Changes for page N95S31B -- NB-IoT Temperature & Humidity Sensor User Manual
Last modified by Mengting Qiu on 2024/04/02 16:44
Summary
-
Page properties (2 modified, 0 added, 0 removed)
-
Attachments (0 modified, 23 added, 0 removed)
- 1657245163077-232.png
- 1657246476176-652.png
- 1657249419225-449.png
- 1657249468462-536.png
- 1657249793983-486.png
- 1657249831934-534.png
- 1657249864775-321.png
- 1657249930215-289.png
- 1657249978444-674.png
- 1657249990869-686.png
- 1657250217799-140.png
- 1657250255956-604.png
- 1657259653666-883.png
- 1657260785982-288.png
- 1657261119050-993.png
- 1657261278785-153.png
- image-20220708101224-1.png
- image-20220708101605-2.png
- image-20220708110657-3.png
- image-20220708111918-4.png
- image-20220708133731-5.png
- image-20220708140453-6.png
- image-20220708141352-7.jpeg
Details
- Page properties
-
- Title
-
... ... @@ -1,1 +1,1 @@ 1 - LSE01-LoRaWAN Soil Moisture & EC Sensor User Manual1 +NSE01 - NB-IoT Soil Moisture & EC Sensor User Manual - Content
-
... ... @@ -3,6 +3,14 @@ 3 3 4 4 5 5 6 + 7 + 8 + 9 + 10 + 11 + 12 + 13 + 6 6 **Table of Contents:** 7 7 8 8 {{toc/}} ... ... @@ -12,769 +12,710 @@ 12 12 13 13 14 14 15 -= 1. Introduction = 16 16 17 -= =1.1Whatis LoRaWAN Soil Moisture & EC Sensor==24 += 1. Introduction = 18 18 26 +== 1.1 What is LoRaWAN Soil Moisture & EC Sensor == 27 + 19 19 ((( 20 20 21 21 22 -The Dragino LSE01 is a (% style="color:#4f81bd" %)**LoRaWAN Soil Moisture & EC Sensor**(%%) for IoT of Agriculture. It is designed to measure the soil moisture of saline-alkali soil and loamy soil. The soil sensor uses FDR method to calculate the soil moisture with the compensation from soil temperature and conductivity. It also has been calibrated in factory for Mineral soil type. 31 +((( 32 +Dragino NSE01 is an (% style="color:blue" %)**NB-IOT soil moisture & EC sensor**(%%) for agricultural IoT. Used to measure the soil moisture of saline-alkali soil and loam. The soil sensor uses the FDR method to calculate soil moisture and compensates it with soil temperature and electrical conductivity. It has also been calibrated for mineral soil types at the factory. 23 23 ))) 24 24 25 25 ((( 26 -It detect s(% style="color:#4f81bd" %)**Soil Moisture**(%%),(% style="color:#4f81bd" %)**Soil Temperature**(%%)and(% style="color:#4f81bd" %)**Soil Conductivity**(%%), and uploadsthevalue viawirelessto LoRaWAN IoT Server.36 +It can detect (% style="color:blue" %)**Soil Moisture, Soil Temperature and Soil Conductivity**(%%), and upload its value to the server wirelessly. 27 27 ))) 28 28 29 29 ((( 30 -The LoRawireless technology used inLES01 allows device to send data and reachextremely longrangesatlow data-rates.Itprovidesultra-longrange spread spectrumcommunicationand high interference immunity whilst minimizing current consumption.40 +The wireless technology used in NSE01 allows the device to send data at a low data rate and reach ultra-long distances, providing ultra-long-distance spread spectrum Communication. 31 31 ))) 32 32 33 33 ((( 34 - LES01ispowered by (% style="color:#4f81bd" %)**4000mA or8500mAh Li-SOCI2battery**(%%),Its designedfor longtermuse up to10years.44 +NSE01 are powered by (% style="color:blue" %)**8500mAh Li-SOCI2**(%%) batteries, which can be used for up to 5 years. 35 35 ))) 36 36 37 -((( 38 -Each LES01 is pre-load with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect after power on. 47 + 39 39 ))) 40 40 41 - 42 42 [[image:1654503236291-817.png]] 43 43 44 44 45 -[[image:16545 03265560-120.png]]53 +[[image:1657245163077-232.png]] 46 46 47 47 48 48 49 -== 1.2 Features == 57 +== 1.2 Features == 50 50 51 -* LoRaWAN 1.0.3 Class A 52 -* Ultra low power consumption 59 +* NB-IoT Bands: B1/B3/B8/B5/B20/B28 @H-FDD 53 53 * Monitor Soil Moisture 54 54 * Monitor Soil Temperature 55 55 * Monitor Soil Conductivity 56 -* Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865 57 57 * AT Commands to change parameters 58 58 * Uplink on periodically 59 59 * Downlink to change configure 60 60 * IP66 Waterproof Enclosure 61 -* 4000mAh or 8500mAh Battery for long term use 67 +* Ultra-Low Power consumption 68 +* AT Commands to change parameters 69 +* Micro SIM card slot for NB-IoT SIM 70 +* 8500mAh Battery for long term use 62 62 63 -== 1.3 Specification == 64 64 65 -Measure Volume: Base on the centra pin of the probe, a cylinder with 7cm diameter and 10cm height. 66 66 67 -[[image:image-20220606162220-5.png]] 68 68 75 +== 1.3 Specification == 69 69 70 70 71 - ==1.4 Applications==78 +(% style="color:#037691" %)**Common DC Characteristics:** 72 72 73 -* Smart Agriculture 80 +* Supply Voltage: 2.1v ~~ 3.6v 81 +* Operating Temperature: -40 ~~ 85°C 74 74 75 -(% class="wikigeneratedid" id="H200B1.5FirmwareChangelog" %) 76 - 83 +(% style="color:#037691" %)**NB-IoT Spec:** 77 77 78 -== 1.5 Firmware Change log == 85 +* - B1 @H-FDD: 2100MHz 86 +* - B3 @H-FDD: 1800MHz 87 +* - B8 @H-FDD: 900MHz 88 +* - B5 @H-FDD: 850MHz 89 +* - B20 @H-FDD: 800MHz 90 +* - B28 @H-FDD: 700MHz 79 79 92 +Probe(% style="color:#037691" %)** Specification:** 80 80 81 - **LSE01v1.0:**Release94 +Measure Volume: Base on the centra pin of the probe, a cylinder with 7cm diameter and 10cm height. 82 82 96 +[[image:image-20220708101224-1.png]] 83 83 84 84 85 -= 2. Configure LSE01 to connect to LoRaWAN network = 86 86 87 -== 2.1Howitworks ==100 +== 1.4 Applications == 88 88 89 -((( 90 -The LSE01 is configured as LoRaWAN OTAA Class A mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and power on the LSE0150. It will automatically join the network via OTAA and start to send the sensor value 91 -))) 102 +* Smart Agriculture 92 92 93 -((( 94 -In case you can’t set the OTAA keys in the LoRaWAN OTAA server, and you have to use the keys from the server, you can [[use AT Commands >>||anchor="H3.200BUsingtheATCommands"]]. 95 -))) 104 +(% class="wikigeneratedid" id="H200B1.5FirmwareChangelog" %) 105 + 96 96 107 +== 1.5 Pin Definitions == 97 97 98 98 99 - == 2.2 Quickguideto connect to LoRaWAN server (OTAA) ==110 +[[image:1657246476176-652.png]] 100 100 101 -Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LG308>>url:http://www.dragino.com/products/lora/item/140-lg308.html]] as a LoRaWAN gateway in this example. 102 102 103 103 104 - [[image:1654503992078-669.png]]114 += 2. Use NSE01 to communicate with IoT Server = 105 105 116 +== 2.1 How it works == 106 106 107 -The LG308 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server. 108 108 109 - 110 -(% style="color:blue" %)**Step 1**(%%): Create a device in TTN with the OTAA keys from LSE01. 111 - 112 -Each LSE01 is shipped with a sticker with the default device EUI as below: 113 - 114 -[[image:image-20220606163732-6.jpeg]] 115 - 116 -You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot: 117 - 118 -**Add APP EUI in the application** 119 - 120 - 121 -[[image:1654504596150-405.png]] 122 - 123 - 124 - 125 -**Add APP KEY and DEV EUI** 126 - 127 -[[image:1654504683289-357.png]] 128 - 129 - 130 - 131 -(% style="color:blue" %)**Step 2**(%%): Power on LSE01 132 - 133 - 134 -Put a Jumper on JP2 to power on the device. ( The Jumper must be in FLASH position). 135 - 136 -[[image:image-20220606163915-7.png]] 137 - 138 - 139 -(% style="color:blue" %)**Step 3**(%%)**:** The LSE01 will auto join to the TTN network. After join success, it will start to upload messages to TTN and you can see the messages in the panel. 140 - 141 -[[image:1654504778294-788.png]] 142 - 143 - 144 - 145 -== 2.3 Uplink Payload == 146 - 147 - 148 -=== 2.3.1 MOD~=0(Default Mode) === 149 - 150 -LSE01 will uplink payload via LoRaWAN with below payload format: 151 - 152 152 ((( 153 - Uplinkpayload includesin total11bytes.120 +The NSE01 is equipped with a NB-IoT module, the pre-loaded firmware in NSE01 will get environment data from sensors and send the value to local NB-IoT network via the NB-IoT module. The NB-IoT network will forward this value to IoT server via the protocol defined by NSE01. 154 154 ))) 155 155 156 -(% border="1" cellspacing="10" style="background-color:#ffffcc; width:500px" %) 157 -|((( 158 -**Size** 159 159 160 -**(bytes)** 161 -)))|**2**|**2**|**2**|**2**|**2**|**1** 162 -|**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|((( 163 -Temperature 164 - 165 -(Reserve, Ignore now) 166 -)))|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]]|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]]|((( 167 -MOD & Digital Interrupt 168 - 169 -(Optional) 124 +((( 125 +The diagram below shows the working flow in default firmware of NSE01: 170 170 ))) 171 171 128 +[[image:image-20220708101605-2.png]] 172 172 173 - 174 -=== 2.3.2 MOD~=1(Original value) === 175 - 176 -This mode can get the original AD value of moisture and original conductivity (with temperature drift compensation). 177 - 178 -(% border="1" cellspacing="10" style="background-color:#ffffcc; width:500px" %) 179 -|((( 180 -**Size** 181 - 182 -**(bytes)** 183 -)))|**2**|**2**|**2**|**2**|**2**|**1** 184 -|**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|((( 185 -Temperature 186 - 187 -(Reserve, Ignore now) 188 -)))|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]](raw)|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]](raw)|((( 189 -MOD & Digital Interrupt 190 - 191 -(Optional) 192 -))) 193 - 194 - 195 - 196 -=== 2.3.3 Battery Info === 197 - 198 198 ((( 199 - Checkthe battery voltage for LSE01.131 + 200 200 ))) 201 201 202 -((( 203 -Ex1: 0x0B45 = 2885mV 204 -))) 205 205 206 -((( 207 -Ex2: 0x0B49 = 2889mV 208 -))) 209 209 136 +== 2.2 Configure the NSE01 == 210 210 211 211 212 -=== 2. 3.4SoilMoisture ===139 +=== 2.2.1 Test Requirement === 213 213 214 -((( 215 -Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil. 216 -))) 217 217 218 218 ((( 219 - Forexample,ifthe datayouget fromthe register is __0x05 0xDC__,themoisturecontentin thesoil is143 +To use NSE01 in your city, make sure meet below requirements: 220 220 ))) 221 221 222 - (((223 - 224 - )))146 +* Your local operator has already distributed a NB-IoT Network there. 147 +* The local NB-IoT network used the band that NSE01 supports. 148 +* Your operator is able to distribute the data received in their NB-IoT network to your IoT server. 225 225 226 226 ((( 227 -(% style="color: #4f81bd" %)**05DC(H) = 1500(D)/100= 15%.**151 +Below figure shows our testing structure. Here we have NB-IoT network coverage by China Mobile, the band they use is B8. The NSE01 will use CoAP((% style="color:red" %)120.24.4.116:5683)(%%) or raw UDP((% style="color:red" %)120.24.4.116:5601)(%%) or MQTT((% style="color:red" %)120.24.4.116:1883)(%%)or TCP((% style="color:red" %)120.24.4.116:5600)(%%)protocol to send data to the test server 228 228 ))) 229 229 230 230 155 +[[image:1657249419225-449.png]] 231 231 232 -=== 2.3.5 Soil Temperature === 233 233 234 -((( 235 - Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is 0x09 0xEC, the temperature content in the soil is 236 -))) 237 237 238 -((( 239 -**Example**: 240 -))) 159 +=== 2.2.2 Insert SIM card === 241 241 242 242 ((( 243 -I fpayloadis 0105H: ((0x0105 & 0x8000)>>15 === 0),temp=0105(H)/100 = 2.61 °C162 +Insert the NB-IoT Card get from your provider. 244 244 ))) 245 245 246 246 ((( 247 - IfpayloadisFF7EH:((FF7E&0x8000)>>15===1),temp=(FF7E(H)-FFFF(H))/100=-1.29 °C166 +User need to take out the NB-IoT module and insert the SIM card like below: 248 248 ))) 249 249 250 250 170 +[[image:1657249468462-536.png]] 251 251 252 -=== 2.3.6 Soil Conductivity (EC) === 253 253 254 -((( 255 -Obtain (% style="color:#4f81bd" %)**__soluble salt concentration__**(%%) in soil or (% style="color:#4f81bd" %)**__soluble ion concentration in liquid fertilizer__**(%%) or (% style="color:#4f81bd" %)**__planting medium__**(%%). The value range of the register is 0 - 20000(Decimal)( Can be greater than 20000). 256 -))) 257 257 258 -((( 259 -For example, if the data you get from the register is 0x00 0xC8, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm. 260 -))) 174 +=== 2.2.3 Connect USB – TTL to NSE01 to configure it === 261 261 262 262 ((( 263 -Generally, the EC value of irrigation water is less than 800uS / cm. 264 -))) 265 - 266 266 ((( 267 - 178 +User need to configure NSE01 via serial port to set the (% style="color:blue" %)**Server Address** / **Uplink Topic** (%%)to define where and how-to uplink packets. NSE01 support AT Commands, user can use a USB to TTL adapter to connect to NSE01 and use AT Commands to configure it, as below. 268 268 ))) 269 - 270 -((( 271 - 272 272 ))) 273 273 274 -=== 2.3.7 MOD === 275 275 276 - Firmware versionat least v2.1 supportschanging mode.183 +**Connection:** 277 277 278 - Forexample,bytes[10]=90185 + (% style="background-color:yellow" %)USB TTL GND <~-~-~-~-> GND 279 279 280 - mod=(bytes[10]>>7)&0x01=1.187 + (% style="background-color:yellow" %)USB TTL TXD <~-~-~-~-> UART_RXD 281 281 189 + (% style="background-color:yellow" %)USB TTL RXD <~-~-~-~-> UART_TXD 282 282 283 -**Downlink Command:** 284 284 285 -I fpayload= 0x0A00,workmode=0192 +In the PC, use below serial tool settings: 286 286 287 -If** **payload =** **0x0A01, workmode=1 194 +* Baud: (% style="color:green" %)**9600** 195 +* Data bits:** (% style="color:green" %)8(%%)** 196 +* Stop bits: (% style="color:green" %)**1** 197 +* Parity: (% style="color:green" %)**None** 198 +* Flow Control: (% style="color:green" %)**None** 288 288 289 - 290 - 291 -=== 2.3.8 Decode payload in The Things Network === 292 - 293 -While using TTN network, you can add the payload format to decode the payload. 294 - 295 - 296 -[[image:1654505570700-128.png]] 297 - 298 298 ((( 299 - The payloaddecoderfunction forTTNis here:201 +Make sure the switch is in FLASH position, then power on device by connecting the jumper on NSE01. NSE01 will output system info once power on as below, we can enter the (% style="color:green" %)**password: 12345678**(%%) to access AT Command input. 300 300 ))) 301 301 302 -((( 303 -LSE01 TTN Payload Decoder: [[https:~~/~~/www.dropbox.com/sh/si8icbrjlamxqdb/AAACYwjsxxr5fj_vpqRtrETAa?dl=0>>https://www.dropbox.com/sh/si8icbrjlamxqdb/AAACYwjsxxr5fj_vpqRtrETAa?dl=0]] 304 -))) 204 +[[image:image-20220708110657-3.png]] 305 305 306 - 307 -== 2.4 Uplink Interval == 308 - 309 -The LSE01 by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link: [[Change Uplink Interval>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H4.1ChangeUplinkInterval"]] 310 - 311 - 312 - 313 -== 2.5 Downlink Payload == 314 - 315 -By default, LSE50 prints the downlink payload to console port. 316 - 317 -[[image:image-20220606165544-8.png]] 318 - 319 - 320 320 ((( 321 - **Examples:**207 +(% style="color:red" %)Note: the valid AT Commands can be found at: (%%)[[http:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/]] 322 322 ))) 323 323 324 -((( 325 - 326 -))) 327 327 328 -* ((( 329 -**Set TDC** 330 -))) 331 331 332 -((( 333 -If the payload=0100003C, it means set the END Node’s TDC to 0x00003C=60(S), while type code is 01. 334 -))) 212 +=== 2.2.4 Use CoAP protocol to uplink data === 335 335 336 -((( 337 -Payload: 01 00 00 1E TDC=30S 338 -))) 214 +(% style="color:red" %)Note: if you don't have CoAP server, you can refer this link to set up one: (%%)[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/>>http://wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/]] 339 339 340 -((( 341 -Payload: 01 00 00 3C TDC=60S 342 -))) 343 343 344 -((( 345 - 346 -))) 217 +**Use below commands:** 347 347 348 -* (( (349 -**Reset **350 -)) )219 +* (% style="color:blue" %)**AT+PRO=1** (%%) ~/~/ Set to use CoAP protocol to uplink 220 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5683 ** (%%)~/~/ to set CoAP server address and port 221 +* (% style="color:blue" %)**AT+URI=5,11,"mqtt",11,"coap",12,"0",15,"c=text1",23,"0" ** (%%) ~/~/Set COAP resource path 351 351 352 -((( 353 -If payload = 0x04FF, it will reset the LSE01 354 -))) 223 +For parameter description, please refer to AT command set 355 355 225 +[[image:1657249793983-486.png]] 356 356 357 -* **CFM** 358 358 359 - DownlinkPayload:05000001, Set AT+CFM=1or05000000,setAT+CFM=0228 +After configure the server address and (% style="color:green" %)**reset the device**(%%) (via AT+ATZ ), NSE01 will start to uplink sensor values to CoAP server. 360 360 230 +[[image:1657249831934-534.png]] 361 361 362 362 363 -== 2.6 Show Data in DataCake IoT Server == 364 364 365 -((( 366 -[[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps: 367 -))) 234 +=== 2.2.5 Use UDP protocol to uplink data(Default protocol) === 368 368 369 -((( 370 - 371 -))) 236 +This feature is supported since firmware version v1.0.1 372 372 373 -((( 374 -(% style="color:blue" %)**Step 1**(%%): Be sure that your device is programmed and properly connected to the network at this time. 375 -))) 376 376 377 -(( (378 -(% style="color:blue" %)**S tep2**(%%):ToconfigureheApplication to forward data toDATACAKEyou will need to add integration.ToaddtheDATACAKE integration,performthe following steps:379 -)) )239 +* (% style="color:blue" %)**AT+PRO=2 ** (%%) ~/~/ Set to use UDP protocol to uplink 240 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5601 ** (%%) ~/~/ to set UDP server address and port 241 +* (% style="color:blue" %)**AT+CFM=1 ** (%%) ~/~/If the server does not respond, this command is unnecessary 380 380 243 +[[image:1657249864775-321.png]] 381 381 382 -[[image:1654505857935-743.png]] 383 383 246 +[[image:1657249930215-289.png]] 384 384 385 -[[image:1654505874829-548.png]] 386 386 387 387 388 - (% style="color:blue"%)**Step3**(%%)**:**CreateanaccountrloginDatacake.250 +=== 2.2.6 Use MQTT protocol to uplink data === 389 389 390 - (%style="color:blue"%)**Step4**(%%)**:** SearchtheLSE01 andaddDevEUI.252 +This feature is supported since firmware version v110 391 391 392 392 393 -[[image:1654505905236-553.png]] 255 +* (% style="color:blue" %)**AT+PRO=3 ** (%%) ~/~/Set to use MQTT protocol to uplink 256 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,1883 ** (%%) ~/~/Set MQTT server address and port 257 +* (% style="color:blue" %)**AT+CLIENT=CLIENT ** (%%)~/~/Set up the CLIENT of MQTT 258 +* (% style="color:blue" %)**AT+UNAME=UNAME **(%%)~/~/Set the username of MQTT 259 +* (% style="color:blue" %)**AT+PWD=PWD **(%%)~/~/Set the password of MQTT 260 +* (% style="color:blue" %)**AT+PUBTOPIC=NSE01_PUB **(%%)~/~/Set the sending topic of MQTT 261 +* (% style="color:blue" %)**AT+SUBTOPIC=NSE01_SUB **(%%) ~/~/Set the subscription topic of MQTT 394 394 263 +[[image:1657249978444-674.png]] 395 395 396 -After added, the sensor data arrive TTN, it will also arrive and show in Mydevices. 397 397 398 -[[image:1654 505925508-181.png]]266 +[[image:1657249990869-686.png]] 399 399 400 400 269 +((( 270 +MQTT protocol has a much higher power consumption compare vs UDP / CoAP protocol. Please check the power analyze document and adjust the uplink period to a suitable interval. 271 +))) 401 401 402 -== 2.7 Frequency Plans == 403 403 404 -The LSE01 uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets. 405 405 275 +=== 2.2.7 Use TCP protocol to uplink data === 406 406 407 - ===2.7.1EU863-870(EU868)===277 +This feature is supported since firmware version v110 408 408 409 -(% style="color:#037691" %)** Uplink:** 410 410 411 -868.1 - SF7BW125 to SF12BW125 280 +* (% style="color:blue" %)**AT+PRO=4 ** (%%) ~/~/ Set to use TCP protocol to uplink 281 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5600 **(%%) ~/~/ to set TCP server address and port 412 412 413 - 868.3 - SF7BW125to SF12BW125 and SF7BW250283 +[[image:1657250217799-140.png]] 414 414 415 -868.5 - SF7BW125 to SF12BW125 416 416 417 - 867.1 - SF7BW125to SF12BW125286 +[[image:1657250255956-604.png]] 418 418 419 -867.3 - SF7BW125 to SF12BW125 420 420 421 -867.5 - SF7BW125 to SF12BW125 422 422 423 - 867.7-SF7BW125toSF12BW125290 +=== 2.2.8 Change Update Interval === 424 424 425 - 867.9-SF7BW125toSF12BW125292 +User can use below command to change the (% style="color:green" %)**uplink interval**. 426 426 427 - 868.8-FSK294 +* (% style="color:blue" %)**AT+TDC=600 ** (%%)~/~/ Set Update Interval to 600s 428 428 296 +((( 297 +(% style="color:red" %)**NOTE:** 298 +))) 429 429 430 -(% style="color:#037691" %)** Downlink:** 300 +((( 301 +(% style="color:red" %)1. By default, the device will send an uplink message every 1 hour. 302 +))) 431 431 432 -Uplink channels 1-9 (RX1) 433 433 434 -869.525 - SF9BW125 (RX2 downlink only) 435 435 306 +== 2.3 Uplink Payload == 436 436 308 +In this mode, uplink payload includes in total 18 bytes 437 437 438 -=== 2.7.2 US902-928(US915) === 310 +(% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:510px" %) 311 +|=(% style="width: 60px;" %)((( 312 +**Size(bytes)** 313 +)))|=(% style="width: 50px;" %)**6**|=(% style="width: 25px;" %)2|=(% style="width: 25px;" %)**2**|=(% style="width: 70px;" %)**1**|=(% style="width: 60px;" %)**2**|=(% style="width: 80px;" %)**2**|=(% style="width: 90px;" %)**2**|=(% style="width: 50px;" %)**1** 314 +|(% style="width:97px" %)**Value**|(% style="width:83px" %)[[Device ID>>||anchor="H2.4.1A0A0DeviceID"]]|(% style="width:41px" %)[[Ver>>||anchor="H2.4.2A0VersionInfo"]]|(% style="width:46px" %)[[BAT>>||anchor="H2.4.3A0BatteryInfo"]]|(% style="width:123px" %)[[Signal Strength>>||anchor="H2.4.4A0SignalStrength"]]|(% style="width:108px" %)[[Soil Moisture>>||anchor="H2.4.5A0SoilMoisture"]]|(% style="width:133px" %)[[Soil Temperature>>||anchor="H2.4.6A0SoilTemperature"]]|(% style="width:159px" %)[[Soil Conductivity(EC)>>||anchor="H2.4.7A0SoilConductivity28EC29"]]|(% style="width:80px" %)[[Interrupt>>||anchor="H2.4.8A0DigitalInterrupt"]] 439 439 440 -Used in USA, Canada and South America. Default use CHE=2 316 +((( 317 +If we use the MQTT client to subscribe to this MQTT topic, we can see the following information when the NSE01 uplink data. 318 +))) 441 441 442 -(% style="color:#037691" %)**Uplink:** 443 443 444 - 903.9-SF7BW125 to SF10BW125321 +[[image:image-20220708111918-4.png]] 445 445 446 -904.1 - SF7BW125 to SF10BW125 447 447 448 - 904.3-SF7BW125toSF10BW125324 +The payload is ASCII string, representative same HEX: 449 449 450 - 904.5 - SF7BW125to SF10BW125326 +0x72403155615900640c7817075e0a8c02f900 where: 451 451 452 -904.7 - SF7BW125 to SF10BW125 328 +* Device ID: 0x 724031556159 = 724031556159 329 +* Version: 0x0064=100=1.0.0 453 453 454 -904.9 - SF7BW125 to SF10BW125 331 +* BAT: 0x0c78 = 3192 mV = 3.192V 332 +* Singal: 0x17 = 23 333 +* Soil Moisture: 0x075e= 1886 = 18.86 % 334 +* Soil Temperature:0x0a8c =2700=27 °C 335 +* Soil Conductivity(EC) = 0x02f9 =761 uS /cm 336 +* Interrupt: 0x00 = 0 455 455 456 -905.1 - SF7BW125 to SF10BW125 457 457 458 -905.3 - SF7BW125 to SF10BW125 459 459 460 460 461 - (%style="color:#037691"%)**Downlink:**341 +== 2.4 Payload Explanation and Sensor Interface == 462 462 463 -923.3 - SF7BW500 to SF12BW500 464 464 465 - 923.9-SF7BW500 to SF12BW500344 +=== 2.4.1 Device ID === 466 466 467 -924.5 - SF7BW500 to SF12BW500 346 +((( 347 +By default, the Device ID equal to the last 6 bytes of IMEI. 348 +))) 468 468 469 -925.1 - SF7BW500 to SF12BW500 350 +((( 351 +User can use (% style="color:blue" %)**AT+DEUI**(%%) to set Device ID 352 +))) 470 470 471 -925.7 - SF7BW500 to SF12BW500 354 +((( 355 +**Example:** 356 +))) 472 472 473 -926.3 - SF7BW500 to SF12BW500 358 +((( 359 +AT+DEUI=A84041F15612 360 +))) 474 474 475 -926.9 - SF7BW500 to SF12BW500 362 +((( 363 +The Device ID is stored in a none-erase area, Upgrade the firmware or run AT+FDR won't erase Device ID. 364 +))) 476 476 477 -927.5 - SF7BW500 to SF12BW500 478 478 479 -923.3 - SF12BW500(RX2 downlink only) 480 480 368 +=== 2.4.2 Version Info === 481 481 370 +((( 371 +Specify the software version: 0x64=100, means firmware version 1.00. 372 +))) 482 482 483 -=== 2.7.3 CN470-510 (CN470) === 374 +((( 375 +For example: 0x00 64 : this device is NSE01 with firmware version 1.0.0. 376 +))) 484 484 485 -Used in China, Default use CHE=1 486 486 487 -(% style="color:#037691" %)**Uplink:** 488 488 489 -4 86.3- SF7BW125toSF12BW125380 +=== 2.4.3 Battery Info === 490 490 491 -486.5 - SF7BW125 to SF12BW125 382 +((( 383 +Check the battery voltage for LSE01. 384 +))) 492 492 493 -486.7 - SF7BW125 to SF12BW125 386 +((( 387 +Ex1: 0x0B45 = 2885mV 388 +))) 494 494 495 -486.9 - SF7BW125 to SF12BW125 390 +((( 391 +Ex2: 0x0B49 = 2889mV 392 +))) 496 496 497 -487.1 - SF7BW125 to SF12BW125 498 498 499 -487.3 - SF7BW125 to SF12BW125 500 500 501 -4 87.5-SF7BW125toSF12BW125396 +=== 2.4.4 Signal Strength === 502 502 503 -487.7 - SF7BW125 to SF12BW125 398 +((( 399 +NB-IoT Network signal Strength. 400 +))) 504 504 402 +((( 403 +**Ex1: 0x1d = 29** 404 +))) 505 505 506 -(% style="color:#037691" %)**Downlink:** 406 +((( 407 +(% style="color:blue" %)**0**(%%) -113dBm or less 408 +))) 507 507 508 -506.7 - SF7BW125 to SF12BW125 410 +((( 411 +(% style="color:blue" %)**1**(%%) -111dBm 412 +))) 509 509 510 -506.9 - SF7BW125 to SF12BW125 414 +((( 415 +(% style="color:blue" %)**2...30**(%%) -109dBm... -53dBm 416 +))) 511 511 512 -507.1 - SF7BW125 to SF12BW125 418 +((( 419 +(% style="color:blue" %)**31** (%%) -51dBm or greater 420 +))) 513 513 514 -507.3 - SF7BW125 to SF12BW125 422 +((( 423 +(% style="color:blue" %)**99** (%%) Not known or not detectable 424 +))) 515 515 516 -507.5 - SF7BW125 to SF12BW125 517 517 518 -507.7 - SF7BW125 to SF12BW125 519 519 520 - 507.9- SF7BW125toSF12BW125428 +=== 2.4.5 Soil Moisture === 521 521 522 -508.1 - SF7BW125 to SF12BW125 430 +((( 431 +((( 432 +Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil. 433 +))) 434 +))) 523 523 524 -505.3 - SF12BW125 (RX2 downlink only) 436 +((( 437 +((( 438 +For example, if the data you get from the register is **__0x05 0xDC__**, the moisture content in the soil is 439 +))) 440 +))) 525 525 442 +((( 443 + 444 +))) 526 526 446 +((( 447 +(% style="color:#4f81bd" %)**05DC(H) = 1500(D) /100 = 15%.** 448 +))) 527 527 528 -=== 2.7.4 AU915-928(AU915) === 529 529 530 -Default use CHE=2 531 531 532 - (% style="color:#037691"%)**Uplink:**452 +=== 2.4.6 Soil Temperature === 533 533 534 -916.8 - SF7BW125 to SF12BW125 454 +((( 455 +Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is __**0x09 0xEC**__, the temperature content in the soil is 456 +))) 535 535 536 -917.0 - SF7BW125 to SF12BW125 458 +((( 459 +**Example**: 460 +))) 537 537 538 -917.2 - SF7BW125 to SF12BW125 462 +((( 463 +If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/100 = 2.61 °C 464 +))) 539 539 540 -917.4 - SF7BW125 to SF12BW125 466 +((( 467 +If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C 468 +))) 541 541 542 -917.6 - SF7BW125 to SF12BW125 543 543 544 -917.8 - SF7BW125 to SF12BW125 545 545 546 - 918.0-SF7BW125toSF12BW125472 +=== 2.4.7 Soil Conductivity (EC) === 547 547 548 -918.2 - SF7BW125 to SF12BW125 474 +((( 475 +Obtain (% style="color:#4f81bd" %)**__soluble salt concentration__**(%%) in soil or (% style="color:#4f81bd" %)**__soluble ion concentration in liquid fertilizer__**(%%) or (% style="color:#4f81bd" %)**__planting medium__**(%%). The value range of the register is 0 - 20000(Decimal)( Can be greater than 20000). 476 +))) 549 549 478 +((( 479 +For example, if the data you get from the register is __**0x00 0xC8**__, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm. 480 +))) 550 550 551 -(% style="color:#037691" %)**Downlink:** 482 +((( 483 +Generally, the EC value of irrigation water is less than 800uS / cm. 484 +))) 552 552 553 -923.3 - SF7BW500 to SF12BW500 486 +((( 487 + 488 +))) 554 554 555 -923.9 - SF7BW500 to SF12BW500 490 +((( 491 + 492 +))) 556 556 557 - 924.5-SF7BW500toSF12BW500494 +=== 2.4.8 Digital Interrupt === 558 558 559 -925.1 - SF7BW500 to SF12BW500 496 +((( 497 +Digital Interrupt refers to pin (% style="color:blue" %)**GPIO_EXTI**(%%), and there are different trigger methods. When there is a trigger, the NSE01 will send a packet to the server. 498 +))) 560 560 561 -925.7 - SF7BW500 to SF12BW500 500 +((( 501 +The command is: 502 +))) 562 562 563 -926.3 - SF7BW500 to SF12BW500 504 +((( 505 +(% style="color:blue" %)**AT+INTMOD=3 **(%%) ~/~/(more info about INMOD please refer [[**AT Command Manual**>>url:https://www.dragino.com/downloads/downloads/NB-IoT/NBSN95/DRAGINO_NBSN95-NB_AT%20Commands_v1.1.0.pdf]])**.** 506 +))) 564 564 565 -926.9 - SF7BW500 to SF12BW500 566 566 567 -927.5 - SF7BW500 to SF12BW500 509 +((( 510 +The lower four bits of this data field shows if this packet is generated by interrupt or not. Click here for the hardware and software set up. 511 +))) 568 568 569 -923.3 - SF12BW500(RX2 downlink only) 570 570 514 +((( 515 +Example: 516 +))) 571 571 518 +((( 519 +0x(00): Normal uplink packet. 520 +))) 572 572 573 -=== 2.7.5 AS920-923 & AS923-925 (AS923) === 522 +((( 523 +0x(01): Interrupt Uplink Packet. 524 +))) 574 574 575 -(% style="color:#037691" %)**Default Uplink channel:** 576 576 577 -923.2 - SF7BW125 to SF10BW125 578 578 579 - 923.4- SF7BW125 toSF10BW125528 +=== 2.4.9 +5V Output === 580 580 530 +((( 531 +NSE01 will enable +5V output before all sampling and disable the +5v after all sampling. 532 +))) 581 581 582 -(% style="color:#037691" %)**Additional Uplink Channel**: 583 583 584 -(OTAA mode, channel added by JoinAccept message) 535 +((( 536 +The 5V output time can be controlled by AT Command. 537 +))) 585 585 586 -(% style="color:#037691" %)**AS920~~AS923 for Japan, Malaysia, Singapore**: 539 +((( 540 +(% style="color:blue" %)**AT+5VT=1000** 541 +))) 587 587 588 -922.2 - SF7BW125 to SF10BW125 543 +((( 544 +Means set 5V valid time to have 1000ms. So the real 5V output will actually have 1000ms + sampling time for other sensors. 545 +))) 589 589 590 -922.4 - SF7BW125 to SF10BW125 591 591 592 -922.6 - SF7BW125 to SF10BW125 593 593 594 - 922.8- SF7BW125toSF10BW125549 +== 2.5 Downlink Payload == 595 595 596 - 923.0-SF7BW125toSF10BW125551 +By default, NSE01 prints the downlink payload to console port. 597 597 598 - 922.0- SF7BW125 to SF10BW125553 +[[image:image-20220708133731-5.png]] 599 599 600 600 601 -(% style="color:#037691" %)**AS923 ~~ AS925 for Brunei, Cambodia, Hong Kong, Indonesia, Laos, Taiwan, Thailand, Vietnam**: 556 +((( 557 +(% style="color:blue" %)**Examples:** 558 +))) 602 602 603 -923.6 - SF7BW125 to SF10BW125 560 +((( 561 + 562 +))) 604 604 605 -923.8 - SF7BW125 to SF10BW125 564 +* ((( 565 +(% style="color:blue" %)**Set TDC** 566 +))) 606 606 607 -924.0 - SF7BW125 to SF10BW125 568 +((( 569 +If the payload=0100003C, it means set the END Node's TDC to 0x00003C=60(S), while type code is 01. 570 +))) 608 608 609 -924.2 - SF7BW125 to SF10BW125 572 +((( 573 +Payload: 01 00 00 1E TDC=30S 574 +))) 610 610 611 -924.4 - SF7BW125 to SF10BW125 576 +((( 577 +Payload: 01 00 00 3C TDC=60S 578 +))) 612 612 613 -924.6 - SF7BW125 to SF10BW125 580 +((( 581 + 582 +))) 614 614 584 +* ((( 585 +(% style="color:blue" %)**Reset** 586 +))) 615 615 616 -(% style="color:#037691" %)** Downlink:** 588 +((( 589 +If payload = 0x04FF, it will reset the NSE01 590 +))) 617 617 618 -Uplink channels 1-8 (RX1) 619 619 620 - 923.2-SF10BW125(RX2)593 +* (% style="color:blue" %)**INTMOD** 621 621 595 +((( 596 +Downlink Payload: 06000003, Set AT+INTMOD=3 597 +))) 622 622 623 623 624 -=== 2.7.6 KR920-923 (KR920) === 625 625 626 -D efaultchannel:601 +== 2.6 LED Indicator == 627 627 628 -922.1 - SF7BW125 to SF12BW125 603 +((( 604 +The NSE01 has an internal LED which is to show the status of different state. 629 629 630 -922.3 - SF7BW125 to SF12BW125 631 631 632 -922.5 - SF7BW125 to SF12BW125 607 +* When power on, NSE01 will detect if sensor probe is connected, if probe detected, LED will blink four times. (no blinks in this step is no probe) 608 +* Then the LED will be on for 1 second means device is boot normally. 609 +* After NSE01 join NB-IoT network. The LED will be ON for 3 seconds. 610 +* For each uplink probe, LED will be on for 500ms. 611 +))) 633 633 634 634 635 -(% style="color:#037691" %)**Uplink: (OTAA mode, channel added by JoinAccept message)** 636 636 637 -922.1 - SF7BW125 to SF12BW125 638 638 639 - 922.3 - SF7BW125to SF12BW125616 +== 2.7 Installation in Soil == 640 640 641 - 922.5- SF7BW125toSF12BW125618 +__**Measurement the soil surface**__ 642 642 643 -922.7 - SF7BW125 to SF12BW125 620 +((( 621 +Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting. [[https:~~/~~/img.alicdn.com/imgextra/i3/2005165265/O1CN010rj9Oh1olPsQxrdUK_!!2005165265.jpg>>url:https://img.alicdn.com/imgextra/i3/2005165265/O1CN010rj9Oh1olPsQxrdUK_!!2005165265.jpg]] 622 +))) 644 644 645 - 922.9 - SF7BW125to SF12BW125624 +[[image:1657259653666-883.png]] 646 646 647 -923.1 - SF7BW125 to SF12BW125 648 648 649 -923.3 - SF7BW125 to SF12BW125 627 +((( 628 + 650 650 630 +((( 631 +Dig a hole with diameter > 20CM. 632 +))) 651 651 652 -(% style="color:#037691" %)**Downlink:** 634 +((( 635 +Horizontal insert the probe to the soil and fill the hole for long term measurement. 636 +))) 637 +))) 653 653 654 - Uplink channels1-7(RX1)639 +[[image:1654506665940-119.png]] 655 655 656 -921.9 - SF12BW125 (RX2 downlink only; SF12BW125 might be changed to SF9BW125) 641 +((( 642 + 643 +))) 657 657 658 658 646 +== 2.8 Firmware Change Log == 659 659 660 -=== 2.7.7 IN865-867 (IN865) === 661 661 662 - (% style="color:#037691"%)**Uplink:**649 +Download URL & Firmware Change log 663 663 664 - 865.0625-F7BW125toSF12BW125651 +[[www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/Firmware/]] 665 665 666 -865.4025 - SF7BW125 to SF12BW125 667 667 668 - 865.9850- SF7BW125toSF12BW125654 +Upgrade Instruction: [[Upgrade_Firmware>>||anchor="H5.1200BHowtoUpgradeFirmware"]] 669 669 670 670 671 -(% style="color:#037691" %) **Downlink:** 672 672 673 - Uplinkchannels1-3 (RX1)658 +== 2.9 Battery Analysis == 674 674 675 - 866.550- SF10BW125(RX2)660 +=== 2.9.1 Battery Type === 676 676 677 677 678 - 679 - 680 -== 2.8 LED Indicator == 681 - 682 -The LSE01 has an internal LED which is to show the status of different state. 683 - 684 -* Blink once when device power on. 685 -* Solid ON for 5 seconds once device successful Join the network. 686 -* Blink once when device transmit a packet. 687 - 688 -== 2.9 Installation in Soil == 689 - 690 -**Measurement the soil surface** 691 - 692 - 693 -[[image:1654506634463-199.png]] 694 - 695 695 ((( 696 -((( 697 -Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting. 664 +The NSE01 battery is a combination of an 8500mAh Li/SOCI2 Battery and a Super Capacitor. The battery is none-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter. 698 698 ))) 699 -))) 700 700 701 701 702 -[[image:1654506665940-119.png]] 703 - 704 704 ((( 705 - Dig aholewithdiameter>20CM.669 +The battery is designed to last for several years depends on the actually use environment and update interval. 706 706 ))) 707 707 708 -((( 709 -Horizontal insert the probe to the soil and fill the hole for long term measurement. 710 -))) 711 711 712 - 713 -== 2.10 Firmware Change Log == 714 - 715 715 ((( 716 - **Firmware downloadlink:**674 +The battery related documents as below: 717 717 ))) 718 718 719 - (((720 -[[ http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/]]721 - )))677 +* [[Battery Dimension>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]] 678 +* [[Lithium-Thionyl Chloride Battery datasheet>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]] 679 +* [[Lithium-ion Battery-Capacitor datasheet>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]] 722 722 723 723 ((( 724 - 682 +[[image:image-20220708140453-6.png]] 725 725 ))) 726 726 727 -((( 728 -**Firmware Upgrade Method: **[[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome]] 729 -))) 730 730 731 -((( 732 - 733 -))) 734 734 735 -((( 736 -**V1.0.** 737 -))) 687 +=== 2.9.2 Power consumption Analyze === 738 738 739 739 ((( 740 - Release690 +Dragino battery powered product are all runs in Low Power mode. We have an update battery calculator which base on the measurement of the real device. User can use this calculator to check the battery life and calculate the battery life if want to use different transmit interval. 741 741 ))) 742 742 743 743 744 -== 2.11 Battery Analysis == 745 - 746 -=== 2.11.1 Battery Type === 747 - 748 748 ((( 749 - The LSE01 battery is a combination of a 4000mAh Li/SOCI2 Battery and a Super Capacitor. The batteryis non-rechargeablebattery type with a lowdischargerate (<2% per year). Thistype ofbattery is commonly used in IoT devices such aswater meter.695 +Instruction to use as below: 750 750 ))) 751 751 752 752 ((( 753 - Thebatterys designedlastforrethan5 years fortheSN50.699 +(% style="color:blue" %)**Step 1: **(%%)Downlink the up-to-date DRAGINO_Battery_Life_Prediction_Table.xlsx from: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/]] 754 754 ))) 755 755 702 + 756 756 ((( 757 -((( 758 -The battery-related documents are as below: 704 +(% style="color:blue" %)**Step 2: **(%%) Open it and choose 759 759 ))) 760 -))) 761 761 762 762 * ((( 763 - [[Battery Dimension>>url:http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/&file=LSN50-Battery-Dimension.pdf]],708 +Product Model 764 764 ))) 765 765 * ((( 766 - [[Lithium-ThionylChloride Battery datasheet>>url:https://www.dragino.com/downloads/downloads/datasheet/Battery/ER26500/ER26500_Datasheet-EN.pdf]],711 +Uplink Interval 767 767 ))) 768 768 * ((( 769 - [[Lithium-ion Battery-Capacitor datasheet>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC_1520_datasheet.jpg]],[[Tech Spec>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC1520%20Technical%20Specification20171123.pdf]]714 +Working Mode 770 770 ))) 771 771 772 - [[image:image-20220610172436-1.png]] 717 +((( 718 +And the Life expectation in difference case will be shown on the right. 719 +))) 773 773 721 +[[image:image-20220708141352-7.jpeg]] 774 774 775 775 776 -=== 2.11.2 Battery Note === 777 777 725 +=== 2.9.3 Battery Note === 726 + 778 778 ((( 779 779 The Li-SICO battery is designed for small current / long period application. It is not good to use a high current, short period transmit method. The recommended minimum period for use of this battery is 5 minutes. If you use a shorter period time to transmit LoRa, then the battery life may be decreased. 780 780 ))) ... ... @@ -781,303 +781,169 @@ 781 781 782 782 783 783 784 -=== 2. 11.3Replace the battery ===733 +=== 2.9.4 Replace the battery === 785 785 786 786 ((( 787 - IfBattery is lower than 2.7v,usershouldreplace the battery ofLSE01.736 +The default battery pack of NSE01 includes a ER26500 plus super capacitor. If user can't find this pack locally, they can find ER26500 or equivalence without the SPC1520 capacitor, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes). 788 788 ))) 789 789 739 + 740 + 741 += 3. Access NB-IoT Module = 742 + 790 790 ((( 791 - You can changethe battery in the LSE01.The type of battery isnot limitedas longas the outputis between 3v to 3.6v. On the main board, there is a diode (D1) between the battery and the maincircuit. If you need to use a battery with lessthan 3.3v, pleaseremovethe D1and shortcut thewopadsofitso therewon’tbe voltage drop between battery andmain board.744 +Users can directly access the AT command set of the NB-IoT module. 792 792 ))) 793 793 794 794 ((( 795 -The defaultbattery packof LSE01 includesa ER18505 plussupercapacitor.Ifusercan’tfind this pack locally, theycan find ER18505orequivalence,whichwillalsoworkinmostcase.The SPC can enlargethebattery lifeforigh frequency use(updateperiod below5minutes)748 +The AT Command set can refer the BC35-G NB-IoT Module AT Command: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=datasheet/other_vendors/BC35-G/>>url:https://www.dragino.com/downloads/index.php?dir=datasheet/other_vendors/BC35-G/]] 796 796 ))) 797 797 751 +[[image:1657261278785-153.png]] 798 798 799 799 800 -= 3. Using the AT Commands = 801 801 802 -= =3.1AccessAT Commands ==755 += 4. Using the AT Commands = 803 803 757 +== 4.1 Access AT Commands == 804 804 805 - LSE01supportsATCommandsetn the stock firmware.Youcanuse a USB toTTLadaptertoconnect to LSE01forusing ATcommand,asbelow.759 +See this link for detail: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/]] 806 806 807 -[[image:1654501986557-872.png||height="391" width="800"]] 808 808 762 +AT+<CMD>? : Help on <CMD> 809 809 810 - Orifyouhavebelowboard,usebelowconnection:764 +AT+<CMD> : Run <CMD> 811 811 766 +AT+<CMD>=<value> : Set the value 812 812 813 - [[image:1654502005655-729.png||height="503"width="801"]]768 +AT+<CMD>=? : Get the value 814 814 815 815 816 - 817 -In the PC, you need to set the serial baud rate to (% style="color:green" %)**9600**(%%) to access the serial console for LSE01. LSE01 will output system info once power on as below: 818 - 819 - 820 - [[image:1654502050864-459.png||height="564" width="806"]] 821 - 822 - 823 -Below are the available commands, a more detailed AT Command manual can be found at [[AT Command Manual>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/]]: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/]] 824 - 825 - 826 -(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>? **(%%) : Help on <CMD> 827 - 828 -(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD> **(%%) : Run <CMD> 829 - 830 -(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>=<value>**(%%) : Set the value 831 - 832 -(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>=?**(%%) : Get the value 833 - 834 - 835 835 (% style="color:#037691" %)**General Commands**(%%) 836 836 837 - (% style="background-color:#dcdcdc" %)**AT**(%%): Attention773 +AT : Attention 838 838 839 - (% style="background-color:#dcdcdc" %)**AT?**(%%): Short Help775 +AT? : Short Help 840 840 841 - (% style="background-color:#dcdcdc" %)**ATZ**(%%): MCU Reset777 +ATZ : MCU Reset 842 842 843 - (% style="background-color:#dcdcdc" %)**AT+TDC**(%%): Application Data Transmission Interval779 +AT+TDC : Application Data Transmission Interval 844 844 781 +AT+CFG : Print all configurations 845 845 846 - (%style="color:#037691"%)**Keys,IDsand EUIs management**783 +AT+CFGMOD : Working mode selection 847 847 848 - (% style="background-color:#dcdcdc" %)**AT+APPEUI**(%%)ApplicationEUI785 +AT+INTMOD : Set the trigger interrupt mode 849 849 850 - (% style="background-color:#dcdcdc" %)**AT+APPKEY**(%%)ApplicationKey787 +AT+5VT : Set extend the time of 5V power 851 851 852 - (% style="background-color:#dcdcdc" %)**AT+APPSKEY**(%%)Application Session Key789 +AT+PRO : Choose agreement 853 853 854 - (% style="background-color:#dcdcdc" %)**AT+DADDR**(%%)DeviceAddress791 +AT+WEIGRE : Get weight or set weight to 0 855 855 856 - (% style="background-color:#dcdcdc" %)**AT+DEUI**(%%)DeviceEUI793 +AT+WEIGAP : Get or Set the GapValue of weight 857 857 858 - (% style="background-color:#dcdcdc" %)**AT+NWKID**(%%):NetworkID(Youcanenterthiscommandchangeonlyaftersuccessful networkconnection)795 +AT+RXDL : Extend the sending and receiving time 859 859 860 - (% style="background-color:#dcdcdc" %)**AT+NWKSKEY**(%%)NetworkSession KeyJoining and sending dateon LoRa network797 +AT+CNTFAC : Get or set counting parameters 861 861 862 - (% style="background-color:#dcdcdc" %)**AT+CFM**(%%)ConfirmMode799 +AT+SERVADDR : Server Address 863 863 864 -(% style="background-color:#dcdcdc" %)**AT+CFS**(%%) : Confirm Status 865 865 866 -(% style=" background-color:#dcdcdc" %)**AT+JOIN**(%%): JoinLoRa? Network802 +(% style="color:#037691" %)**COAP Management** 867 867 868 - (% style="background-color:#dcdcdc" %)**AT+NJM**(%%)LoRa? Network Join Mode804 +AT+URI : Resource parameters 869 869 870 -(% style="background-color:#dcdcdc" %)**AT+NJS**(%%) : LoRa? Network Join Status 871 871 872 -(% style=" background-color:#dcdcdc" %)**AT+RECV**(%%) :PrintLast Received Data inRaw Format807 +(% style="color:#037691" %)**UDP Management** 873 873 874 - (% style="background-color:#dcdcdc" %)**AT+RECVB**(%%)Print LastReceived DatainBinaryFormat809 +AT+CFM : Upload confirmation mode (only valid for UDP) 875 875 876 -(% style="background-color:#dcdcdc" %)**AT+SEND**(%%) : Send Text Data 877 877 878 -(% style=" background-color:#dcdcdc" %)**AT+SENB**(%%): Send Hexadecimal Data812 +(% style="color:#037691" %)**MQTT Management** 879 879 814 +AT+CLIENT : Get or Set MQTT client 880 880 881 - (%style="color:#037691"%)**LoRaNetworkManagement**816 +AT+UNAME : Get or Set MQTT Username 882 882 883 - (% style="background-color:#dcdcdc" %)**AT+ADR**(%%):AdaptiveRate818 +AT+PWD : Get or Set MQTT password 884 884 885 - (% style="background-color:#dcdcdc" %)**AT+CLASS**(%%):LoRaClass(Currentlyonly supportclassA820 +AT+PUBTOPIC : Get or Set MQTT publish topic 886 886 887 - (% style="background-color:#dcdcdc" %)**AT+DCS**(%%):DutyCycleSetting822 +AT+SUBTOPIC : Get or Set MQTT subscription topic 888 888 889 -(% style="background-color:#dcdcdc" %)**AT+DR**(%%) : Data Rate (Can Only be Modified after ADR=0) 890 890 891 -(% style=" background-color:#dcdcdc" %)**AT+FCD**(%%) : Frame Counter Downlink825 +(% style="color:#037691" %)**Information** 892 892 893 - (% style="background-color:#dcdcdc" %)**AT+FCU**(%%): Frame CounterUplink827 +AT+FDR : Factory Data Reset 894 894 895 - (% style="background-color:#dcdcdc" %)**AT+JN1DL**(%%):JoinAcceptDelay1829 +AT+PWORD : Serial Access Password 896 896 897 -(% style="background-color:#dcdcdc" %)**AT+JN2DL**(%%) : Join Accept Delay2 898 898 899 -(% style="background-color:#dcdcdc" %)**AT+PNM**(%%) : Public Network Mode 900 900 901 - (% style="background-color:#dcdcdc"%)**AT+RX1DL**(%%): Receive Delay1833 += 5. FAQ = 902 902 903 - (% style="background-color:#dcdcdc"%)**AT+RX2DL**(%%): ReceiveDelay2835 +== 5.1 How to Upgrade Firmware == 904 904 905 -(% style="background-color:#dcdcdc" %)**AT+RX2DR**(%%) : Rx2 Window Data Rate 906 906 907 -(% style="background-color:#dcdcdc" %)**AT+RX2FQ**(%%) : Rx2 Window Frequency 908 - 909 -(% style="background-color:#dcdcdc" %)**AT+TXP**(%%) : Transmit Power 910 - 911 -(% style="background-color:#dcdcdc" %)**AT+ MOD**(%%) : Set work mode 912 - 913 - 914 -(% style="color:#037691" %)**Information** 915 - 916 -(% style="background-color:#dcdcdc" %)**AT+RSSI**(%%) : RSSI of the Last Received Packet 917 - 918 -(% style="background-color:#dcdcdc" %)**AT+SNR**(%%) : SNR of the Last Received Packet 919 - 920 -(% style="background-color:#dcdcdc" %)**AT+VER**(%%) : Image Version and Frequency Band 921 - 922 -(% style="background-color:#dcdcdc" %)**AT+FDR**(%%) : Factory Data Reset 923 - 924 -(% style="background-color:#dcdcdc" %)**AT+PORT**(%%) : Application Port 925 - 926 -(% style="background-color:#dcdcdc" %)**AT+CHS**(%%) : Get or Set Frequency (Unit: Hz) for Single Channel Mode 927 - 928 - (% style="background-color:#dcdcdc" %)**AT+CHE**(%%) : Get or Set eight channels mode, Only for US915, AU915, CN470 929 - 930 - 931 -= 4. FAQ = 932 - 933 -== 4.1 How to change the LoRa Frequency Bands/Region? == 934 - 935 935 ((( 936 -You can follow the instructions for [[how to upgrade image>>||anchor="H2.10200BFirmwareChangeLog"]]. 937 -When downloading the images, choose the required image file for download. 839 +User can upgrade the firmware for 1) bug fix, 2) new feature release. 938 938 ))) 939 939 940 940 ((( 941 - 843 +Please see this link for how to upgrade: [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H2.HardwareUpgradeMethodSupportList>>http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H2.HardwareUpgradeMethodSupportList]] 942 942 ))) 943 943 944 944 ((( 945 - Howtosetup LSE01 towork in 8 channel modeBy default,thefrequency bandsUS915,AU915, CN470 work in 72 frequencies.Many gatewaysare8 channelgateways, andin thiscase,theOTAA join timeand uplink scheduleis longandunpredictable while the end nodeis hoppingin 72 frequencies.847 +(% style="color:red" %)Notice, NSE01 and LSE01 share the same mother board. They use the same connection and method to update. 946 946 ))) 947 947 948 -((( 949 - 950 -))) 951 951 952 -((( 953 -You can configure the end node to work in 8 channel mode by using the AT+CHE command. The 500kHz channels are always included for OTAA. 954 -))) 955 955 956 -((( 957 - 958 -))) 852 += 6. Trouble Shooting = 959 959 960 -((( 961 -For example, in **US915** band, the frequency table is as below. By default, the end node will use all channels (0~~71) for OTAA Join process. After the OTAA Join, the end node will use these all channels (0~~71) to send uplink packets. 962 -))) 854 +== 6.1 Connection problem when uploading firmware == 963 963 964 -[[image:image-20220606154726-3.png]] 965 965 966 - 967 -When you use the TTN network, the US915 frequency bands use are: 968 - 969 -* 903.9 - SF7BW125 to SF10BW125 970 -* 904.1 - SF7BW125 to SF10BW125 971 -* 904.3 - SF7BW125 to SF10BW125 972 -* 904.5 - SF7BW125 to SF10BW125 973 -* 904.7 - SF7BW125 to SF10BW125 974 -* 904.9 - SF7BW125 to SF10BW125 975 -* 905.1 - SF7BW125 to SF10BW125 976 -* 905.3 - SF7BW125 to SF10BW125 977 -* 904.6 - SF8BW500 978 - 979 979 ((( 980 - Becausethendnodeisnow hoppingin72 frequency,itmakesitdifficulttheevicestoJointhe TTN network and uplinkta.Tosolve thisissue, you canccess thedevice viatheAT commandsandrun:858 +**Please see: **[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H3.3Troubleshooting>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H3.3Troubleshooting]] 981 981 ))) 982 982 983 -(% class=" boxinfomessage" %)861 +(% class="wikigeneratedid" %) 984 984 ((( 985 -**AT+CHE=2** 986 -))) 987 - 988 -(% class="box infomessage" %) 989 -((( 990 -**ATZ** 991 -))) 992 - 993 -((( 994 -to set the end node to work in 8 channel mode. The device will work in Channel 8-15 & 64-71 for OTAA, and channel 8-15 for Uplink. 995 -))) 996 - 997 -((( 998 998 999 999 ))) 1000 1000 1001 -((( 1002 -The **AU915** band is similar. Below are the AU915 Uplink Channels. 1003 -))) 1004 1004 1005 - [[image:image-20220606154825-4.png]]867 +== 6.2 AT Command input doesn't work == 1006 1006 1007 - 1008 - 1009 -= 5. Trouble Shooting = 1010 - 1011 -== 5.1 Why I can’t join TTN in US915 / AU915 bands? == 1012 - 1013 -It is due to channel mapping. Please see the [[Eight Channel Mode>>doc:Main.LoRaWAN Communication Debug.WebHome||anchor="H2.NoticeofUS9152FCN4702FAU915Frequencyband"]] section above for details. 1014 - 1015 - 1016 -== 5.2 AT Command input doesn’t work == 1017 - 1018 1018 ((( 1019 -In the case if user can see the console output but can ’t type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn’t send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.870 +In the case if user can see the console output but can't type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn't send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string. 1020 1020 ))) 1021 1021 1022 1022 1023 -== 5.3 Device rejoin in at the second uplink packet == 1024 1024 1025 - (% style="color:#4f81bd"%)**Issuedescribeas below:**875 += 7. Order Info = 1026 1026 1027 -[[image:1654500909990-784.png]] 1028 1028 878 +Part Number**:** (% style="color:#4f81bd" %)**NSE01** 1029 1029 1030 -(% style="color:#4f81bd" %)**Cause for this issue:** 1031 1031 1032 -((( 1033 -The fuse on LSE01 is not large enough, some of the soil probe require large current up to 5v 800mA, in a short pulse. When this happen, it cause the device reboot so user see rejoin. 1034 -))) 1035 - 1036 - 1037 -(% style="color:#4f81bd" %)**Solution: ** 1038 - 1039 -All new shipped LSE01 after 2020-May-30 will have this to fix. For the customer who see this issue, please bypass the fuse as below: 1040 - 1041 -[[image:1654500929571-736.png||height="458" width="832"]] 1042 - 1043 - 1044 -= 6. Order Info = 1045 - 1046 - 1047 -Part Number**:** (% style="color:#4f81bd" %)**LSE01-XX-YY** 1048 - 1049 - 1050 -(% style="color:#4f81bd" %)**XX**(%%)**:** The default frequency band 1051 - 1052 -* (% style="color:red" %)**AS923**(%%): LoRaWAN AS923 band 1053 -* (% style="color:red" %)**AU915**(%%): LoRaWAN AU915 band 1054 -* (% style="color:red" %)**EU433**(%%): LoRaWAN EU433 band 1055 -* (% style="color:red" %)**EU868**(%%): LoRaWAN EU868 band 1056 -* (% style="color:red" %)**KR920**(%%): LoRaWAN KR920 band 1057 -* (% style="color:red" %)**US915**(%%): LoRaWAN US915 band 1058 -* (% style="color:red" %)**IN865**(%%): LoRaWAN IN865 band 1059 -* (% style="color:red" %)**CN470**(%%): LoRaWAN CN470 band 1060 - 1061 -(% style="color:#4f81bd" %)**YY**(%%)**: **Battery Option 1062 - 1063 -* (% style="color:red" %)**4**(%%): 4000mAh battery 1064 -* (% style="color:red" %)**8**(%%): 8500mAh battery 1065 - 1066 1066 (% class="wikigeneratedid" %) 1067 1067 ((( 1068 1068 1069 1069 ))) 1070 1070 1071 -= 7. Packing Info =886 += 8. Packing Info = 1072 1072 1073 1073 ((( 1074 1074 1075 1075 1076 1076 (% style="color:#037691" %)**Package Includes**: 1077 -))) 1078 1078 1079 -* ((( 1080 -LSE01 LoRaWAN Soil Moisture & EC Sensor x 1 893 + 894 +* NSE01 NB-IoT Soil Moisture & EC Sensor x 1 895 +* External antenna x 1 1081 1081 ))) 1082 1082 1083 1083 ((( ... ... @@ -1084,24 +1084,20 @@ 1084 1084 1085 1085 1086 1086 (% style="color:#037691" %)**Dimension and weight**: 1087 -))) 1088 1088 1089 -* ((( 1090 -Device Size: cm 903 + 904 +* Size: 195 x 125 x 55 mm 905 +* Weight: 420g 1091 1091 ))) 1092 -* ((( 1093 -Device Weight: g 1094 -))) 1095 -* ((( 1096 -Package Size / pcs : cm 1097 -))) 1098 -* ((( 1099 -Weight / pcs : g 1100 1100 908 +((( 1101 1101 910 + 911 + 912 + 1102 1102 ))) 1103 1103 1104 -= 8. Support =915 += 9. Support = 1105 1105 1106 1106 * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule. 1107 1107 * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.com]]
- 1657245163077-232.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +81.0 KB - Content
- 1657246476176-652.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +492.6 KB - Content
- 1657249419225-449.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +81.0 KB - Content
- 1657249468462-536.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +483.6 KB - Content
- 1657249793983-486.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +85.8 KB - Content
- 1657249831934-534.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +72.5 KB - Content
- 1657249864775-321.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +87.0 KB - Content
- 1657249930215-289.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +77.3 KB - Content
- 1657249978444-674.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +139.5 KB - Content
- 1657249990869-686.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +96.9 KB - Content
- 1657250217799-140.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +98.7 KB - Content
- 1657250255956-604.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +99.0 KB - Content
- 1657259653666-883.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +344.4 KB - Content
- 1657260785982-288.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +138.2 KB - Content
- 1657261119050-993.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +126.1 KB - Content
- 1657261278785-153.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +126.1 KB - Content
- image-20220708101224-1.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +22.2 KB - Content
- image-20220708101605-2.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +87.5 KB - Content
- image-20220708110657-3.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +251.7 KB - Content
- image-20220708111918-4.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +38.8 KB - Content
- image-20220708133731-5.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +8.7 KB - Content
- image-20220708140453-6.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +132.7 KB - Content
- image-20220708141352-7.jpeg
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +102.7 KB - Content