Last modified by Mengting Qiu on 2024/04/02 16:44

From version 35.13
edited by Xiaoling
on 2022/06/14 14:11
Change comment: There is no comment for this version
To version 91.1
edited by Xiaoling
on 2022/07/09 09:57
Change comment: There is no comment for this version

Summary

Details

Page properties
Title
... ... @@ -1,1 +1,1 @@
1 -LSE01-LoRaWAN Soil Moisture & EC Sensor User Manual
1 +NDDS75 NB-IoT Distance Detect Sensor User Manual
Content
... ... @@ -1,11 +1,12 @@
1 1  (% style="text-align:center" %)
2 -[[image:image-20220606151504-2.jpeg||height="554" width="554"]]
2 +[[image:image-20220709085040-1.png||height="542" width="524"]]
3 3  
4 4  
5 5  
6 +
7 +
6 6  **Table of Contents:**
7 7  
8 -{{toc/}}
9 9  
10 10  
11 11  
... ... @@ -12,771 +12,677 @@
12 12  
13 13  
14 14  
15 -= 1. Introduction =
16 += 1.  Introduction =
16 16  
17 -== 1.1 ​What is LoRaWAN Soil Moisture & EC Sensor ==
18 +== 1.1 ​ What is NDDS75 Distance Detection Sensor ==
18 18  
19 19  (((
20 20  
21 21  
22 -The Dragino LSE01 is a (% style="color:#4f81bd" %)**LoRaWAN Soil Moisture & EC Sensor**(%%) for IoT of Agriculture. It is designed to measure the soil moisture of saline-alkali soil and loamy soil. The soil sensor uses FDR method to calculate the soil moisture with the compensation from soil temperature and conductivity. It also has been calibrated in factory for Mineral soil type.
23 -)))
24 -
25 25  (((
26 -It detects (% style="color:#4f81bd" %)**Soil Moisture**(%%), (% style="color:#4f81bd" %)**Soil Temperature**(%%) and (% style="color:#4f81bd" %)**Soil Conductivity**(%%), and uploads the value via wireless to LoRaWAN IoT Server.
24 +The Dragino NDDS75 is a (% style="color:blue" %)**NB-IoT Distance Detection Sensor**(%%) for Internet of Things solution. It is designed to measure the distance between the sensor and a flat object. The distance detection sensor is a module that uses ultrasonic sensing technology for distance measurement, and temperature compensation is performed internally to improve the reliability of data.
25 +\\The NDDS75 can be applied to scenarios such as horizontal distance measurement, liquid level measurement, parking management system, object proximity and presence detection, intelligent trash can management system, robot obstacle avoidance, automatic control, sewer, bottom water level monitoring, etc. It detects the distance between the measured object and the sensor, and uploads the value via wireless to IoT Server via NB-IoT Network.
26 +\\NarrowBand-Internet of Things (NB-IoT) is a standards-based low power wide area (LPWA) technology developed to enable a wide range of new IoT devices and services. NB-IoT significantly improves the power consumption of user devices, system capacity and spectrum efficiency, especially in deep coverage.
27 +\\NDDS75 supports different uplink methods include (% style="color:blue" %)**TCP, MQTT, UDP and CoAP** (%%)for different application requirement.
28 +\\NDDS75 is powered by (% style="color:blue" %)**8500mAh Li-SOCI2 battery**(%%), It is designed for long term use up to 5 years. (Actually Battery life depends on the use environment, update period & uplink method)
29 +\\To use NDDS75, user needs to check if there is NB-IoT coverage in local area and with the bands NDDS75 supports. If the local operate support it, user needs to get a NB-IoT SIM card from local operator and install NDDS75 to get NB-IoT network connection.
27 27  )))
28 28  
29 -(((
30 -The LoRa wireless technology used in LES01 allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption.
32 +
31 31  )))
32 32  
33 -(((
34 -LES01 is powered by (% style="color:#4f81bd" %)**4000mA or 8500mAh Li-SOCI2 battery**(%%), It is designed for long term use up to 10 years.
35 -)))
36 -
37 -(((
38 -Each LES01 is pre-load with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect after power on.
39 -)))
40 -
41 -
42 42  [[image:1654503236291-817.png]]
43 43  
44 44  
45 -[[image:1654503265560-120.png]]
38 +[[image:1657327959271-447.png]]
46 46  
47 47  
48 48  
49 -== 1.2 ​Features ==
42 +== 1.2 ​ Features ==
50 50  
51 -* LoRaWAN 1.0.3 Class A
44 +
45 +* NB-IoT Bands: B1/B3/B8/B5/B20/B28 @H-FDD
52 52  * Ultra low power consumption
53 -* Monitor Soil Moisture
54 -* Monitor Soil Temperature
55 -* Monitor Soil Conductivity
56 -* Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865
47 +* Distance Detection by Ultrasonic technology
48 +* Flat object range 280mm - 7500mm
49 +* Accuracy: ±(1cm+S*0.3%) (S: Distance)
50 +* Cable Length: 25cm
57 57  * AT Commands to change parameters
58 58  * Uplink on periodically
59 59  * Downlink to change configure
60 60  * IP66 Waterproof Enclosure
61 -* 4000mAh or 8500mAh Battery for long term use
55 +* Micro SIM card slot for NB-IoT SIM
56 +* 8500mAh Battery for long term use
62 62  
58 +== 1.3  Specification ==
63 63  
64 -== 1.3 Specification ==
65 65  
66 -Measure Volume: Base on the centra pin of the probe, a cylinder with 7cm diameter and 10cm height.
61 +(% style="color:#037691" %)**Common DC Characteristics:**
67 67  
68 -[[image:image-20220606162220-5.png]]
63 +* Supply Voltage: 2.1v ~~ 3.6v
64 +* Operating Temperature: -40 ~~ 85°C
69 69  
66 +(% style="color:#037691" %)**NB-IoT Spec:**
70 70  
68 +* - B1 @H-FDD: 2100MHz
69 +* - B3 @H-FDD: 1800MHz
70 +* - B8 @H-FDD: 900MHz
71 +* - B5 @H-FDD: 850MHz
72 +* - B20 @H-FDD: 800MHz
73 +* - B28 @H-FDD: 700MHz
71 71  
72 -== ​1.4 Applications ==
75 +(% style="color:#037691" %)**Battery:**
73 73  
77 +* Li/SOCI2 un-chargeable battery
78 +* Capacity: 8500mAh
79 +* Self Discharge: <1% / Year @ 25°C
80 +* Max continuously current: 130mA
81 +* Max boost current: 2A, 1 second
82 +
83 +(% style="color:#037691" %)**Power Consumption**
84 +
85 +* STOP Mode: 10uA @ 3.3v
86 +* Max transmit power: 350mA@3.3v
87 +
88 +
89 +== ​1.4  Applications ==
90 +
91 +* Smart Buildings & Home Automation
92 +* Logistics and Supply Chain Management
93 +* Smart Metering
74 74  * Smart Agriculture
95 +* Smart Cities
96 +* Smart Factory
75 75  
76 76  (% class="wikigeneratedid" id="H200B1.5FirmwareChangelog" %)
77 77  ​
78 78  
79 -== 1.5 Firmware Change log ==
80 80  
81 81  
82 -**LSE01 v1.0 :**  Release
103 +== 1.5  Pin Definitions ==
83 83  
84 84  
106 +[[image:1657328609906-564.png]]
85 85  
86 -= 2. Configure LSE01 to connect to LoRaWAN network =
87 87  
88 -== 2.1 How it works ==
89 89  
110 += 2.  Use NDDS75 to communicate with IoT Server =
111 +
112 +== 2.1  How it works ==
113 +
90 90  (((
91 -The LSE01 is configured as LoRaWAN OTAA Class A mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and power on the LSE0150. It will automatically join the network via OTAA and start to send the sensor value
115 +The NDDS75 is equipped with a NB-IoT module, the pre-loaded firmware in NDDS75 will get environment data from sensors and send the value to local NB-IoT network via the NB-IoT module The NB-IoT network will forward this value to IoT server via the protocol defined by NDDS75.
92 92  )))
93 93  
118 +
94 94  (((
95 -In case you can’t set the OTAA keys in the LoRaWAN OTAA server, and you have to use the keys from the server, you can [[use AT Commands >>||anchor="H3.200BUsingtheATCommands"]].
120 +The diagram below shows the working flow in default firmware of NDDS75:
96 96  )))
97 97  
123 +(((
124 +
125 +)))
98 98  
127 +[[image:1657328659945-416.png]]
99 99  
100 -== 2.2 ​Quick guide to connect to LoRaWAN server (OTAA) ==
129 +(((
130 +
131 +)))
101 101  
102 -Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LG308>>url:http://www.dragino.com/products/lora/item/140-lg308.html]] as a LoRaWAN gateway in this example.
103 103  
134 +== 2.2 ​ Configure the NDDS75 ==
104 104  
105 -[[image:1654503992078-669.png]]
106 106  
137 +=== 2.2.1 Test Requirement ===
107 107  
108 -The LG308 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
139 +(((
140 +To use NDDS75 in your city, make sure meet below requirements:
141 +)))
109 109  
143 +* Your local operator has already distributed a NB-IoT Network there.
144 +* The local NB-IoT network used the band that NSE01 supports.
145 +* Your operator is able to distribute the data received in their NB-IoT network to your IoT server.
110 110  
111 -(% style="color:blue" %)**Step 1**(%%):  Create a device in TTN with the OTAA keys from LSE01.
147 +(((
148 +Below figure shows our testing structure. Here we have NB-IoT network coverage by China Mobile, the band they use is B8.  The NDDS75 will use CoAP((% style="color:red" %)120.24.4.116:5683)(%%) or raw UDP((% style="color:red" %)120.24.4.116:5601)(%%) or MQTT((% style="color:red" %)120.24.4.116:1883)(%%)or TCP((% style="color:red" %)120.24.4.116:5600)(%%)protocol to send data to the test server
149 +)))
112 112  
113 -Each LSE01 is shipped with a sticker with the default device EUI as below:
114 114  
115 -[[image:image-20220606163732-6.jpeg]]
152 +[[image:1657328756309-230.png]]
116 116  
117 -You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot:
118 118  
119 -**Add APP EUI in the application**
120 120  
156 +=== 2.2.2 Insert SIM card ===
121 121  
122 -[[image:1654504596150-405.png]]
158 +(((
159 +Insert the NB-IoT Card get from your provider.
160 +)))
123 123  
162 +(((
163 +User need to take out the NB-IoT module and insert the SIM card like below:
164 +)))
124 124  
125 125  
126 -**Add APP KEY and DEV EUI**
167 +[[image:1657328884227-504.png]]
127 127  
128 -[[image:1654504683289-357.png]]
129 129  
130 130  
171 +=== 2.2.3 Connect USB – TTL to NDDS75 to configure it ===
131 131  
132 -(% style="color:blue" %)**Step 2**(%%): Power on LSE01
173 +(((
174 +(((
175 +User need to configure NDDS75 via serial port to set the (% style="color:blue" %)**Server Address** / **Uplink Topic** (%%)to define where and how-to uplink packets. NDDS75 support AT Commands, user can use a USB to TTL adapter to connect to NDDS75 and use AT Commands to configure it, as below.
176 +)))
177 +)))
133 133  
179 +[[image:image-20220709092052-2.png]]
134 134  
135 -Put a Jumper on JP2 to power on the device. ( The Jumper must be in FLASH position).
181 +**Connection:**
136 136  
137 -[[image:image-20220606163915-7.png]]
183 + (% style="background-color:yellow" %)USB TTL GND <~-~-~-~-> GND
138 138  
185 + (% style="background-color:yellow" %)USB TTL TXD <~-~-~-~-> UART_RXD
139 139  
140 -(% style="color:blue" %)**Step 3**(%%)**:** The LSE01 will auto join to the TTN network. After join success, it will start to upload messages to TTN and you can see the messages in the panel.
187 + (% style="background-color:yellow" %)USB TTL RXD <~-~-~-~-> UART_TXD
141 141  
142 -[[image:1654504778294-788.png]]
143 143  
190 +In the PC, use below serial tool settings:
144 144  
192 +* Baud:  (% style="color:green" %)**9600**
193 +* Data bits:** (% style="color:green" %)8(%%)**
194 +* Stop bits: (% style="color:green" %)**1**
195 +* Parity:  (% style="color:green" %)**None**
196 +* Flow Control: (% style="color:green" %)**None**
145 145  
146 -== 2.3 Uplink Payload ==
147 -
148 -
149 -=== 2.3.1 MOD~=0(Default Mode) ===
150 -
151 -LSE01 will uplink payload via LoRaWAN with below payload format: 
152 -
153 153  (((
154 -Uplink payload includes in total 11 bytes.
199 +Make sure the switch is in FLASH position, then power on device by connecting the jumper on NDDS75. NDDS75 will output system info once power on as below, we can enter the (% style="color:green" %)**password: 12345678**(%%) to access AT Command input.
155 155  )))
156 156  
157 -(% border="1" cellspacing="10" style="background-color:#ffffcc; width:500px" %)
158 -|(((
159 -**Size**
202 +[[image:1657329814315-101.png]]
160 160  
161 -**(bytes)**
162 -)))|**2**|**2**|**2**|**2**|**2**|**1**
163 -|**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(((
164 -Temperature
165 -
166 -(Reserve, Ignore now)
167 -)))|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]]|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]]|(((
168 -MOD & Digital Interrupt
169 -
170 -(Optional)
204 +(((
205 +(% style="color:red" %)Note: the valid AT Commands can be found at: (%%)[[https:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NDDS75/>>url:https://www.dragino.com/downloads/index.php?dir=NB-IoT/NDDS75/]]
171 171  )))
172 172  
173 173  
174 174  
210 +=== 2.2.4 Use CoAP protocol to uplink data ===
175 175  
176 -=== 2.3.2 MOD~=1(Original value) ===
212 +(% style="color:red" %)Note: if you don't have CoAP server, you can refer this link to set up one: (%%)[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/>>http://wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/]]
177 177  
178 -This mode can get the original AD value of moisture and original conductivity (with temperature drift compensation).
179 179  
180 -(% border="1" cellspacing="10" style="background-color:#ffffcc; width:500px" %)
181 -|(((
182 -**Size**
215 +**Use below commands:**
183 183  
184 -**(bytes)**
185 -)))|**2**|**2**|**2**|**2**|**2**|**1**
186 -|**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(((
187 -Temperature
217 +* (% style="color:blue" %)**AT+PRO=1**  (%%) ~/~/ Set to use CoAP protocol to uplink
218 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5683   ** (%%)~/~/ to set CoAP server address and port
219 +* (% style="color:blue" %)**AT+URI=5,11,"mqtt",11,"coap",12,"0",15,"c=text1",23,"0" ** (%%) ~/~/Set COAP resource path
188 188  
189 -(Reserve, Ignore now)
190 -)))|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]](raw)|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]](raw)|(((
191 -MOD & Digital Interrupt
221 +For parameter description, please refer to AT command set
192 192  
193 -(Optional)
194 -)))
223 +[[image:1657330452568-615.png]]
195 195  
196 196  
226 +After configure the server address and (% style="color:green" %)**reset the device**(%%) (via AT+ATZ ), NDDS75 will start to uplink sensor values to CoAP server.
197 197  
228 +[[image:1657330472797-498.png]]
198 198  
199 -=== 2.3.3 Battery Info ===
200 200  
201 -(((
202 -Check the battery voltage for LSE01.
203 -)))
204 204  
205 -(((
206 -Ex1: 0x0B45 = 2885mV
207 -)))
232 +=== 2.2.5 Use UDP protocol to uplink data(Default protocol) ===
208 208  
209 -(((
210 -Ex2: 0x0B49 = 2889mV
211 -)))
212 212  
235 +* (% style="color:blue" %)**AT+PRO=2   ** (%%) ~/~/ Set to use UDP protocol to uplink
236 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5601   ** (%%) ~/~/ to set UDP server address and port
237 +* (% style="color:blue" %)**AT+CFM=1       ** (%%) ~/~/If the server does not respond, this command is unnecessary
213 213  
239 +[[image:1657330501006-241.png]]
214 214  
215 -=== 2.3.4 Soil Moisture ===
216 216  
217 -(((
218 -Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil.
219 -)))
242 +[[image:1657330533775-472.png]]
220 220  
221 -(((
222 -For example, if the data you get from the register is __0x05 0xDC__, the moisture content in the soil is
223 -)))
224 224  
225 -(((
226 -
227 -)))
228 228  
229 -(((
230 -(% style="color:#4f81bd" %)**05DC(H) = 1500(D) /100 = 15%.**
231 -)))
246 +=== 2.2.6 Use MQTT protocol to uplink data ===
232 232  
233 233  
249 +* (% style="color:blue" %)**AT+PRO=3   ** (%%) ~/~/Set to use MQTT protocol to uplink
250 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,1883   ** (%%) ~/~/Set MQTT server address and port
251 +* (% style="color:blue" %)**AT+CLIENT=CLIENT       ** (%%)~/~/Set up the CLIENT of MQTT
252 +* (% style="color:blue" %)**AT+UNAME=UNAME                               **(%%)~/~/Set the username of MQTT
253 +* (% style="color:blue" %)**AT+PWD=PWD                                        **(%%)~/~/Set the password of MQTT
254 +* (% style="color:blue" %)**AT+PUBTOPIC=NDDS75_PUB                 **(%%)~/~/Set the sending topic of MQTT
255 +* (% style="color:blue" %)**AT+SUBTOPIC=NDDS75_SUB          **(%%) ~/~/Set the subscription topic of MQTT
234 234  
235 -=== 2.3.5 Soil Temperature ===
257 +[[image:1657249978444-674.png]]
236 236  
237 -(((
238 - Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is 0x09 0xEC, the temperature content in the soil is
239 -)))
240 240  
241 -(((
242 -**Example**:
243 -)))
260 +[[image:1657330723006-866.png]]
244 244  
245 -(((
246 -If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/100 = 2.61 °C
247 -)))
248 248  
249 249  (((
250 -If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C
264 +MQTT protocol has a much higher power consumption compare vs UDP / CoAP protocol. Please check the power analyze document and adjust the uplink period to a suitable interval.
251 251  )))
252 252  
253 253  
254 254  
255 -=== 2.3.6 Soil Conductivity (EC) ===
269 +=== 2.2.7 Use TCP protocol to uplink data ===
256 256  
257 -(((
258 -Obtain (% style="color:#4f81bd" %)**__soluble salt concentration__**(%%) in soil or (% style="color:#4f81bd" %)**__soluble ion concentration in liquid fertilizer__**(%%) or (% style="color:#4f81bd" %)**__planting medium__**(%%). The value range of the register is 0 - 20000(Decimal)( Can be greater than 20000).
259 -)))
260 260  
261 -(((
262 -For example, if the data you get from the register is 0x00 0xC8, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm.
263 -)))
272 +* (% style="color:blue" %)**AT+PRO=4   ** (%%) ~/~/ Set to use TCP protocol to uplink
273 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5600   **(%%) ~/~/ to set TCP server address and port
264 264  
265 -(((
266 -Generally, the EC value of irrigation water is less than 800uS / cm.
267 -)))
275 +[[image:image-20220709093918-1.png]]
268 268  
269 -(((
270 -
271 -)))
272 272  
273 -(((
274 -
275 -)))
278 +[[image:image-20220709093918-2.png]]
276 276  
277 -=== 2.3.7 MOD ===
278 278  
279 -Firmware version at least v2.1 supports changing mode.
280 280  
281 -For example, bytes[10]=90
282 +=== 2.2.8 Change Update Interval ===
282 282  
283 -mod=(bytes[10]>>7)&0x01=1.
284 +User can use below command to change the (% style="color:green" %)**uplink interval**.
284 284  
286 +* (% style="color:blue" %)**AT+TDC=600      ** (%%)~/~/ Set Update Interval to 600s
285 285  
286 -**Downlink Command:**
287 -
288 -If payload = 0x0A00, workmode=0
289 -
290 -If** **payload =** **0x0A01, workmode=1
291 -
292 -
293 -
294 -=== 2.3.8 ​Decode payload in The Things Network ===
295 -
296 -While using TTN network, you can add the payload format to decode the payload.
297 -
298 -
299 -[[image:1654505570700-128.png]]
300 -
301 301  (((
302 -The payload decoder function for TTN is here:
289 +(% style="color:red" %)**NOTE:**
303 303  )))
304 304  
305 305  (((
306 -LSE01 TTN Payload Decoder: [[https:~~/~~/www.dropbox.com/sh/si8icbrjlamxqdb/AAACYwjsxxr5fj_vpqRtrETAa?dl=0>>https://www.dropbox.com/sh/si8icbrjlamxqdb/AAACYwjsxxr5fj_vpqRtrETAa?dl=0]]
293 +(% style="color:red" %)1. By default, the device will send an uplink message every 1 hour.
307 307  )))
308 308  
309 309  
310 -== 2.4 Uplink Interval ==
311 311  
312 -The LSE01 by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link: [[Change Uplink Interval>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H4.1ChangeUplinkInterval"]]
298 +== 2. Uplink Payload ==
313 313  
300 +In this mode, uplink payload includes in total 14 bytes
314 314  
315 315  
316 -== 2.5 Downlink Payload ==
303 +(% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:510px" %)
304 +|=(% style="width: 60px;" %)(((
305 +**Size(bytes)**
306 +)))|=(% style="width: 50px;" %)**6**|=(% style="width: 25px;" %)2|=(% style="width: 25px;" %)**2**|=(% style="width: 70px;" %)**1**|=(% style="width: 60px;" %)**2**|=(% style="width: 50px;" %)**1**
307 +|(% style="width:97px" %)**Value**|(% style="width:83px" %)[[Device ID>>||anchor="H2.4.1A0A0DeviceID"]]|(% style="width:41px" %)[[Ver>>||anchor="H2.4.2A0VersionInfo"]]|(% style="width:46px" %)[[BAT>>||anchor="H2.4.3A0BatteryInfo"]]|(% style="width:123px" %)[[Signal Strength>>||anchor="H2.4.4A0SignalStrength"]]|(% style="width:108px" %)[[Distance (unit: mm)>>||anchor="H2.4.5A0SoilMoisture"]]|(% style="width:80px" %)[[Interrupt>>||anchor="H2.4.8A0DigitalInterrupt"]]
317 317  
318 -By default, LSE50 prints the downlink payload to console port.
309 +(((
310 +If we use the MQTT client to subscribe to this MQTT topic, we can see the following information when the NDDS751 uplink data.
311 +)))
319 319  
320 -[[image:image-20220606165544-8.png]]
321 321  
314 +[[image:1657331036973-987.png]]
322 322  
323 323  (((
324 -**Examples:**
317 +The payload is ASCII string, representative same HEX:
325 325  )))
326 326  
327 327  (((
328 -
321 +0x72403155615900640c6c19029200 where:
329 329  )))
330 330  
331 331  * (((
332 -**Set TDC**
325 +Device ID: 0x724031556159 = 724031556159
333 333  )))
334 -
335 -(((
336 -If the payload=0100003C, it means set the END Node’s TDC to 0x00003C=60(S), while type code is 01.
327 +* (((
328 +Version: 0x0064=100=1.0.0
337 337  )))
338 338  
339 -(((
340 -Payload:    01 00 00 1E    TDC=30S
331 +* (((
332 +BAT: 0x0c6c = 3180 mV = 3.180V
341 341  )))
342 -
343 -(((
344 -Payload:    01 00 00 3C    TDC=60S
334 +* (((
335 +Signal: 0x19 = 25
345 345  )))
346 -
347 -(((
348 -
337 +* (((
338 +Distance: 0x0292= 658 mm
349 349  )))
350 -
351 351  * (((
352 -**Reset**
341 +Interrupt: 0x00 = 0
353 353  )))
354 354  
355 -(((
356 -If payload = 0x04FF, it will reset the LSE01
357 -)))
358 358  
359 359  
360 -* **CFM**
361 361  
362 -Downlink Payload: 05000001, Set AT+CFM=1 or 05000000 , set AT+CFM=0
347 +== 2.4  Payload Explanation and Sensor Interface ==
363 363  
364 364  
350 +=== 2.4.1  Device ID ===
365 365  
366 -== 2.6 ​Show Data in DataCake IoT Server ==
352 +(((
353 +By default, the Device ID equal to the last 6 bytes of IMEI.
354 +)))
367 367  
368 368  (((
369 -[[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps:
357 +User can use (% style="color:blue" %)**AT+DEUI**(%%) to set Device ID
370 370  )))
371 371  
372 372  (((
373 -
361 +**Example:**
374 374  )))
375 375  
376 376  (((
377 -**Step 1**:  Be sure that your device is programmed and properly connected to the network at this time.
365 +AT+DEUI=A84041F15612
378 378  )))
379 379  
380 380  (((
381 -**Step 2**:  To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps:
369 +The Device ID is stored in a none-erase area, Upgrade the firmware or run **AT+FDR** won't erase Device ID.
382 382  )))
383 383  
384 384  
385 -[[image:1654505857935-743.png]]
386 386  
374 +=== 2.4.2  Version Info ===
387 387  
388 -[[image:1654505874829-548.png]]
376 +(((
377 +Specify the software version: 0x64=100, means firmware version 1.00.
378 +)))
389 389  
390 -**Step 3:**  Create an account or log in Datacake.
380 +(((
381 +For example: 0x00 64 : this device is NDDS75 with firmware version 1.0.0.
382 +)))
391 391  
392 -**Step 4:  **Search the LSE01 and add DevEUI.
393 393  
394 394  
395 -[[image:1654505905236-553.png]]
386 +=== 2.4.3  Battery Info ===
396 396  
388 +(((
389 +Check the battery voltage for LSE01.
390 +)))
397 397  
398 -After added, the sensor data arrive TTN, it will also arrive and show in Mydevices.
392 +(((
393 +Ex1: 0x0B45 = 2885mV
394 +)))
399 399  
400 -[[image:1654505925508-181.png]]
396 +(((
397 +Ex2: 0x0B49 = 2889mV
398 +)))
401 401  
402 402  
403 403  
404 -== 2.7 Frequency Plans ==
402 +=== 2.4.4  Signal Strength ===
405 405  
406 -The LSE01 uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.
404 +(((
405 +NB-IoT Network signal Strength.
406 +)))
407 407  
408 +(((
409 +**Ex1: 0x1d = 29**
410 +)))
408 408  
409 -=== 2.7.1 EU863-870 (EU868) ===
412 +(((
413 +(% style="color:blue" %)**0**(%%)  -113dBm or less
414 +)))
410 410  
411 -(% style="color:#037691" %)** Uplink:**
416 +(((
417 +(% style="color:blue" %)**1**(%%)  -111dBm
418 +)))
412 412  
413 -868.1 - SF7BW125 to SF12BW125
420 +(((
421 +(% style="color:blue" %)**2...30**(%%) -109dBm... -53dBm
422 +)))
414 414  
415 -868.3 - SF7BW125 to SF12BW125 and SF7BW250
424 +(((
425 +(% style="color:blue" %)**31**  (%%) -51dBm or greater
426 +)))
416 416  
417 -868.5 - SF7BW125 to SF12BW125
428 +(((
429 +(% style="color:blue" %)**99**   (%%) Not known or not detectable
430 +)))
418 418  
419 -867.1 - SF7BW125 to SF12BW125
420 420  
421 -867.3 - SF7BW125 to SF12BW125
422 422  
423 -867.5 - SF7BW125 to SF12BW125
434 +=== 2.4.5  Soil Moisture ===
424 424  
425 -867.7 - SF7BW125 to SF12BW125
436 +Get the distance. Flat object range 280mm - 7500mm.
426 426  
427 -867.9 - SF7BW125 to SF12BW125
438 +For example, if the data you get from the register is **__0x0B 0x05__**, the distance between the sensor and the measured object is
428 428  
429 -868.8 - FSK
440 +(((
441 +(((
442 +(% style="color:#4f81bd" %)** 0B05(H) = 2821(D) = 2821mm.**
443 +)))
444 +)))
430 430  
446 +(((
447 +
448 +)))
431 431  
432 -(% style="color:#037691" %)** Downlink:**
450 +(((
451 +
452 +)))
433 433  
434 -Uplink channels 1-9 (RX1)
454 +=== 2.4.6  Digital Interrupt ===
435 435  
436 -869.525 - SF9BW125 (RX2 downlink only)
456 +(((
457 +Digital Interrupt refers to pin (% style="color:blue" %)**GPIO_EXTI**(%%), and there are different trigger methods. When there is a trigger, the NDDS75 will send a packet to the server.
458 +)))
437 437  
460 +(((
461 +The command is:
462 +)))
438 438  
464 +(((
465 +(% style="color:blue" %)**AT+INTMOD=3 **(%%) ~/~/(more info about INMOD please refer [[**AT Command Manual**>>url:https://www.dragino.com/downloads/downloads/NB-IoT/NBSN95/DRAGINO_NBSN95-NB_AT%20Commands_v1.1.0.pdf]])**.**
466 +)))
439 439  
440 -=== 2.7.2 US902-928(US915) ===
441 441  
442 -Used in USA, Canada and South America. Default use CHE=2
469 +(((
470 +The lower four bits of this data field shows if this packet is generated by interrupt or not. Click here for the hardware and software set up.
471 +)))
443 443  
444 -(% style="color:#037691" %)**Uplink:**
445 445  
446 -903.9 - SF7BW125 to SF10BW125
474 +(((
475 +Example:
476 +)))
447 447  
448 -904.1 - SF7BW125 to SF10BW125
478 +(((
479 +0x(00): Normal uplink packet.
480 +)))
449 449  
450 -904.3 - SF7BW125 to SF10BW125
482 +(((
483 +0x(01): Interrupt Uplink Packet.
484 +)))
451 451  
452 -904.5 - SF7BW125 to SF10BW125
453 453  
454 -904.7 - SF7BW125 to SF10BW125
455 455  
456 -904.9 - SF7BW125 to SF10BW125
488 +=== 2.4.7  ​+5V Output ===
457 457  
458 -905.1 - SF7BW125 to SF10BW125
490 +(((
491 +NDDS75 will enable +5V output before all sampling and disable the +5v after all sampling. 
492 +)))
459 459  
460 -905.3 - SF7BW125 to SF10BW125
461 461  
495 +(((
496 +The 5V output time can be controlled by AT Command.
497 +)))
462 462  
463 -(% style="color:#037691" %)**Downlink:**
499 +(((
500 +(% style="color:blue" %)**AT+5VT=1000**
501 +)))
464 464  
465 -923.3 - SF7BW500 to SF12BW500
503 +(((
504 +Means set 5V valid time to have 1000ms. So the real 5V output will actually have 1000ms + sampling time for other sensors.
505 +)))
466 466  
467 -923.9 - SF7BW500 to SF12BW500
468 468  
469 -924.5 - SF7BW500 to SF12BW500
470 470  
471 -925.1 - SF7BW500 to SF12BW500
509 +== 2.5  Downlink Payload ==
472 472  
473 -925.7 - SF7BW500 to SF12BW500
511 +By default, NSE01 prints the downlink payload to console port.
474 474  
475 -926.3 - SF7BW500 to SF12BW500
513 +[[image:image-20220708133731-5.png]]
476 476  
477 -926.9 - SF7BW500 to SF12BW500
478 478  
479 -927.5 - SF7BW500 to SF12BW500
516 +(((
517 +(% style="color:blue" %)**Examples:**
518 +)))
480 480  
481 -923.3 - SF12BW500(RX2 downlink only)
520 +(((
521 +
522 +)))
482 482  
524 +* (((
525 +(% style="color:blue" %)**Set TDC**
526 +)))
483 483  
528 +(((
529 +If the payload=0100003C, it means set the END Node's TDC to 0x00003C=60(S), while type code is 01.
530 +)))
484 484  
485 -=== 2.7.3 CN470-510 (CN470) ===
532 +(((
533 +Payload:    01 00 00 1E    TDC=30S
534 +)))
486 486  
487 -Used in China, Default use CHE=1
536 +(((
537 +Payload:    01 00 00 3C    TDC=60S
538 +)))
488 488  
489 -(% style="color:#037691" %)**Uplink:**
540 +(((
541 +
542 +)))
490 490  
491 -486.3 - SF7BW125 to SF12BW125
544 +* (((
545 +(% style="color:blue" %)**Reset**
546 +)))
492 492  
493 -486.5 - SF7BW125 to SF12BW125
548 +(((
549 +If payload = 0x04FF, it will reset the NSE01
550 +)))
494 494  
495 -486.7 - SF7BW125 to SF12BW125
496 496  
497 -486.9 - SF7BW125 to SF12BW125
553 +* (% style="color:blue" %)**INTMOD**
498 498  
499 -487.1 - SF7BW125 to SF12BW125
555 +(((
556 +Downlink Payload: 06000003, Set AT+INTMOD=3
557 +)))
500 500  
501 -487.3 - SF7BW125 to SF12BW125
502 502  
503 -487.5 - SF7BW125 to SF12BW125
504 504  
505 -487.7 - SF7BW125 to SF12BW125
561 +== 2.6  ​LED Indicator ==
506 506  
563 +(((
564 +The NSE01 has an internal LED which is to show the status of different state.
507 507  
508 -(% style="color:#037691" %)**Downlink:**
509 509  
510 -506.7 - SF7BW125 to SF12BW125
567 +* When power on, NSE01 will detect if sensor probe is connected, if probe detected, LED will blink four times. (no blinks in this step is no probe)
568 +* Then the LED will be on for 1 second means device is boot normally.
569 +* After NSE01 join NB-IoT network. The LED will be ON for 3 seconds.
570 +* For each uplink probe, LED will be on for 500ms.
571 +)))
511 511  
512 -506.9 - SF7BW125 to SF12BW125
513 513  
514 -507.1 - SF7BW125 to SF12BW125
515 515  
516 -507.3 - SF7BW125 to SF12BW125
517 517  
518 -507.5 - SF7BW125 to SF12BW125
576 +== 2.7  Installation in Soil ==
519 519  
520 -507.7 - SF7BW125 to SF12BW125
578 +__**Measurement the soil surface**__
521 521  
522 -507.9 - SF7BW125 to SF12BW125
580 +(((
581 +Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting. [[https:~~/~~/img.alicdn.com/imgextra/i3/2005165265/O1CN010rj9Oh1olPsQxrdUK_!!2005165265.jpg>>url:https://img.alicdn.com/imgextra/i3/2005165265/O1CN010rj9Oh1olPsQxrdUK_!!2005165265.jpg]]
582 +)))
523 523  
524 -508.1 - SF7BW125 to SF12BW125
584 +[[image:1657259653666-883.png]] ​
525 525  
526 -505.3 - SF12BW125 (RX2 downlink only)
527 527  
587 +(((
588 +
528 528  
590 +(((
591 +Dig a hole with diameter > 20CM.
592 +)))
529 529  
530 -=== 2.7.4 AU915-928(AU915) ===
594 +(((
595 +Horizontal insert the probe to the soil and fill the hole for long term measurement.
596 +)))
597 +)))
531 531  
532 -Default use CHE=2
599 +[[image:1654506665940-119.png]]
533 533  
534 -(% style="color:#037691" %)**Uplink:**
601 +(((
602 +
603 +)))
535 535  
536 -916.8 - SF7BW125 to SF12BW125
537 537  
538 -917.0 - SF7BW125 to SF12BW125
606 +== 2. Firmware Change Log ==
539 539  
540 -917.2 - SF7BW125 to SF12BW125
541 541  
542 -917.4 - SF7BW125 to SF12BW125
609 +Download URL & Firmware Change log
543 543  
544 -917.6 - SF7BW125 to SF12BW125
611 +[[www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/Firmware/]]
545 545  
546 -917.8 - SF7BW125 to SF12BW125
547 547  
548 -918.0 - SF7BW125 to SF12BW125
614 +Upgrade Instruction: [[Upgrade_Firmware>>||anchor="H5.1200BHowtoUpgradeFirmware"]]
549 549  
550 -918.2 - SF7BW125 to SF12BW125
551 551  
552 552  
553 -(% style="color:#037691" %)**Downlink:**
618 +== 2.9  ​Battery Analysis ==
554 554  
555 -923.3 - SF7BW500 to SF12BW500
620 +=== 2.9.1  Battery Type ===
556 556  
557 -923.9 - SF7BW500 to SF12BW500
558 558  
559 -924.5 - SF7BW500 to SF12BW500
560 -
561 -925.1 - SF7BW500 to SF12BW500
562 -
563 -925.7 - SF7BW500 to SF12BW500
564 -
565 -926.3 - SF7BW500 to SF12BW500
566 -
567 -926.9 - SF7BW500 to SF12BW500
568 -
569 -927.5 - SF7BW500 to SF12BW500
570 -
571 -923.3 - SF12BW500(RX2 downlink only)
572 -
573 -
574 -
575 -=== 2.7.5 AS920-923 & AS923-925 (AS923) ===
576 -
577 -(% style="color:#037691" %)**Default Uplink channel:**
578 -
579 -923.2 - SF7BW125 to SF10BW125
580 -
581 -923.4 - SF7BW125 to SF10BW125
582 -
583 -
584 -(% style="color:#037691" %)**Additional Uplink Channel**:
585 -
586 -(OTAA mode, channel added by JoinAccept message)
587 -
588 -(% style="color:#037691" %)**AS920~~AS923 for Japan, Malaysia, Singapore**:
589 -
590 -922.2 - SF7BW125 to SF10BW125
591 -
592 -922.4 - SF7BW125 to SF10BW125
593 -
594 -922.6 - SF7BW125 to SF10BW125
595 -
596 -922.8 - SF7BW125 to SF10BW125
597 -
598 -923.0 - SF7BW125 to SF10BW125
599 -
600 -922.0 - SF7BW125 to SF10BW125
601 -
602 -
603 -(% style="color:#037691" %)**AS923 ~~ AS925 for Brunei, Cambodia, Hong Kong, Indonesia, Laos, Taiwan, Thailand, Vietnam**:
604 -
605 -923.6 - SF7BW125 to SF10BW125
606 -
607 -923.8 - SF7BW125 to SF10BW125
608 -
609 -924.0 - SF7BW125 to SF10BW125
610 -
611 -924.2 - SF7BW125 to SF10BW125
612 -
613 -924.4 - SF7BW125 to SF10BW125
614 -
615 -924.6 - SF7BW125 to SF10BW125
616 -
617 -
618 -(% style="color:#037691" %)** Downlink:**
619 -
620 -Uplink channels 1-8 (RX1)
621 -
622 -923.2 - SF10BW125 (RX2)
623 -
624 -
625 -
626 -=== 2.7.6 KR920-923 (KR920) ===
627 -
628 -Default channel:
629 -
630 -922.1 - SF7BW125 to SF12BW125
631 -
632 -922.3 - SF7BW125 to SF12BW125
633 -
634 -922.5 - SF7BW125 to SF12BW125
635 -
636 -
637 -(% style="color:#037691" %)**Uplink: (OTAA mode, channel added by JoinAccept message)**
638 -
639 -922.1 - SF7BW125 to SF12BW125
640 -
641 -922.3 - SF7BW125 to SF12BW125
642 -
643 -922.5 - SF7BW125 to SF12BW125
644 -
645 -922.7 - SF7BW125 to SF12BW125
646 -
647 -922.9 - SF7BW125 to SF12BW125
648 -
649 -923.1 - SF7BW125 to SF12BW125
650 -
651 -923.3 - SF7BW125 to SF12BW125
652 -
653 -
654 -(% style="color:#037691" %)**Downlink:**
655 -
656 -Uplink channels 1-7(RX1)
657 -
658 -921.9 - SF12BW125 (RX2 downlink only; SF12BW125 might be changed to SF9BW125)
659 -
660 -
661 -
662 -=== 2.7.7 IN865-867 (IN865) ===
663 -
664 -(% style="color:#037691" %)** Uplink:**
665 -
666 -865.0625 - SF7BW125 to SF12BW125
667 -
668 -865.4025 - SF7BW125 to SF12BW125
669 -
670 -865.9850 - SF7BW125 to SF12BW125
671 -
672 -
673 -(% style="color:#037691" %) **Downlink:**
674 -
675 -Uplink channels 1-3 (RX1)
676 -
677 -866.550 - SF10BW125 (RX2)
678 -
679 -
680 -
681 -
682 -== 2.8 LED Indicator ==
683 -
684 -The LSE01 has an internal LED which is to show the status of different state.
685 -
686 -* Blink once when device power on.
687 -* Solid ON for 5 seconds once device successful Join the network.
688 -* Blink once when device transmit a packet.
689 -
690 -== 2.9 Installation in Soil ==
691 -
692 -**Measurement the soil surface**
693 -
694 -
695 -[[image:1654506634463-199.png]] ​
696 -
697 697  (((
698 -(((
699 -Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting.
624 +The NSE01 battery is a combination of an 8500mAh Li/SOCI2 Battery and a Super Capacitor. The battery is none-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter.
700 700  )))
701 -)))
702 702  
703 703  
704 -[[image:1654506665940-119.png]]
705 -
706 706  (((
707 -Dig a hole with diameter > 20CM.
629 +The battery is designed to last for several years depends on the actually use environment and update interval. 
708 708  )))
709 709  
710 -(((
711 -Horizontal insert the probe to the soil and fill the hole for long term measurement.
712 -)))
713 713  
714 -
715 -== 2.10 ​Firmware Change Log ==
716 -
717 717  (((
718 -**Firmware download link:**
634 +The battery related documents as below:
719 719  )))
720 720  
721 -(((
722 -[[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/]]
723 -)))
637 +* [[Battery Dimension>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]
638 +* [[Lithium-Thionyl Chloride Battery datasheet>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]
639 +* [[Lithium-ion Battery-Capacitor datasheet>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]
724 724  
725 725  (((
726 -
642 +[[image:image-20220708140453-6.png]]
727 727  )))
728 728  
729 -(((
730 -**Firmware Upgrade Method: **[[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome]]
731 -)))
732 732  
733 -(((
734 -
735 -)))
736 736  
737 -(((
738 -**V1.0.**
739 -)))
647 +=== 2.9.2  Power consumption Analyze ===
740 740  
741 741  (((
742 -Release
650 +Dragino battery powered product are all runs in Low Power mode. We have an update battery calculator which base on the measurement of the real device. User can use this calculator to check the battery life and calculate the battery life if want to use different transmit interval.
743 743  )))
744 744  
745 745  
746 -== 2.11 ​Battery Analysis ==
747 -
748 -=== 2.11.1 ​Battery Type ===
749 -
750 750  (((
751 -The LSE01 battery is a combination of a 4000mAh Li/SOCI2 Battery and a Super Capacitor. The battery is non-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter.
655 +Instruction to use as below:
752 752  )))
753 753  
754 754  (((
755 -The battery is designed to last for more than 5 years for the LSN50.
659 +(% style="color:blue" %)**Step 1:  **(%%)Downlink the up-to-date DRAGINO_Battery_Life_Prediction_Table.xlsx from: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/]]
756 756  )))
757 757  
662 +
758 758  (((
759 -(((
760 -The battery-related documents are as below:
664 +(% style="color:blue" %)**Step 2: **(%%) Open it and choose
761 761  )))
762 -)))
763 763  
764 764  * (((
765 -[[Battery Dimension>>url:http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/&file=LSN50-Battery-Dimension.pdf]],
668 +Product Model
766 766  )))
767 767  * (((
768 -[[Lithium-Thionyl Chloride Battery  datasheet>>url:https://www.dragino.com/downloads/downloads/datasheet/Battery/ER26500/ER26500_Datasheet-EN.pdf]],
671 +Uplink Interval
769 769  )))
770 770  * (((
771 -[[Lithium-ion Battery-Capacitor datasheet>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC_1520_datasheet.jpg]], [[Tech Spec>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC1520%20Technical%20Specification20171123.pdf]]
674 +Working Mode
772 772  )))
773 773  
774 - [[image:image-20220610172436-1.png]]
677 +(((
678 +And the Life expectation in difference case will be shown on the right.
679 +)))
775 775  
681 +[[image:image-20220708141352-7.jpeg]]
776 776  
777 777  
778 -=== 2.11.2 ​Battery Note ===
779 779  
685 +=== 2.9.3  ​Battery Note ===
686 +
780 780  (((
781 781  The Li-SICO battery is designed for small current / long period application. It is not good to use a high current, short period transmit method. The recommended minimum period for use of this battery is 5 minutes. If you use a shorter period time to transmit LoRa, then the battery life may be decreased.
782 782  )))
... ... @@ -783,303 +783,176 @@
783 783  
784 784  
785 785  
786 -=== 2.11.3 Replace the battery ===
693 +=== 2.9. Replace the battery ===
787 787  
788 788  (((
789 -If Battery is lower than 2.7v, user should replace the battery of LSE01.
696 +The default battery pack of NSE01 includes a ER26500 plus super capacitor. If user can't find this pack locally, they can find ER26500 or equivalence without the SPC1520 capacitor, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes).
790 790  )))
791 791  
699 +
700 +
701 += 3. ​ Access NB-IoT Module =
702 +
792 792  (((
793 -You can change the battery in the LSE01.The type of battery is not limited as long as the output is between 3v to 3.6v. On the main board, there is a diode (D1) between the battery and the main circuit. If you need to use a battery with less than 3.3v, please remove the D1 and shortcut the two pads of it so there won’t be voltage drop between battery and main board.
704 +Users can directly access the AT command set of the NB-IoT module.
794 794  )))
795 795  
796 796  (((
797 -The default battery pack of LSE01 includes a ER18505 plus super capacitor. If user can’t find this pack locally, they can find ER18505 or equivalence, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes)
708 +The AT Command set can refer the BC35-G NB-IoT Module AT Command: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=datasheet/other_vendors/BC35-G/>>url:https://www.dragino.com/downloads/index.php?dir=datasheet/other_vendors/BC35-G/]] 
798 798  )))
799 799  
711 +[[image:1657261278785-153.png]]
800 800  
801 801  
802 -= 3. ​Using the AT Commands =
803 803  
804 -== 3.1 Access AT Commands ==
715 += 4.  Using the AT Commands =
805 805  
717 +== 4.1  Access AT Commands ==
806 806  
807 -LSE01 supports AT Command set in the stock firmware. You can use a USB to TTL adapter to connect to LSE01 for using AT command, as below.
719 +See this link for detail: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/]]
808 808  
809 -[[image:1654501986557-872.png||height="391" width="800"]]
810 810  
722 +AT+<CMD>?  : Help on <CMD>
811 811  
812 -Or if you have below board, use below connection:
724 +AT+<CMD>         : Run <CMD>
813 813  
726 +AT+<CMD>=<value> : Set the value
814 814  
815 -[[image:1654502005655-729.png||height="503" width="801"]]
728 +AT+<CMD>=?  : Get the value
816 816  
817 817  
818 -
819 -In the PC, you need to set the serial baud rate to (% style="color:green" %)**9600**(%%) to access the serial console for LSE01. LSE01 will output system info once power on as below:
820 -
821 -
822 - [[image:1654502050864-459.png||height="564" width="806"]]
823 -
824 -
825 -Below are the available commands, a more detailed AT Command manual can be found at [[AT Command Manual>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/]]: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/]]
826 -
827 -
828 -(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>? **(%%) : Help on <CMD>
829 -
830 -(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD> **(%%) : Run <CMD>
831 -
832 -(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>=<value>**(%%) : Set the value
833 -
834 -(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>=?**(%%)  : Get the value
835 -
836 -
837 837  (% style="color:#037691" %)**General Commands**(%%)      
838 838  
839 -(% style="background-color:#dcdcdc" %)**AT**(%%)  : Attention       
733 +AT  : Attention       
840 840  
841 -(% style="background-color:#dcdcdc" %)**AT?**(%%)  : Short Help     
735 +AT?  : Short Help     
842 842  
843 -(% style="background-color:#dcdcdc" %)**ATZ**(%%)  : MCU Reset    
737 +ATZ  : MCU Reset    
844 844  
845 -(% style="background-color:#dcdcdc" %)**AT+TDC**(%%)  : Application Data Transmission Interval 
739 +AT+TDC  : Application Data Transmission Interval
846 846  
741 +AT+CFG  : Print all configurations
847 847  
848 -(% style="color:#037691" %)**Keys, IDs and EUIs management**
743 +AT+CFGMOD           : Working mode selection
849 849  
850 -(% style="background-color:#dcdcdc" %)**AT+APPEUI**(%%)              : Application EUI      
745 +AT+INTMOD            : Set the trigger interrupt mode
851 851  
852 -(% style="background-color:#dcdcdc" %)**AT+APPKEY**(%%)              : Application Key     
747 +AT+5VT  : Set extend the time of 5V power  
853 853  
854 -(% style="background-color:#dcdcdc" %)**AT+APPSKEY**(%%)            : Application Session Key
749 +AT+PRO  : Choose agreement
855 855  
856 -(% style="background-color:#dcdcdc" %)**AT+DADDR**(%%)              : Device Address     
751 +AT+WEIGRE  : Get weight or set weight to 0
857 857  
858 -(% style="background-color:#dcdcdc" %)**AT+DEUI**(%%)                   : Device EUI     
753 +AT+WEIGAP  : Get or Set the GapValue of weight
859 859  
860 -(% style="background-color:#dcdcdc" %)**AT+NWKID**(%%)               : Network ID (You can enter this command change only after successful network connection
755 +AT+RXDL  : Extend the sending and receiving time
861 861  
862 -(% style="background-color:#dcdcdc" %)**AT+NWKSKEY**(%%)          : Network Session Key Joining and sending date on LoRa network  
757 +AT+CNTFAC  : Get or set counting parameters
863 863  
864 -(% style="background-color:#dcdcdc" %)**AT+CFM**(%%)  : Confirm Mode       
759 +AT+SERVADDR  : Server Address
865 865  
866 -(% style="background-color:#dcdcdc" %)**AT+CFS**(%%)                     : Confirm Status       
867 867  
868 -(% style="background-color:#dcdcdc" %)**AT+JOIN**(%%)  : Join LoRa? Network       
762 +(% style="color:#037691" %)**COAP Management**      
869 869  
870 -(% style="background-color:#dcdcdc" %)**AT+NJM**(%%)  : LoRa? Network Join Mode    
764 +AT+URI            : Resource parameters
871 871  
872 -(% style="background-color:#dcdcdc" %)**AT+NJS**(%%)                     : LoRa? Network Join Status    
873 873  
874 -(% style="background-color:#dcdcdc" %)**AT+RECV**(%%)                  : Print Last Received Data in Raw Format
767 +(% style="color:#037691" %)**UDP Management**
875 875  
876 -(% style="background-color:#dcdcdc" %)**AT+RECVB**(%%)                : Print Last Received Data in Binary Format      
769 +AT+CFM          : Upload confirmation mode (only valid for UDP)
877 877  
878 -(% style="background-color:#dcdcdc" %)**AT+SEND**(%%)                  : Send Text Data      
879 879  
880 -(% style="background-color:#dcdcdc" %)**AT+SENB**(%%)                  : Send Hexadecimal Data
772 +(% style="color:#037691" %)**MQTT Management**
881 881  
774 +AT+CLIENT               : Get or Set MQTT client
882 882  
883 -(% style="color:#037691" %)**LoRa Network Management**
776 +AT+UNAME  : Get or Set MQTT Username
884 884  
885 -(% style="background-color:#dcdcdc" %)**AT+ADR**(%%)          : Adaptive Rate
778 +AT+PWD                  : Get or Set MQTT password
886 886  
887 -(% style="background-color:#dcdcdc" %)**AT+CLASS**(%%)  : LoRa Class(Currently only support class A
780 +AT+PUBTOPI : Get or Set MQTT publish topic
888 888  
889 -(% style="background-color:#dcdcdc" %)**AT+DCS**(%%)  : Duty Cycle Settin
782 +AT+SUBTOPIC  : Get or Set MQTT subscription topic
890 890  
891 -(% style="background-color:#dcdcdc" %)**AT+DR**(%%)  : Data Rate (Can Only be Modified after ADR=0)     
892 892  
893 -(% style="background-color:#dcdcdc" %)**AT+FCD**(%%)  : Frame Counter Downlink       
785 +(% style="color:#037691" %)**Information**          
894 894  
895 -(% style="background-color:#dcdcdc" %)**AT+FCU**(%%)  : Frame Counter Uplink   
787 +AT+FDR  : Factory Data Reset
896 896  
897 -(% style="background-color:#dcdcdc" %)**AT+JN1DL**(%%)  : Join Accept Delay1
789 +AT+PWOR : Serial Access Password
898 898  
899 -(% style="background-color:#dcdcdc" %)**AT+JN2DL**(%%)  : Join Accept Delay2
900 900  
901 -(% style="background-color:#dcdcdc" %)**AT+PNM**(%%)  : Public Network Mode   
902 902  
903 -(% style="background-color:#dcdcdc" %)**AT+RX1DL**(%%)  : Receive Delay1      
793 += ​5.  FAQ =
904 904  
905 -(% style="background-color:#dcdcdc" %)**AT+RX2DL**(%%)  : Receive Delay2      
795 +== 5.1 How to Upgrade Firmware ==
906 906  
907 -(% style="background-color:#dcdcdc" %)**AT+RX2DR**(%%)  : Rx2 Window Data Rate 
908 908  
909 -(% style="background-color:#dcdcdc" %)**AT+RX2FQ**(%%)  : Rx2 Window Frequency
910 -
911 -(% style="background-color:#dcdcdc" %)**AT+TXP**(%%)  : Transmit Power
912 -
913 -(% style="background-color:#dcdcdc" %)**AT+ MOD**(%%)  : Set work mode
914 -
915 -
916 -(% style="color:#037691" %)**Information** 
917 -
918 -(% style="background-color:#dcdcdc" %)**AT+RSSI**(%%)           : RSSI of the Last Received Packet   
919 -
920 -(% style="background-color:#dcdcdc" %)**AT+SNR**(%%)           : SNR of the Last Received Packet   
921 -
922 -(% style="background-color:#dcdcdc" %)**AT+VER**(%%)           : Image Version and Frequency Band       
923 -
924 -(% style="background-color:#dcdcdc" %)**AT+FDR**(%%)           : Factory Data Reset
925 -
926 -(% style="background-color:#dcdcdc" %)**AT+PORT**(%%)  : Application Port    
927 -
928 -(% style="background-color:#dcdcdc" %)**AT+CHS**(%%)  : Get or Set Frequency (Unit: Hz) for Single Channel Mode
929 -
930 - (% style="background-color:#dcdcdc" %)**AT+CHE**(%%)  : Get or Set eight channels mode, Only for US915, AU915, CN470
931 -
932 -
933 -= ​4. FAQ =
934 -
935 -== 4.1 ​How to change the LoRa Frequency Bands/Region? ==
936 -
937 937  (((
938 -You can follow the instructions for [[how to upgrade image>>||anchor="H2.10200BFirmwareChangeLog"]].
939 -When downloading the images, choose the required image file for download. ​
799 +User can upgrade the firmware for 1) bug fix, 2) new feature release.
940 940  )))
941 941  
942 942  (((
943 -
803 +Please see this link for how to upgrade:  [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H2.HardwareUpgradeMethodSupportList>>http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H2.HardwareUpgradeMethodSupportList]]
944 944  )))
945 945  
946 946  (((
947 -How to set up LSE01 to work in 8 channel mode By default, the frequency bands US915, AU915, CN470 work in 72 frequencies. Many gateways are 8 channel gateways, and in this case, the OTAA join time and uplink schedule is long and unpredictable while the end node is hopping in 72 frequencies.
807 +(% style="color:red" %)Notice, NSE01 and LSE01 share the same mother board. They use the same connection and method to update.
948 948  )))
949 949  
950 -(((
951 -
952 -)))
953 953  
954 -(((
955 -You can configure the end node to work in 8 channel mode by using the AT+CHE command. The 500kHz channels are always included for OTAA.
956 -)))
957 957  
958 -(((
959 -
960 -)))
812 +== 5.2  Can I calibrate NSE01 to different soil types? ==
961 961  
962 962  (((
963 -For example, in **US915** band, the frequency table is as below. By default, the end node will use all channels (0~~71) for OTAA Join process. After the OTAA Join, the end node will use these all channels (0~~71) to send uplink packets.
815 +NSE01 is calibrated for saline-alkali soil and loamy soil. If users want to use it for other soil, they can calibrate the value in the IoT platform base on the value measured by saline-alkali soil and loamy soil. The formula can be found at [[this link>>https://www.dragino.com/downloads/downloads/LoRa_End_Node/LSE01/Calibrate_to_other_Soil_20220605.pdf]].
964 964  )))
965 965  
966 -[[image:image-20220606154726-3.png]]
967 967  
819 += 6.  Trouble Shooting =
968 968  
969 -When you use the TTN network, the US915 frequency bands use are:
821 +== 6.1  ​Connection problem when uploading firmware ==
970 970  
971 -* 903.9 - SF7BW125 to SF10BW125
972 -* 904.1 - SF7BW125 to SF10BW125
973 -* 904.3 - SF7BW125 to SF10BW125
974 -* 904.5 - SF7BW125 to SF10BW125
975 -* 904.7 - SF7BW125 to SF10BW125
976 -* 904.9 - SF7BW125 to SF10BW125
977 -* 905.1 - SF7BW125 to SF10BW125
978 -* 905.3 - SF7BW125 to SF10BW125
979 -* 904.6 - SF8BW500
980 980  
981 981  (((
982 -Because the end node is now hopping in 72 frequency, it makes it difficult for the devices to Join the TTN network and uplink data. To solve this issue, you can access the device via the AT commands and run:
825 +**Please see: **[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H3.3Troubleshooting>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H3.3Troubleshooting]]
983 983  )))
984 984  
985 -(% class="box infomessage" %)
828 +(% class="wikigeneratedid" %)
986 986  (((
987 -**AT+CHE=2**
988 -)))
989 -
990 -(% class="box infomessage" %)
991 -(((
992 -**ATZ**
993 -)))
994 -
995 -(((
996 -to set the end node to work in 8 channel mode. The device will work in Channel 8-15 & 64-71 for OTAA, and channel 8-15 for Uplink.
997 -)))
998 -
999 -(((
1000 1000  
1001 1001  )))
1002 1002  
1003 -(((
1004 -The **AU915** band is similar. Below are the AU915 Uplink Channels.
1005 -)))
1006 1006  
1007 -[[image:image-20220606154825-4.png]]
834 +== 6.2  AT Command input doesn't work ==
1008 1008  
1009 -
1010 -
1011 -= 5. Trouble Shooting =
1012 -
1013 -== 5.1 ​Why I can’t join TTN in US915 / AU915 bands? ==
1014 -
1015 -It is due to channel mapping. Please see the [[Eight Channel Mode>>doc:Main.LoRaWAN Communication Debug.WebHome||anchor="H2.NoticeofUS9152FCN4702FAU915Frequencyband"]] section above for details.
1016 -
1017 -
1018 -== 5.2 AT Command input doesn’t work ==
1019 -
1020 1020  (((
1021 -In the case if user can see the console output but can’t type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn’t send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.
1022 -)))
837 +In the case if user can see the console output but can't type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn't send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.
1023 1023  
1024 -
1025 -== 5.3 Device rejoin in at the second uplink packet ==
1026 -
1027 -(% style="color:#4f81bd" %)**Issue describe as below:**
1028 -
1029 -[[image:1654500909990-784.png]]
1030 -
1031 -
1032 -(% style="color:#4f81bd" %)**Cause for this issue:**
1033 -
1034 -(((
1035 -The fuse on LSE01 is not large enough, some of the soil probe require large current up to 5v 800mA, in a short pulse. When this happen, it cause the device reboot so user see rejoin.
839 +
1036 1036  )))
1037 1037  
1038 1038  
1039 -(% style="color:#4f81bd" %)**Solution: **
843 += 7. ​ Order Info =
1040 1040  
1041 -All new shipped LSE01 after 2020-May-30 will have this to fix. For the customer who see this issue, please bypass the fuse as below:
1042 1042  
1043 -[[image:1654500929571-736.png||height="458" width="832"]]
846 +Part Number**:** (% style="color:#4f81bd" %)**NSE01**
1044 1044  
1045 1045  
1046 -= 6. ​Order Info =
1047 -
1048 -
1049 -Part Number**:** (% style="color:#4f81bd" %)**LSE01-XX-YY**
1050 -
1051 -
1052 -(% style="color:#4f81bd" %)**XX**(%%)**:** The default frequency band
1053 -
1054 -* (% style="color:red" %)**AS923**(%%): LoRaWAN AS923 band
1055 -* (% style="color:red" %)**AU915**(%%): LoRaWAN AU915 band
1056 -* (% style="color:red" %)**EU433**(%%): LoRaWAN EU433 band
1057 -* (% style="color:red" %)**EU868**(%%): LoRaWAN EU868 band
1058 -* (% style="color:red" %)**KR920**(%%): LoRaWAN KR920 band
1059 -* (% style="color:red" %)**US915**(%%): LoRaWAN US915 band
1060 -* (% style="color:red" %)**IN865**(%%):  LoRaWAN IN865 band
1061 -* (% style="color:red" %)**CN470**(%%): LoRaWAN CN470 band
1062 -
1063 -(% style="color:#4f81bd" %)**YY**(%%)**: **Battery Option
1064 -
1065 -* (% style="color:red" %)**4**(%%): 4000mAh battery
1066 -* (% style="color:red" %)**8**(%%): 8500mAh battery
1067 -
1068 1068  (% class="wikigeneratedid" %)
1069 1069  (((
1070 1070  
1071 1071  )))
1072 1072  
1073 -= 7. Packing Info =
854 += 8.  Packing Info =
1074 1074  
1075 1075  (((
1076 1076  
1077 1077  
1078 1078  (% style="color:#037691" %)**Package Includes**:
1079 -)))
1080 1080  
1081 -* (((
1082 -LSE01 LoRaWAN Soil Moisture & EC Sensor x 1
861 +* NSE01 NB-IoT Soil Moisture & EC Sensor x 1
862 +* External antenna x 1
1083 1083  )))
1084 1084  
1085 1085  (((
... ... @@ -1086,24 +1086,19 @@
1086 1086  
1087 1087  
1088 1088  (% style="color:#037691" %)**Dimension and weight**:
1089 -)))
1090 1090  
1091 -* (((
1092 -Device Size: cm
870 +* Size: 195 x 125 x 55 mm
871 +* Weight:   420g
1093 1093  )))
1094 -* (((
1095 -Device Weight: g
1096 -)))
1097 -* (((
1098 -Package Size / pcs : cm
1099 -)))
1100 -* (((
1101 -Weight / pcs : g
1102 1102  
874 +(((
1103 1103  
876 +
877 +
878 +
1104 1104  )))
1105 1105  
1106 -= 8. Support =
881 += 9.  Support =
1107 1107  
1108 1108  * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
1109 1109  * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.com]]
1657245163077-232.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +81.0 KB
Content
1657246476176-652.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +492.6 KB
Content
1657249419225-449.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +81.0 KB
Content
1657249468462-536.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +483.6 KB
Content
1657249793983-486.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +85.8 KB
Content
1657249831934-534.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +72.5 KB
Content
1657249864775-321.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +87.0 KB
Content
1657249930215-289.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +77.3 KB
Content
1657249978444-674.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +139.5 KB
Content
1657249990869-686.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +96.9 KB
Content
1657250217799-140.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +98.7 KB
Content
1657250255956-604.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +99.0 KB
Content
1657259653666-883.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +344.4 KB
Content
1657260785982-288.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +138.2 KB
Content
1657261119050-993.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +126.1 KB
Content
1657261278785-153.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +126.1 KB
Content
1657271519014-786.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +71.5 KB
Content
1657327959271-447.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +78.3 KB
Content
1657328609906-564.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +492.6 KB
Content
1657328659945-416.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +78.8 KB
Content
1657328756309-230.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +78.5 KB
Content
1657328884227-504.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +483.6 KB
Content
1657329814315-101.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +85.3 KB
Content
1657330452568-615.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +71.3 KB
Content
1657330472797-498.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +68.9 KB
Content
1657330501006-241.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +119.2 KB
Content
1657330533775-472.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +74.9 KB
Content
1657330723006-866.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +74.1 KB
Content
1657331036973-987.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +83.8 KB
Content
image-20220708101224-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +22.2 KB
Content
image-20220708101605-2.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +87.5 KB
Content
image-20220708110657-3.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +251.7 KB
Content
image-20220708111918-4.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +38.8 KB
Content
image-20220708133731-5.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +8.7 KB
Content
image-20220708140453-6.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +132.7 KB
Content
image-20220708141352-7.jpeg
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +102.7 KB
Content
image-20220709084038-1.jpeg
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +72.0 KB
Content
image-20220709084137-2.jpeg
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +72.0 KB
Content
image-20220709084207-3.jpeg
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +72.0 KB
Content
image-20220709084458-4.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +199.5 KB
Content
image-20220709085040-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +200.4 KB
Content
image-20220709092052-2.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +247.3 KB
Content
image-20220709093918-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +42.2 KB
Content
image-20220709093918-2.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +61.9 KB
Content