Changes for page N95S31B -- NB-IoT Temperature & Humidity Sensor User Manual
Last modified by Mengting Qiu on 2024/04/02 16:44
Summary
-
Page properties (2 modified, 0 added, 0 removed)
-
Attachments (0 modified, 19 added, 0 removed)
- 1657245163077-232.png
- 1657246476176-652.png
- 1657249419225-449.png
- 1657249468462-536.png
- 1657249793983-486.png
- 1657249831934-534.png
- 1657249864775-321.png
- 1657249930215-289.png
- 1657249978444-674.png
- 1657249990869-686.png
- 1657250217799-140.png
- 1657250255956-604.png
- 1657259653666-883.png
- image-20220708101224-1.png
- image-20220708101605-2.png
- image-20220708110657-3.png
- image-20220708111918-4.png
- image-20220708133731-5.png
- image-20220708140453-6.png
Details
- Page properties
-
- Title
-
... ... @@ -1,1 +1,1 @@ 1 - LSE01-LoRaWAN Soil Moisture & EC Sensor User Manual1 +NSE01 - NB-IoT Soil Moisture & EC Sensor User Manual - Content
-
... ... @@ -3,9 +3,7 @@ 3 3 4 4 5 5 6 -**Table of Contents:** 7 7 8 -{{toc/}} 9 9 10 10 11 11 ... ... @@ -12,64 +12,81 @@ 12 12 13 13 14 14 15 -= 1. Introduction = 16 16 17 - == 1.1 Whatis LoRaWANSoil Moisture& EC Sensor ==14 +**Table of Contents:** 18 18 16 + 17 + 18 + 19 + 20 + 21 += 1. Introduction = 22 + 23 +== 1.1 What is LoRaWAN Soil Moisture & EC Sensor == 24 + 19 19 ((( 20 20 21 21 22 -The Dragino LSE01 is a (% style="color:#4f81bd" %)**LoRaWAN Soil Moisture & EC Sensor**(%%) for IoT of Agriculture. It is designed to measure the soil moisture of saline-alkali soil and loamy soil. The soil sensor uses FDR method to calculate the soil moisture with the compensation from soil temperature and conductivity. It also has been calibrated in factory for Mineral soil type. 23 -))) 28 +Dragino NSE01 is an (% style="color:blue" %)**NB-IOT soil moisture & EC sensor**(%%) for agricultural IoT. Used to measure the soil moisture of saline-alkali soil and loam. The soil sensor uses the FDR method to calculate soil moisture and compensates it with soil temperature and electrical conductivity. It has also been calibrated for mineral soil types at the factory. 24 24 25 -((( 26 -It detects (% style="color:#4f81bd" %)**Soil Moisture**(%%), (% style="color:#4f81bd" %)**Soil Temperature**(%%) and (% style="color:#4f81bd" %)**Soil Conductivity**(%%), and uploads the value via wireless to LoRaWAN IoT Server. 27 -))) 30 +It can detect (% style="color:blue" %)**Soil Moisture, Soil Temperature and Soil Conductivity**(%%), and upload its value to the server wirelessly. 28 28 29 -((( 30 -The LoRa wireless technology used in LES01 allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption. 31 -))) 32 +The wireless technology used in NSE01 allows the device to send data at a low data rate and reach ultra-long distances, providing ultra-long-distance spread spectrum Communication. 32 32 33 -((( 34 -LES01 is powered by (% style="color:#4f81bd" %)**4000mA or 8500mAh Li-SOCI2 battery**(%%), It is designed for long term use up to 10 years. 35 -))) 34 +NSE01 are powered by (% style="color:blue" %)**8500mAh Li-SOCI2**(%%) batteries, which can be used for up to 5 years. 36 36 37 -((( 38 -Each LES01 is pre-load with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect after power on. 36 + 39 39 ))) 40 40 41 - 42 42 [[image:1654503236291-817.png]] 43 43 44 44 45 -[[image:16545 03265560-120.png]]42 +[[image:1657245163077-232.png]] 46 46 47 47 48 48 49 49 == 1.2 Features == 50 50 51 - * LoRaWAN 1.0.3 Class A52 -* Ultra lowpower consumption48 + 49 +* NB-IoT Bands: B1/B3/B8/B5/B20/B28 @H-FDD 53 53 * Monitor Soil Moisture 54 54 * Monitor Soil Temperature 55 55 * Monitor Soil Conductivity 56 -* Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865 57 57 * AT Commands to change parameters 58 58 * Uplink on periodically 59 59 * Downlink to change configure 60 60 * IP66 Waterproof Enclosure 61 -* 4000mAh or 8500mAh Battery for long term use 57 +* Ultra-Low Power consumption 58 +* AT Commands to change parameters 59 +* Micro SIM card slot for NB-IoT SIM 60 +* 8500mAh Battery for long term use 62 62 62 +== 1.3 Specification == 63 63 64 -== 1.3 Specification == 65 65 65 +(% style="color:#037691" %)**Common DC Characteristics:** 66 + 67 +* Supply Voltage: 2.1v ~~ 3.6v 68 +* Operating Temperature: -40 ~~ 85°C 69 + 70 +(% style="color:#037691" %)**NB-IoT Spec:** 71 + 72 +* - B1 @H-FDD: 2100MHz 73 +* - B3 @H-FDD: 1800MHz 74 +* - B8 @H-FDD: 900MHz 75 +* - B5 @H-FDD: 850MHz 76 +* - B20 @H-FDD: 800MHz 77 +* - B28 @H-FDD: 700MHz 78 + 79 +(% style="color:#037691" %)**Probe Specification:** 80 + 66 66 Measure Volume: Base on the centra pin of the probe, a cylinder with 7cm diameter and 10cm height. 67 67 68 -[[image:image-20220 606162220-5.png]]83 +[[image:image-20220708101224-1.png]] 69 69 70 70 71 71 72 -== 1.4 Applications == 87 +== 1.4 Applications == 73 73 74 74 * Smart Agriculture 75 75 ... ... @@ -76,729 +76,547 @@ 76 76 (% class="wikigeneratedid" id="H200B1.5FirmwareChangelog" %) 77 77 78 78 79 -== 1.5 Firmware Changelog==94 +== 1.5 Pin Definitions == 80 80 81 81 82 - **LSE01v1.0 :** Release97 +[[image:1657246476176-652.png]] 83 83 84 84 85 85 86 -= 2. ConfigureLSE01 to connect toLoRaWANnetwork=101 += 2. Use NSE01 to communicate with IoT Server = 87 87 88 -== 2.1 How it works == 103 +== 2.1 How it works == 89 89 105 + 90 90 ((( 91 -The LSE01 isconfiguredasLoRaWANOTAAClass Amodebydefault.IthasOTAAkeystojoinLoRaWANnetwork.Toconnect a localLoRaWAN network,you need toinputtheOTAAkeysin theLoRaWANserverandpoweronthe LSE0150. It willautomaticallyjointhenetworkviaOTAA and starttosendthesensor value107 +The NSE01 is equipped with a NB-IoT module, the pre-loaded firmware in NSE01 will get environment data from sensors and send the value to local NB-IoT network via the NB-IoT module. The NB-IoT network will forward this value to IoT server via the protocol defined by NSE01. 92 92 ))) 93 93 110 + 94 94 ((( 95 - In case you can’t set the OTAA keys in theLoRaWAN OTAA server,andyouhave tousethe keysfromtheserver, you can [[useAT Commands >>||anchor="H3.200BUsingtheATCommands"]].112 +The diagram below shows the working flow in default firmware of NSE01: 96 96 ))) 97 97 115 +[[image:image-20220708101605-2.png]] 98 98 117 +((( 118 + 119 +))) 99 99 100 -== 2.2 Quick guide to connect to LoRaWAN server (OTAA) == 101 101 102 -Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LG308>>url:http://www.dragino.com/products/lora/item/140-lg308.html]] as a LoRaWAN gateway in this example. 103 103 123 +== 2.2 Configure the NSE01 == 104 104 105 -[[image:1654503992078-669.png]] 106 106 126 +=== 2.2.1 Test Requirement === 107 107 108 -The LG308 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server. 109 109 129 +To use NSE01 in your city, make sure meet below requirements: 110 110 111 -(% style="color:blue" %)**Step 1**(%%): Create a device in TTN with the OTAA keys from LSE01. 131 +* Your local operator has already distributed a NB-IoT Network there. 132 +* The local NB-IoT network used the band that NSE01 supports. 133 +* Your operator is able to distribute the data received in their NB-IoT network to your IoT server. 112 112 113 -Each LSE01 is shipped with a sticker with the default device EUI as below: 114 - 115 -[[image:image-20220606163732-6.jpeg]] 116 - 117 -You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot: 118 - 119 -**Add APP EUI in the application** 120 - 121 - 122 -[[image:1654504596150-405.png]] 123 - 124 - 125 - 126 -**Add APP KEY and DEV EUI** 127 - 128 -[[image:1654504683289-357.png]] 129 - 130 - 131 - 132 -(% style="color:blue" %)**Step 2**(%%): Power on LSE01 133 - 134 - 135 -Put a Jumper on JP2 to power on the device. ( The Jumper must be in FLASH position). 136 - 137 -[[image:image-20220606163915-7.png]] 138 - 139 - 140 -(% style="color:blue" %)**Step 3**(%%)**:** The LSE01 will auto join to the TTN network. After join success, it will start to upload messages to TTN and you can see the messages in the panel. 141 - 142 -[[image:1654504778294-788.png]] 143 - 144 - 145 - 146 -== 2.3 Uplink Payload == 147 - 148 - 149 -=== 2.3.1 MOD~=0(Default Mode) === 150 - 151 -LSE01 will uplink payload via LoRaWAN with below payload format: 152 - 153 153 ((( 154 - Uplinkpayload includesintotal 11bytes.136 +Below figure shows our testing structure. Here we have NB-IoT network coverage by China Mobile, the band they use is B8. The NSE01 will use CoAP((% style="color:red" %)120.24.4.116:5683)(%%) or raw UDP((% style="color:red" %)120.24.4.116:5601)(%%) or MQTT((% style="color:red" %)120.24.4.116:1883)(%%)or TCP((% style="color:red" %)120.24.4.116:5600)(%%)protocol to send data to the test server 155 155 ))) 156 156 157 -(% border="1" cellspacing="10" style="background-color:#ffffcc; width:500px" %) 158 -|((( 159 -**Size** 160 160 161 -**(bytes)** 162 -)))|**2**|**2**|**2**|**2**|**2**|**1** 163 -|**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|((( 164 -Temperature 140 +[[image:1657249419225-449.png]] 165 165 166 -(Reserve, Ignore now) 167 -)))|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]]|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]]|((( 168 -MOD & Digital Interrupt 169 169 170 -(Optional) 171 -))) 172 172 144 +=== 2.2.2 Insert SIM card === 173 173 146 +Insert the NB-IoT Card get from your provider. 174 174 148 +User need to take out the NB-IoT module and insert the SIM card like below: 175 175 176 -=== 2.3.2 MOD~=1(Original value) === 177 177 178 - Thismode canget the original AD value of moisture and original conductivity (with temperature drift compensation).151 +[[image:1657249468462-536.png]] 179 179 180 -(% border="1" cellspacing="10" style="background-color:#ffffcc; width:500px" %) 181 -|((( 182 -**Size** 183 183 184 -**(bytes)** 185 -)))|**2**|**2**|**2**|**2**|**2**|**1** 186 -|**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|((( 187 -Temperature 188 188 189 -(Reserve, Ignore now) 190 -)))|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]](raw)|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]](raw)|((( 191 -MOD & Digital Interrupt 155 +=== 2.2.3 Connect USB – TTL to NSE01 to configure it === 192 192 193 -(Optional) 194 -))) 195 - 196 - 197 - 198 - 199 -=== 2.3.3 Battery Info === 200 - 201 201 ((( 202 -Check the battery voltage for LSE01. 203 -))) 204 - 205 205 ((( 206 -E x1: 0x0B45=2885mV159 +User need to configure NSE01 via serial port to set the (% style="color:blue" %)**Server Address** / **Uplink Topic** (%%)to define where and how-to uplink packets. NSE01 support AT Commands, user can use a USB to TTL adapter to connect to NSE01 and use AT Commands to configure it, as below. 207 207 ))) 208 - 209 -((( 210 -Ex2: 0x0B49 = 2889mV 211 211 ))) 212 212 213 213 164 +**Connection:** 214 214 215 - ===2.3.4Soil Moisture===166 + (% style="background-color:yellow" %)USB TTL GND <~-~-~-~-> GND 216 216 217 -((( 218 -Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil. 219 -))) 168 + (% style="background-color:yellow" %)USB TTL TXD <~-~-~-~-> UART_RXD 220 220 221 -((( 222 -For example, if the data you get from the register is __0x05 0xDC__, the moisture content in the soil is 223 -))) 170 + (% style="background-color:yellow" %)USB TTL RXD <~-~-~-~-> UART_TXD 224 224 225 -((( 226 - 227 -))) 228 228 229 -((( 230 -(% style="color:#4f81bd" %)**05DC(H) = 1500(D) /100 = 15%.** 231 -))) 173 +In the PC, use below serial tool settings: 232 232 175 +* Baud: (% style="color:green" %)**9600** 176 +* Data bits:** (% style="color:green" %)8(%%)** 177 +* Stop bits: (% style="color:green" %)**1** 178 +* Parity: (% style="color:green" %)**None** 179 +* Flow Control: (% style="color:green" %)**None** 233 233 234 - 235 -=== 2.3.5 Soil Temperature === 236 - 237 237 ((( 238 - Getthe temperatureinthe soil. Thevaluerangeoftheregisteris-4000 - +800(Decimal),dividethis valueby100 toget thetemperatureinthesoil.Forexample,ifthedatayougetfromtheregisteris 0x09 0xEC,the temperaturecontentinthesoilis182 +Make sure the switch is in FLASH position, then power on device by connecting the jumper on NSE01. NSE01 will output system info once power on as below, we can enter the (% style="color:green" %)**password: 12345678**(%%) to access AT Command input. 239 239 ))) 240 240 241 -((( 242 -**Example**: 243 -))) 185 +[[image:image-20220708110657-3.png]] 244 244 245 -((( 246 -If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/100 = 2.61 °C 247 -))) 187 +(% style="color:red" %)Note: the valid AT Commands can be found at: (%%)[[http:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/]] 248 248 249 -((( 250 -If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C 251 -))) 252 252 253 253 191 +=== 2.2.4 Use CoAP protocol to uplink data === 254 254 255 -= ==2.3.6SoilConductivity (EC) ===193 +(% style="color:red" %)Note: if you don't have CoAP server, you can refer this link to set up one: (%%)[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/>>http://wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/]] 256 256 257 -((( 258 -Obtain (% style="color:#4f81bd" %)**__soluble salt concentration__**(%%) in soil or (% style="color:#4f81bd" %)**__soluble ion concentration in liquid fertilizer__**(%%) or (% style="color:#4f81bd" %)**__planting medium__**(%%). The value range of the register is 0 - 20000(Decimal)( Can be greater than 20000). 259 -))) 260 260 261 -((( 262 -For example, if the data you get from the register is 0x00 0xC8, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm. 263 -))) 196 +**Use below commands:** 264 264 265 -(( (266 - Generally, the ECvalueofirrigationwateris lessthan800uS / cm.267 -)) )198 +* (% style="color:blue" %)**AT+PRO=1** (%%) ~/~/ Set to use CoAP protocol to uplink 199 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5683 ** (%%)~/~/ to set CoAP server address and port 200 +* (% style="color:blue" %)**AT+URI=5,11,"mqtt",11,"coap",12,"0",15,"c=text1",23,"0" ** (%%) ~/~/Set COAP resource path 268 268 269 -((( 270 - 271 -))) 202 +For parameter description, please refer to AT command set 272 272 273 -((( 274 - 275 -))) 204 +[[image:1657249793983-486.png]] 276 276 277 -=== 2.3.7 MOD === 278 278 279 - Firmware versionatleast v2.1 supportschangingmode.207 +After configure the server address and (% style="color:green" %)**reset the device**(%%) (via AT+ATZ ), NSE01 will start to uplink sensor values to CoAP server. 280 280 281 - For example, bytes[10]=90209 +[[image:1657249831934-534.png]] 282 282 283 -mod=(bytes[10]>>7)&0x01=1. 284 284 285 285 286 - **DownlinkCommand:**213 +=== 2.2.5 Use UDP protocol to uplink data(Default protocol) === 287 287 288 - If payload=0x0A00, workmode=0215 +This feature is supported since firmware version v1.0.1 289 289 290 -If** **payload =** **0x0A01, workmode=1 291 291 218 +* (% style="color:blue" %)**AT+PRO=2 ** (%%) ~/~/ Set to use UDP protocol to uplink 219 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5601 ** (%%) ~/~/ to set UDP server address and port 220 +* (% style="color:blue" %)**AT+CFM=1 ** (%%) ~/~/If the server does not respond, this command is unnecessary 292 292 222 +[[image:1657249864775-321.png]] 293 293 294 -=== 2.3.8 Decode payload in The Things Network === 295 295 296 - While using TTN network, you can add the payload format to decode the payload.225 +[[image:1657249930215-289.png]] 297 297 298 298 299 -[[image:1654505570700-128.png]] 300 300 301 -((( 302 -The payload decoder function for TTN is here: 303 -))) 229 +=== 2.2.6 Use MQTT protocol to uplink data === 304 304 305 -((( 306 -LSE01 TTN Payload Decoder: [[https:~~/~~/www.dropbox.com/sh/si8icbrjlamxqdb/AAACYwjsxxr5fj_vpqRtrETAa?dl=0>>https://www.dropbox.com/sh/si8icbrjlamxqdb/AAACYwjsxxr5fj_vpqRtrETAa?dl=0]] 307 -))) 231 +This feature is supported since firmware version v110 308 308 309 309 310 -== 2.4 Uplink Interval == 234 +* (% style="color:blue" %)**AT+PRO=3 ** (%%) ~/~/Set to use MQTT protocol to uplink 235 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,1883 ** (%%) ~/~/Set MQTT server address and port 236 +* (% style="color:blue" %)**AT+CLIENT=CLIENT ** (%%)~/~/Set up the CLIENT of MQTT 237 +* (% style="color:blue" %)**AT+UNAME=UNAME **(%%)~/~/Set the username of MQTT 238 +* (% style="color:blue" %)**AT+PWD=PWD **(%%)~/~/Set the password of MQTT 239 +* (% style="color:blue" %)**AT+PUBTOPIC=NSE01_PUB **(%%)~/~/Set the sending topic of MQTT 240 +* (% style="color:blue" %)**AT+SUBTOPIC=NSE01_SUB **(%%) ~/~/Set the subscription topic of MQTT 311 311 312 - The LSE01 by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link:[[Change Uplink Interval>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H4.1ChangeUplinkInterval"]]242 +[[image:1657249978444-674.png]] 313 313 314 314 245 +[[image:1657249990869-686.png]] 315 315 316 -== 2.5 Downlink Payload == 317 317 318 -By default, LSE50 prints the downlink payload to console port. 319 - 320 -[[image:image-20220606165544-8.png]] 321 - 322 - 323 323 ((( 324 - **Examples:**249 +MQTT protocol has a much higher power consumption compare vs UDP / CoAP protocol. Please check the power analyze document and adjust the uplink period to a suitable interval. 325 325 ))) 326 326 327 -((( 328 - 329 -))) 330 330 331 -* ((( 332 -**Set TDC** 333 -))) 334 334 335 -((( 336 -If the payload=0100003C, it means set the END Node’s TDC to 0x00003C=60(S), while type code is 01. 337 -))) 254 +=== 2.2.7 Use TCP protocol to uplink data === 338 338 339 -((( 340 -Payload: 01 00 00 1E TDC=30S 341 -))) 256 +This feature is supported since firmware version v110 342 342 343 -((( 344 -Payload: 01 00 00 3C TDC=60S 345 -))) 346 346 347 -((( 348 - 349 -))) 259 +* (% style="color:blue" %)**AT+PRO=4 ** (%%) ~/~/ Set to use TCP protocol to uplink 260 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5600 **(%%) ~/~/ to set TCP server address and port 350 350 351 -* ((( 352 -**Reset** 353 -))) 262 +[[image:1657250217799-140.png]] 354 354 355 -((( 356 -If payload = 0x04FF, it will reset the LSE01 357 -))) 358 358 265 +[[image:1657250255956-604.png]] 359 359 360 -* **CFM** 361 361 362 -Downlink Payload: 05000001, Set AT+CFM=1 or 05000000 , set AT+CFM=0 363 363 269 +=== 2.2.8 Change Update Interval === 364 364 271 +User can use below command to change the (% style="color:green" %)**uplink interval**. 365 365 366 - ==2.6ShowDatainDataCake IoT Server==273 +* (% style="color:blue" %)**AT+TDC=600 ** (%%)~/~/ Set Update Interval to 600s 367 367 368 368 ((( 369 - [[DATACAKE>>url:https://datacake.co/]] provides a human friendly interfaceto show the sensordata,once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps:276 +(% style="color:red" %)**NOTE:** 370 370 ))) 371 371 372 372 ((( 373 - 280 +(% style="color:red" %)1. By default, the device will send an uplink message every 1 hour. 374 374 ))) 375 375 376 -((( 377 -**Step 1**: Be sure that your device is programmed and properly connected to the network at this time. 378 -))) 379 379 380 -((( 381 -**Step 2**: To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps: 382 -))) 383 383 285 +== 2.3 Uplink Payload == 384 384 385 - [[image:1654505857935-743.png]]287 +In this mode, uplink payload includes in total 18 bytes 386 386 289 +(% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:510px" %) 290 +|=(% style="width: 50px;" %)((( 291 +**Size(bytes)** 292 +)))|=(% style="width: 50px;" %)**6**|=(% style="width: 25px;" %)2|=(% style="width: 25px;" %)**2**|=(% style="width: 80px;" %)**1**|=(% style="width: 80px;" %)**2**|=(% style="width: 80px;" %)**2**|=(% style="width: 80px;" %)**2**|=(% style="width: 40px;" %)**1** 293 +|(% style="width:97px" %)**Value**|(% style="width:83px" %)[[Device ID>>||anchor="H"]]|(% style="width:41px" %)[[Ver>>||anchor="H"]]|(% style="width:46px" %)[[BAT>>||anchor="H"]]|(% style="width:123px" %)[[Signal Strength>>||anchor="H"]]|(% style="width:108px" %)[[Soil Moisture>>||anchor="H"]]|(% style="width:133px" %)[[Soil Temperature>>||anchor="H"]]|(% style="width:159px" %)[[Soil Conductivity(EC)>>||anchor="H"]]|(% style="width:80px" %)[[Interrupt>>||anchor="H"]] 387 387 388 - [[image:1654505874829-548.png]]295 +If we use the MQTT client to subscribe to this MQTT topic, we can see the following information when the NSE01 uplink data. 389 389 390 -**Step 3:** Create an account or log in Datacake. 391 391 392 - **Step 4:**Search theLSE01and add DevEUI.298 +[[image:image-20220708111918-4.png]] 393 393 394 394 395 - [[image:1654505905236-553.png]]301 +The payload is ASCII string, representative same HEX: 396 396 303 +0x72403155615900640c7817075e0a8c02f900 where: 397 397 398 -After added, the sensor data arrive TTN, it will also arrive and show in Mydevices. 305 +* Device ID: 0x 724031556159 = 724031556159 306 +* Version: 0x0064=100=1.0.0 399 399 400 -[[image:1654505925508-181.png]] 308 +* BAT: 0x0c78 = 3192 mV = 3.192V 309 +* Singal: 0x17 = 23 310 +* Soil Moisture: 0x075e= 1886 = 18.86 % 311 +* Soil Temperature:0x0a8c =2700=27 °C 312 +* Soil Conductivity(EC) = 0x02f9 =761 uS /cm 313 +* Interrupt: 0x00 = 0 401 401 315 +== 2.4 Payload Explanation and Sensor Interface == 402 402 403 403 404 -== 2. 7 FrequencyPlans==318 +=== 2.4.1 Device ID === 405 405 406 - TheLSE01 uses OTAA modendbelowfrequency plans by default.Ifuser wanttouse itwithdifferentfrequency plan, pleaserefertheAT commandsets.320 +By default, the Device ID equal to the last 6 bytes of IMEI. 407 407 322 +User can use (% style="color:blue" %)**AT+DEUI**(%%) to set Device ID 408 408 409 - === 2.7.1EU863-870 (EU868) ===324 +**Example:** 410 410 411 - (% style="color:#037691" %)** Uplink:**326 +AT+DEUI=A84041F15612 412 412 413 - 868.1-SF7BW125toSF12BW125328 +The Device ID is stored in a none-erase area, Upgrade the firmware or run AT+FDR won't erase Device ID. 414 414 415 -868.3 - SF7BW125 to SF12BW125 and SF7BW250 416 416 417 -868.5 - SF7BW125 to SF12BW125 418 418 419 - 867.1- SF7BW125toSF12BW125332 +=== 2.4.2 Version Info === 420 420 421 - 867.3-SF7BW125toSF12BW125334 +Specify the software version: 0x64=100, means firmware version 1.00. 422 422 423 - 867.5-SF7BW125toSF12BW125336 +For example: 0x00 64 : this device is NSE01 with firmware version 1.0.0. 424 424 425 -867.7 - SF7BW125 to SF12BW125 426 426 427 -867.9 - SF7BW125 to SF12BW125 428 428 429 - 868.8-FSK340 +=== 2.4.3 Battery Info === 430 430 342 +((( 343 +Check the battery voltage for LSE01. 344 +))) 431 431 432 -(% style="color:#037691" %)** Downlink:** 346 +((( 347 +Ex1: 0x0B45 = 2885mV 348 +))) 433 433 434 -Uplink channels 1-9 (RX1) 350 +((( 351 +Ex2: 0x0B49 = 2889mV 352 +))) 435 435 436 -869.525 - SF9BW125 (RX2 downlink only) 437 437 438 438 356 +=== 2.4.4 Signal Strength === 439 439 440 - ===2.7.2US902-928(US915)===358 +NB-IoT Network signal Strength. 441 441 442 - Usedin USA, Canadaand South America. Default use CHE=2360 +**Ex1: 0x1d = 29** 443 443 444 -(% style="color: #037691" %)**Uplink:**362 +(% style="color:blue" %)**0**(%%) -113dBm or less 445 445 446 - 903.9-SF7BW125toSF10BW125364 +(% style="color:blue" %)**1**(%%) -111dBm 447 447 448 - 904.1- SF7BW125toSF10BW125366 +(% style="color:blue" %)**2...30**(%%) -109dBm... -53dBm 449 449 450 - 904.3-SF7BW125toSF10BW125368 +(% style="color:blue" %)**31** (%%) -51dBm or greater 451 451 452 -9 04.5-SF7BW125toSF10BW125370 +(% style="color:blue" %)**99** (%%) Not known or not detectable 453 453 454 -904.7 - SF7BW125 to SF10BW125 455 455 456 -904.9 - SF7BW125 to SF10BW125 457 457 458 - 905.1- SF7BW125toSF10BW125374 +=== 2.4.5 Soil Moisture === 459 459 460 -905.3 - SF7BW125 to SF10BW125 376 +((( 377 +Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil. 378 +))) 461 461 380 +((( 381 +For example, if the data you get from the register is **__0x05 0xDC__**, the moisture content in the soil is 382 +))) 462 462 463 -(% style="color:#037691" %)**Downlink:** 384 +((( 385 + 386 +))) 464 464 465 -923.3 - SF7BW500 to SF12BW500 388 +((( 389 +(% style="color:#4f81bd" %)**05DC(H) = 1500(D) /100 = 15%.** 390 +))) 466 466 467 -923.9 - SF7BW500 to SF12BW500 468 468 469 -924.5 - SF7BW500 to SF12BW500 470 470 471 - 925.1-SF7BW500toSF12BW500394 +=== 2.4.6 Soil Temperature === 472 472 473 -925.7 - SF7BW500 to SF12BW500 396 +((( 397 + Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is __**0x09 0xEC**__, the temperature content in the soil is 398 +))) 474 474 475 -926.3 - SF7BW500 to SF12BW500 400 +((( 401 +**Example**: 402 +))) 476 476 477 -926.9 - SF7BW500 to SF12BW500 404 +((( 405 +If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/100 = 2.61 °C 406 +))) 478 478 479 -927.5 - SF7BW500 to SF12BW500 408 +((( 409 +If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C 410 +))) 480 480 481 -923.3 - SF12BW500(RX2 downlink only) 482 482 483 483 414 +=== 2.4.7 Soil Conductivity (EC) === 484 484 485 -=== 2.7.3 CN470-510 (CN470) === 416 +((( 417 +Obtain (% style="color:#4f81bd" %)**__soluble salt concentration__**(%%) in soil or (% style="color:#4f81bd" %)**__soluble ion concentration in liquid fertilizer__**(%%) or (% style="color:#4f81bd" %)**__planting medium__**(%%). The value range of the register is 0 - 20000(Decimal)( Can be greater than 20000). 418 +))) 486 486 487 -Used in China, Default use CHE=1 420 +((( 421 +For example, if the data you get from the register is __**0x00 0xC8**__, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm. 422 +))) 488 488 489 -(% style="color:#037691" %)**Uplink:** 424 +((( 425 +Generally, the EC value of irrigation water is less than 800uS / cm. 426 +))) 490 490 491 -486.3 - SF7BW125 to SF12BW125 428 +((( 429 + 430 +))) 492 492 493 -486.5 - SF7BW125 to SF12BW125 432 +((( 433 + 434 +))) 494 494 495 -4 86.7-SF7BW125toSF12BW125436 +=== 2.4.8 Digital Interrupt === 496 496 497 - 486.9-SF7BW125toSF12BW125438 +Digital Interrupt refers to pin (% style="color:blue" %)**GPIO_EXTI**(%%), and there are different trigger methods. When there is a trigger, the NSE01 will send a packet to the server. 498 498 499 - 487.1- SF7BW125 toSF12BW125440 +The command is: 500 500 501 - 487.3-SF7BW125to SF12BW125442 +(% style="color:blue" %)**AT+INTMOD=3 **(%%) ~/~/(more info about INMOD please refer [[**AT Command Manual**>>url:https://www.dragino.com/downloads/downloads/NB-IoT/NBSN95/DRAGINO_NBSN95-NB_AT%20Commands_v1.1.0.pdf]])**.** 502 502 503 -487.5 - SF7BW125 to SF12BW125 504 504 505 - 487.7-SF7BW125toSF12BW125445 +The lower four bits of this data field shows if this packet is generated by interrupt or not. [[Click here>>||anchor="H"]] for the hardware and software set up. 506 506 507 507 508 - (% style="color:#037691" %)**Downlink:**448 +Example: 509 509 510 - 506.7-SF7BW125to SF12BW125450 +0x(00): Normal uplink packet. 511 511 512 - 506.9 - SF7BW125toSF12BW125452 +0x(01): Interrupt Uplink Packet. 513 513 514 -507.1 - SF7BW125 to SF12BW125 515 515 516 -507.3 - SF7BW125 to SF12BW125 517 517 518 - 507.5- SF7BW125 toSF12BW125456 +=== 2.4.9 +5V Output === 519 519 520 - 507.7-SF7BW125 toSF12BW125458 +NSE01 will enable +5V output before all sampling and disable the +5v after all sampling. 521 521 522 -507.9 - SF7BW125 to SF12BW125 523 523 524 -5 08.1-SF7BW125toSF12BW125461 +The 5V output time can be controlled by AT Command. 525 525 526 - 505.3 - SF12BW125(RX2downlinkonly)463 +(% style="color:blue" %)**AT+5VT=1000** 527 527 465 +Means set 5V valid time to have 1000ms. So the real 5V output will actually have 1000ms + sampling time for other sensors. 528 528 529 529 530 -=== 2.7.4 AU915-928(AU915) === 531 531 532 -D efaultuse CHE=2469 +== 2.5 Downlink Payload == 533 533 534 - (% style="color:#037691"%)**Uplink:**471 +By default, NSE01 prints the downlink payload to console port. 535 535 536 - 916.8-SF7BW125 to SF12BW125473 +[[image:image-20220708133731-5.png]] 537 537 538 -917.0 - SF7BW125 to SF12BW125 539 539 540 -917.2 - SF7BW125 to SF12BW125 541 541 542 -917.4 - SF7BW125 to SF12BW125 477 +((( 478 +(% style="color:blue" %)**Examples:** 479 +))) 543 543 544 -917.6 - SF7BW125 to SF12BW125 481 +((( 482 + 483 +))) 545 545 546 -917.8 - SF7BW125 to SF12BW125 485 +* ((( 486 +(% style="color:blue" %)**Set TDC** 487 +))) 547 547 548 -918.0 - SF7BW125 to SF12BW125 489 +((( 490 +If the payload=0100003C, it means set the END Node's TDC to 0x00003C=60(S), while type code is 01. 491 +))) 549 549 550 -918.2 - SF7BW125 to SF12BW125 493 +((( 494 +Payload: 01 00 00 1E TDC=30S 495 +))) 551 551 497 +((( 498 +Payload: 01 00 00 3C TDC=60S 499 +))) 552 552 553 -(% style="color:#037691" %)**Downlink:** 501 +((( 502 + 503 +))) 554 554 555 -923.3 - SF7BW500 to SF12BW500 505 +* ((( 506 +(% style="color:blue" %)**Reset** 507 +))) 556 556 557 -923.9 - SF7BW500 to SF12BW500 509 +((( 510 +If payload = 0x04FF, it will reset the NSE01 511 +))) 558 558 559 -924.5 - SF7BW500 to SF12BW500 560 560 561 - 925.1-SF7BW500toSF12BW500514 +* (% style="color:blue" %)**INTMOD** 562 562 563 - 925.7-SF7BW500 toSF12BW500516 +Downlink Payload: 06000003, Set AT+INTMOD=3 564 564 565 -926.3 - SF7BW500 to SF12BW500 566 566 567 -926.9 - SF7BW500 to SF12BW500 568 568 569 - 927.5-SF7BW500toSF12BW500520 +== 2.6 LED Indicator == 570 570 571 -923.3 - SF12BW500(RX2 downlink only) 522 +((( 523 +The NSE01 has an internal LED which is to show the status of different state. 572 572 573 573 526 +* When power on, NSE01 will detect if sensor probe is connected, if probe detected, LED will blink four times. (no blinks in this step is no probe) 527 +* Then the LED will be on for 1 second means device is boot normally. 528 +* After NSE01 join NB-IoT network. The LED will be ON for 3 seconds. 529 +* For each uplink probe, LED will be on for 500ms. 530 +))) 574 574 575 -=== 2.7.5 AS920-923 & AS923-925 (AS923) === 576 576 577 -(% style="color:#037691" %)**Default Uplink channel:** 578 578 579 -923.2 - SF7BW125 to SF10BW125 580 580 581 - 923.4 - SF7BW125to SF10BW125535 +== 2.7 Installation in Soil == 582 582 537 +__**Measurement the soil surface**__ 583 583 584 - (%style="color:#037691"%)**AdditionalUplinkChannel**:539 +Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting. [[https:~~/~~/img.alicdn.com/imgextra/i3/2005165265/O1CN010rj9Oh1olPsQxrdUK_!!2005165265.jpg>>url:https://img.alicdn.com/imgextra/i3/2005165265/O1CN010rj9Oh1olPsQxrdUK_!!2005165265.jpg]] 585 585 586 - (OTAA mode, channel added by JoinAcceptmessage)541 +[[image:1657259653666-883.png]] 587 587 588 -(% style="color:#037691" %)**AS920~~AS923 for Japan, Malaysia, Singapore**: 589 589 590 -922.2 - SF7BW125 to SF10BW125 544 +((( 545 + 591 591 592 -922.4 - SF7BW125 to SF10BW125 547 +((( 548 +Dig a hole with diameter > 20CM. 549 +))) 593 593 594 -922.6 - SF7BW125 to SF10BW125 551 +((( 552 +Horizontal insert the probe to the soil and fill the hole for long term measurement. 553 +))) 554 +))) 595 595 596 - 922.8 - SF7BW125to SF10BW125556 +[[image:1654506665940-119.png]] 597 597 598 -923.0 - SF7BW125 to SF10BW125 558 +((( 559 + 560 +))) 599 599 600 -922.0 - SF7BW125 to SF10BW125 601 601 563 +== 2.8 Firmware Change Log == 602 602 603 -(% style="color:#037691" %)**AS923 ~~ AS925 for Brunei, Cambodia, Hong Kong, Indonesia, Laos, Taiwan, Thailand, Vietnam**: 604 604 605 - 923.6-SF7BW125toSF10BW125566 +Download URL & Firmware Change log 606 606 607 - 923.8-F7BW125toSF10BW125568 +[[www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/Firmware/]] 608 608 609 -924.0 - SF7BW125 to SF10BW125 610 610 611 - 924.2- SF7BW125toSF10BW125571 +Upgrade Instruction: [[Upgrade_Firmware>>||anchor="H"]] 612 612 613 -924.4 - SF7BW125 to SF10BW125 614 614 615 -924.6 - SF7BW125 to SF10BW125 616 616 575 +== 2.9 Battery Analysis == 617 617 618 - (%style="color:#037691"%)**Downlink:**577 +=== 2.9.1 Battery Type === 619 619 620 -Uplink channels 1-8 (RX1) 621 621 622 - 923.2-SF10BW125 (RX2)580 +The NSE01 battery is a combination of an 8500mAh Li/SOCI2 Battery and a Super Capacitor. The battery is none-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter. 623 623 624 624 583 +The battery is designed to last for several years depends on the actually use environment and update interval. 625 625 626 -=== 2.7.6 KR920-923 (KR920) === 627 627 628 - Default channel:586 +The battery related documents as below: 629 629 630 -922.1 - SF7BW125 to SF12BW125 588 +* [[Battery Dimension>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]] 589 +* [[Lithium-Thionyl Chloride Battery>>url:http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]][[ datasheet>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]] 590 +* [[Lithium-ion Battery-Capacitor datasheet>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]] 631 631 632 -922.3 - SF7BW125 to SF12BW125 633 - 634 -922.5 - SF7BW125 to SF12BW125 635 - 636 - 637 -(% style="color:#037691" %)**Uplink: (OTAA mode, channel added by JoinAccept message)** 638 - 639 -922.1 - SF7BW125 to SF12BW125 640 - 641 -922.3 - SF7BW125 to SF12BW125 642 - 643 -922.5 - SF7BW125 to SF12BW125 644 - 645 -922.7 - SF7BW125 to SF12BW125 646 - 647 -922.9 - SF7BW125 to SF12BW125 648 - 649 -923.1 - SF7BW125 to SF12BW125 650 - 651 -923.3 - SF7BW125 to SF12BW125 652 - 653 - 654 -(% style="color:#037691" %)**Downlink:** 655 - 656 -Uplink channels 1-7(RX1) 657 - 658 -921.9 - SF12BW125 (RX2 downlink only; SF12BW125 might be changed to SF9BW125) 659 - 660 - 661 - 662 -=== 2.7.7 IN865-867 (IN865) === 663 - 664 -(% style="color:#037691" %)** Uplink:** 665 - 666 -865.0625 - SF7BW125 to SF12BW125 667 - 668 -865.4025 - SF7BW125 to SF12BW125 669 - 670 -865.9850 - SF7BW125 to SF12BW125 671 - 672 - 673 -(% style="color:#037691" %) **Downlink:** 674 - 675 -Uplink channels 1-3 (RX1) 676 - 677 -866.550 - SF10BW125 (RX2) 678 - 679 - 680 - 681 - 682 -== 2.8 LED Indicator == 683 - 684 -The LSE01 has an internal LED which is to show the status of different state. 685 - 686 -* Blink once when device power on. 687 -* Solid ON for 5 seconds once device successful Join the network. 688 -* Blink once when device transmit a packet. 689 - 690 -== 2.9 Installation in Soil == 691 - 692 -**Measurement the soil surface** 693 - 694 - 695 -[[image:1654506634463-199.png]] 696 - 697 697 ((( 698 -((( 699 -Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting. 593 +[[image:image-20220708140453-6.png]] 700 700 ))) 701 -))) 702 702 703 703 704 -[[image:1654506665940-119.png]] 705 705 706 -((( 707 -Dig a hole with diameter > 20CM. 708 -))) 598 +2.9.2 709 709 710 -((( 711 -Horizontal insert the probe to the soil and fill the hole for long term measurement. 712 -))) 600 +Dragino battery powered product are all runs in Low Power mode. We have an update battery calculator which base on the measurement of the real device. User can use this calculator to check the battery life and calculate the battery life if want to use different transmit interval. 713 713 714 714 715 - ==2.10FirmwareChangeLog ==603 +Instruction to use as below: 716 716 717 -((( 718 -**Firmware download link:** 719 -))) 720 720 721 -((( 722 -[[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/]] 723 -))) 606 +Step 1: Downlink the up-to-date DRAGINO_Battery_Life_Prediction_Table.xlsx from: 724 724 725 -((( 726 - 727 -))) 608 +[[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/]] 728 728 729 -((( 730 -**Firmware Upgrade Method: **[[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome]] 731 -))) 732 732 733 -((( 734 - 735 -))) 611 +Step 2: Open it and choose 736 736 737 - (((738 -* *V1.0.**739 - )))613 +* Product Model 614 +* Uplink Interval 615 +* Working Mode 740 740 741 -((( 742 -Release 743 -))) 617 +And the Life expectation in difference case will be shown on the right. 744 744 745 745 746 -== 2.11 Battery Analysis == 747 747 748 -=== 2. 11.1BatteryType ===621 +=== 2.9.3 Battery Note === 749 749 750 750 ((( 751 -The LSE01 battery is a combination of a 4000mAh Li/SOCI2 Battery and a Super Capacitor. The battery is non-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter. 752 -))) 753 - 754 -((( 755 -The battery is designed to last for more than 5 years for the LSN50. 756 -))) 757 - 758 -((( 759 -((( 760 -The battery-related documents are as below: 761 -))) 762 -))) 763 - 764 -* ((( 765 -[[Battery Dimension>>url:http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/&file=LSN50-Battery-Dimension.pdf]], 766 -))) 767 -* ((( 768 -[[Lithium-Thionyl Chloride Battery datasheet>>url:https://www.dragino.com/downloads/downloads/datasheet/Battery/ER26500/ER26500_Datasheet-EN.pdf]], 769 -))) 770 -* ((( 771 -[[Lithium-ion Battery-Capacitor datasheet>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC_1520_datasheet.jpg]], [[Tech Spec>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC1520%20Technical%20Specification20171123.pdf]] 772 -))) 773 - 774 - [[image:image-20220610172436-1.png]] 775 - 776 - 777 - 778 -=== 2.11.2 Battery Note === 779 - 780 -((( 781 781 The Li-SICO battery is designed for small current / long period application. It is not good to use a high current, short period transmit method. The recommended minimum period for use of this battery is 5 minutes. If you use a shorter period time to transmit LoRa, then the battery life may be decreased. 782 782 ))) 783 783 784 784 785 785 786 -=== 2. 11.3Replace the battery ===629 +=== 2.9.4 Replace the battery === 787 787 788 -((( 789 -If Battery is lower than 2.7v, user should replace the battery of LSE01. 790 -))) 631 +The default battery pack of NSE01 includes a ER26500 plus super capacitor. If user can't find this pack locally, they can find ER26500 or equivalence without the SPC1520 capacitor, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes). 791 791 792 -((( 793 -You can change the battery in the LSE01.The type of battery is not limited as long as the output is between 3v to 3.6v. On the main board, there is a diode (D1) between the battery and the main circuit. If you need to use a battery with less than 3.3v, please remove the D1 and shortcut the two pads of it so there won’t be voltage drop between battery and main board. 794 -))) 795 795 796 -((( 797 -The default battery pack of LSE01 includes a ER18505 plus super capacitor. If user can’t find this pack locally, they can find ER18505 or equivalence, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes) 798 -))) 799 799 800 - 801 - 802 802 = 3. Using the AT Commands = 803 803 804 804 == 3.1 Access AT Commands == ... ... @@ -822,7 +822,7 @@ 822 822 [[image:1654502050864-459.png||height="564" width="806"]] 823 823 824 824 825 -Below are the available commands, a more detailed AT Command manual can be found at [[AT Command Manual>> url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/]]: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/]]658 +Below are the available commands, a more detailed AT Command manual can be found at [[AT Command Manual>>https://www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0]]: [[https:~~/~~/www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0>>https://www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0]] 826 826 827 827 828 828 (% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>? **(%%) : Help on <CMD> ... ... @@ -980,19 +980,14 @@ 980 980 981 981 ((( 982 982 Because the end node is now hopping in 72 frequency, it makes it difficult for the devices to Join the TTN network and uplink data. To solve this issue, you can access the device via the AT commands and run: 983 -))) 984 984 985 -(% class="box infomessage" %) 986 -((( 987 -**AT+CHE=2** 817 +* (% style="color:#037691" %)**AT+CHE=2** 818 +* (% style="color:#037691" %)**ATZ** 988 988 ))) 989 989 990 -(% class="box infomessage" %) 991 991 ((( 992 -**ATZ** 993 -))) 822 + 994 994 995 -((( 996 996 to set the end node to work in 8 channel mode. The device will work in Channel 8-15 & 64-71 for OTAA, and channel 8-15 for Uplink. 997 997 ))) 998 998 ... ... @@ -1007,18 +1007,22 @@ 1007 1007 [[image:image-20220606154825-4.png]] 1008 1008 1009 1009 838 +== 4.2 Can I calibrate LSE01 to different soil types? == 1010 1010 840 +LSE01 is calibrated for saline-alkali soil and loamy soil. If users want to use it for other soil, they can calibrate the value in the IoT platform base on the value measured by saline-alkali soil and loamy soil. The formula can be found at [[this link>>https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/&file=Calibrate_to_other_Soil_20220605.pdf]]. 841 + 842 + 1011 1011 = 5. Trouble Shooting = 1012 1012 1013 -== 5.1 Why I can ’t join TTN in US915 / AU915 bands? ==845 +== 5.1 Why I can't join TTN in US915 / AU915 bands? == 1014 1014 1015 -It is due to channel mapping. Please see the [[Eight Channel Mode>>doc:Main. LoRaWANCommunication Debug.WebHome||anchor="H2.NoticeofUS9152FCN4702FAU915Frequencyband"]] section above for details.847 +It is due to channel mapping. Please see the [[Eight Channel Mode>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H7.19EightChannelMode"]] section above for details. 1016 1016 1017 1017 1018 -== 5.2 AT Command input doesn ’t work ==850 +== 5.2 AT Command input doesn't work == 1019 1019 1020 1020 ((( 1021 -In the case if user can see the console output but can ’t type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn’t send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.853 +In the case if user can see the console output but can't type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn't send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string. 1022 1022 ))) 1023 1023 1024 1024
- 1657245163077-232.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +81.0 KB - Content
- 1657246476176-652.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +492.6 KB - Content
- 1657249419225-449.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +81.0 KB - Content
- 1657249468462-536.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +483.6 KB - Content
- 1657249793983-486.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +85.8 KB - Content
- 1657249831934-534.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +72.5 KB - Content
- 1657249864775-321.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +87.0 KB - Content
- 1657249930215-289.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +77.3 KB - Content
- 1657249978444-674.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +139.5 KB - Content
- 1657249990869-686.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +96.9 KB - Content
- 1657250217799-140.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +98.7 KB - Content
- 1657250255956-604.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +99.0 KB - Content
- 1657259653666-883.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +344.4 KB - Content
- image-20220708101224-1.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +22.2 KB - Content
- image-20220708101605-2.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +87.5 KB - Content
- image-20220708110657-3.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +251.7 KB - Content
- image-20220708111918-4.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +38.8 KB - Content
- image-20220708133731-5.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +8.7 KB - Content
- image-20220708140453-6.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +132.7 KB - Content