<
From version < 35.14 >
edited by Xiaoling
on 2022/06/14 14:12
To version < 64.4 >
edited by Xiaoling
on 2022/07/08 14:44
>
Change comment: There is no comment for this version

Summary

Details

Page properties
Title
... ... @@ -1,1 +1,1 @@
1 -LSE01-LoRaWAN Soil Moisture & EC Sensor User Manual
1 +NSE01 - NB-IoT Soil Moisture & EC Sensor User Manual
Content
... ... @@ -3,9 +3,7 @@
3 3  
4 4  
5 5  
6 -**Table of Contents:**
7 7  
8 -{{toc/}}
9 9  
10 10  
11 11  
... ... @@ -12,64 +12,81 @@
12 12  
13 13  
14 14  
15 -= 1. Introduction =
16 16  
17 -== 1.1 ​What is LoRaWAN Soil Moisture & EC Sensor ==
14 +**Table of Contents:**
18 18  
16 +
17 +
18 +
19 +
20 +
21 += 1.  Introduction =
22 +
23 +== 1.1 ​ What is LoRaWAN Soil Moisture & EC Sensor ==
24 +
19 19  (((
20 20  
21 21  
22 -The Dragino LSE01 is a (% style="color:#4f81bd" %)**LoRaWAN Soil Moisture & EC Sensor**(%%) for IoT of Agriculture. It is designed to measure the soil moisture of saline-alkali soil and loamy soil. The soil sensor uses FDR method to calculate the soil moisture with the compensation from soil temperature and conductivity. It also has been calibrated in factory for Mineral soil type.
23 -)))
28 +Dragino NSE01 is an (% style="color:blue" %)**NB-IOT soil moisture & EC sensor**(%%) for agricultural IoT. Used to measure the soil moisture of saline-alkali soil and loam. The soil sensor uses the FDR method to calculate soil moisture and compensates it with soil temperature and electrical conductivity. It has also been calibrated for mineral soil types at the factory.
24 24  
25 -(((
26 -It detects (% style="color:#4f81bd" %)**Soil Moisture**(%%), (% style="color:#4f81bd" %)**Soil Temperature**(%%) and (% style="color:#4f81bd" %)**Soil Conductivity**(%%), and uploads the value via wireless to LoRaWAN IoT Server.
27 -)))
30 +It can detect (% style="color:blue" %)**Soil Moisture, Soil Temperature and Soil Conductivity**(%%), and upload its value to the server wirelessly.
28 28  
29 -(((
30 -The LoRa wireless technology used in LES01 allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption.
31 -)))
32 +The wireless technology used in NSE01 allows the device to send data at a low data rate and reach ultra-long distances, providing ultra-long-distance spread spectrum Communication.
32 32  
33 -(((
34 -LES01 is powered by (% style="color:#4f81bd" %)**4000mA or 8500mAh Li-SOCI2 battery**(%%), It is designed for long term use up to 10 years.
35 -)))
34 +NSE01 are powered by (% style="color:blue" %)**8500mAh Li-SOCI2**(%%) batteries, which can be used for up to 5 years.  
36 36  
37 -(((
38 -Each LES01 is pre-load with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect after power on.
36 +
39 39  )))
40 40  
41 -
42 42  [[image:1654503236291-817.png]]
43 43  
44 44  
45 -[[image:1654503265560-120.png]]
42 +[[image:1657245163077-232.png]]
46 46  
47 47  
48 48  
49 49  == 1.2 ​Features ==
50 50  
51 -* LoRaWAN 1.0.3 Class A
52 -* Ultra low power consumption
48 +
49 +* NB-IoT Bands: B1/B3/B8/B5/B20/B28 @H-FDD
53 53  * Monitor Soil Moisture
54 54  * Monitor Soil Temperature
55 55  * Monitor Soil Conductivity
56 -* Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865
57 57  * AT Commands to change parameters
58 58  * Uplink on periodically
59 59  * Downlink to change configure
60 60  * IP66 Waterproof Enclosure
61 -* 4000mAh or 8500mAh Battery for long term use
57 +* Ultra-Low Power consumption
58 +* AT Commands to change parameters
59 +* Micro SIM card slot for NB-IoT SIM
60 +* 8500mAh Battery for long term use
62 62  
62 +== 1.3  Specification ==
63 63  
64 -== 1.3 Specification ==
65 65  
65 +(% style="color:#037691" %)**Common DC Characteristics:**
66 +
67 +* Supply Voltage: 2.1v ~~ 3.6v
68 +* Operating Temperature: -40 ~~ 85°C
69 +
70 +(% style="color:#037691" %)**NB-IoT Spec:**
71 +
72 +* - B1 @H-FDD: 2100MHz
73 +* - B3 @H-FDD: 1800MHz
74 +* - B8 @H-FDD: 900MHz
75 +* - B5 @H-FDD: 850MHz
76 +* - B20 @H-FDD: 800MHz
77 +* - B28 @H-FDD: 700MHz
78 +
79 +(% style="color:#037691" %)**Probe Specification:**
80 +
66 66  Measure Volume: Base on the centra pin of the probe, a cylinder with 7cm diameter and 10cm height.
67 67  
68 -[[image:image-20220606162220-5.png]]
83 +[[image:image-20220708101224-1.png]]
69 69  
70 70  
71 71  
72 -== ​1.4 Applications ==
87 +== ​1.4  Applications ==
73 73  
74 74  * Smart Agriculture
75 75  
... ... @@ -76,949 +76,688 @@
76 76  (% class="wikigeneratedid" id="H200B1.5FirmwareChangelog" %)
77 77  ​
78 78  
79 -== 1.5 Firmware Change log ==
94 +== 1.5  Pin Definitions ==
80 80  
81 81  
82 -**LSE01 v1.0 :**  Release
97 +[[image:1657246476176-652.png]]
83 83  
84 84  
85 85  
86 -= 2. Configure LSE01 to connect to LoRaWAN network =
101 += 2.  Use NSE01 to communicate with IoT Server =
87 87  
88 -== 2.1 How it works ==
103 +== 2.1  How it works ==
89 89  
105 +
90 90  (((
91 -The LSE01 is configured as LoRaWAN OTAA Class A mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and power on the LSE0150. It will automatically join the network via OTAA and start to send the sensor value
107 +The NSE01 is equipped with a NB-IoT module, the pre-loaded firmware in NSE01 will get environment data from sensors and send the value to local NB-IoT network via the NB-IoT module The NB-IoT network will forward this value to IoT server via the protocol defined by NSE01.
92 92  )))
93 93  
110 +
94 94  (((
95 -In case you can’t set the OTAA keys in the LoRaWAN OTAA server, and you have to use the keys from the server, you can [[use AT Commands >>||anchor="H3.200BUsingtheATCommands"]].
112 +The diagram below shows the working flow in default firmware of NSE01:
96 96  )))
97 97  
115 +[[image:image-20220708101605-2.png]]
98 98  
117 +(((
118 +
119 +)))
99 99  
100 -== 2.2 ​Quick guide to connect to LoRaWAN server (OTAA) ==
101 101  
102 -Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LG308>>url:http://www.dragino.com/products/lora/item/140-lg308.html]] as a LoRaWAN gateway in this example.
103 103  
123 +== 2.2 ​ Configure the NSE01 ==
104 104  
105 -[[image:1654503992078-669.png]]
106 106  
126 +=== 2.2.1 Test Requirement ===
107 107  
108 -The LG308 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
109 109  
129 +To use NSE01 in your city, make sure meet below requirements:
110 110  
111 -(% style="color:blue" %)**Step 1**(%%):  Create a device in TTN with the OTAA keys from LSE01.
131 +* Your local operator has already distributed a NB-IoT Network there.
132 +* The local NB-IoT network used the band that NSE01 supports.
133 +* Your operator is able to distribute the data received in their NB-IoT network to your IoT server.
112 112  
113 -Each LSE01 is shipped with a sticker with the default device EUI as below:
114 -
115 -[[image:image-20220606163732-6.jpeg]]
116 -
117 -You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot:
118 -
119 -**Add APP EUI in the application**
120 -
121 -
122 -[[image:1654504596150-405.png]]
123 -
124 -
125 -
126 -**Add APP KEY and DEV EUI**
127 -
128 -[[image:1654504683289-357.png]]
129 -
130 -
131 -
132 -(% style="color:blue" %)**Step 2**(%%): Power on LSE01
133 -
134 -
135 -Put a Jumper on JP2 to power on the device. ( The Jumper must be in FLASH position).
136 -
137 -[[image:image-20220606163915-7.png]]
138 -
139 -
140 -(% style="color:blue" %)**Step 3**(%%)**:** The LSE01 will auto join to the TTN network. After join success, it will start to upload messages to TTN and you can see the messages in the panel.
141 -
142 -[[image:1654504778294-788.png]]
143 -
144 -
145 -
146 -== 2.3 Uplink Payload ==
147 -
148 -
149 -=== 2.3.1 MOD~=0(Default Mode) ===
150 -
151 -LSE01 will uplink payload via LoRaWAN with below payload format: 
152 -
153 153  (((
154 -Uplink payload includes in total 11 bytes.
136 +Below figure shows our testing structure. Here we have NB-IoT network coverage by China Mobile, the band they use is B8.  The NSE01 will use CoAP((% style="color:red" %)120.24.4.116:5683)(%%) or raw UDP((% style="color:red" %)120.24.4.116:5601)(%%) or MQTT((% style="color:red" %)120.24.4.116:1883)(%%)or TCP((% style="color:red" %)120.24.4.116:5600)(%%)protocol to send data to the test server
155 155  )))
156 156  
157 -(% border="1" cellspacing="10" style="background-color:#ffffcc; width:500px" %)
158 -|(((
159 -**Size**
160 160  
161 -**(bytes)**
162 -)))|**2**|**2**|**2**|**2**|**2**|**1**
163 -|**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(((
164 -Temperature
140 +[[image:1657249419225-449.png]]
165 165  
166 -(Reserve, Ignore now)
167 -)))|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]]|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]]|(((
168 -MOD & Digital Interrupt
169 169  
170 -(Optional)
171 -)))
172 172  
144 +=== 2.2.2 Insert SIM card ===
173 173  
146 +Insert the NB-IoT Card get from your provider.
174 174  
148 +User need to take out the NB-IoT module and insert the SIM card like below:
175 175  
176 -=== 2.3.2 MOD~=1(Original value) ===
177 177  
178 -This mode can get the original AD value of moisture and original conductivity (with temperature drift compensation).
151 +[[image:1657249468462-536.png]]
179 179  
180 -(% border="1" cellspacing="10" style="background-color:#ffffcc; width:500px" %)
181 -|(((
182 -**Size**
183 183  
184 -**(bytes)**
185 -)))|**2**|**2**|**2**|**2**|**2**|**1**
186 -|**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(((
187 -Temperature
188 188  
189 -(Reserve, Ignore now)
190 -)))|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]](raw)|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]](raw)|(((
191 -MOD & Digital Interrupt
155 +=== 2.2.3 Connect USB – TTL to NSE01 to configure it ===
192 192  
193 -(Optional)
194 -)))
195 -
196 -
197 -
198 -
199 -=== 2.3.3 Battery Info ===
200 -
201 201  (((
202 -Check the battery voltage for LSE01.
203 -)))
204 -
205 205  (((
206 -Ex1: 0x0B45 = 2885mV
159 +User need to configure NSE01 via serial port to set the (% style="color:blue" %)**Server Address** / **Uplink Topic** (%%)to define where and how-to uplink packets. NSE01 support AT Commands, user can use a USB to TTL adapter to connect to NSE01 and use AT Commands to configure it, as below.
207 207  )))
208 -
209 -(((
210 -Ex2: 0x0B49 = 2889mV
211 211  )))
212 212  
213 213  
164 +**Connection:**
214 214  
215 -=== 2.3.4 Soil Moisture ===
166 + (% style="background-color:yellow" %)USB TTL GND <~-~-~-~-> GND
216 216  
217 -(((
218 -Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil.
219 -)))
168 + (% style="background-color:yellow" %)USB TTL TXD <~-~-~-~-> UART_RXD
220 220  
221 -(((
222 -For example, if the data you get from the register is __0x05 0xDC__, the moisture content in the soil is
223 -)))
170 + (% style="background-color:yellow" %)USB TTL RXD <~-~-~-~-> UART_TXD
224 224  
225 -(((
226 -
227 -)))
228 228  
229 -(((
230 -(% style="color:#4f81bd" %)**05DC(H) = 1500(D) /100 = 15%.**
231 -)))
173 +In the PC, use below serial tool settings:
232 232  
175 +* Baud:  (% style="color:green" %)**9600**
176 +* Data bits:** (% style="color:green" %)8(%%)**
177 +* Stop bits: (% style="color:green" %)**1**
178 +* Parity:  (% style="color:green" %)**None**
179 +* Flow Control: (% style="color:green" %)**None**
233 233  
234 -
235 -=== 2.3.5 Soil Temperature ===
236 -
237 237  (((
238 - Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is 0x09 0xEC, the temperature content in the soil is
182 +Make sure the switch is in FLASH position, then power on device by connecting the jumper on NSE01. NSE01 will output system info once power on as below, we can enter the (% style="color:green" %)**password: 12345678**(%%) to access AT Command input.
239 239  )))
240 240  
241 -(((
242 -**Example**:
243 -)))
185 +[[image:image-20220708110657-3.png]]
244 244  
245 -(((
246 -If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/100 = 2.61 °C
247 -)))
187 +(% style="color:red" %)Note: the valid AT Commands can be found at: (%%)[[http:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/]]
248 248  
249 -(((
250 -If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C
251 -)))
252 252  
253 253  
191 +=== 2.2.4 Use CoAP protocol to uplink data ===
254 254  
255 -=== 2.3.6 Soil Conductivity (EC) ===
193 +(% style="color:red" %)Note: if you don't have CoAP server, you can refer this link to set up one: (%%)[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/>>http://wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/]]
256 256  
257 -(((
258 -Obtain (% style="color:#4f81bd" %)**__soluble salt concentration__**(%%) in soil or (% style="color:#4f81bd" %)**__soluble ion concentration in liquid fertilizer__**(%%) or (% style="color:#4f81bd" %)**__planting medium__**(%%). The value range of the register is 0 - 20000(Decimal)( Can be greater than 20000).
259 -)))
260 260  
261 -(((
262 -For example, if the data you get from the register is 0x00 0xC8, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm.
263 -)))
196 +**Use below commands:**
264 264  
265 -(((
266 -Generally, the EC value of irrigation water is less than 800uS / cm.
267 -)))
198 +* (% style="color:blue" %)**AT+PRO=1**  (%%) ~/~/ Set to use CoAP protocol to uplink
199 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5683   ** (%%)~/~/ to set CoAP server address and port
200 +* (% style="color:blue" %)**AT+URI=5,11,"mqtt",11,"coap",12,"0",15,"c=text1",23,"0" ** (%%) ~/~/Set COAP resource path
268 268  
269 -(((
270 -
271 -)))
202 +For parameter description, please refer to AT command set
272 272  
273 -(((
274 -
275 -)))
204 +[[image:1657249793983-486.png]]
276 276  
277 -=== 2.3.7 MOD ===
278 278  
279 -Firmware version at least v2.1 supports changing mode.
207 +After configure the server address and (% style="color:green" %)**reset the device**(%%) (via AT+ATZ ), NSE01 will start to uplink sensor values to CoAP server.
280 280  
281 -For example, bytes[10]=90
209 +[[image:1657249831934-534.png]]
282 282  
283 -mod=(bytes[10]>>7)&0x01=1.
284 284  
285 285  
286 -**Downlink Command:**
213 +=== 2.2.5 Use UDP protocol to uplink data(Default protocol) ===
287 287  
288 -If payload = 0x0A00, workmode=0
215 +This feature is supported since firmware version v1.0.1
289 289  
290 -If** **payload =** **0x0A01, workmode=1
291 291  
218 +* (% style="color:blue" %)**AT+PRO=2   ** (%%) ~/~/ Set to use UDP protocol to uplink
219 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5601   ** (%%) ~/~/ to set UDP server address and port
220 +* (% style="color:blue" %)**AT+CFM=1       ** (%%) ~/~/If the server does not respond, this command is unnecessary
292 292  
222 +[[image:1657249864775-321.png]]
293 293  
294 -=== 2.3.8 ​Decode payload in The Things Network ===
295 295  
296 -While using TTN network, you can add the payload format to decode the payload.
225 +[[image:1657249930215-289.png]]
297 297  
298 298  
299 -[[image:1654505570700-128.png]]
300 300  
301 -(((
302 -The payload decoder function for TTN is here:
303 -)))
229 +=== 2.2.6 Use MQTT protocol to uplink data ===
304 304  
305 -(((
306 -LSE01 TTN Payload Decoder: [[https:~~/~~/www.dropbox.com/sh/si8icbrjlamxqdb/AAACYwjsxxr5fj_vpqRtrETAa?dl=0>>https://www.dropbox.com/sh/si8icbrjlamxqdb/AAACYwjsxxr5fj_vpqRtrETAa?dl=0]]
307 -)))
231 +This feature is supported since firmware version v110
308 308  
309 309  
310 -== 2.4 Uplink Interval ==
234 +* (% style="color:blue" %)**AT+PRO=3   ** (%%) ~/~/Set to use MQTT protocol to uplink
235 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,1883   ** (%%) ~/~/Set MQTT server address and port
236 +* (% style="color:blue" %)**AT+CLIENT=CLIENT       ** (%%)~/~/Set up the CLIENT of MQTT
237 +* (% style="color:blue" %)**AT+UNAME=UNAME                               **(%%)~/~/Set the username of MQTT
238 +* (% style="color:blue" %)**AT+PWD=PWD                                        **(%%)~/~/Set the password of MQTT
239 +* (% style="color:blue" %)**AT+PUBTOPIC=NSE01_PUB                    **(%%)~/~/Set the sending topic of MQTT
240 +* (% style="color:blue" %)**AT+SUBTOPIC=NSE01_SUB          **(%%) ~/~/Set the subscription topic of MQTT
311 311  
312 -The LSE01 by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link: [[Change Uplink Interval>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H4.1ChangeUplinkInterval"]]
242 +[[image:1657249978444-674.png]]
313 313  
314 314  
245 +[[image:1657249990869-686.png]]
315 315  
316 -== 2.5 Downlink Payload ==
317 317  
318 -By default, LSE50 prints the downlink payload to console port.
319 -
320 -[[image:image-20220606165544-8.png]]
321 -
322 -
323 323  (((
324 -**Examples:**
249 +MQTT protocol has a much higher power consumption compare vs UDP / CoAP protocol. Please check the power analyze document and adjust the uplink period to a suitable interval.
325 325  )))
326 326  
327 -(((
328 -
329 -)))
330 330  
331 -* (((
332 -**Set TDC**
333 -)))
334 334  
335 -(((
336 -If the payload=0100003C, it means set the END Node’s TDC to 0x00003C=60(S), while type code is 01.
337 -)))
254 +=== 2.2.7 Use TCP protocol to uplink data ===
338 338  
339 -(((
340 -Payload:    01 00 00 1E    TDC=30S
341 -)))
256 +This feature is supported since firmware version v110
342 342  
343 -(((
344 -Payload:    01 00 00 3C    TDC=60S
345 -)))
346 346  
347 -(((
348 -
349 -)))
259 +* (% style="color:blue" %)**AT+PRO=4   ** (%%) ~/~/ Set to use TCP protocol to uplink
260 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5600   **(%%) ~/~/ to set TCP server address and port
350 350  
351 -* (((
352 -**Reset**
353 -)))
262 +[[image:1657250217799-140.png]]
354 354  
355 -(((
356 -If payload = 0x04FF, it will reset the LSE01
357 -)))
358 358  
265 +[[image:1657250255956-604.png]]
359 359  
360 -* **CFM**
361 361  
362 -Downlink Payload: 05000001, Set AT+CFM=1 or 05000000 , set AT+CFM=0
363 363  
269 +=== 2.2.8 Change Update Interval ===
364 364  
271 +User can use below command to change the (% style="color:green" %)**uplink interval**.
365 365  
366 -== 2.6 ​Show Data in DataCake IoT Server ==
273 +* (% style="color:blue" %)**AT+TDC=600      ** (%%)~/~/ Set Update Interval to 600s
367 367  
368 368  (((
369 -[[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps:
276 +(% style="color:red" %)**NOTE:**
370 370  )))
371 371  
372 372  (((
373 -
280 +(% style="color:red" %)1. By default, the device will send an uplink message every 1 hour.
374 374  )))
375 375  
376 -(((
377 -**(% style="color:blue" %)Step 1**(%%):  Be sure that your device is programmed and properly connected to the network at this time.
378 -)))
379 379  
380 -(((
381 -**(% style="color:blue" %)Step 2**(%%):  To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps:
382 -)))
383 383  
285 +== 2.3  Uplink Payload ==
384 384  
385 -[[image:1654505857935-743.png]]
287 +In this mode, uplink payload includes in total 18 bytes
386 386  
289 +(% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:510px" %)
290 +|=(% style="width: 50px;" %)(((
291 +**Size(bytes)**
292 +)))|=(% style="width: 50px;" %)**6**|=(% style="width: 25px;" %)2|=(% style="width: 25px;" %)**2**|=(% style="width: 80px;" %)**1**|=(% style="width: 80px;" %)**2**|=(% style="width: 80px;" %)**2**|=(% style="width: 80px;" %)**2**|=(% style="width: 40px;" %)**1**
293 +|(% style="width:97px" %)**Value**|(% style="width:83px" %)[[Device ID>>||anchor="H"]]|(% style="width:41px" %)[[Ver>>||anchor="H"]]|(% style="width:46px" %)[[BAT>>||anchor="H"]]|(% style="width:123px" %)[[Signal Strength>>||anchor="H"]]|(% style="width:108px" %)[[Soil Moisture>>||anchor="H"]]|(% style="width:133px" %)[[Soil Temperature>>||anchor="H"]]|(% style="width:159px" %)[[Soil Conductivity(EC)>>||anchor="H"]]|(% style="width:80px" %)[[Interrupt>>||anchor="H"]]
387 387  
388 -[[image:1654505874829-548.png]]
295 +If we use the MQTT client to subscribe to this MQTT topic, we can see the following information when the NSE01 uplink data.
389 389  
390 -**(% style="color:blue" %)Step 3(%%):**  Create an account or log in Datacake.
391 391  
392 -**(% style="color:blue" %)Step 4(%%):**  Search the LSE01 and add DevEUI.
298 +[[image:image-20220708111918-4.png]]
393 393  
394 394  
395 -[[image:1654505905236-553.png]]
301 +The payload is ASCII string, representative same HEX:
396 396  
303 +0x72403155615900640c7817075e0a8c02f900 where:
397 397  
398 -After added, the sensor data arrive TTN, it will also arrive and show in Mydevices.
305 +* Device ID: 0x 724031556159 = 724031556159
306 +* Version: 0x0064=100=1.0.0
399 399  
400 -[[image:1654505925508-181.png]]
308 +* BAT: 0x0c78 = 3192 mV = 3.192V
309 +* Singal: 0x17 = 23
310 +* Soil Moisture: 0x075e= 1886 = 18.86  %
311 +* Soil Temperature:0x0a8c =2700=27 °C
312 +* Soil Conductivity(EC) = 0x02f9 =761 uS /cm
313 +* Interrupt: 0x00 = 0
401 401  
315 +== 2.4  Payload Explanation and Sensor Interface ==
402 402  
403 403  
404 -== 2.7 Frequency Plans ==
318 +=== 2.4.1  Device ID ===
405 405  
406 -The LSE01 uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.
320 +By default, the Device ID equal to the last 6 bytes of IMEI.
407 407  
322 +User can use (% style="color:blue" %)**AT+DEUI**(%%) to set Device ID
408 408  
409 -=== 2.7.1 EU863-870 (EU868) ===
324 +**Example:**
410 410  
411 -(% style="color:#037691" %)** Uplink:**
326 +AT+DEUI=A84041F15612
412 412  
413 -868.1 - SF7BW125 to SF12BW125
328 +The Device ID is stored in a none-erase area, Upgrade the firmware or run AT+FDR won't erase Device ID.
414 414  
415 -868.3 - SF7BW125 to SF12BW125 and SF7BW250
416 416  
417 -868.5 - SF7BW125 to SF12BW125
418 418  
419 -867.1 - SF7BW125 to SF12BW125
332 +=== 2.4.2  Version Info ===
420 420  
421 -867.3 - SF7BW125 to SF12BW125
334 +Specify the software version: 0x64=100, means firmware version 1.00.
422 422  
423 -867.5 - SF7BW125 to SF12BW125
336 +For example: 0x00 64 : this device is NSE01 with firmware version 1.0.0.
424 424  
425 -867.7 - SF7BW125 to SF12BW125
426 426  
427 -867.9 - SF7BW125 to SF12BW125
428 428  
429 -868.8 - FSK
340 +=== 2.4.3  Battery Info ===
430 430  
342 +(((
343 +Check the battery voltage for LSE01.
344 +)))
431 431  
432 -(% style="color:#037691" %)** Downlink:**
346 +(((
347 +Ex1: 0x0B45 = 2885mV
348 +)))
433 433  
434 -Uplink channels 1-9 (RX1)
350 +(((
351 +Ex2: 0x0B49 = 2889mV
352 +)))
435 435  
436 -869.525 - SF9BW125 (RX2 downlink only)
437 437  
438 438  
356 +=== 2.4.4  Signal Strength ===
439 439  
440 -=== 2.7.2 US902-928(US915) ===
358 +NB-IoT Network signal Strength.
441 441  
442 -Used in USA, Canada and South America. Default use CHE=2
360 +**Ex1: 0x1d = 29**
443 443  
444 -(% style="color:#037691" %)**Uplink:**
362 +(% style="color:blue" %)**0**(%%)  -113dBm or less
445 445  
446 -903.9 - SF7BW125 to SF10BW125
364 +(% style="color:blue" %)**1**(%%)  -111dBm
447 447  
448 -904.1 - SF7BW125 to SF10BW125
366 +(% style="color:blue" %)**2...30**(%%) -109dBm... -53dBm
449 449  
450 -904.3 - SF7BW125 to SF10BW125
368 +(% style="color:blue" %)**31**  (%%) -51dBm or greater
451 451  
452 -904.5 - SF7BW125 to SF10BW125
370 +(% style="color:blue" %)**99**   (%%) Not known or not detectable
453 453  
454 -904.7 - SF7BW125 to SF10BW125
455 455  
456 -904.9 - SF7BW125 to SF10BW125
457 457  
458 -905.1 - SF7BW125 to SF10BW125
374 +=== 2.4.5  Soil Moisture ===
459 459  
460 -905.3 - SF7BW125 to SF10BW125
376 +(((
377 +Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil.
378 +)))
461 461  
380 +(((
381 +For example, if the data you get from the register is **__0x05 0xDC__**, the moisture content in the soil is
382 +)))
462 462  
463 -(% style="color:#037691" %)**Downlink:**
384 +(((
385 +
386 +)))
464 464  
465 -923.3 - SF7BW500 to SF12BW500
388 +(((
389 +(% style="color:#4f81bd" %)**05DC(H) = 1500(D) /100 = 15%.**
390 +)))
466 466  
467 -923.9 - SF7BW500 to SF12BW500
468 468  
469 -924.5 - SF7BW500 to SF12BW500
470 470  
471 -925.1 - SF7BW500 to SF12BW500
394 +=== 2.4.6  Soil Temperature ===
472 472  
473 -925.7 - SF7BW500 to SF12BW500
396 +(((
397 + Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is __**0x09 0xEC**__, the temperature content in the soil is
398 +)))
474 474  
475 -926.3 - SF7BW500 to SF12BW500
400 +(((
401 +**Example**:
402 +)))
476 476  
477 -926.9 - SF7BW500 to SF12BW500
404 +(((
405 +If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/100 = 2.61 °C
406 +)))
478 478  
479 -927.5 - SF7BW500 to SF12BW500
408 +(((
409 +If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C
410 +)))
480 480  
481 -923.3 - SF12BW500(RX2 downlink only)
482 482  
483 483  
414 +=== 2.4.7  Soil Conductivity (EC) ===
484 484  
485 -=== 2.7.3 CN470-510 (CN470) ===
416 +(((
417 +Obtain (% style="color:#4f81bd" %)**__soluble salt concentration__**(%%) in soil or (% style="color:#4f81bd" %)**__soluble ion concentration in liquid fertilizer__**(%%) or (% style="color:#4f81bd" %)**__planting medium__**(%%). The value range of the register is 0 - 20000(Decimal)( Can be greater than 20000).
418 +)))
486 486  
487 -Used in China, Default use CHE=1
420 +(((
421 +For example, if the data you get from the register is __**0x00 0xC8**__, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm.
422 +)))
488 488  
489 -(% style="color:#037691" %)**Uplink:**
424 +(((
425 +Generally, the EC value of irrigation water is less than 800uS / cm.
426 +)))
490 490  
491 -486.3 - SF7BW125 to SF12BW125
428 +(((
429 +
430 +)))
492 492  
493 -486.5 - SF7BW125 to SF12BW125
432 +(((
433 +
434 +)))
494 494  
495 -486.7 - SF7BW125 to SF12BW125
436 +=== 2.4. Digital Interrupt ===
496 496  
497 -486.9 - SF7BW125 to SF12BW125
438 +Digital Interrupt refers to pin (% style="color:blue" %)**GPIO_EXTI**(%%), and there are different trigger methods. When there is a trigger, the NSE01 will send a packet to the server.
498 498  
499 -487.1 - SF7BW125 to SF12BW125
440 +The command is:
500 500  
501 -487.3 - SF7BW125 to SF12BW125
442 +(% style="color:blue" %)**AT+INTMOD=3 **(%%) ~/~/(more info about INMOD please refer [[**AT Command Manual**>>url:https://www.dragino.com/downloads/downloads/NB-IoT/NBSN95/DRAGINO_NBSN95-NB_AT%20Commands_v1.1.0.pdf]])**.**
502 502  
503 -487.5 - SF7BW125 to SF12BW125
504 504  
505 -487.7 - SF7BW125 to SF12BW125
445 +The lower four bits of this data field shows if this packet is generated by interrupt or not. [[Click here>>||anchor="H"]] for the hardware and software set up.
506 506  
507 507  
508 -(% style="color:#037691" %)**Downlink:**
448 +Example:
509 509  
510 -506.7 - SF7BW125 to SF12BW125
450 +0x(00): Normal uplink packet.
511 511  
512 -506.9 - SF7BW125 to SF12BW125
452 +0x(01): Interrupt Uplink Packet.
513 513  
514 -507.1 - SF7BW125 to SF12BW125
515 515  
516 -507.3 - SF7BW125 to SF12BW125
517 517  
518 -507.5 - SF7BW125 to SF12BW125
456 +=== 2.4.9  ​+5V Output ===
519 519  
520 -507.7 - SF7BW125 to SF12BW125
458 +NSE01 will enable +5V output before all sampling and disable the +5v after all sampling. 
521 521  
522 -507.9 - SF7BW125 to SF12BW125
523 523  
524 -508.1 - SF7BW125 to SF12BW125
461 +The 5V output time can be controlled by AT Command.
525 525  
526 -505.3 - SF12BW125 (RX2 downlink only)
463 +(% style="color:blue" %)**AT+5VT=1000**
527 527  
465 +Means set 5V valid time to have 1000ms. So the real 5V output will actually have 1000ms + sampling time for other sensors.
528 528  
529 529  
530 -=== 2.7.4 AU915-928(AU915) ===
531 531  
532 -Default use CHE=2
469 +== 2.5  Downlink Payload ==
533 533  
534 -(% style="color:#037691" %)**Uplink:**
471 +By default, NSE01 prints the downlink payload to console port.
535 535  
536 -916.8 - SF7BW125 to SF12BW125
473 +[[image:image-20220708133731-5.png]]
537 537  
538 -917.0 - SF7BW125 to SF12BW125
539 539  
540 -917.2 - SF7BW125 to SF12BW125
476 +(((
477 +(% style="color:blue" %)**Examples:**
478 +)))
541 541  
542 -917.4 - SF7BW125 to SF12BW125
480 +(((
481 +
482 +)))
543 543  
544 -917.6 - SF7BW125 to SF12BW125
484 +* (((
485 +(% style="color:blue" %)**Set TDC**
486 +)))
545 545  
546 -917.8 - SF7BW125 to SF12BW125
488 +(((
489 +If the payload=0100003C, it means set the END Node's TDC to 0x00003C=60(S), while type code is 01.
490 +)))
547 547  
548 -918.0 - SF7BW125 to SF12BW125
492 +(((
493 +Payload:    01 00 00 1E    TDC=30S
494 +)))
549 549  
550 -918.2 - SF7BW125 to SF12BW125
496 +(((
497 +Payload:    01 00 00 3C    TDC=60S
498 +)))
551 551  
500 +(((
501 +
502 +)))
552 552  
553 -(% style="color:#037691" %)**Downlink:**
504 +* (((
505 +(% style="color:blue" %)**Reset**
506 +)))
554 554  
555 -923.3 - SF7BW500 to SF12BW500
508 +(((
509 +If payload = 0x04FF, it will reset the NSE01
510 +)))
556 556  
557 -923.9 - SF7BW500 to SF12BW500
558 558  
559 -924.5 - SF7BW500 to SF12BW500
513 +* (% style="color:blue" %)**INTMOD**
560 560  
561 -925.1 - SF7BW500 to SF12BW500
515 +Downlink Payload: 06000003, Set AT+INTMOD=3
562 562  
563 -925.7 - SF7BW500 to SF12BW500
564 564  
565 -926.3 - SF7BW500 to SF12BW500
566 566  
567 -926.9 - SF7BW500 to SF12BW500
519 +== 2. ​LED Indicator ==
568 568  
569 -927.5 - SF7BW500 to SF12BW500
521 +(((
522 +The NSE01 has an internal LED which is to show the status of different state.
570 570  
571 -923.3 - SF12BW500(RX2 downlink only)
572 572  
525 +* When power on, NSE01 will detect if sensor probe is connected, if probe detected, LED will blink four times. (no blinks in this step is no probe)
526 +* Then the LED will be on for 1 second means device is boot normally.
527 +* After NSE01 join NB-IoT network. The LED will be ON for 3 seconds.
528 +* For each uplink probe, LED will be on for 500ms.
529 +)))
573 573  
574 574  
575 -=== 2.7.5 AS920-923 & AS923-925 (AS923) ===
576 576  
577 -(% style="color:#037691" %)**Default Uplink channel:**
578 578  
579 -923.2 - SF7BW125 to SF10BW125
534 +== 2.7  Installation in Soil ==
580 580  
581 -923.4 - SF7BW125 to SF10BW125
536 +__**Measurement the soil surface**__
582 582  
538 +Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting. [[https:~~/~~/img.alicdn.com/imgextra/i3/2005165265/O1CN010rj9Oh1olPsQxrdUK_!!2005165265.jpg>>url:https://img.alicdn.com/imgextra/i3/2005165265/O1CN010rj9Oh1olPsQxrdUK_!!2005165265.jpg]]
583 583  
584 -(% style="color:#037691" %)**Additional Uplink Channel**:
540 +[[image:1657259653666-883.png]]
585 585  
586 -(OTAA mode, channel added by JoinAccept message)
587 587  
588 -(% style="color:#037691" %)**AS920~~AS923 for Japan, Malaysia, Singapore**:
543 +(((
544 +
589 589  
590 -922.2 - SF7BW125 to SF10BW125
546 +(((
547 +Dig a hole with diameter > 20CM.
548 +)))
591 591  
592 -922.4 - SF7BW125 to SF10BW125
550 +(((
551 +Horizontal insert the probe to the soil and fill the hole for long term measurement.
552 +)))
553 +)))
593 593  
594 -922.6 - SF7BW125 to SF10BW125
555 +[[image:1654506665940-119.png]]
595 595  
596 -922.8 - SF7BW125 to SF10BW125
557 +(((
558 +
559 +)))
597 597  
598 -923.0 - SF7BW125 to SF10BW125
599 599  
600 -922.0 - SF7BW125 to SF10BW125
562 +== 2. Firmware Change Log ==
601 601  
602 602  
603 -(% style="color:#037691" %)**AS923 ~~ AS925 for Brunei, Cambodia, Hong Kong, Indonesia, Laos, Taiwan, Thailand, Vietnam**:
565 +Download URL & Firmware Change log
604 604  
605 -923.6 - SF7BW125 to SF10BW125
567 +[[www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/Firmware/]]
606 606  
607 -923.8 - SF7BW125 to SF10BW125
608 608  
609 -924.0 - SF7BW125 to SF10BW125
570 +Upgrade Instruction: [[Upgrade_Firmware>>||anchor="H"]]
610 610  
611 -924.2 - SF7BW125 to SF10BW125
612 612  
613 -924.4 - SF7BW125 to SF10BW125
614 614  
615 -924.6 - SF7BW125 to SF10BW125
574 +== 2. Battery Analysis ==
616 616  
576 +=== 2.9.1  ​Battery Type ===
617 617  
618 -(% style="color:#037691" %)** Downlink:**
619 619  
620 -Uplink channels 1-8 (RX1)
579 +The NSE01 battery is a combination of an 8500mAh Li/SOCI2 Battery and a Super Capacitor. The battery is none-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter.
621 621  
622 -923.2 - SF10BW125 (RX2)
623 623  
582 +The battery is designed to last for several years depends on the actually use environment and update interval. 
624 624  
625 625  
626 -=== 2.7.6 KR920-923 (KR920) ===
585 +The battery related documents as below:
627 627  
628 -Default channel:
587 +* [[Battery Dimension>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]
588 +* [[Lithium-Thionyl Chloride Battery>>url:http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]][[ datasheet>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]
589 +* [[Lithium-ion Battery-Capacitor datasheet>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]
629 629  
630 -922.1 - SF7BW125 to SF12BW125
631 -
632 -922.3 - SF7BW125 to SF12BW125
633 -
634 -922.5 - SF7BW125 to SF12BW125
635 -
636 -
637 -(% style="color:#037691" %)**Uplink: (OTAA mode, channel added by JoinAccept message)**
638 -
639 -922.1 - SF7BW125 to SF12BW125
640 -
641 -922.3 - SF7BW125 to SF12BW125
642 -
643 -922.5 - SF7BW125 to SF12BW125
644 -
645 -922.7 - SF7BW125 to SF12BW125
646 -
647 -922.9 - SF7BW125 to SF12BW125
648 -
649 -923.1 - SF7BW125 to SF12BW125
650 -
651 -923.3 - SF7BW125 to SF12BW125
652 -
653 -
654 -(% style="color:#037691" %)**Downlink:**
655 -
656 -Uplink channels 1-7(RX1)
657 -
658 -921.9 - SF12BW125 (RX2 downlink only; SF12BW125 might be changed to SF9BW125)
659 -
660 -
661 -
662 -=== 2.7.7 IN865-867 (IN865) ===
663 -
664 -(% style="color:#037691" %)** Uplink:**
665 -
666 -865.0625 - SF7BW125 to SF12BW125
667 -
668 -865.4025 - SF7BW125 to SF12BW125
669 -
670 -865.9850 - SF7BW125 to SF12BW125
671 -
672 -
673 -(% style="color:#037691" %) **Downlink:**
674 -
675 -Uplink channels 1-3 (RX1)
676 -
677 -866.550 - SF10BW125 (RX2)
678 -
679 -
680 -
681 -
682 -== 2.8 LED Indicator ==
683 -
684 -The LSE01 has an internal LED which is to show the status of different state.
685 -
686 -* Blink once when device power on.
687 -* Solid ON for 5 seconds once device successful Join the network.
688 -* Blink once when device transmit a packet.
689 -
690 -== 2.9 Installation in Soil ==
691 -
692 -**Measurement the soil surface**
693 -
694 -
695 -[[image:1654506634463-199.png]] ​
696 -
697 697  (((
698 -(((
699 -Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting.
592 +[[image:image-20220708140453-6.png]]
700 700  )))
701 -)))
702 702  
703 703  
704 -[[image:1654506665940-119.png]]
705 705  
706 -(((
707 -Dig a hole with diameter > 20CM.
708 -)))
597 +=== 2.9.2  Power consumption Analyze ===
709 709  
710 710  (((
711 -Horizontal insert the probe to the soil and fill the hole for long term measurement.
600 +Dragino battery powered product are all runs in Low Power mode. We have an update battery calculator which base on the measurement of the real device. User can use this calculator to check the battery life and calculate the battery life if want to use different transmit interval.
712 712  )))
713 713  
714 714  
715 -== 2.10 ​Firmware Change Log ==
716 -
717 717  (((
718 -**Firmware download link:**
605 +Instruction to use as below:
719 719  )))
720 720  
721 721  (((
722 -[[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/]]
609 +(% style="color:blue" %)**Step 1:  **(%%)Downlink the up-to-date DRAGINO_Battery_Life_Prediction_Table.xlsx from: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/]]
723 723  )))
724 724  
725 -(((
726 -
727 -)))
728 728  
729 729  (((
730 -**Firmware Upgrade Method: **[[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome]]
614 +(% style="color:blue" %)**Step 2: **(%%) Open it and choose
731 731  )))
732 732  
733 -(((
734 -
617 +* (((
618 +Product Model
735 735  )))
736 -
737 -(((
738 -**V1.0.**
620 +* (((
621 +Uplink Interval
739 739  )))
623 +* (((
624 +Working Mode
625 +)))
740 740  
741 741  (((
742 -Release
628 +And the Life expectation in difference case will be shown on the right.
743 743  )))
744 744  
631 +[[image:image-20220708141352-7.jpeg]]
745 745  
746 -== 2.11 ​Battery Analysis ==
747 747  
748 -=== 2.11.1 ​Battery Type ===
749 749  
750 -(((
751 -The LSE01 battery is a combination of a 4000mAh Li/SOCI2 Battery and a Super Capacitor. The battery is non-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter.
752 -)))
635 +=== 2.9.3  ​Battery Note ===
753 753  
754 754  (((
755 -The battery is designed to last for more than 5 years for the LSN50.
638 +The Li-SICO battery is designed for small current / long period application. It is not good to use a high current, short period transmit method. The recommended minimum period for use of this battery is 5 minutes. If you use a shorter period time to transmit LoRa, then the battery life may be decreased.
756 756  )))
757 757  
758 -(((
759 -(((
760 -The battery-related documents are as below:
761 -)))
762 -)))
763 763  
764 -* (((
765 -[[Battery Dimension>>url:http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/&file=LSN50-Battery-Dimension.pdf]],
766 -)))
767 -* (((
768 -[[Lithium-Thionyl Chloride Battery  datasheet>>url:https://www.dragino.com/downloads/downloads/datasheet/Battery/ER26500/ER26500_Datasheet-EN.pdf]],
769 -)))
770 -* (((
771 -[[Lithium-ion Battery-Capacitor datasheet>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC_1520_datasheet.jpg]], [[Tech Spec>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC1520%20Technical%20Specification20171123.pdf]]
772 -)))
773 773  
774 - [[image:image-20220610172436-1.png]]
643 +=== 2.9.4  Replace the battery ===
775 775  
776 -
777 -
778 -=== 2.11.2 ​Battery Note ===
779 -
780 780  (((
781 -The Li-SICO battery is designed for small current / long period application. It is not good to use a high current, short period transmit method. The recommended minimum period for use of this battery is 5 minutes. If you use a shorter period time to transmit LoRa, then the battery life may be decreased.
646 +The default battery pack of NSE01 includes a ER26500 plus super capacitor. If user can't find this pack locally, they can find ER26500 or equivalence without the SPC1520 capacitor, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes).
782 782  )))
783 783  
784 784  
785 785  
786 -=== 2.11.3 Replace the battery ===
651 += 3. ​ Access NB-IoT Module =
787 787  
788 788  (((
789 -If Battery is lower than 2.7v, user should replace the battery of LSE01.
654 +Users can directly access the AT command set of the NB-IoT module.
790 790  )))
791 791  
792 792  (((
793 -You can change the battery in the LSE01.The type of battery is not limited as long as the output is between 3v to 3.6v. On the main board, there is a diode (D1) between the battery and the main circuit. If you need to use a battery with less than 3.3v, please remove the D1 and shortcut the two pads of it so there won’t be voltage drop between battery and main board.
658 +The AT Command set can refer the BC35-G NB-IoT Module AT Command: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=datasheet/other_vendors/BC35-G/>>url:https://www.dragino.com/downloads/index.php?dir=datasheet/other_vendors/BC35-G/]] 
794 794  )))
795 795  
796 -(((
797 -The default battery pack of LSE01 includes a ER18505 plus super capacitor. If user can’t find this pack locally, they can find ER18505 or equivalence, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes)
798 -)))
661 +[[image:1657261278785-153.png]]
799 799  
800 800  
801 801  
802 -= 3. Using the AT Commands =
665 += 4.  Using the AT Commands =
803 803  
804 -== 3.1 Access AT Commands ==
667 +== 4.1  Access AT Commands ==
805 805  
669 +See this link for detail: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/]]
806 806  
807 -LSE01 supports AT Command set in the stock firmware. You can use a USB to TTL adapter to connect to LSE01 for using AT command, as below.
808 808  
809 -[[image:1654501986557-872.png||height="391" width="800"]]
672 +AT+<CMD>?  : Help on <CMD>
810 810  
674 +AT+<CMD>         : Run <CMD>
811 811  
812 -Or if you have below board, use below connection:
676 +AT+<CMD>=<value> : Set the value
813 813  
678 +AT+<CMD>=?  : Get the value
814 814  
815 -[[image:1654502005655-729.png||height="503" width="801"]]
816 816  
817 -
818 -
819 -In the PC, you need to set the serial baud rate to (% style="color:green" %)**9600**(%%) to access the serial console for LSE01. LSE01 will output system info once power on as below:
820 -
821 -
822 - [[image:1654502050864-459.png||height="564" width="806"]]
823 -
824 -
825 -Below are the available commands, a more detailed AT Command manual can be found at [[AT Command Manual>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/]]: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/]]
826 -
827 -
828 -(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>? **(%%) : Help on <CMD>
829 -
830 -(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD> **(%%) : Run <CMD>
831 -
832 -(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>=<value>**(%%) : Set the value
833 -
834 -(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>=?**(%%)  : Get the value
835 -
836 -
837 837  (% style="color:#037691" %)**General Commands**(%%)      
838 838  
839 -(% style="background-color:#dcdcdc" %)**AT**(%%)  : Attention       
683 +AT  : Attention       
840 840  
841 -(% style="background-color:#dcdcdc" %)**AT?**(%%)  : Short Help     
685 +AT?  : Short Help     
842 842  
843 -(% style="background-color:#dcdcdc" %)**ATZ**(%%)  : MCU Reset    
687 +ATZ  : MCU Reset    
844 844  
845 -(% style="background-color:#dcdcdc" %)**AT+TDC**(%%)  : Application Data Transmission Interval 
689 +AT+TDC  : Application Data Transmission Interval
846 846  
691 +AT+CFG  : Print all configurations
847 847  
848 -(% style="color:#037691" %)**Keys, IDs and EUIs management**
693 +AT+CFGMOD           : Working mode selection
849 849  
850 -(% style="background-color:#dcdcdc" %)**AT+APPEUI**(%%)              : Application EUI      
695 +AT+INTMOD            : Set the trigger interrupt mode
851 851  
852 -(% style="background-color:#dcdcdc" %)**AT+APPKEY**(%%)              : Application Key     
697 +AT+5VT  : Set extend the time of 5V power  
853 853  
854 -(% style="background-color:#dcdcdc" %)**AT+APPSKEY**(%%)            : Application Session Key
699 +AT+PRO  : Choose agreement
855 855  
856 -(% style="background-color:#dcdcdc" %)**AT+DADDR**(%%)              : Device Address     
701 +AT+WEIGRE  : Get weight or set weight to 0
857 857  
858 -(% style="background-color:#dcdcdc" %)**AT+DEUI**(%%)                   : Device EUI     
703 +AT+WEIGAP  : Get or Set the GapValue of weight
859 859  
860 -(% style="background-color:#dcdcdc" %)**AT+NWKID**(%%)               : Network ID (You can enter this command change only after successful network connection
705 +AT+RXDL  : Extend the sending and receiving time
861 861  
862 -(% style="background-color:#dcdcdc" %)**AT+NWKSKEY**(%%)          : Network Session Key Joining and sending date on LoRa network  
707 +AT+CNTFAC  : Get or set counting parameters
863 863  
864 -(% style="background-color:#dcdcdc" %)**AT+CFM**(%%)  : Confirm Mode       
709 +AT+SERVADDR  : Server Address
865 865  
866 -(% style="background-color:#dcdcdc" %)**AT+CFS**(%%)                     : Confirm Status       
867 867  
868 -(% style="background-color:#dcdcdc" %)**AT+JOIN**(%%)  : Join LoRa? Network       
712 +(% style="color:#037691" %)**COAP Management**      
869 869  
870 -(% style="background-color:#dcdcdc" %)**AT+NJM**(%%)  : LoRa? Network Join Mode    
714 +AT+URI            : Resource parameters
871 871  
872 -(% style="background-color:#dcdcdc" %)**AT+NJS**(%%)                     : LoRa? Network Join Status    
873 873  
874 -(% style="background-color:#dcdcdc" %)**AT+RECV**(%%)                  : Print Last Received Data in Raw Format
717 +(% style="color:#037691" %)**UDP Management**
875 875  
876 -(% style="background-color:#dcdcdc" %)**AT+RECVB**(%%)                : Print Last Received Data in Binary Format      
719 +AT+CFM          : Upload confirmation mode (only valid for UDP)
877 877  
878 -(% style="background-color:#dcdcdc" %)**AT+SEND**(%%)                  : Send Text Data      
879 879  
880 -(% style="background-color:#dcdcdc" %)**AT+SENB**(%%)                  : Send Hexadecimal Data
722 +(% style="color:#037691" %)**MQTT Management**
881 881  
724 +AT+CLIENT               : Get or Set MQTT client
882 882  
883 -(% style="color:#037691" %)**LoRa Network Management**
726 +AT+UNAME  : Get or Set MQTT Username
884 884  
885 -(% style="background-color:#dcdcdc" %)**AT+ADR**(%%)          : Adaptive Rate
728 +AT+PWD                  : Get or Set MQTT password
886 886  
887 -(% style="background-color:#dcdcdc" %)**AT+CLASS**(%%)  : LoRa Class(Currently only support class A
730 +AT+PUBTOPI : Get or Set MQTT publish topic
888 888  
889 -(% style="background-color:#dcdcdc" %)**AT+DCS**(%%)  : Duty Cycle Settin
732 +AT+SUBTOPIC  : Get or Set MQTT subscription topic
890 890  
891 -(% style="background-color:#dcdcdc" %)**AT+DR**(%%)  : Data Rate (Can Only be Modified after ADR=0)     
892 892  
893 -(% style="background-color:#dcdcdc" %)**AT+FCD**(%%)  : Frame Counter Downlink       
735 +(% style="color:#037691" %)**Information**          
894 894  
895 -(% style="background-color:#dcdcdc" %)**AT+FCU**(%%)  : Frame Counter Uplink   
737 +AT+FDR  : Factory Data Reset
896 896  
897 -(% style="background-color:#dcdcdc" %)**AT+JN1DL**(%%)  : Join Accept Delay1
739 +AT+PWOR : Serial Access Password
898 898  
899 -(% style="background-color:#dcdcdc" %)**AT+JN2DL**(%%)  : Join Accept Delay2
900 900  
901 -(% style="background-color:#dcdcdc" %)**AT+PNM**(%%)  : Public Network Mode   
902 902  
903 -(% style="background-color:#dcdcdc" %)**AT+RX1DL**(%%)  : Receive Delay1      
743 += ​5.  FAQ =
904 904  
905 -(% style="background-color:#dcdcdc" %)**AT+RX2DL**(%%)  : Receive Delay2      
745 +== 5.1 How to Upgrade Firmware ==
906 906  
907 -(% style="background-color:#dcdcdc" %)**AT+RX2DR**(%%)  : Rx2 Window Data Rate 
908 908  
909 -(% style="background-color:#dcdcdc" %)**AT+RX2FQ**(%%)  : Rx2 Window Frequency
910 -
911 -(% style="background-color:#dcdcdc" %)**AT+TXP**(%%)  : Transmit Power
912 -
913 -(% style="background-color:#dcdcdc" %)**AT+ MOD**(%%)  : Set work mode
914 -
915 -
916 -(% style="color:#037691" %)**Information** 
917 -
918 -(% style="background-color:#dcdcdc" %)**AT+RSSI**(%%)           : RSSI of the Last Received Packet   
919 -
920 -(% style="background-color:#dcdcdc" %)**AT+SNR**(%%)           : SNR of the Last Received Packet   
921 -
922 -(% style="background-color:#dcdcdc" %)**AT+VER**(%%)           : Image Version and Frequency Band       
923 -
924 -(% style="background-color:#dcdcdc" %)**AT+FDR**(%%)           : Factory Data Reset
925 -
926 -(% style="background-color:#dcdcdc" %)**AT+PORT**(%%)  : Application Port    
927 -
928 -(% style="background-color:#dcdcdc" %)**AT+CHS**(%%)  : Get or Set Frequency (Unit: Hz) for Single Channel Mode
929 -
930 - (% style="background-color:#dcdcdc" %)**AT+CHE**(%%)  : Get or Set eight channels mode, Only for US915, AU915, CN470
931 -
932 -
933 -= ​4. FAQ =
934 -
935 -== 4.1 ​How to change the LoRa Frequency Bands/Region? ==
936 -
937 937  (((
938 -You can follow the instructions for [[how to upgrade image>>||anchor="H2.10200BFirmwareChangeLog"]].
939 -When downloading the images, choose the required image file for download. ​
749 +User can upgrade the firmware for 1) bug fix, 2) new feature release.
940 940  )))
941 941  
942 942  (((
943 -
753 +Please see this link for how to upgrade:  [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H2.HardwareUpgradeMethodSupportList>>http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H2.HardwareUpgradeMethodSupportList]]
944 944  )))
945 945  
946 946  (((
947 -How to set up LSE01 to work in 8 channel mode By default, the frequency bands US915, AU915, CN470 work in 72 frequencies. Many gateways are 8 channel gateways, and in this case, the OTAA join time and uplink schedule is long and unpredictable while the end node is hopping in 72 frequencies.
757 +Notice, NSE01 and LSE01 share the same mother board. They use the same connection and method to update.
948 948  )))
949 949  
950 -(((
951 -
952 -)))
953 953  
954 954  (((
955 -You can configure the end node to work in 8 channel mode by using the AT+CHE command. The 500kHz channels are always included for OTAA.
956 -)))
957 -
958 -(((
959 959  
960 960  )))
961 961  
962 -(((
963 -For example, in **US915** band, the frequency table is as below. By default, the end node will use all channels (0~~71) for OTAA Join process. After the OTAA Join, the end node will use these all channels (0~~71) to send uplink packets.
964 -)))
965 -
966 -[[image:image-20220606154726-3.png]]
967 -
968 -
969 -When you use the TTN network, the US915 frequency bands use are:
970 -
971 -* 903.9 - SF7BW125 to SF10BW125
972 -* 904.1 - SF7BW125 to SF10BW125
973 -* 904.3 - SF7BW125 to SF10BW125
974 -* 904.5 - SF7BW125 to SF10BW125
975 -* 904.7 - SF7BW125 to SF10BW125
976 -* 904.9 - SF7BW125 to SF10BW125
977 -* 905.1 - SF7BW125 to SF10BW125
978 -* 905.3 - SF7BW125 to SF10BW125
979 -* 904.6 - SF8BW500
980 -
981 -(((
982 -Because the end node is now hopping in 72 frequency, it makes it difficult for the devices to Join the TTN network and uplink data. To solve this issue, you can access the device via the AT commands and run:
983 -)))
984 -
985 -(% class="box infomessage" %)
986 -(((
987 -**AT+CHE=2**
988 -)))
989 -
990 -(% class="box infomessage" %)
991 -(((
992 -**ATZ**
993 -)))
994 -
995 -(((
996 -to set the end node to work in 8 channel mode. The device will work in Channel 8-15 & 64-71 for OTAA, and channel 8-15 for Uplink.
997 -)))
998 -
999 -(((
1000 -
1001 -)))
1002 -
1003 -(((
1004 -The **AU915** band is similar. Below are the AU915 Uplink Channels.
1005 -)))
1006 -
1007 -[[image:image-20220606154825-4.png]]
1008 -
1009 -
1010 -
1011 1011  = 5. Trouble Shooting =
1012 1012  
1013 -== 5.1 ​Why I cant join TTN in US915 / AU915 bands? ==
767 +== 5.1 ​Why I can't join TTN in US915 / AU915 bands? ==
1014 1014  
1015 -It is due to channel mapping. Please see the [[Eight Channel Mode>>doc:Main.LoRaWAN Communication Debug.WebHome||anchor="H2.NoticeofUS9152FCN4702FAU915Frequencyband"]] section above for details.
769 +It is due to channel mapping. Please see the [[Eight Channel Mode>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H7.19EightChannelMode"]] section above for details.
1016 1016  
1017 1017  
1018 -== 5.2 AT Command input doesnt work ==
772 +== 5.2 AT Command input doesn't work ==
1019 1019  
1020 1020  (((
1021 -In the case if user can see the console output but cant type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesnt send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.
775 +In the case if user can see the console output but can't type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn't send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.
1022 1022  )))
1023 1023  
1024 1024  
1657245163077-232.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +81.0 KB
Content
1657246476176-652.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +492.6 KB
Content
1657249419225-449.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +81.0 KB
Content
1657249468462-536.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +483.6 KB
Content
1657249793983-486.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +85.8 KB
Content
1657249831934-534.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +72.5 KB
Content
1657249864775-321.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +87.0 KB
Content
1657249930215-289.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +77.3 KB
Content
1657249978444-674.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +139.5 KB
Content
1657249990869-686.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +96.9 KB
Content
1657250217799-140.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +98.7 KB
Content
1657250255956-604.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +99.0 KB
Content
1657259653666-883.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +344.4 KB
Content
1657260785982-288.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +138.2 KB
Content
1657261119050-993.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +126.1 KB
Content
1657261278785-153.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +126.1 KB
Content
image-20220708101224-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +22.2 KB
Content
image-20220708101605-2.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +87.5 KB
Content
image-20220708110657-3.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +251.7 KB
Content
image-20220708111918-4.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +38.8 KB
Content
image-20220708133731-5.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +8.7 KB
Content
image-20220708140453-6.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +132.7 KB
Content
image-20220708141352-7.jpeg
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +102.7 KB
Content
Copyright ©2010-2022 Dragino Technology Co., LTD. All rights reserved
Dragino Wiki v2.0