on <CMD>
827 -
828 -(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD> **(%%) : Run <CMD>
829 -
830 -(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>=<value>**(%%) : Set the value
831 -
832 -(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>=?**(%%)  : Get the value
833 -
834 -
835 835  (% style="color:#037691" %)**General Commands**(%%)      
836 836  
837 -(% style="background-color:#dcdcdc" %)**AT**(%%)  : Attention       
772 +AT  : Attention       
838 838  
839 -(% style="background-color:#dcdcdc" %)**AT?**(%%)  : Short Help     
774 +AT?  : Short Help     
840 840  
841 -(% style="background-color:#dcdcdc" %)**ATZ**(%%)  : MCU Reset    
776 +ATZ  : MCU Reset    
842 842  
843 -(% style="background-color:#dcdcdc" %)**AT+TDC**(%%)  : Application Data Transmission Interval 
778 +AT+TDC  : Application Data Transmission Interval
844 844  
780 +AT+CFG  : Print all configurations
845 845  
846 -(% style="color:#037691" %)**Keys, IDs and EUIs management**
782 +AT+CFGMOD           : Working mode selection
847 847  
848 -(% style="background-color:#dcdcdc" %)**AT+APPEUI**(%%)              : Application EUI      
784 +AT+INTMOD            : Set the trigger interrupt mode
849 849  
850 -(% style="background-color:#dcdcdc" %)**AT+APPKEY**(%%)              : Application Key     
786 +AT+5VT  : Set extend the time of 5V power  
851 851  
852 -(% style="background-color:#dcdcdc" %)**AT+APPSKEY**(%%)            : Application Session Key
788 +AT+PRO  : Choose agreement
853 853  
854 -(% style="background-color:#dcdcdc" %)**AT+DADDR**(%%)              : Device Address     
790 +AT+WEIGRE  : Get weight or set weight to 0
855 855  
856 -(% style="background-color:#dcdcdc" %)**AT+DEUI**(%%)                   : Device EUI     
792 +AT+WEIGAP  : Get or Set the GapValue of weight
857 857  
858 -(% style="background-color:#dcdcdc" %)**AT+NWKID**(%%)               : Network ID (You can enter this command change only after successful network connection
794 +AT+RXDL  : Extend the sending and receiving time
859 859  
860 -(% style="background-color:#dcdcdc" %)**AT+NWKSKEY**(%%)          : Network Session Key Joining and sending date on LoRa network  
796 +AT+CNTFAC  : Get or set counting parameters
861 861  
862 -(% style="background-color:#dcdcdc" %)**AT+CFM**(%%)  : Confirm Mode       
798 +AT+SERVADDR  : Server Address
863 863  
864 -(% style="background-color:#dcdcdc" %)**AT+CFS**(%%)                     : Confirm Status       
865 865  
866 -(% style="background-color:#dcdcdc" %)**AT+JOIN**(%%)  : Join LoRa? Network       
801 +(% style="color:#037691" %)**COAP Management**      
867 867  
868 -(% style="background-color:#dcdcdc" %)**AT+NJM**(%%)  : LoRa? Network Join Mode    
803 +AT+URI            : Resource parameters
869 869  
870 -(% style="background-color:#dcdcdc" %)**AT+NJS**(%%)                     : LoRa? Network Join Status    
871 871  
872 -(% style="background-color:#dcdcdc" %)**AT+RECV**(%%)                  : Print Last Received Data in Raw Format
806 +(% style="color:#037691" %)**UDP Management**
873 873  
874 -(% style="background-color:#dcdcdc" %)**AT+RECVB**(%%)                : Print Last Received Data in Binary Format      
808 +AT+CFM          : Upload confirmation mode (only valid for UDP)
875 875  
876 -(% style="background-color:#dcdcdc" %)**AT+SEND**(%%)                  : Send Text Data      
877 877  
878 -(% style="background-color:#dcdcdc" %)**AT+SENB**(%%)                  : Send Hexadecimal Data
811 +(% style="color:#037691" %)**MQTT Management**
879 879  
813 +AT+CLIENT               : Get or Set MQTT client
880 880  
881 -(% style="color:#037691" %)**LoRa Network Management**
815 +AT+UNAME  : Get or Set MQTT Username
882 882  
883 -(% style="background-color:#dcdcdc" %)**AT+ADR**(%%)          : Adaptive Rate
817 +AT+PWD                  : Get or Set MQTT password
884 884  
885 -(% style="background-color:#dcdcdc" %)**AT+CLASS**(%%)  : LoRa Class(Currently only support class A
819 +AT+PUBTOPI : Get or Set MQTT publish topic
886 886  
887 -(% style="background-color:#dcdcdc" %)**AT+DCS**(%%)  : Duty Cycle Settin
821 +AT+SUBTOPIC  : Get or Set MQTT subscription topic
888 888  
889 -(% style="background-color:#dcdcdc" %)**AT+DR**(%%)  : Data Rate (Can Only be Modified after ADR=0)     
890 890  
891 -(% style="background-color:#dcdcdc" %)**AT+FCD**(%%)  : Frame Counter Downlink       
824 +(% style="color:#037691" %)**Information**          
892 892  
893 -(% style="background-color:#dcdcdc" %)**AT+FCU**(%%)  : Frame Counter Uplink   
826 +AT+FDR  : Factory Data Reset
894 894  
895 -(% style="background-color:#dcdcdc" %)**AT+JN1DL**(%%)  : Join Accept Delay1
828 +AT+PWOR : Serial Access Password
896 896  
897 -(% style="background-color:#dcdcdc" %)**AT+JN2DL**(%%)  : Join Accept Delay2
898 898  
899 -(% style="background-color:#dcdcdc" %)**AT+PNM**(%%)  : Public Network Mode   
900 900  
901 -(% style="background-color:#dcdcdc" %)**AT+RX1DL**(%%)  : Receive Delay1      
832 += ​5.  FAQ =
902 902  
903 -(% style="background-color:#dcdcdc" %)**AT+RX2DL**(%%)  : Receive Delay2      
834 +== 5.1 How to Upgrade Firmware ==
904 904  
905 -(% style="background-color:#dcdcdc" %)**AT+RX2DR**(%%)  : Rx2 Window Data Rate 
906 906  
907 -(% style="background-color:#dcdcdc" %)**AT+RX2FQ**(%%)  : Rx2 Window Frequency
908 -
909 -(% style="background-color:#dcdcdc" %)**AT+TXP**(%%)  : Transmit Power
910 -
911 -(% style="background-color:#dcdcdc" %)**AT+ MOD**(%%)  : Set work mode
912 -
913 -
914 -(% style="color:#037691" %)**Information** 
915 -
916 -(% style="background-color:#dcdcdc" %)**AT+RSSI**(%%)           : RSSI of the Last Received Packet   
917 -
918 -(% style="background-color:#dcdcdc" %)**AT+SNR**(%%)           : SNR of the Last Received Packet   
919 -
920 -(% style="background-color:#dcdcdc" %)**AT+VER**(%%)           : Image Version and Frequency Band       
921 -
922 -(% style="background-color:#dcdcdc" %)**AT+FDR**(%%)           : Factory Data Reset
923 -
924 -(% style="background-color:#dcdcdc" %)**AT+PORT**(%%)  : Application Port    
925 -
926 -(% style="background-color:#dcdcdc" %)**AT+CHS**(%%)  : Get or Set Frequency (Unit: Hz) for Single Channel Mode
927 -
928 - (% style="background-color:#dcdcdc" %)**AT+CHE**(%%)  : Get or Set eight channels mode, Only for US915, AU915, CN470
929 -
930 -
931 -= ​4. FAQ =
932 -
933 -== 4.1 ​How to change the LoRa Frequency Bands/Region? ==
934 -
935 935  (((
936 -You can follow the instructions for [[how to upgrade image>>||anchor="H2.10200BFirmwareChangeLog"]].
937 -When downloading the images, choose the required image file for download. ​
838 +User can upgrade the firmware for 1) bug fix, 2) new feature release.
938 938  )))
939 939  
940 940  (((
941 -
842 +Please see this link for how to upgrade:  [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H2.HardwareUpgradeMethodSupportList>>http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H2.HardwareUpgradeMethodSupportList]]
942 942  )))
943 943  
944 944  (((
945 -How to set up LSE01 to work in 8 channel mode By default, the frequency bands US915, AU915, CN470 work in 72 frequencies. Many gateways are 8 channel gateways, and in this case, the OTAA join time and uplink schedule is long and unpredictable while the end node is hopping in 72 frequencies.
846 +(% style="color:red" %)Notice, NSE01 and LSE01 share the same mother board. They use the same connection and method to update.
946 946  )))
947 947  
948 -(((
949 -
950 -)))
951 951  
952 -(((
953 -You can configure the end node to work in 8 channel mode by using the AT+CHE command. The 500kHz channels are always included for OTAA.
954 -)))
955 955  
956 -(((
957 -
958 -)))
851 +== 5.2  Can I calibrate NSE01 to different soil types? ==
959 959  
960 960  (((
961 -For example, in **US915** band, the frequency table is as below. By default, the end node will use all channels (0~~71) for OTAA Join process. After the OTAA Join, the end node will use these all channels (0~~71) to send uplink packets.
854 +NSE01 is calibrated for saline-alkali soil and loamy soil. If users want to use it for other soil, they can calibrate the value in the IoT platform base on the value measured by saline-alkali soil and loamy soil. The formula can be found at [[this link>>https://www.dragino.com/downloads/downloads/LoRa_End_Node/LSE01/Calibrate_to_other_Soil_20220605.pdf]].
962 962  )))
963 963  
964 -[[image:image-20220606154726-3.png]]
965 965  
858 += 6.  Trouble Shooting =
966 966  
967 -When you use the TTN network, the US915 frequency bands use are:
860 +== 6.1  ​Connection problem when uploading firmware ==
968 968  
969 -* 903.9 - SF7BW125 to SF10BW125
970 -* 904.1 - SF7BW125 to SF10BW125
971 -* 904.3 - SF7BW125 to SF10BW125
972 -* 904.5 - SF7BW125 to SF10BW125
973 -* 904.7 - SF7BW125 to SF10BW125
974 -* 904.9 - SF7BW125 to SF10BW125
975 -* 905.1 - SF7BW125 to SF10BW125
976 -* 905.3 - SF7BW125 to SF10BW125
977 -* 904.6 - SF8BW500
978 978  
979 979  (((
980 -Because the end node is now hopping in 72 frequency, it makes it difficult for the devices to Join the TTN network and uplink data. To solve this issue, you can access the device via the AT commands and run:
864 +**Please see: **[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H3.3Troubleshooting>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H3.3Troubleshooting]]
981 981  )))
982 982  
983 -(% class="box infomessage" %)
867 +(% class="wikigeneratedid" %)
984 984  (((
985 -**AT+CHE=2**
986 -)))
987 -
988 -(% class="box infomessage" %)
989 -(((
990 -**ATZ**
991 -)))
992 -
993 -(((
994 -to set the end node to work in 8 channel mode. The device will work in Channel 8-15 & 64-71 for OTAA, and channel 8-15 for Uplink.
995 -)))
996 -
997 -(((
998 998  
999 999  )))
1000 1000  
1001 -(((
1002 -The **AU915** band is similar. Below are the AU915 Uplink Channels.
1003 -)))
1004 1004  
1005 -[[image:image-20220606154825-4.png]]
873 +== 6.2  AT Command input doesn't work ==
1006 1006  
1007 -
1008 -
1009 -= 5. Trouble Shooting =
1010 -
1011 -== 5.1 ​Why I can’t join TTN in US915 / AU915 bands? ==
1012 -
1013 -It is due to channel mapping. Please see the [[Eight Channel Mode>>doc:Main.LoRaWAN Communication Debug.WebHome||anchor="H2.NoticeofUS9152FCN4702FAU915Frequencyband"]] section above for details.
1014 -
1015 -
1016 -== 5.2 AT Command input doesn’t work ==
1017 -
1018 1018  (((
1019 -In the case if user can see the console output but can’t type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn’t send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.
1020 -)))
876 +In the case if user can see the console output but can't type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn't send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.
1021 1021  
1022 -
1023 -== 5.3 Device rejoin in at the second uplink packet ==
1024 -
1025 -(% style="color:#4f81bd" %)**Issue describe as below:**
1026 -
1027 -[[image:1654500909990-784.png]]
1028 -
1029 -
1030 -(% style="color:#4f81bd" %)**Cause for this issue:**
1031 -
1032 -(((
1033 -The fuse on LSE01 is not large enough, some of the soil probe require large current up to 5v 800mA, in a short pulse. When this happen, it cause the device reboot so user see rejoin.
878 +
1034 1034  )))
1035 1035  
1036 1036  
1037 -(% style="color:#4f81bd" %)**Solution: **
882 += 7. ​ Order Info =
1038 1038  
1039 -All new shipped LSE01 after 2020-May-30 will have this to fix. For the customer who see this issue, please bypass the fuse as below:
1040 1040  
1041 -[[image:1654500929571-736.png||height="458" width="832"]]
885 +Part Number**:** (% style="color:#4f81bd" %)**NSE01**
1042 1042  
1043 1043  
1044 -= 6. ​Order Info =
1045 -
1046 -
1047 -Part Number**:** (% style="color:#4f81bd" %)**LSE01-XX-YY**
1048 -
1049 -
1050 -(% style="color:#4f81bd" %)**XX**(%%)**:** The default frequency band
1051 -
1052 -* (% style="color:red" %)**AS923**(%%): LoRaWAN AS923 band
1053 -* (% style="color:red" %)**AU915**(%%): LoRaWAN AU915 band
1054 -* (% style="color:red" %)**EU433**(%%): LoRaWAN EU433 band
1055 -* (% style="color:red" %)**EU868**(%%): LoRaWAN EU868 band
1056 -* (% style="color:red" %)**KR920**(%%): LoRaWAN KR920 band
1057 -* (% style="color:red" %)**US915**(%%): LoRaWAN US915 band
1058 -* (% style="color:red" %)**IN865**(%%):  LoRaWAN IN865 band
1059 -* (% style="color:red" %)**CN470**(%%): LoRaWAN CN470 band
1060 -
1061 -(% style="color:#4f81bd" %)**YY**(%%)**: **Battery Option
1062 -
1063 -* (% style="color:red" %)**4**(%%): 4000mAh battery
1064 -* (% style="color:red" %)**8**(%%): 8500mAh battery
1065 -
1066 1066  (% class="wikigeneratedid" %)
1067 1067  (((
1068 1068  
1069 1069  )))
1070 1070  
1071 -= 7. Packing Info =
893 += 8.  Packing Info =
1072 1072  
1073 1073  (((
1074 1074  
1075 1075  
1076 1076  (% style="color:#037691" %)**Package Includes**:
1077 -)))
1078 1078  
1079 -* (((
1080 -LSE01 LoRaWAN Soil Moisture & EC Sensor x 1
900 +* NSE01 NB-IoT Soil Moisture & EC Sensor x 1
901 +* External antenna x 1
1081 1081  )))
1082 1082  
1083 1083  (((
... ... @@ -1084,24 +1084,19 @@
1084 1084  
1085 1085  
1086 1086  (% style="color:#037691" %)**Dimension and weight**:
1087 -)))
1088 1088  
1089 -* (((
1090 -Device Size: cm
909 +* Size: 195 x 125 x 55 mm
910 +* Weight:   420g
1091 1091  )))
1092 -* (((
1093 -Device Weight: g
1094 -)))
1095 -* (((
1096 -Package Size / pcs : cm
1097 -)))
1098 -* (((
1099 -Weight / pcs : g
1100 1100  
913 +(((
1101 1101  
915 +
916 +
917 +
1102 1102  )))
1103 1103  
1104 -= 8. Support =
920 += 9.  Support =
1105 1105  
1106 1106  * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
1107 1107  * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.com]]
1657245163077-232.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +81.0 KB
Content
1657246476176-652.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +492.6 KB
Content
1657249419225-449.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +81.0 KB
Content
1657249468462-536.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +483.6 KB
Content
1657249793983-486.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +85.8 KB
Content
1657249831934-534.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +72.5 KB
Content
1657249864775-321.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +87.0 KB
Content
1657249930215-289.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +77.3 KB
Content
1657249978444-674.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +139.5 KB
Content
1657249990869-686.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +96.9 KB
Content
1657250217799-140.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +98.7 KB
Content
1657250255956-604.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +99.0 KB
Content
1657259653666-883.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +344.4 KB
Content
1657260785982-288.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +138.2 KB
Content
1657261119050-993.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +126.1 KB
Content
1657261278785-153.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +126.1 KB
Content
1657271519014-786.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +71.5 KB
Content
1657327959271-447.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +78.3 KB
Content
image-20220708101224-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +22.2 KB
Content
image-20220708101605-2.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +87.5 KB
Content
image-20220708110657-3.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +251.7 KB
Content
image-20220708111918-4.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +38.8 KB
Content
image-20220708133731-5.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +8.7 KB
Content
image-20220708140453-6.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +132.7 KB
Content
image-20220708141352-7.jpeg
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +102.7 KB
Content
image-20220709084038-1.jpeg
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +72.0 KB
Content
image-20220709084137-2.jpeg
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +72.0 KB
Content
image-20220709084207-3.jpeg
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +72.0 KB
Content
image-20220709084458-4.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +199.5 KB
Content
image-20220709085040-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +200.4 KB
Content