Last modified by Mengting Qiu on 2024/04/02 16:44

From version 35.12
edited by Xiaoling
on 2022/06/14 14:07
Change comment: There is no comment for this version
To version 77.3
edited by Xiaoling
on 2022/07/09 09:05
Change comment: There is no comment for this version

Summary

Details

Page properties
Title
... ... @@ -1,1 +1,1 @@
1 -LSE01-LoRaWAN Soil Moisture & EC Sensor User Manual
1 +NDDS75 NB-IoT Distance Detect Sensor User Manual
Content
... ... @@ -1,11 +1,12 @@
1 1  (% style="text-align:center" %)
2 -[[image:image-20220606151504-2.jpeg||height="554" width="554"]]
2 +[[image:image-20220709085040-1.png||height="542" width="524"]]
3 3  
4 4  
5 5  
6 +
7 +
6 6  **Table of Contents:**
7 7  
8 -{{toc/}}
9 9  
10 10  
11 11  
... ... @@ -12,774 +12,719 @@
12 12  
13 13  
14 14  
15 -= 1. Introduction =
16 += 1.  Introduction =
16 16  
17 -== 1.1 ​What is LoRaWAN Soil Moisture & EC Sensor ==
18 +== 1.1 ​ What is NDDS75 Distance Detection Sensor ==
18 18  
19 19  (((
20 20  
21 21  
22 -The Dragino LSE01 is a (% style="color:#4f81bd" %)**LoRaWAN Soil Moisture & EC Sensor**(%%) for IoT of Agriculture. It is designed to measure the soil moisture of saline-alkali soil and loamy soil. The soil sensor uses FDR method to calculate the soil moisture with the compensation from soil temperature and conductivity. It also has been calibrated in factory for Mineral soil type.
23 -)))
24 -
25 25  (((
26 -It detects (% style="color:#4f81bd" %)**Soil Moisture**(%%), (% style="color:#4f81bd" %)**Soil Temperature**(%%) and (% style="color:#4f81bd" %)**Soil Conductivity**(%%), and uploads the value via wireless to LoRaWAN IoT Server.
24 +The Dragino NDDS75 is a (% style="color:blue" %)**NB-IoT Distance Detection Sensor**(%%) for Internet of Things solution. It is designed to measure the distance between the sensor and a flat object. The distance detection sensor is a module that uses ultrasonic sensing technology for distance measurement, and temperature compensation is performed internally to improve the reliability of data.
25 +\\The NDDS75 can be applied to scenarios such as horizontal distance measurement, liquid level measurement, parking management system, object proximity and presence detection, intelligent trash can management system, robot obstacle avoidance, automatic control, sewer, bottom water level monitoring, etc. It detects the distance between the measured object and the sensor, and uploads the value via wireless to IoT Server via NB-IoT Network.
26 +\\NarrowBand-Internet of Things (NB-IoT) is a standards-based low power wide area (LPWA) technology developed to enable a wide range of new IoT devices and services. NB-IoT significantly improves the power consumption of user devices, system capacity and spectrum efficiency, especially in deep coverage.
27 +\\NDDS75 supports different uplink methods include (% style="color:blue" %)**TCP, MQTT, UDP and CoAP** (%%)for different application requirement.
28 +\\NDDS75 is powered by (% style="color:blue" %)**8500mAh Li-SOCI2 battery**(%%), It is designed for long term use up to 5 years. (Actually Battery life depends on the use environment, update period & uplink method)
29 +\\To use NDDS75, user needs to check if there is NB-IoT coverage in local area and with the bands NDDS75 supports. If the local operate support it, user needs to get a NB-IoT SIM card from local operator and install NDDS75 to get NB-IoT network connection.
27 27  )))
28 28  
29 -(((
30 -The LoRa wireless technology used in LES01 allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption.
32 +
31 31  )))
32 32  
33 -(((
34 -LES01 is powered by (% style="color:#4f81bd" %)**4000mA or 8500mAh Li-SOCI2 battery**(%%), It is designed for long term use up to 10 years.
35 -)))
36 -
37 -(((
38 -Each LES01 is pre-load with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect after power on.
39 -)))
40 -
41 -
42 42  [[image:1654503236291-817.png]]
43 43  
44 44  
45 -[[image:1654503265560-120.png]]
38 +[[image:1657327959271-447.png]]
46 46  
47 47  
48 48  
49 -== 1.2 ​Features ==
42 +== 1.2 ​ Features ==
50 50  
51 -* LoRaWAN 1.0.3 Class A
44 +
45 +* NB-IoT Bands: B1/B3/B8/B5/B20/B28 @H-FDD
52 52  * Ultra low power consumption
53 -* Monitor Soil Moisture
54 -* Monitor Soil Temperature
55 -* Monitor Soil Conductivity
56 -* Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865
47 +* Distance Detection by Ultrasonic technology
48 +* Flat object range 280mm - 7500mm
49 +* Accuracy: ±(1cm+S*0.3%) (S: Distance)
50 +* Cable Length: 25cm
57 57  * AT Commands to change parameters
58 58  * Uplink on periodically
59 59  * Downlink to change configure
60 60  * IP66 Waterproof Enclosure
61 -* 4000mAh or 8500mAh Battery for long term use
55 +* Micro SIM card slot for NB-IoT SIM
56 +* 8500mAh Battery for long term use
62 62  
63 63  
64 64  
65 -== 1.3 Specification ==
60 +== 1.3  Specification ==
66 66  
67 -Measure Volume: Base on the centra pin of the probe, a cylinder with 7cm diameter and 10cm height.
68 68  
69 -[[image:image-20220606162220-5.png]]
63 +(% style="color:#037691" %)**Common DC Characteristics:**
70 70  
65 +* Supply Voltage: 2.1v ~~ 3.6v
66 +* Operating Temperature: -40 ~~ 85°C
71 71  
68 +(% style="color:#037691" %)**NB-IoT Spec:**
72 72  
73 -== ​1.4 Applications ==
70 +* - B1 @H-FDD: 2100MHz
71 +* - B3 @H-FDD: 1800MHz
72 +* - B8 @H-FDD: 900MHz
73 +* - B5 @H-FDD: 850MHz
74 +* - B20 @H-FDD: 800MHz
75 +* - B28 @H-FDD: 700MHz
74 74  
75 -* Smart Agriculture
76 76  
77 -(% class="wikigeneratedid" id="H200B1.5FirmwareChangelog" %)
78 -​
78 +(% style="color:#037691" %)**Battery:**
79 79  
80 -== 1.5 Firmware Change log ==
80 +* Li/SOCI2 un-chargeable battery
81 +* Capacity: 8500mAh
82 +* Self Discharge: <1% / Year @ 25°C
83 +* Max continuously current: 130mA
84 +* Max boost current: 2A, 1 second
81 81  
82 82  
83 -**LSE01 v1.0 :**  Release
87 +(% style="color:#037691" %)**Power Consumption**
84 84  
89 +* STOP Mode: 10uA @ 3.3v
90 +* Max transmit power: 350mA@3.3v
85 85  
86 86  
87 -= 2. Configure LSE01 to connect to LoRaWAN network =
88 88  
89 -== 2.1 How it works ==
90 90  
91 -(((
92 -The LSE01 is configured as LoRaWAN OTAA Class A mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and power on the LSE0150. It will automatically join the network via OTAA and start to send the sensor value
93 -)))
95 +== ​1.4  Applications ==
94 94  
95 -(((
96 -In case you can’t set the OTAA keys in the LoRaWAN OTAA server, and you have to use the keys from the server, you can [[use AT Commands >>||anchor="H3.200BUsingtheATCommands"]].
97 -)))
97 +* Smart Buildings & Home Automation
98 +* Logistics and Supply Chain Management
99 +* Smart Metering
100 +* Smart Agriculture
101 +* Smart Cities
102 +* Smart Factory
98 98  
104 +(% class="wikigeneratedid" id="H200B1.5FirmwareChangelog" %)
105 +​
99 99  
100 100  
101 -== 2.2 ​Quick guide to connect to LoRaWAN server (OTAA) ==
102 102  
103 -Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LG308>>url:http://www.dragino.com/products/lora/item/140-lg308.html]] as a LoRaWAN gateway in this example.
109 +== 1.5  Pin Definitions ==
104 104  
105 105  
106 -[[image:1654503992078-669.png]]
112 +[[image:1657328609906-564.png]]
107 107  
108 108  
109 -The LG308 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
110 110  
111 111  
112 -(% style="color:blue" %)**Step 1**(%%):  Create a device in TTN with the OTAA keys from LSE01.
117 += 2.  Use NSE01 to communicate with IoT Server =
113 113  
114 -Each LSE01 is shipped with a sticker with the default device EUI as below:
119 +== 2.1  How it works ==
115 115  
116 -[[image:image-20220606163732-6.jpeg]]
117 -
118 -You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot:
119 -
120 -**Add APP EUI in the application**
121 -
122 -
123 -[[image:1654504596150-405.png]]
124 -
125 -
126 -
127 -**Add APP KEY and DEV EUI**
128 -
129 -[[image:1654504683289-357.png]]
130 -
131 -
132 -
133 -(% style="color:blue" %)**Step 2**(%%): Power on LSE01
134 -
135 -
136 -Put a Jumper on JP2 to power on the device. ( The Jumper must be in FLASH position).
137 -
138 -[[image:image-20220606163915-7.png]]
139 -
140 -
141 -(% style="color:blue" %)**Step 3**(%%)**:** The LSE01 will auto join to the TTN network. After join success, it will start to upload messages to TTN and you can see the messages in the panel.
142 -
143 -[[image:1654504778294-788.png]]
144 -
145 -
146 -
147 -== 2.3 Uplink Payload ==
148 -
149 -
150 -=== 2.3.1 MOD~=0(Default Mode) ===
151 -
152 -LSE01 will uplink payload via LoRaWAN with below payload format: 
153 -
154 154  (((
155 -Uplink payload includes in total 11 bytes.
122 +The NDDS75 is equipped with a NB-IoT module, the pre-loaded firmware in NDDS75 will get environment data from sensors and send the value to local NB-IoT network via the NB-IoT module.  The NB-IoT network will forward this value to IoT server via the protocol defined by NDDS75.
156 156  )))
157 157  
158 -(% border="1" cellspacing="10" style="background-color:#ffffcc; width:500px" %)
159 -|(((
160 -**Size**
161 161  
162 -**(bytes)**
163 -)))|**2**|**2**|**2**|**2**|**2**|**1**
164 -|**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(((
165 -Temperature
166 -
167 -(Reserve, Ignore now)
168 -)))|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]]|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]]|(((
169 -MOD & Digital Interrupt
170 -
171 -(Optional)
172 -)))
173 -
174 -
175 -
176 -
177 -
178 -=== 2.3.2 MOD~=1(Original value) ===
179 -
180 -This mode can get the original AD value of moisture and original conductivity (with temperature drift compensation).
181 -
182 -(% border="1" cellspacing="10" style="background-color:#ffffcc; width:500px" %)
183 -|(((
184 -**Size**
185 -
186 -**(bytes)**
187 -)))|**2**|**2**|**2**|**2**|**2**|**1**
188 -|**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(((
189 -Temperature
190 -
191 -(Reserve, Ignore now)
192 -)))|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]](raw)|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]](raw)|(((
193 -MOD & Digital Interrupt
194 -
195 -(Optional)
196 -)))
197 -
198 -
199 -
200 -
201 -
202 -=== 2.3.3 Battery Info ===
203 -
204 204  (((
205 -Check the battery voltage for LSE01.
127 +The diagram below shows the working flow in default firmware of NDDS75:
206 206  )))
207 207  
208 208  (((
209 -Ex1: 0x0B45 = 2885mV
131 +
210 210  )))
211 211  
212 -(((
213 -Ex2: 0x0B49 = 2889mV
214 -)))
134 +[[image:1657328659945-416.png]]
215 215  
216 -
217 -
218 -=== 2.3.4 Soil Moisture ===
219 -
220 220  (((
221 -Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil.
222 -)))
223 -
224 -(((
225 -For example, if the data you get from the register is __0x05 0xDC__, the moisture content in the soil is
226 -)))
227 -
228 -(((
229 229  
230 230  )))
231 231  
232 -(((
233 -(% style="color:#4f81bd" %)**05DC(H) = 1500(D) /100 = 15%.**
234 -)))
235 235  
141 +== 2.2 ​ Configure the NSE01 ==
236 236  
237 237  
238 -=== 2.3.5 Soil Temperature ===
144 +=== 2.2.1 Test Requirement ===
239 239  
240 -(((
241 - Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is 0x09 0xEC, the temperature content in the soil is
242 -)))
243 243  
244 244  (((
245 -**Example**:
148 +To use NSE01 in your city, make sure meet below requirements:
246 246  )))
247 247  
248 -(((
249 -If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/100 = 2.61 °C
250 -)))
151 +* Your local operator has already distributed a NB-IoT Network there.
152 +* The local NB-IoT network used the band that NSE01 supports.
153 +* Your operator is able to distribute the data received in their NB-IoT network to your IoT server.
251 251  
252 252  (((
253 -If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C
156 +Below figure shows our testing structure. Here we have NB-IoT network coverage by China Mobile, the band they use is B8.  The NSE01 will use CoAP((% style="color:red" %)120.24.4.116:5683)(%%) or raw UDP((% style="color:red" %)120.24.4.116:5601)(%%) or MQTT((% style="color:red" %)120.24.4.116:1883)(%%)or TCP((% style="color:red" %)120.24.4.116:5600)(%%)protocol to send data to the test server
254 254  )))
255 255  
256 256  
160 +[[image:1657249419225-449.png]]
257 257  
258 -=== 2.3.6 Soil Conductivity (EC) ===
259 259  
260 -(((
261 -Obtain (% style="color:#4f81bd" %)**__soluble salt concentration__**(%%) in soil or (% style="color:#4f81bd" %)**__soluble ion concentration in liquid fertilizer__**(%%) or (% style="color:#4f81bd" %)**__planting medium__**(%%). The value range of the register is 0 - 20000(Decimal)( Can be greater than 20000).
262 -)))
263 263  
264 -(((
265 -For example, if the data you get from the register is 0x00 0xC8, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm.
266 -)))
164 +=== 2.2.2 Insert SIM card ===
267 267  
268 268  (((
269 -Generally, the EC value of irrigation water is less than 800uS / cm.
167 +Insert the NB-IoT Card get from your provider.
270 270  )))
271 271  
272 272  (((
273 -
171 +User need to take out the NB-IoT module and insert the SIM card like below:
274 274  )))
275 275  
276 -(((
277 -
278 -)))
279 279  
280 -=== 2.3.7 MOD ===
175 +[[image:1657249468462-536.png]]
281 281  
282 -Firmware version at least v2.1 supports changing mode.
283 283  
284 -For example, bytes[10]=90
285 285  
286 -mod=(bytes[10]>>7)&0x01=1.
179 +=== 2.2.3 Connect USB – TTL to NSE01 to configure it ===
287 287  
288 -
289 -**Downlink Command:**
290 -
291 -If payload = 0x0A00, workmode=0
292 -
293 -If** **payload =** **0x0A01, workmode=1
294 -
295 -
296 -
297 -=== 2.3.8 ​Decode payload in The Things Network ===
298 -
299 -While using TTN network, you can add the payload format to decode the payload.
300 -
301 -
302 -[[image:1654505570700-128.png]]
303 -
304 304  (((
305 -The payload decoder function for TTN is here:
306 -)))
307 -
308 308  (((
309 -LSE01 TTN Payload Decoder: [[https:~~/~~/www.dropbox.com/sh/si8icbrjlamxqdb/AAACYwjsxxr5fj_vpqRtrETAa?dl=0>>https://www.dropbox.com/sh/si8icbrjlamxqdb/AAACYwjsxxr5fj_vpqRtrETAa?dl=0]]
183 +User need to configure NSE01 via serial port to set the (% style="color:blue" %)**Server Address** / **Uplink Topic** (%%)to define where and how-to uplink packets. NSE01 support AT Commands, user can use a USB to TTL adapter to connect to NSE01 and use AT Commands to configure it, as below.
310 310  )))
185 +)))
311 311  
312 312  
313 -== 2.4 Uplink Interval ==
188 +**Connection:**
314 314  
315 -The LSE01 by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link: [[Change Uplink Interval>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H4.1ChangeUplinkInterval"]]
190 + (% style="background-color:yellow" %)USB TTL GND <~-~-~-~-> GND
316 316  
192 + (% style="background-color:yellow" %)USB TTL TXD <~-~-~-~-> UART_RXD
317 317  
194 + (% style="background-color:yellow" %)USB TTL RXD <~-~-~-~-> UART_TXD
318 318  
319 -== 2.5 Downlink Payload ==
320 320  
321 -By default, LSE50 prints the downlink payload to console port.
197 +In the PC, use below serial tool settings:
322 322  
323 -[[image:image-20220606165544-8.png]]
199 +* Baud:  (% style="color:green" %)**9600**
200 +* Data bits:** (% style="color:green" %)8(%%)**
201 +* Stop bits: (% style="color:green" %)**1**
202 +* Parity:  (% style="color:green" %)**None**
203 +* Flow Control: (% style="color:green" %)**None**
324 324  
325 -
326 326  (((
327 -**Examples:**
206 +Make sure the switch is in FLASH position, then power on device by connecting the jumper on NSE01. NSE01 will output system info once power on as below, we can enter the (% style="color:green" %)**password: 12345678**(%%) to access AT Command input.
328 328  )))
329 329  
330 -(((
331 -
332 -)))
209 +[[image:image-20220708110657-3.png]]
333 333  
334 -* (((
335 -**Set TDC**
336 -)))
337 -
338 338  (((
339 -If the payload=0100003C, it means set the END Node’s TDC to 0x00003C=60(S), while type code is 01.
212 +(% style="color:red" %)Note: the valid AT Commands can be found at: (%%)[[http:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/]]
340 340  )))
341 341  
342 -(((
343 -Payload:    01 00 00 1E    TDC=30S
344 -)))
345 345  
346 -(((
347 -Payload:    01 00 00 3C    TDC=60S
348 -)))
349 349  
350 -(((
351 -
352 -)))
217 +=== 2.2.4 Use CoAP protocol to uplink data ===
353 353  
354 -* (((
355 -**Reset**
356 -)))
219 +(% style="color:red" %)Note: if you don't have CoAP server, you can refer this link to set up one: (%%)[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/>>http://wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/]]
357 357  
358 -(((
359 -If payload = 0x04FF, it will reset the LSE01
360 -)))
361 361  
222 +**Use below commands:**
362 362  
363 -* **CFM**
224 +* (% style="color:blue" %)**AT+PRO=1**  (%%) ~/~/ Set to use CoAP protocol to uplink
225 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5683   ** (%%)~/~/ to set CoAP server address and port
226 +* (% style="color:blue" %)**AT+URI=5,11,"mqtt",11,"coap",12,"0",15,"c=text1",23,"0" ** (%%) ~/~/Set COAP resource path
364 364  
365 -Downlink Payload: 05000001, Set AT+CFM=1 or 05000000 , set AT+CFM=0
228 +For parameter description, please refer to AT command set
366 366  
230 +[[image:1657249793983-486.png]]
367 367  
368 368  
369 -== 2.6 ​Show Data in DataCake IoT Server ==
233 +After configure the server address and (% style="color:green" %)**reset the device**(%%) (via AT+ATZ ), NSE01 will start to uplink sensor values to CoAP server.
370 370  
371 -(((
372 -[[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps:
373 -)))
235 +[[image:1657249831934-534.png]]
374 374  
375 -(((
376 -
377 -)))
378 378  
379 -(((
380 -**Step 1**: Be sure that your device is programmed and properly connected to the network at this time.
381 -)))
382 382  
383 -(((
384 -**Step 2**: To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps:
385 -)))
239 +=== 2.2.5 Use UDP protocol to uplink data(Default protocol) ===
386 386  
241 +This feature is supported since firmware version v1.0.1
387 387  
388 -[[image:1654505857935-743.png]]
389 389  
244 +* (% style="color:blue" %)**AT+PRO=2   ** (%%) ~/~/ Set to use UDP protocol to uplink
245 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5601   ** (%%) ~/~/ to set UDP server address and port
246 +* (% style="color:blue" %)**AT+CFM=1       ** (%%) ~/~/If the server does not respond, this command is unnecessary
390 390  
391 -[[image:1654505874829-548.png]]
248 +[[image:1657249864775-321.png]]
392 392  
393 -Step 3: Create an account or log in Datacake.
394 394  
395 -Step 4: Search the LSE01 and add DevEUI.
251 +[[image:1657249930215-289.png]]
396 396  
397 397  
398 -[[image:1654505905236-553.png]]
399 399  
255 +=== 2.2.6 Use MQTT protocol to uplink data ===
400 400  
401 -After added, the sensor data arrive TTN, it will also arrive and show in Mydevices.
257 +This feature is supported since firmware version v110
402 402  
403 -[[image:1654505925508-181.png]]
404 404  
260 +* (% style="color:blue" %)**AT+PRO=3   ** (%%) ~/~/Set to use MQTT protocol to uplink
261 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,1883   ** (%%) ~/~/Set MQTT server address and port
262 +* (% style="color:blue" %)**AT+CLIENT=CLIENT       ** (%%)~/~/Set up the CLIENT of MQTT
263 +* (% style="color:blue" %)**AT+UNAME=UNAME                               **(%%)~/~/Set the username of MQTT
264 +* (% style="color:blue" %)**AT+PWD=PWD                                        **(%%)~/~/Set the password of MQTT
265 +* (% style="color:blue" %)**AT+PUBTOPIC=NSE01_PUB                    **(%%)~/~/Set the sending topic of MQTT
266 +* (% style="color:blue" %)**AT+SUBTOPIC=NSE01_SUB          **(%%) ~/~/Set the subscription topic of MQTT
405 405  
268 +[[image:1657249978444-674.png]]
406 406  
407 -== 2.7 Frequency Plans ==
408 408  
409 -The LSE01 uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.
271 +[[image:1657249990869-686.png]]
410 410  
411 411  
412 -=== 2.7.1 EU863-870 (EU868) ===
274 +(((
275 +MQTT protocol has a much higher power consumption compare vs UDP / CoAP protocol. Please check the power analyze document and adjust the uplink period to a suitable interval.
276 +)))
413 413  
414 -(% style="color:#037691" %)** Uplink:**
415 415  
416 -868.1 - SF7BW125 to SF12BW125
417 417  
418 -868.3 - SF7BW125 to SF12BW125 and SF7BW250
280 +=== 2.2.7 Use TCP protocol to uplink data ===
419 419  
420 -868.5 - SF7BW125 to SF12BW125
282 +This feature is supported since firmware version v110
421 421  
422 -867.1 - SF7BW125 to SF12BW125
423 423  
424 -867.3 - SF7BW125 to SF12BW125
285 +* (% style="color:blue" %)**AT+PRO=4   ** (%%) ~/~/ Set to use TCP protocol to uplink
286 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5600   **(%%) ~/~/ to set TCP server address and port
425 425  
426 -867.5 - SF7BW125 to SF12BW125
288 +[[image:1657250217799-140.png]]
427 427  
428 -867.7 - SF7BW125 to SF12BW125
429 429  
430 -867.9 - SF7BW125 to SF12BW125
291 +[[image:1657250255956-604.png]]
431 431  
432 -868.8 - FSK
433 433  
434 434  
435 -(% style="color:#037691" %)** Downlink:**
295 +=== 2.2.8 Change Update Interval ===
436 436  
437 -Uplink channels 1-9 (RX1)
297 +User can use below command to change the (% style="color:green" %)**uplink interval**.
438 438  
439 -869.525 - SF9BW125 (RX2 downlink only)
299 +* (% style="color:blue" %)**AT+TDC=600      ** (%%)~/~/ Set Update Interval to 600s
440 440  
301 +(((
302 +(% style="color:red" %)**NOTE:**
303 +)))
441 441  
305 +(((
306 +(% style="color:red" %)1. By default, the device will send an uplink message every 1 hour.
307 +)))
442 442  
443 -=== 2.7.2 US902-928(US915) ===
444 444  
445 -Used in USA, Canada and South America. Default use CHE=2
446 446  
447 -(% style="color:#037691" %)**Uplink:**
311 +== 2.3  Uplink Payload ==
448 448  
449 -903.9 - SF7BW125 to SF10BW125
313 +In this mode, uplink payload includes in total 18 bytes
450 450  
451 -904.1 - SF7BW125 to SF10BW125
315 +(% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:510px" %)
316 +|=(% style="width: 60px;" %)(((
317 +**Size(bytes)**
318 +)))|=(% style="width: 50px;" %)**6**|=(% style="width: 25px;" %)2|=(% style="width: 25px;" %)**2**|=(% style="width: 70px;" %)**1**|=(% style="width: 60px;" %)**2**|=(% style="width: 80px;" %)**2**|=(% style="width: 90px;" %)**2**|=(% style="width: 50px;" %)**1**
319 +|(% style="width:97px" %)**Value**|(% style="width:83px" %)[[Device ID>>||anchor="H2.4.1A0A0DeviceID"]]|(% style="width:41px" %)[[Ver>>||anchor="H2.4.2A0VersionInfo"]]|(% style="width:46px" %)[[BAT>>||anchor="H2.4.3A0BatteryInfo"]]|(% style="width:123px" %)[[Signal Strength>>||anchor="H2.4.4A0SignalStrength"]]|(% style="width:108px" %)[[Soil Moisture>>||anchor="H2.4.5A0SoilMoisture"]]|(% style="width:133px" %)[[Soil Temperature>>||anchor="H2.4.6A0SoilTemperature"]]|(% style="width:159px" %)[[Soil Conductivity(EC)>>||anchor="H2.4.7A0SoilConductivity28EC29"]]|(% style="width:80px" %)[[Interrupt>>||anchor="H2.4.8A0DigitalInterrupt"]]
452 452  
453 -904.3 - SF7BW125 to SF10BW125
321 +(((
322 +If we use the MQTT client to subscribe to this MQTT topic, we can see the following information when the NSE01 uplink data.
323 +)))
454 454  
455 -904.5 - SF7BW125 to SF10BW125
456 456  
457 -904.7 - SF7BW125 to SF10BW125
326 +[[image:image-20220708111918-4.png]]
458 458  
459 -904.9 - SF7BW125 to SF10BW125
460 460  
461 -905.1 - SF7BW125 to SF10BW125
329 +The payload is ASCII string, representative same HEX:
462 462  
463 -905.3 - SF7BW125 to SF10BW125
331 +0x72403155615900640c7817075e0a8c02f900 where:
464 464  
333 +* Device ID: 0x 724031556159 = 724031556159
334 +* Version: 0x0064=100=1.0.0
465 465  
466 -(% style="color:#037691" %)**Downlink:**
336 +* BAT: 0x0c78 = 3192 mV = 3.192V
337 +* Singal: 0x17 = 23
338 +* Soil Moisture: 0x075e= 1886 = 18.86  %
339 +* Soil Temperature:0x0a8c =2700=27 °C
340 +* Soil Conductivity(EC) = 0x02f9 =761 uS /cm
341 +* Interrupt: 0x00 = 0
467 467  
468 -923.3 - SF7BW500 to SF12BW500
343 +== 2. Payload Explanation and Sensor Interface ==
469 469  
470 -923.9 - SF7BW500 to SF12BW500
471 471  
472 -924.5 - SF7BW500 to SF12BW500
346 +=== 2.4.1  Device ID ===
473 473  
474 -925.1 - SF7BW500 to SF12BW500
348 +(((
349 +By default, the Device ID equal to the last 6 bytes of IMEI.
350 +)))
475 475  
476 -925.7 - SF7BW500 to SF12BW500
352 +(((
353 +User can use (% style="color:blue" %)**AT+DEUI**(%%) to set Device ID
354 +)))
477 477  
478 -926.3 - SF7BW500 to SF12BW500
356 +(((
357 +**Example:**
358 +)))
479 479  
480 -926.9 - SF7BW500 to SF12BW500
360 +(((
361 +AT+DEUI=A84041F15612
362 +)))
481 481  
482 -927.5 - SF7BW500 to SF12BW500
364 +(((
365 +The Device ID is stored in a none-erase area, Upgrade the firmware or run AT+FDR won't erase Device ID.
366 +)))
483 483  
484 -923.3 - SF12BW500(RX2 downlink only)
485 485  
486 486  
370 +=== 2.4.2  Version Info ===
487 487  
488 -=== 2.7.3 CN470-510 (CN470) ===
372 +(((
373 +Specify the software version: 0x64=100, means firmware version 1.00.
374 +)))
489 489  
490 -Used in China, Default use CHE=1
376 +(((
377 +For example: 0x00 64 : this device is NSE01 with firmware version 1.0.0.
378 +)))
491 491  
492 -(% style="color:#037691" %)**Uplink:**
493 493  
494 -486.3 - SF7BW125 to SF12BW125
495 495  
496 -486.5 - SF7BW125 to SF12BW125
382 +=== 2.4. Battery Info ===
497 497  
498 -486.7 - SF7BW125 to SF12BW125
384 +(((
385 +Check the battery voltage for LSE01.
386 +)))
499 499  
500 -486.9 - SF7BW125 to SF12BW125
388 +(((
389 +Ex1: 0x0B45 = 2885mV
390 +)))
501 501  
502 -487.1 - SF7BW125 to SF12BW125
392 +(((
393 +Ex2: 0x0B49 = 2889mV
394 +)))
503 503  
504 -487.3 - SF7BW125 to SF12BW125
505 505  
506 -487.5 - SF7BW125 to SF12BW125
507 507  
508 -487.7 - SF7BW125 to SF12BW125
398 +=== 2.4. Signal Strength ===
509 509  
400 +(((
401 +NB-IoT Network signal Strength.
402 +)))
510 510  
511 -(% style="color:#037691" %)**Downlink:**
404 +(((
405 +**Ex1: 0x1d = 29**
406 +)))
512 512  
513 -506.7 - SF7BW125 to SF12BW125
408 +(((
409 +(% style="color:blue" %)**0**(%%)  -113dBm or less
410 +)))
514 514  
515 -506.9 - SF7BW125 to SF12BW125
412 +(((
413 +(% style="color:blue" %)**1**(%%)  -111dBm
414 +)))
516 516  
517 -507.1 - SF7BW125 to SF12BW125
416 +(((
417 +(% style="color:blue" %)**2...30**(%%) -109dBm... -53dBm
418 +)))
518 518  
519 -507.3 - SF7BW125 to SF12BW125
420 +(((
421 +(% style="color:blue" %)**31**  (%%) -51dBm or greater
422 +)))
520 520  
521 -507.5 - SF7BW125 to SF12BW125
424 +(((
425 +(% style="color:blue" %)**99**   (%%) Not known or not detectable
426 +)))
522 522  
523 -507.7 - SF7BW125 to SF12BW125
524 524  
525 -507.9 - SF7BW125 to SF12BW125
526 526  
527 -508.1 - SF7BW125 to SF12BW125
430 +=== 2.4.5  Soil Moisture ===
528 528  
529 -505.3 - SF12BW125 (RX2 downlink only)
432 +(((
433 +(((
434 +Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil.
435 +)))
436 +)))
530 530  
438 +(((
439 +(((
440 +For example, if the data you get from the register is **__0x05 0xDC__**, the moisture content in the soil is
441 +)))
442 +)))
531 531  
444 +(((
445 +
446 +)))
532 532  
533 -=== 2.7.4 AU915-928(AU915) ===
448 +(((
449 +(% style="color:#4f81bd" %)**05DC(H) = 1500(D) /100 = 15%.**
450 +)))
534 534  
535 -Default use CHE=2
536 536  
537 -(% style="color:#037691" %)**Uplink:**
538 538  
539 -916.8 - SF7BW125 to SF12BW125
454 +=== 2.4.6  Soil Temperature ===
540 540  
541 -917.0 - SF7BW125 to SF12BW125
456 +(((
457 +Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is __**0x09 0xEC**__, the temperature content in the soil is
458 +)))
542 542  
543 -917.2 - SF7BW125 to SF12BW125
460 +(((
461 +**Example**:
462 +)))
544 544  
545 -917.4 - SF7BW125 to SF12BW125
464 +(((
465 +If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/100 = 2.61 °C
466 +)))
546 546  
547 -917.6 - SF7BW125 to SF12BW125
468 +(((
469 +If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C
470 +)))
548 548  
549 -917.8 - SF7BW125 to SF12BW125
550 550  
551 -918.0 - SF7BW125 to SF12BW125
552 552  
553 -918.2 - SF7BW125 to SF12BW125
474 +=== 2.4.7  Soil Conductivity (EC) ===
554 554  
476 +(((
477 +Obtain (% style="color:#4f81bd" %)**__soluble salt concentration__**(%%) in soil or (% style="color:#4f81bd" %)**__soluble ion concentration in liquid fertilizer__**(%%) or (% style="color:#4f81bd" %)**__planting medium__**(%%). The value range of the register is 0 - 20000(Decimal)( Can be greater than 20000).
478 +)))
555 555  
556 -(% style="color:#037691" %)**Downlink:**
480 +(((
481 +For example, if the data you get from the register is __**0x00 0xC8**__, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm.
482 +)))
557 557  
558 -923.3 - SF7BW500 to SF12BW500
484 +(((
485 +Generally, the EC value of irrigation water is less than 800uS / cm.
486 +)))
559 559  
560 -923.9 - SF7BW500 to SF12BW500
488 +(((
489 +
490 +)))
561 561  
562 -924.5 - SF7BW500 to SF12BW500
492 +(((
493 +
494 +)))
563 563  
564 -925.1 - SF7BW500 to SF12BW500
496 +=== 2.4.8  Digital Interrupt ===
565 565  
566 -925.7 - SF7BW500 to SF12BW500
498 +(((
499 +Digital Interrupt refers to pin (% style="color:blue" %)**GPIO_EXTI**(%%), and there are different trigger methods. When there is a trigger, the NSE01 will send a packet to the server.
500 +)))
567 567  
568 -926.3 - SF7BW500 to SF12BW500
502 +(((
503 +The command is:
504 +)))
569 569  
570 -926.9 - SF7BW500 to SF12BW500
506 +(((
507 +(% style="color:blue" %)**AT+INTMOD=3 **(%%) ~/~/(more info about INMOD please refer [[**AT Command Manual**>>url:https://www.dragino.com/downloads/downloads/NB-IoT/NBSN95/DRAGINO_NBSN95-NB_AT%20Commands_v1.1.0.pdf]])**.**
508 +)))
571 571  
572 -927.5 - SF7BW500 to SF12BW500
573 573  
574 -923.3 - SF12BW500(RX2 downlink only)
511 +(((
512 +The lower four bits of this data field shows if this packet is generated by interrupt or not. Click here for the hardware and software set up.
513 +)))
575 575  
576 576  
516 +(((
517 +Example:
518 +)))
577 577  
578 -=== 2.7.5 AS920-923 & AS923-925 (AS923) ===
520 +(((
521 +0x(00): Normal uplink packet.
522 +)))
579 579  
580 -(% style="color:#037691" %)**Default Uplink channel:**
524 +(((
525 +0x(01): Interrupt Uplink Packet.
526 +)))
581 581  
582 -923.2 - SF7BW125 to SF10BW125
583 583  
584 -923.4 - SF7BW125 to SF10BW125
585 585  
530 +=== 2.4.9  ​+5V Output ===
586 586  
587 -(% style="color:#037691" %)**Additional Uplink Channel**:
532 +(((
533 +NSE01 will enable +5V output before all sampling and disable the +5v after all sampling. 
534 +)))
588 588  
589 -(OTAA mode, channel added by JoinAccept message)
590 590  
591 -(% style="color:#037691" %)**AS920~~AS923 for Japan, Malaysia, Singapore**:
537 +(((
538 +The 5V output time can be controlled by AT Command.
539 +)))
592 592  
593 -922.2 - SF7BW125 to SF10BW125
541 +(((
542 +(% style="color:blue" %)**AT+5VT=1000**
543 +)))
594 594  
595 -922.4 - SF7BW125 to SF10BW125
545 +(((
546 +Means set 5V valid time to have 1000ms. So the real 5V output will actually have 1000ms + sampling time for other sensors.
547 +)))
596 596  
597 -922.6 - SF7BW125 to SF10BW125
598 598  
599 -922.8 - SF7BW125 to SF10BW125
600 600  
601 -923.0 - SF7BW125 to SF10BW125
551 +== 2.5  Downlink Payload ==
602 602  
603 -922.0 - SF7BW125 to SF10BW125
553 +By default, NSE01 prints the downlink payload to console port.
604 604  
555 +[[image:image-20220708133731-5.png]]
605 605  
606 -(% style="color:#037691" %)**AS923 ~~ AS925 for Brunei, Cambodia, Hong Kong, Indonesia, Laos, Taiwan, Thailand, Vietnam**:
607 607  
608 -923.6 - SF7BW125 to SF10BW125
558 +(((
559 +(% style="color:blue" %)**Examples:**
560 +)))
609 609  
610 -923.8 - SF7BW125 to SF10BW125
562 +(((
563 +
564 +)))
611 611  
612 -924.0 - SF7BW125 to SF10BW125
566 +* (((
567 +(% style="color:blue" %)**Set TDC**
568 +)))
613 613  
614 -924.2 - SF7BW125 to SF10BW125
570 +(((
571 +If the payload=0100003C, it means set the END Node's TDC to 0x00003C=60(S), while type code is 01.
572 +)))
615 615  
616 -924.4 - SF7BW125 to SF10BW125
574 +(((
575 +Payload:    01 00 00 1E    TDC=30S
576 +)))
617 617  
618 -924.6 - SF7BW125 to SF10BW125
578 +(((
579 +Payload:    01 00 00 3C    TDC=60S
580 +)))
619 619  
582 +(((
583 +
584 +)))
620 620  
621 -(% style="color:#037691" %)** Downlink:**
586 +* (((
587 +(% style="color:blue" %)**Reset**
588 +)))
622 622  
623 -Uplink channels 1-8 (RX1)
590 +(((
591 +If payload = 0x04FF, it will reset the NSE01
592 +)))
624 624  
625 -923.2 - SF10BW125 (RX2)
626 626  
595 +* (% style="color:blue" %)**INTMOD**
627 627  
597 +(((
598 +Downlink Payload: 06000003, Set AT+INTMOD=3
599 +)))
628 628  
629 -=== 2.7.6 KR920-923 (KR920) ===
630 630  
631 -Default channel:
632 632  
633 -922.1 - SF7BW125 to SF12BW125
603 +== 2. ​LED Indicator ==
634 634  
635 -922.3 - SF7BW125 to SF12BW125
605 +(((
606 +The NSE01 has an internal LED which is to show the status of different state.
636 636  
637 -922.5 - SF7BW125 to SF12BW125
638 638  
609 +* When power on, NSE01 will detect if sensor probe is connected, if probe detected, LED will blink four times. (no blinks in this step is no probe)
610 +* Then the LED will be on for 1 second means device is boot normally.
611 +* After NSE01 join NB-IoT network. The LED will be ON for 3 seconds.
612 +* For each uplink probe, LED will be on for 500ms.
613 +)))
639 639  
640 -(% style="color:#037691" %)**Uplink: (OTAA mode, channel added by JoinAccept message)**
641 641  
642 -922.1 - SF7BW125 to SF12BW125
643 643  
644 -922.3 - SF7BW125 to SF12BW125
645 645  
646 -922.5 - SF7BW125 to SF12BW125
618 +== 2.7  Installation in Soil ==
647 647  
648 -922.7 - SF7BW125 to SF12BW125
620 +__**Measurement the soil surface**__
649 649  
650 -922.9 - SF7BW125 to SF12BW125
622 +(((
623 +Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting. [[https:~~/~~/img.alicdn.com/imgextra/i3/2005165265/O1CN010rj9Oh1olPsQxrdUK_!!2005165265.jpg>>url:https://img.alicdn.com/imgextra/i3/2005165265/O1CN010rj9Oh1olPsQxrdUK_!!2005165265.jpg]]
624 +)))
651 651  
652 -923.1 - SF7BW125 to SF12BW125
626 +[[image:1657259653666-883.png]] ​
653 653  
654 -923.3 - SF7BW125 to SF12BW125
655 655  
629 +(((
630 +
656 656  
657 -(% style="color:#037691" %)**Downlink:**
632 +(((
633 +Dig a hole with diameter > 20CM.
634 +)))
658 658  
659 -Uplink channels 1-7(RX1)
636 +(((
637 +Horizontal insert the probe to the soil and fill the hole for long term measurement.
638 +)))
639 +)))
660 660  
661 -921.9 - SF12BW125 (RX2 downlink only; SF12BW125 might be changed to SF9BW125)
641 +[[image:1654506665940-119.png]]
662 662  
643 +(((
644 +
645 +)))
663 663  
664 664  
665 -=== 2.7.7 IN865-867 (IN865) ===
648 +== 2.8  ​Firmware Change Log ==
666 666  
667 -(% style="color:#037691" %)** Uplink:**
668 668  
669 -865.0625 - SF7BW125 to SF12BW125
651 +Download URL & Firmware Change log
670 670  
671 -865.4025 - SF7BW125 to SF12BW125
653 +[[www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/Firmware/]]
672 672  
673 -865.9850 - SF7BW125 to SF12BW125
674 674  
656 +Upgrade Instruction: [[Upgrade_Firmware>>||anchor="H5.1200BHowtoUpgradeFirmware"]]
675 675  
676 -(% style="color:#037691" %) **Downlink:**
677 677  
678 -Uplink channels 1-3 (RX1)
679 679  
680 -866.550 - SF10BW125 (RX2)
660 +== 2. Battery Analysis ==
681 681  
662 +=== 2.9.1  ​Battery Type ===
682 682  
683 683  
684 -
685 -== 2.8 LED Indicator ==
686 -
687 -The LSE01 has an internal LED which is to show the status of different state.
688 -
689 -* Blink once when device power on.
690 -* Solid ON for 5 seconds once device successful Join the network.
691 -* Blink once when device transmit a packet.
692 -
693 -== 2.9 Installation in Soil ==
694 -
695 -**Measurement the soil surface**
696 -
697 -
698 -[[image:1654506634463-199.png]] ​
699 -
700 700  (((
701 -(((
702 -Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting.
666 +The NSE01 battery is a combination of an 8500mAh Li/SOCI2 Battery and a Super Capacitor. The battery is none-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter.
703 703  )))
704 -)))
705 705  
706 706  
707 -[[image:1654506665940-119.png]]
708 -
709 709  (((
710 -Dig a hole with diameter > 20CM.
671 +The battery is designed to last for several years depends on the actually use environment and update interval. 
711 711  )))
712 712  
713 -(((
714 -Horizontal insert the probe to the soil and fill the hole for long term measurement.
715 -)))
716 716  
717 -
718 -== 2.10 ​Firmware Change Log ==
719 -
720 720  (((
721 -**Firmware download link:**
676 +The battery related documents as below:
722 722  )))
723 723  
724 -(((
725 -[[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/]]
726 -)))
679 +* [[Battery Dimension>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]
680 +* [[Lithium-Thionyl Chloride Battery datasheet>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]
681 +* [[Lithium-ion Battery-Capacitor datasheet>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]
727 727  
728 728  (((
729 -
684 +[[image:image-20220708140453-6.png]]
730 730  )))
731 731  
732 -(((
733 -**Firmware Upgrade Method: **[[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome]]
734 -)))
735 735  
736 -(((
737 -
738 -)))
739 739  
740 -(((
741 -**V1.0.**
742 -)))
689 +=== 2.9.2  Power consumption Analyze ===
743 743  
744 744  (((
745 -Release
692 +Dragino battery powered product are all runs in Low Power mode. We have an update battery calculator which base on the measurement of the real device. User can use this calculator to check the battery life and calculate the battery life if want to use different transmit interval.
746 746  )))
747 747  
748 748  
749 -== 2.11 ​Battery Analysis ==
750 -
751 -=== 2.11.1 ​Battery Type ===
752 -
753 753  (((
754 -The LSE01 battery is a combination of a 4000mAh Li/SOCI2 Battery and a Super Capacitor. The battery is non-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter.
697 +Instruction to use as below:
755 755  )))
756 756  
757 757  (((
758 -The battery is designed to last for more than 5 years for the LSN50.
701 +(% style="color:blue" %)**Step 1:  **(%%)Downlink the up-to-date DRAGINO_Battery_Life_Prediction_Table.xlsx from: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/]]
759 759  )))
760 760  
704 +
761 761  (((
762 -(((
763 -The battery-related documents are as below:
706 +(% style="color:blue" %)**Step 2: **(%%) Open it and choose
764 764  )))
765 -)))
766 766  
767 767  * (((
768 -[[Battery Dimension>>url:http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/&file=LSN50-Battery-Dimension.pdf]],
710 +Product Model
769 769  )))
770 770  * (((
771 -[[Lithium-Thionyl Chloride Battery  datasheet>>url:https://www.dragino.com/downloads/downloads/datasheet/Battery/ER26500/ER26500_Datasheet-EN.pdf]],
713 +Uplink Interval
772 772  )))
773 773  * (((
774 -[[Lithium-ion Battery-Capacitor datasheet>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC_1520_datasheet.jpg]], [[Tech Spec>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC1520%20Technical%20Specification20171123.pdf]]
716 +Working Mode
775 775  )))
776 776  
777 - [[image:image-20220610172436-1.png]]
719 +(((
720 +And the Life expectation in difference case will be shown on the right.
721 +)))
778 778  
723 +[[image:image-20220708141352-7.jpeg]]
779 779  
780 780  
781 -=== 2.11.2 ​Battery Note ===
782 782  
727 +=== 2.9.3  ​Battery Note ===
728 +
783 783  (((
784 784  The Li-SICO battery is designed for small current / long period application. It is not good to use a high current, short period transmit method. The recommended minimum period for use of this battery is 5 minutes. If you use a shorter period time to transmit LoRa, then the battery life may be decreased.
785 785  )))
... ... @@ -786,303 +786,176 @@
786 786  
787 787  
788 788  
789 -=== 2.11.3 Replace the battery ===
735 +=== 2.9. Replace the battery ===
790 790  
791 791  (((
792 -If Battery is lower than 2.7v, user should replace the battery of LSE01.
738 +The default battery pack of NSE01 includes a ER26500 plus super capacitor. If user can't find this pack locally, they can find ER26500 or equivalence without the SPC1520 capacitor, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes).
793 793  )))
794 794  
741 +
742 +
743 += 3. ​ Access NB-IoT Module =
744 +
795 795  (((
796 -You can change the battery in the LSE01.The type of battery is not limited as long as the output is between 3v to 3.6v. On the main board, there is a diode (D1) between the battery and the main circuit. If you need to use a battery with less than 3.3v, please remove the D1 and shortcut the two pads of it so there won’t be voltage drop between battery and main board.
746 +Users can directly access the AT command set of the NB-IoT module.
797 797  )))
798 798  
799 799  (((
800 -The default battery pack of LSE01 includes a ER18505 plus super capacitor. If user can’t find this pack locally, they can find ER18505 or equivalence, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes)
750 +The AT Command set can refer the BC35-G NB-IoT Module AT Command: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=datasheet/other_vendors/BC35-G/>>url:https://www.dragino.com/downloads/index.php?dir=datasheet/other_vendors/BC35-G/]] 
801 801  )))
802 802  
753 +[[image:1657261278785-153.png]]
803 803  
804 804  
805 -= 3. ​Using the AT Commands =
806 806  
807 -== 3.1 Access AT Commands ==
757 += 4.  Using the AT Commands =
808 808  
759 +== 4.1  Access AT Commands ==
809 809  
810 -LSE01 supports AT Command set in the stock firmware. You can use a USB to TTL adapter to connect to LSE01 for using AT command, as below.
761 +See this link for detail: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/]]
811 811  
812 -[[image:1654501986557-872.png||height="391" width="800"]]
813 813  
764 +AT+<CMD>?  : Help on <CMD>
814 814  
815 -Or if you have below board, use below connection:
766 +AT+<CMD>         : Run <CMD>
816 816  
768 +AT+<CMD>=<value> : Set the value
817 817  
818 -[[image:1654502005655-729.png||height="503" width="801"]]
770 +AT+<CMD>=?  : Get the value
819 819  
820 820  
821 -
822 -In the PC, you need to set the serial baud rate to (% style="color:green" %)**9600**(%%) to access the serial console for LSE01. LSE01 will output system info once power on as below:
823 -
824 -
825 - [[image:1654502050864-459.png||height="564" width="806"]]
826 -
827 -
828 -Below are the available commands, a more detailed AT Command manual can be found at [[AT Command Manual>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/]]: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/]]
829 -
830 -
831 -(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>? **(%%) : Help on <CMD>
832 -
833 -(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD> **(%%) : Run <CMD>
834 -
835 -(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>=<value>**(%%) : Set the value
836 -
837 -(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>=?**(%%)  : Get the value
838 -
839 -
840 840  (% style="color:#037691" %)**General Commands**(%%)      
841 841  
842 -(% style="background-color:#dcdcdc" %)**AT**(%%)  : Attention       
775 +AT  : Attention       
843 843  
844 -(% style="background-color:#dcdcdc" %)**AT?**(%%)  : Short Help     
777 +AT?  : Short Help     
845 845  
846 -(% style="background-color:#dcdcdc" %)**ATZ**(%%)  : MCU Reset    
779 +ATZ  : MCU Reset    
847 847  
848 -(% style="background-color:#dcdcdc" %)**AT+TDC**(%%)  : Application Data Transmission Interval 
781 +AT+TDC  : Application Data Transmission Interval
849 849  
783 +AT+CFG  : Print all configurations
850 850  
851 -(% style="color:#037691" %)**Keys, IDs and EUIs management**
785 +AT+CFGMOD           : Working mode selection
852 852  
853 -(% style="background-color:#dcdcdc" %)**AT+APPEUI**(%%)              : Application EUI      
787 +AT+INTMOD            : Set the trigger interrupt mode
854 854  
855 -(% style="background-color:#dcdcdc" %)**AT+APPKEY**(%%)              : Application Key     
789 +AT+5VT  : Set extend the time of 5V power  
856 856  
857 -(% style="background-color:#dcdcdc" %)**AT+APPSKEY**(%%)            : Application Session Key
791 +AT+PRO  : Choose agreement
858 858  
859 -(% style="background-color:#dcdcdc" %)**AT+DADDR**(%%)              : Device Address     
793 +AT+WEIGRE  : Get weight or set weight to 0
860 860  
861 -(% style="background-color:#dcdcdc" %)**AT+DEUI**(%%)                   : Device EUI     
795 +AT+WEIGAP  : Get or Set the GapValue of weight
862 862  
863 -(% style="background-color:#dcdcdc" %)**AT+NWKID**(%%)               : Network ID (You can enter this command change only after successful network connection
797 +AT+RXDL  : Extend the sending and receiving time
864 864  
865 -(% style="background-color:#dcdcdc" %)**AT+NWKSKEY**(%%)          : Network Session Key Joining and sending date on LoRa network  
799 +AT+CNTFAC  : Get or set counting parameters
866 866  
867 -(% style="background-color:#dcdcdc" %)**AT+CFM**(%%)  : Confirm Mode       
801 +AT+SERVADDR  : Server Address
868 868  
869 -(% style="background-color:#dcdcdc" %)**AT+CFS**(%%)                     : Confirm Status       
870 870  
871 -(% style="background-color:#dcdcdc" %)**AT+JOIN**(%%)  : Join LoRa? Network       
804 +(% style="color:#037691" %)**COAP Management**      
872 872  
873 -(% style="background-color:#dcdcdc" %)**AT+NJM**(%%)  : LoRa? Network Join Mode    
806 +AT+URI            : Resource parameters
874 874  
875 -(% style="background-color:#dcdcdc" %)**AT+NJS**(%%)                     : LoRa? Network Join Status    
876 876  
877 -(% style="background-color:#dcdcdc" %)**AT+RECV**(%%)                  : Print Last Received Data in Raw Format
809 +(% style="color:#037691" %)**UDP Management**
878 878  
879 -(% style="background-color:#dcdcdc" %)**AT+RECVB**(%%)                : Print Last Received Data in Binary Format      
811 +AT+CFM          : Upload confirmation mode (only valid for UDP)
880 880  
881 -(% style="background-color:#dcdcdc" %)**AT+SEND**(%%)                  : Send Text Data      
882 882  
883 -(% style="background-color:#dcdcdc" %)**AT+SENB**(%%)                  : Send Hexadecimal Data
814 +(% style="color:#037691" %)**MQTT Management**
884 884  
816 +AT+CLIENT               : Get or Set MQTT client
885 885  
886 -(% style="color:#037691" %)**LoRa Network Management**
818 +AT+UNAME  : Get or Set MQTT Username
887 887  
888 -(% style="background-color:#dcdcdc" %)**AT+ADR**(%%)          : Adaptive Rate
820 +AT+PWD                  : Get or Set MQTT password
889 889  
890 -(% style="background-color:#dcdcdc" %)**AT+CLASS**(%%)  : LoRa Class(Currently only support class A
822 +AT+PUBTOPI : Get or Set MQTT publish topic
891 891  
892 -(% style="background-color:#dcdcdc" %)**AT+DCS**(%%)  : Duty Cycle Settin
824 +AT+SUBTOPIC  : Get or Set MQTT subscription topic
893 893  
894 -(% style="background-color:#dcdcdc" %)**AT+DR**(%%)  : Data Rate (Can Only be Modified after ADR=0)     
895 895  
896 -(% style="background-color:#dcdcdc" %)**AT+FCD**(%%)  : Frame Counter Downlink       
827 +(% style="color:#037691" %)**Information**          
897 897  
898 -(% style="background-color:#dcdcdc" %)**AT+FCU**(%%)  : Frame Counter Uplink   
829 +AT+FDR  : Factory Data Reset
899 899  
900 -(% style="background-color:#dcdcdc" %)**AT+JN1DL**(%%)  : Join Accept Delay1
831 +AT+PWOR : Serial Access Password
901 901  
902 -(% style="background-color:#dcdcdc" %)**AT+JN2DL**(%%)  : Join Accept Delay2
903 903  
904 -(% style="background-color:#dcdcdc" %)**AT+PNM**(%%)  : Public Network Mode   
905 905  
906 -(% style="background-color:#dcdcdc" %)**AT+RX1DL**(%%)  : Receive Delay1      
835 += ​5.  FAQ =
907 907  
908 -(% style="background-color:#dcdcdc" %)**AT+RX2DL**(%%)  : Receive Delay2      
837 +== 5.1 How to Upgrade Firmware ==
909 909  
910 -(% style="background-color:#dcdcdc" %)**AT+RX2DR**(%%)  : Rx2 Window Data Rate 
911 911  
912 -(% style="background-color:#dcdcdc" %)**AT+RX2FQ**(%%)  : Rx2 Window Frequency
913 -
914 -(% style="background-color:#dcdcdc" %)**AT+TXP**(%%)  : Transmit Power
915 -
916 -(% style="background-color:#dcdcdc" %)**AT+ MOD**(%%)  : Set work mode
917 -
918 -
919 -(% style="color:#037691" %)**Information** 
920 -
921 -(% style="background-color:#dcdcdc" %)**AT+RSSI**(%%)           : RSSI of the Last Received Packet   
922 -
923 -(% style="background-color:#dcdcdc" %)**AT+SNR**(%%)           : SNR of the Last Received Packet   
924 -
925 -(% style="background-color:#dcdcdc" %)**AT+VER**(%%)           : Image Version and Frequency Band       
926 -
927 -(% style="background-color:#dcdcdc" %)**AT+FDR**(%%)           : Factory Data Reset
928 -
929 -(% style="background-color:#dcdcdc" %)**AT+PORT**(%%)  : Application Port    
930 -
931 -(% style="background-color:#dcdcdc" %)**AT+CHS**(%%)  : Get or Set Frequency (Unit: Hz) for Single Channel Mode
932 -
933 - (% style="background-color:#dcdcdc" %)**AT+CHE**(%%)  : Get or Set eight channels mode, Only for US915, AU915, CN470
934 -
935 -
936 -= ​4. FAQ =
937 -
938 -== 4.1 ​How to change the LoRa Frequency Bands/Region? ==
939 -
940 940  (((
941 -You can follow the instructions for [[how to upgrade image>>||anchor="H2.10200BFirmwareChangeLog"]].
942 -When downloading the images, choose the required image file for download. ​
841 +User can upgrade the firmware for 1) bug fix, 2) new feature release.
943 943  )))
944 944  
945 945  (((
946 -
845 +Please see this link for how to upgrade:  [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H2.HardwareUpgradeMethodSupportList>>http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H2.HardwareUpgradeMethodSupportList]]
947 947  )))
948 948  
949 949  (((
950 -How to set up LSE01 to work in 8 channel mode By default, the frequency bands US915, AU915, CN470 work in 72 frequencies. Many gateways are 8 channel gateways, and in this case, the OTAA join time and uplink schedule is long and unpredictable while the end node is hopping in 72 frequencies.
849 +(% style="color:red" %)Notice, NSE01 and LSE01 share the same mother board. They use the same connection and method to update.
951 951  )))
952 952  
953 -(((
954 -
955 -)))
956 956  
957 -(((
958 -You can configure the end node to work in 8 channel mode by using the AT+CHE command. The 500kHz channels are always included for OTAA.
959 -)))
960 960  
961 -(((
962 -
963 -)))
854 +== 5.2  Can I calibrate NSE01 to different soil types? ==
964 964  
965 965  (((
966 -For example, in **US915** band, the frequency table is as below. By default, the end node will use all channels (0~~71) for OTAA Join process. After the OTAA Join, the end node will use these all channels (0~~71) to send uplink packets.
857 +NSE01 is calibrated for saline-alkali soil and loamy soil. If users want to use it for other soil, they can calibrate the value in the IoT platform base on the value measured by saline-alkali soil and loamy soil. The formula can be found at [[this link>>https://www.dragino.com/downloads/downloads/LoRa_End_Node/LSE01/Calibrate_to_other_Soil_20220605.pdf]].
967 967  )))
968 968  
969 -[[image:image-20220606154726-3.png]]
970 970  
861 += 6.  Trouble Shooting =
971 971  
972 -When you use the TTN network, the US915 frequency bands use are:
863 +== 6.1  ​Connection problem when uploading firmware ==
973 973  
974 -* 903.9 - SF7BW125 to SF10BW125
975 -* 904.1 - SF7BW125 to SF10BW125
976 -* 904.3 - SF7BW125 to SF10BW125
977 -* 904.5 - SF7BW125 to SF10BW125
978 -* 904.7 - SF7BW125 to SF10BW125
979 -* 904.9 - SF7BW125 to SF10BW125
980 -* 905.1 - SF7BW125 to SF10BW125
981 -* 905.3 - SF7BW125 to SF10BW125
982 -* 904.6 - SF8BW500
983 983  
984 984  (((
985 -Because the end node is now hopping in 72 frequency, it makes it difficult for the devices to Join the TTN network and uplink data. To solve this issue, you can access the device via the AT commands and run:
867 +**Please see: **[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H3.3Troubleshooting>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H3.3Troubleshooting]]
986 986  )))
987 987  
988 -(% class="box infomessage" %)
870 +(% class="wikigeneratedid" %)
989 989  (((
990 -**AT+CHE=2**
991 -)))
992 -
993 -(% class="box infomessage" %)
994 -(((
995 -**ATZ**
996 -)))
997 -
998 -(((
999 -to set the end node to work in 8 channel mode. The device will work in Channel 8-15 & 64-71 for OTAA, and channel 8-15 for Uplink.
1000 -)))
1001 -
1002 -(((
1003 1003  
1004 1004  )))
1005 1005  
1006 -(((
1007 -The **AU915** band is similar. Below are the AU915 Uplink Channels.
1008 -)))
1009 1009  
1010 -[[image:image-20220606154825-4.png]]
876 +== 6.2  AT Command input doesn't work ==
1011 1011  
1012 -
1013 -
1014 -= 5. Trouble Shooting =
1015 -
1016 -== 5.1 ​Why I can’t join TTN in US915 / AU915 bands? ==
1017 -
1018 -It is due to channel mapping. Please see the [[Eight Channel Mode>>doc:Main.LoRaWAN Communication Debug.WebHome||anchor="H2.NoticeofUS9152FCN4702FAU915Frequencyband"]] section above for details.
1019 -
1020 -
1021 -== 5.2 AT Command input doesn’t work ==
1022 -
1023 1023  (((
1024 -In the case if user can see the console output but can’t type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn’t send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.
1025 -)))
879 +In the case if user can see the console output but can't type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn't send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.
1026 1026  
1027 -
1028 -== 5.3 Device rejoin in at the second uplink packet ==
1029 -
1030 -(% style="color:#4f81bd" %)**Issue describe as below:**
1031 -
1032 -[[image:1654500909990-784.png]]
1033 -
1034 -
1035 -(% style="color:#4f81bd" %)**Cause for this issue:**
1036 -
1037 -(((
1038 -The fuse on LSE01 is not large enough, some of the soil probe require large current up to 5v 800mA, in a short pulse. When this happen, it cause the device reboot so user see rejoin.
881 +
1039 1039  )))
1040 1040  
1041 1041  
1042 -(% style="color:#4f81bd" %)**Solution: **
885 += 7. ​ Order Info =
1043 1043  
1044 -All new shipped LSE01 after 2020-May-30 will have this to fix. For the customer who see this issue, please bypass the fuse as below:
1045 1045  
1046 -[[image:1654500929571-736.png||height="458" width="832"]]
888 +Part Number**:** (% style="color:#4f81bd" %)**NSE01**
1047 1047  
1048 1048  
1049 -= 6. ​Order Info =
1050 -
1051 -
1052 -Part Number**:** (% style="color:#4f81bd" %)**LSE01-XX-YY**
1053 -
1054 -
1055 -(% style="color:#4f81bd" %)**XX**(%%)**:** The default frequency band
1056 -
1057 -* (% style="color:red" %)**AS923**(%%): LoRaWAN AS923 band
1058 -* (% style="color:red" %)**AU915**(%%): LoRaWAN AU915 band
1059 -* (% style="color:red" %)**EU433**(%%): LoRaWAN EU433 band
1060 -* (% style="color:red" %)**EU868**(%%): LoRaWAN EU868 band
1061 -* (% style="color:red" %)**KR920**(%%): LoRaWAN KR920 band
1062 -* (% style="color:red" %)**US915**(%%): LoRaWAN US915 band
1063 -* (% style="color:red" %)**IN865**(%%):  LoRaWAN IN865 band
1064 -* (% style="color:red" %)**CN470**(%%): LoRaWAN CN470 band
1065 -
1066 -(% style="color:#4f81bd" %)**YY**(%%)**: **Battery Option
1067 -
1068 -* (% style="color:red" %)**4**(%%): 4000mAh battery
1069 -* (% style="color:red" %)**8**(%%): 8500mAh battery
1070 -
1071 1071  (% class="wikigeneratedid" %)
1072 1072  (((
1073 1073  
1074 1074  )))
1075 1075  
1076 -= 7. Packing Info =
896 += 8.  Packing Info =
1077 1077  
1078 1078  (((
1079 1079  
1080 1080  
1081 1081  (% style="color:#037691" %)**Package Includes**:
1082 -)))
1083 1083  
1084 -* (((
1085 -LSE01 LoRaWAN Soil Moisture & EC Sensor x 1
903 +* NSE01 NB-IoT Soil Moisture & EC Sensor x 1
904 +* External antenna x 1
1086 1086  )))
1087 1087  
1088 1088  (((
... ... @@ -1089,24 +1089,19 @@
1089 1089  
1090 1090  
1091 1091  (% style="color:#037691" %)**Dimension and weight**:
1092 -)))
1093 1093  
1094 -* (((
1095 -Device Size: cm
912 +* Size: 195 x 125 x 55 mm
913 +* Weight:   420g
1096 1096  )))
1097 -* (((
1098 -Device Weight: g
1099 -)))
1100 -* (((
1101 -Package Size / pcs : cm
1102 -)))
1103 -* (((
1104 -Weight / pcs : g
1105 1105  
916 +(((
1106 1106  
918 +
919 +
920 +
1107 1107  )))
1108 1108  
1109 -= 8. Support =
923 += 9.  Support =
1110 1110  
1111 1111  * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
1112 1112  * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.com]]
1657245163077-232.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +81.0 KB
Content
1657246476176-652.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +492.6 KB
Content
1657249419225-449.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +81.0 KB
Content
1657249468462-536.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +483.6 KB
Content
1657249793983-486.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +85.8 KB
Content
1657249831934-534.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +72.5 KB
Content
1657249864775-321.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +87.0 KB
Content
1657249930215-289.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +77.3 KB
Content
1657249978444-674.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +139.5 KB
Content
1657249990869-686.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +96.9 KB
Content
1657250217799-140.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +98.7 KB
Content
1657250255956-604.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +99.0 KB
Content
1657259653666-883.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +344.4 KB
Content
1657260785982-288.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +138.2 KB
Content
1657261119050-993.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +126.1 KB
Content
1657261278785-153.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +126.1 KB
Content
1657271519014-786.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +71.5 KB
Content
1657327959271-447.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +78.3 KB
Content
1657328609906-564.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +492.6 KB
Content
1657328659945-416.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +78.8 KB
Content
image-20220708101224-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +22.2 KB
Content
image-20220708101605-2.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +87.5 KB
Content
image-20220708110657-3.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +251.7 KB
Content
image-20220708111918-4.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +38.8 KB
Content
image-20220708133731-5.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +8.7 KB
Content
image-20220708140453-6.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +132.7 KB
Content
image-20220708141352-7.jpeg
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +102.7 KB
Content
image-20220709084038-1.jpeg
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +72.0 KB
Content
image-20220709084137-2.jpeg
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +72.0 KB
Content
image-20220709084207-3.jpeg
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +72.0 KB
Content
image-20220709084458-4.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +199.5 KB
Content
image-20220709085040-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +200.4 KB
Content