Changes for page N95S31B -- NB-IoT Temperature & Humidity Sensor User Manual
Last modified by Mengting Qiu on 2024/04/02 16:44
Summary
-
Page properties (2 modified, 0 added, 0 removed)
-
Attachments (0 modified, 30 added, 0 removed)
- 1657245163077-232.png
- 1657246476176-652.png
- 1657249419225-449.png
- 1657249468462-536.png
- 1657249793983-486.png
- 1657249831934-534.png
- 1657249864775-321.png
- 1657249930215-289.png
- 1657249978444-674.png
- 1657249990869-686.png
- 1657250217799-140.png
- 1657250255956-604.png
- 1657259653666-883.png
- 1657260785982-288.png
- 1657261119050-993.png
- 1657261278785-153.png
- 1657271519014-786.png
- 1657327959271-447.png
- image-20220708101224-1.png
- image-20220708101605-2.png
- image-20220708110657-3.png
- image-20220708111918-4.png
- image-20220708133731-5.png
- image-20220708140453-6.png
- image-20220708141352-7.jpeg
- image-20220709084038-1.jpeg
- image-20220709084137-2.jpeg
- image-20220709084207-3.jpeg
- image-20220709084458-4.png
- image-20220709085040-1.png
Details
- Page properties
-
- Title
-
... ... @@ -1,1 +1,1 @@ 1 - LSE01-LoRaWANSoil Moisture&ECSensor User Manual1 +NDDS75 NB-IoT Distance Detect Sensor User Manual - Content
-
... ... @@ -1,11 +1,12 @@ 1 1 (% style="text-align:center" %) 2 -[[image:image-20220 606151504-2.jpeg||height="554" width="554"]]2 +[[image:image-20220709085040-1.png||height="542" width="524"]] 3 3 4 4 5 5 6 + 7 + 6 6 **Table of Contents:** 7 7 8 -{{toc/}} 9 9 10 10 11 11 ... ... @@ -12,774 +12,709 @@ 12 12 13 13 14 14 15 -= 1. Introduction = 16 += 1. Introduction = 16 16 17 -== 1.1 What is LoRaWANoilMoisture&ECSensor ==18 +== 1.1 What is NDDS75 Distance Detection Sensor == 18 18 19 19 ((( 20 20 21 21 22 -The Dragino LSE01 is a (% style="color:#4f81bd" %)**LoRaWAN Soil Moisture & EC Sensor**(%%) for IoT of Agriculture. It is designed to measure the soil moisture of saline-alkali soil and loamy soil. The soil sensor uses FDR method to calculate the soil moisture with the compensation from soil temperature and conductivity. It also has been calibrated in factory for Mineral soil type. 23 -))) 24 - 25 25 ((( 26 -It detects (% style="color:#4f81bd" %)**Soil Moisture**(%%), (% style="color:#4f81bd" %)**Soil Temperature**(%%) and (% style="color:#4f81bd" %)**Soil Conductivity**(%%), and uploads the value via wireless to LoRaWAN IoT Server. 24 +The Dragino NDDS75 is a (% style="color:blue" %)**NB-IoT Distance Detection Sensor**(%%) for Internet of Things solution. It is designed to measure the distance between the sensor and a flat object. The distance detection sensor is a module that uses ultrasonic sensing technology for distance measurement, and temperature compensation is performed internally to improve the reliability of data. 25 +\\The NDDS75 can be applied to scenarios such as horizontal distance measurement, liquid level measurement, parking management system, object proximity and presence detection, intelligent trash can management system, robot obstacle avoidance, automatic control, sewer, bottom water level monitoring, etc. It detects the distance between the measured object and the sensor, and uploads the value via wireless to IoT Server via NB-IoT Network. 26 +\\NarrowBand-Internet of Things (NB-IoT) is a standards-based low power wide area (LPWA) technology developed to enable a wide range of new IoT devices and services. NB-IoT significantly improves the power consumption of user devices, system capacity and spectrum efficiency, especially in deep coverage. 27 +\\NDDS75 supports different uplink methods include (% style="color:blue" %)**TCP, MQTT, UDP and CoAP** (%%)for different application requirement. 28 +\\NDDS75 is powered by (% style="color:blue" %)**8500mAh Li-SOCI2 battery**(%%), It is designed for long term use up to 5 years. (Actually Battery life depends on the use environment, update period & uplink method) 29 +\\To use NDDS75, user needs to check if there is NB-IoT coverage in local area and with the bands NDDS75 supports. If the local operate support it, user needs to get a NB-IoT SIM card from local operator and install NDDS75 to get NB-IoT network connection. 27 27 ))) 28 28 29 -((( 30 -The LoRa wireless technology used in LES01 allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption. 32 + 31 31 ))) 32 32 33 -((( 34 -LES01 is powered by (% style="color:#4f81bd" %)**4000mA or 8500mAh Li-SOCI2 battery**(%%), It is designed for long term use up to 10 years. 35 -))) 36 - 37 -((( 38 -Each LES01 is pre-load with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect after power on. 39 -))) 40 - 41 - 42 42 [[image:1654503236291-817.png]] 43 43 44 44 45 -[[image:165 4503265560-120.png]]38 +[[image:1657327959271-447.png]] 46 46 47 47 48 48 49 -== 1.2 Features == 42 +== 1.2 Features == 50 50 51 -* LoRaWAN 1.0.3 Class A 44 + 45 +* NB-IoT Bands: B1/B3/B8/B5/B20/B28 @H-FDD 52 52 * Ultra low power consumption 53 -* MonitorSoilMoisture54 -* MonitorSoil Temperature55 -* Monitor SoilConductivity56 -* Bands:CN470/EU433/KR920/US915/EU868/AS923/AU915/IN86547 +* Distance Detection by Ultrasonic technology 48 +* Flat object range 280mm - 7500mm 49 +* Accuracy: ±(1cm+S*0.3%) (S: Distance) 50 +* Cable Length: 25cm 57 57 * AT Commands to change parameters 58 58 * Uplink on periodically 59 59 * Downlink to change configure 60 60 * IP66 Waterproof Enclosure 61 -* 4000mAh or 8500mAh Battery for long term use 55 +* Micro SIM card slot for NB-IoT SIM 56 +* 8500mAh Battery for long term use 62 62 63 63 64 64 65 -== 1.3 Specification == 60 +== 1.3 Specification == 66 66 67 -Measure Volume: Base on the centra pin of the probe, a cylinder with 7cm diameter and 10cm height. 68 68 69 - [[image:image-20220606162220-5.png]]63 +(% style="color:#037691" %)**Common DC Characteristics:** 70 70 65 +* Supply Voltage: 2.1v ~~ 3.6v 66 +* Operating Temperature: -40 ~~ 85°C 71 71 68 +(% style="color:#037691" %)**NB-IoT Spec:** 72 72 73 -== 1.4 Applications == 70 +* - B1 @H-FDD: 2100MHz 71 +* - B3 @H-FDD: 1800MHz 72 +* - B8 @H-FDD: 900MHz 73 +* - B5 @H-FDD: 850MHz 74 +* - B20 @H-FDD: 800MHz 75 +* - B28 @H-FDD: 700MHz 74 74 75 -* Smart Agriculture 76 76 77 -(% class="wikigeneratedid" id="H200B1.5FirmwareChangelog" %) 78 - 78 +(% style="color:#037691" %)**Battery:** 79 79 80 -== 1.5 Firmware Change log == 80 +* Li/SOCI2 un-chargeable battery 81 +* Capacity: 8500mAh 82 +* Self Discharge: <1% / Year @ 25°C 83 +* Max continuously current: 130mA 84 +* Max boost current: 2A, 1 second 81 81 82 82 83 - **LSE01v1.0 :**Release87 +(% style="color:#037691" %)**Power Consumption** 84 84 89 +* STOP Mode: 10uA @ 3.3v 90 +* Max transmit power: 350mA@3.3v 85 85 86 86 87 -= 2. Configure LSE01 to connect to LoRaWAN network = 88 88 89 -== 2.1 How it works == 90 90 91 -((( 92 -The LSE01 is configured as LoRaWAN OTAA Class A mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and power on the LSE0150. It will automatically join the network via OTAA and start to send the sensor value 93 -))) 95 +== 1.4 Applications == 94 94 95 -((( 96 -In case you can’t set the OTAA keys in the LoRaWAN OTAA server, and you have to use the keys from the server, you can [[use AT Commands >>||anchor="H3.200BUsingtheATCommands"]]. 97 -))) 97 +* Smart Agriculture 98 98 99 +(% class="wikigeneratedid" id="H200B1.5FirmwareChangelog" %) 100 + 99 99 102 +== 1.5 Pin Definitions == 100 100 101 -== 2.2 Quick guide to connect to LoRaWAN server (OTAA) == 102 102 103 - Following is an example for how to join the[[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LG308>>url:http://www.dragino.com/products/lora/item/140-lg308.html]]as a LoRaWAN gateway in this example.105 +[[image:1657246476176-652.png]] 104 104 105 105 106 -[[image:1654503992078-669.png]] 107 107 109 += 2. Use NSE01 to communicate with IoT Server = 108 108 109 - TheLG308is already set toconnected to [[TTN network>>url:https://console.cloud.thethings.network/]],sowhat we need to now is configure the TTN server.111 +== 2.1 How it works == 110 110 111 111 112 -(% style="color:blue" %)**Step 1**(%%): Create a device in TTN with the OTAA keys from LSE01. 113 - 114 -Each LSE01 is shipped with a sticker with the default device EUI as below: 115 - 116 -[[image:image-20220606163732-6.jpeg]] 117 - 118 -You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot: 119 - 120 -**Add APP EUI in the application** 121 - 122 - 123 -[[image:1654504596150-405.png]] 124 - 125 - 126 - 127 -**Add APP KEY and DEV EUI** 128 - 129 -[[image:1654504683289-357.png]] 130 - 131 - 132 - 133 -(% style="color:blue" %)**Step 2**(%%): Power on LSE01 134 - 135 - 136 -Put a Jumper on JP2 to power on the device. ( The Jumper must be in FLASH position). 137 - 138 -[[image:image-20220606163915-7.png]] 139 - 140 - 141 -(% style="color:blue" %)**Step 3**(%%)**:** The LSE01 will auto join to the TTN network. After join success, it will start to upload messages to TTN and you can see the messages in the panel. 142 - 143 -[[image:1654504778294-788.png]] 144 - 145 - 146 - 147 -== 2.3 Uplink Payload == 148 - 149 - 150 -=== 2.3.1 MOD~=0(Default Mode) === 151 - 152 -LSE01 will uplink payload via LoRaWAN with below payload format: 153 - 154 154 ((( 155 - Uplinkpayload includesin total11bytes.115 +The NSE01 is equipped with a NB-IoT module, the pre-loaded firmware in NSE01 will get environment data from sensors and send the value to local NB-IoT network via the NB-IoT module. The NB-IoT network will forward this value to IoT server via the protocol defined by NSE01. 156 156 ))) 157 157 158 -(% border="1" cellspacing="10" style="background-color:#ffffcc; width:500px" %) 159 -|((( 160 -**Size** 161 161 162 -**(bytes)** 163 -)))|**2**|**2**|**2**|**2**|**2**|**1** 164 -|**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|((( 165 -Temperature 166 - 167 -(Reserve, Ignore now) 168 -)))|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]]|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]]|((( 169 -MOD & Digital Interrupt 170 - 171 -(Optional) 119 +((( 120 +The diagram below shows the working flow in default firmware of NSE01: 172 172 ))) 173 173 123 +[[image:image-20220708101605-2.png]] 174 174 175 - 176 - 177 - 178 -=== 2.3.2 MOD~=1(Original value) === 179 - 180 -This mode can get the original AD value of moisture and original conductivity (with temperature drift compensation). 181 - 182 -(% border="1" cellspacing="10" style="background-color:#ffffcc; width:500px" %) 183 -|((( 184 -**Size** 185 - 186 -**(bytes)** 187 -)))|**2**|**2**|**2**|**2**|**2**|**1** 188 -|**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|((( 189 -Temperature 190 - 191 -(Reserve, Ignore now) 192 -)))|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]](raw)|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]](raw)|((( 193 -MOD & Digital Interrupt 194 - 195 -(Optional) 196 -))) 197 - 198 - 199 - 200 - 201 - 202 -=== 2.3.3 Battery Info === 203 - 204 204 ((( 205 - Checkthe battery voltage for LSE01.126 + 206 206 ))) 207 207 208 -((( 209 -Ex1: 0x0B45 = 2885mV 210 -))) 211 211 212 -((( 213 -Ex2: 0x0B49 = 2889mV 214 -))) 215 215 131 +== 2.2 Configure the NSE01 == 216 216 217 217 218 -=== 2. 3.4SoilMoisture ===134 +=== 2.2.1 Test Requirement === 219 219 220 -((( 221 -Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil. 222 -))) 223 223 224 224 ((( 225 - Forexample,ifthe datayouget fromthe register is __0x05 0xDC__,themoisturecontentin thesoil is138 +To use NSE01 in your city, make sure meet below requirements: 226 226 ))) 227 227 228 - (((229 - 230 - )))141 +* Your local operator has already distributed a NB-IoT Network there. 142 +* The local NB-IoT network used the band that NSE01 supports. 143 +* Your operator is able to distribute the data received in their NB-IoT network to your IoT server. 231 231 232 232 ((( 233 -(% style="color: #4f81bd" %)**05DC(H) = 1500(D)/100= 15%.**146 +Below figure shows our testing structure. Here we have NB-IoT network coverage by China Mobile, the band they use is B8. The NSE01 will use CoAP((% style="color:red" %)120.24.4.116:5683)(%%) or raw UDP((% style="color:red" %)120.24.4.116:5601)(%%) or MQTT((% style="color:red" %)120.24.4.116:1883)(%%)or TCP((% style="color:red" %)120.24.4.116:5600)(%%)protocol to send data to the test server 234 234 ))) 235 235 236 236 150 +[[image:1657249419225-449.png]] 237 237 238 -=== 2.3.5 Soil Temperature === 239 239 240 -((( 241 - Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is 0x09 0xEC, the temperature content in the soil is 242 -))) 243 243 244 -((( 245 -**Example**: 246 -))) 154 +=== 2.2.2 Insert SIM card === 247 247 248 248 ((( 249 -I fpayloadis 0105H: ((0x0105 & 0x8000)>>15 === 0),temp=0105(H)/100 = 2.61 °C157 +Insert the NB-IoT Card get from your provider. 250 250 ))) 251 251 252 252 ((( 253 - IfpayloadisFF7EH:((FF7E&0x8000)>>15===1),temp=(FF7E(H)-FFFF(H))/100=-1.29 °C161 +User need to take out the NB-IoT module and insert the SIM card like below: 254 254 ))) 255 255 256 256 165 +[[image:1657249468462-536.png]] 257 257 258 -=== 2.3.6 Soil Conductivity (EC) === 259 259 260 -((( 261 -Obtain (% style="color:#4f81bd" %)**__soluble salt concentration__**(%%) in soil or (% style="color:#4f81bd" %)**__soluble ion concentration in liquid fertilizer__**(%%) or (% style="color:#4f81bd" %)**__planting medium__**(%%). The value range of the register is 0 - 20000(Decimal)( Can be greater than 20000). 262 -))) 263 263 264 -((( 265 -For example, if the data you get from the register is 0x00 0xC8, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm. 266 -))) 169 +=== 2.2.3 Connect USB – TTL to NSE01 to configure it === 267 267 268 268 ((( 269 -Generally, the EC value of irrigation water is less than 800uS / cm. 270 -))) 271 - 272 272 ((( 273 - 173 +User need to configure NSE01 via serial port to set the (% style="color:blue" %)**Server Address** / **Uplink Topic** (%%)to define where and how-to uplink packets. NSE01 support AT Commands, user can use a USB to TTL adapter to connect to NSE01 and use AT Commands to configure it, as below. 274 274 ))) 275 - 276 -((( 277 - 278 278 ))) 279 279 280 -=== 2.3.7 MOD === 281 281 282 - Firmware versionat least v2.1 supportschanging mode.178 +**Connection:** 283 283 284 - Forexample,bytes[10]=90180 + (% style="background-color:yellow" %)USB TTL GND <~-~-~-~-> GND 285 285 286 - mod=(bytes[10]>>7)&0x01=1.182 + (% style="background-color:yellow" %)USB TTL TXD <~-~-~-~-> UART_RXD 287 287 184 + (% style="background-color:yellow" %)USB TTL RXD <~-~-~-~-> UART_TXD 288 288 289 -**Downlink Command:** 290 290 291 -I fpayload= 0x0A00,workmode=0187 +In the PC, use below serial tool settings: 292 292 293 -If** **payload =** **0x0A01, workmode=1 189 +* Baud: (% style="color:green" %)**9600** 190 +* Data bits:** (% style="color:green" %)8(%%)** 191 +* Stop bits: (% style="color:green" %)**1** 192 +* Parity: (% style="color:green" %)**None** 193 +* Flow Control: (% style="color:green" %)**None** 294 294 295 - 296 - 297 -=== 2.3.8 Decode payload in The Things Network === 298 - 299 -While using TTN network, you can add the payload format to decode the payload. 300 - 301 - 302 -[[image:1654505570700-128.png]] 303 - 304 304 ((( 305 - The payloaddecoderfunction forTTNis here:196 +Make sure the switch is in FLASH position, then power on device by connecting the jumper on NSE01. NSE01 will output system info once power on as below, we can enter the (% style="color:green" %)**password: 12345678**(%%) to access AT Command input. 306 306 ))) 307 307 308 -((( 309 -LSE01 TTN Payload Decoder: [[https:~~/~~/www.dropbox.com/sh/si8icbrjlamxqdb/AAACYwjsxxr5fj_vpqRtrETAa?dl=0>>https://www.dropbox.com/sh/si8icbrjlamxqdb/AAACYwjsxxr5fj_vpqRtrETAa?dl=0]] 310 -))) 199 +[[image:image-20220708110657-3.png]] 311 311 312 - 313 -== 2.4 Uplink Interval == 314 - 315 -The LSE01 by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link: [[Change Uplink Interval>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H4.1ChangeUplinkInterval"]] 316 - 317 - 318 - 319 -== 2.5 Downlink Payload == 320 - 321 -By default, LSE50 prints the downlink payload to console port. 322 - 323 -[[image:image-20220606165544-8.png]] 324 - 325 - 326 326 ((( 327 - **Examples:**202 +(% style="color:red" %)Note: the valid AT Commands can be found at: (%%)[[http:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/]] 328 328 ))) 329 329 330 -((( 331 - 332 -))) 333 333 334 -* ((( 335 -**Set TDC** 336 -))) 337 337 338 -((( 339 -If the payload=0100003C, it means set the END Node’s TDC to 0x00003C=60(S), while type code is 01. 340 -))) 207 +=== 2.2.4 Use CoAP protocol to uplink data === 341 341 342 -((( 343 -Payload: 01 00 00 1E TDC=30S 344 -))) 209 +(% style="color:red" %)Note: if you don't have CoAP server, you can refer this link to set up one: (%%)[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/>>http://wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/]] 345 345 346 -((( 347 -Payload: 01 00 00 3C TDC=60S 348 -))) 349 349 350 -((( 351 - 352 -))) 212 +**Use below commands:** 353 353 354 -* (( (355 -**Reset **356 -)) )214 +* (% style="color:blue" %)**AT+PRO=1** (%%) ~/~/ Set to use CoAP protocol to uplink 215 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5683 ** (%%)~/~/ to set CoAP server address and port 216 +* (% style="color:blue" %)**AT+URI=5,11,"mqtt",11,"coap",12,"0",15,"c=text1",23,"0" ** (%%) ~/~/Set COAP resource path 357 357 358 -((( 359 -If payload = 0x04FF, it will reset the LSE01 360 -))) 218 +For parameter description, please refer to AT command set 361 361 220 +[[image:1657249793983-486.png]] 362 362 363 -* **CFM** 364 364 365 - DownlinkPayload:05000001, Set AT+CFM=1or05000000,setAT+CFM=0223 +After configure the server address and (% style="color:green" %)**reset the device**(%%) (via AT+ATZ ), NSE01 will start to uplink sensor values to CoAP server. 366 366 225 +[[image:1657249831934-534.png]] 367 367 368 368 369 -== 2.6 Show Data in DataCake IoT Server == 370 370 371 -((( 372 -[[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps: 373 -))) 229 +=== 2.2.5 Use UDP protocol to uplink data(Default protocol) === 374 374 375 -((( 376 - 377 -))) 231 +This feature is supported since firmware version v1.0.1 378 378 379 -((( 380 -**Step 1**: Be sure that your device is programmed and properly connected to the network at this time. 381 -))) 382 382 383 -(( (384 -* *Step2**:To configurethe Application toforwarddata to DATACAKEyouwillneedtoadd integration.ToaddtheDATACAKE integration,performthe following steps:385 -)) )234 +* (% style="color:blue" %)**AT+PRO=2 ** (%%) ~/~/ Set to use UDP protocol to uplink 235 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5601 ** (%%) ~/~/ to set UDP server address and port 236 +* (% style="color:blue" %)**AT+CFM=1 ** (%%) ~/~/If the server does not respond, this command is unnecessary 386 386 238 +[[image:1657249864775-321.png]] 387 387 388 -[[image:1654505857935-743.png]] 389 389 241 +[[image:1657249930215-289.png]] 390 390 391 -[[image:1654505874829-548.png]] 392 392 393 -Step 3: Create an account or log in Datacake. 394 394 395 - Step4:SearchtheLSE01 andaddDevEUI.245 +=== 2.2.6 Use MQTT protocol to uplink data === 396 396 247 +This feature is supported since firmware version v110 397 397 398 -[[image:1654505905236-553.png]] 399 399 250 +* (% style="color:blue" %)**AT+PRO=3 ** (%%) ~/~/Set to use MQTT protocol to uplink 251 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,1883 ** (%%) ~/~/Set MQTT server address and port 252 +* (% style="color:blue" %)**AT+CLIENT=CLIENT ** (%%)~/~/Set up the CLIENT of MQTT 253 +* (% style="color:blue" %)**AT+UNAME=UNAME **(%%)~/~/Set the username of MQTT 254 +* (% style="color:blue" %)**AT+PWD=PWD **(%%)~/~/Set the password of MQTT 255 +* (% style="color:blue" %)**AT+PUBTOPIC=NSE01_PUB **(%%)~/~/Set the sending topic of MQTT 256 +* (% style="color:blue" %)**AT+SUBTOPIC=NSE01_SUB **(%%) ~/~/Set the subscription topic of MQTT 400 400 401 - After added, the sensor data arrive TTN, it willalso arriveand show in Mydevices.258 +[[image:1657249978444-674.png]] 402 402 403 -[[image:1654505925508-181.png]] 404 404 261 +[[image:1657249990869-686.png]] 405 405 406 406 407 -== 2.7 Frequency Plans == 264 +((( 265 +MQTT protocol has a much higher power consumption compare vs UDP / CoAP protocol. Please check the power analyze document and adjust the uplink period to a suitable interval. 266 +))) 408 408 409 -The LSE01 uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets. 410 410 411 411 412 -=== 2. 7.1 EU863-870(EU868)===270 +=== 2.2.7 Use TCP protocol to uplink data === 413 413 414 - (%style="color:#037691"%)**Uplink:**272 +This feature is supported since firmware version v110 415 415 416 -868.1 - SF7BW125 to SF12BW125 417 417 418 -868.3 - SF7BW125 to SF12BW125 and SF7BW250 275 +* (% style="color:blue" %)**AT+PRO=4 ** (%%) ~/~/ Set to use TCP protocol to uplink 276 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5600 **(%%) ~/~/ to set TCP server address and port 419 419 420 - 868.5- SF7BW125to SF12BW125278 +[[image:1657250217799-140.png]] 421 421 422 -867.1 - SF7BW125 to SF12BW125 423 423 424 - 867.3 - SF7BW125to SF12BW125281 +[[image:1657250255956-604.png]] 425 425 426 -867.5 - SF7BW125 to SF12BW125 427 427 428 -867.7 - SF7BW125 to SF12BW125 429 429 430 - 867.9-SF7BW125toSF12BW125285 +=== 2.2.8 Change Update Interval === 431 431 432 - 868.8 -FSK287 +User can use below command to change the (% style="color:green" %)**uplink interval**. 433 433 289 +* (% style="color:blue" %)**AT+TDC=600 ** (%%)~/~/ Set Update Interval to 600s 434 434 435 -(% style="color:#037691" %)** Downlink:** 291 +((( 292 +(% style="color:red" %)**NOTE:** 293 +))) 436 436 437 -Uplink channels 1-9 (RX1) 295 +((( 296 +(% style="color:red" %)1. By default, the device will send an uplink message every 1 hour. 297 +))) 438 438 439 -869.525 - SF9BW125 (RX2 downlink only) 440 440 441 441 301 +== 2.3 Uplink Payload == 442 442 443 - ===2.7.2US902-928(US915)===303 +In this mode, uplink payload includes in total 18 bytes 444 444 445 -Used in USA, Canada and South America. Default use CHE=2 305 +(% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:510px" %) 306 +|=(% style="width: 60px;" %)((( 307 +**Size(bytes)** 308 +)))|=(% style="width: 50px;" %)**6**|=(% style="width: 25px;" %)2|=(% style="width: 25px;" %)**2**|=(% style="width: 70px;" %)**1**|=(% style="width: 60px;" %)**2**|=(% style="width: 80px;" %)**2**|=(% style="width: 90px;" %)**2**|=(% style="width: 50px;" %)**1** 309 +|(% style="width:97px" %)**Value**|(% style="width:83px" %)[[Device ID>>||anchor="H2.4.1A0A0DeviceID"]]|(% style="width:41px" %)[[Ver>>||anchor="H2.4.2A0VersionInfo"]]|(% style="width:46px" %)[[BAT>>||anchor="H2.4.3A0BatteryInfo"]]|(% style="width:123px" %)[[Signal Strength>>||anchor="H2.4.4A0SignalStrength"]]|(% style="width:108px" %)[[Soil Moisture>>||anchor="H2.4.5A0SoilMoisture"]]|(% style="width:133px" %)[[Soil Temperature>>||anchor="H2.4.6A0SoilTemperature"]]|(% style="width:159px" %)[[Soil Conductivity(EC)>>||anchor="H2.4.7A0SoilConductivity28EC29"]]|(% style="width:80px" %)[[Interrupt>>||anchor="H2.4.8A0DigitalInterrupt"]] 446 446 447 -(% style="color:#037691" %)**Uplink:** 311 +((( 312 +If we use the MQTT client to subscribe to this MQTT topic, we can see the following information when the NSE01 uplink data. 313 +))) 448 448 449 -903.9 - SF7BW125 to SF10BW125 450 450 451 - 904.1-SF7BW125 to SF10BW125316 +[[image:image-20220708111918-4.png]] 452 452 453 -904.3 - SF7BW125 to SF10BW125 454 454 455 - 904.5-SF7BW125toSF10BW125319 +The payload is ASCII string, representative same HEX: 456 456 457 - 904.7- SF7BW125to SF10BW125321 +0x72403155615900640c7817075e0a8c02f900 where: 458 458 459 -904.9 - SF7BW125 to SF10BW125 323 +* Device ID: 0x 724031556159 = 724031556159 324 +* Version: 0x0064=100=1.0.0 460 460 461 -905.1 - SF7BW125 to SF10BW125 326 +* BAT: 0x0c78 = 3192 mV = 3.192V 327 +* Singal: 0x17 = 23 328 +* Soil Moisture: 0x075e= 1886 = 18.86 % 329 +* Soil Temperature:0x0a8c =2700=27 °C 330 +* Soil Conductivity(EC) = 0x02f9 =761 uS /cm 331 +* Interrupt: 0x00 = 0 462 462 463 - 905.3- SF7BW125to SF10BW125333 +== 2.4 Payload Explanation and Sensor Interface == 464 464 465 465 466 - (%style="color:#037691"%)**Downlink:**336 +=== 2.4.1 Device ID === 467 467 468 -923.3 - SF7BW500 to SF12BW500 338 +((( 339 +By default, the Device ID equal to the last 6 bytes of IMEI. 340 +))) 469 469 470 -923.9 - SF7BW500 to SF12BW500 342 +((( 343 +User can use (% style="color:blue" %)**AT+DEUI**(%%) to set Device ID 344 +))) 471 471 472 -924.5 - SF7BW500 to SF12BW500 346 +((( 347 +**Example:** 348 +))) 473 473 474 -925.1 - SF7BW500 to SF12BW500 350 +((( 351 +AT+DEUI=A84041F15612 352 +))) 475 475 476 -925.7 - SF7BW500 to SF12BW500 354 +((( 355 +The Device ID is stored in a none-erase area, Upgrade the firmware or run AT+FDR won't erase Device ID. 356 +))) 477 477 478 -926.3 - SF7BW500 to SF12BW500 479 479 480 -926.9 - SF7BW500 to SF12BW500 481 481 482 - 927.5-SF7BW500 toSF12BW500360 +=== 2.4.2 Version Info === 483 483 484 -923.3 - SF12BW500(RX2 downlink only) 362 +((( 363 +Specify the software version: 0x64=100, means firmware version 1.00. 364 +))) 485 485 366 +((( 367 +For example: 0x00 64 : this device is NSE01 with firmware version 1.0.0. 368 +))) 486 486 487 487 488 -=== 2.7.3 CN470-510 (CN470) === 489 489 490 - UsedinChina, DefaultuseCHE=1372 +=== 2.4.3 Battery Info === 491 491 492 -(% style="color:#037691" %)**Uplink:** 374 +((( 375 +Check the battery voltage for LSE01. 376 +))) 493 493 494 -486.3 - SF7BW125 to SF12BW125 378 +((( 379 +Ex1: 0x0B45 = 2885mV 380 +))) 495 495 496 -486.5 - SF7BW125 to SF12BW125 382 +((( 383 +Ex2: 0x0B49 = 2889mV 384 +))) 497 497 498 -486.7 - SF7BW125 to SF12BW125 499 499 500 -486.9 - SF7BW125 to SF12BW125 501 501 502 -4 87.1-SF7BW125toSF12BW125388 +=== 2.4.4 Signal Strength === 503 503 504 -487.3 - SF7BW125 to SF12BW125 390 +((( 391 +NB-IoT Network signal Strength. 392 +))) 505 505 506 -487.5 - SF7BW125 to SF12BW125 394 +((( 395 +**Ex1: 0x1d = 29** 396 +))) 507 507 508 -487.7 - SF7BW125 to SF12BW125 398 +((( 399 +(% style="color:blue" %)**0**(%%) -113dBm or less 400 +))) 509 509 402 +((( 403 +(% style="color:blue" %)**1**(%%) -111dBm 404 +))) 510 510 511 -(% style="color:#037691" %)**Downlink:** 406 +((( 407 +(% style="color:blue" %)**2...30**(%%) -109dBm... -53dBm 408 +))) 512 512 513 -506.7 - SF7BW125 to SF12BW125 410 +((( 411 +(% style="color:blue" %)**31** (%%) -51dBm or greater 412 +))) 514 514 515 -506.9 - SF7BW125 to SF12BW125 414 +((( 415 +(% style="color:blue" %)**99** (%%) Not known or not detectable 416 +))) 516 516 517 -507.1 - SF7BW125 to SF12BW125 518 518 519 -507.3 - SF7BW125 to SF12BW125 520 520 521 - 507.5-SF7BW125toSF12BW125420 +=== 2.4.5 Soil Moisture === 522 522 523 -507.7 - SF7BW125 to SF12BW125 422 +((( 423 +((( 424 +Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil. 425 +))) 426 +))) 524 524 525 -507.9 - SF7BW125 to SF12BW125 428 +((( 429 +((( 430 +For example, if the data you get from the register is **__0x05 0xDC__**, the moisture content in the soil is 431 +))) 432 +))) 526 526 527 -508.1 - SF7BW125 to SF12BW125 434 +((( 435 + 436 +))) 528 528 529 -505.3 - SF12BW125 (RX2 downlink only) 438 +((( 439 +(% style="color:#4f81bd" %)**05DC(H) = 1500(D) /100 = 15%.** 440 +))) 530 530 531 531 532 532 533 -=== 2. 7.4AU915-928(AU915)===444 +=== 2.4.6 Soil Temperature === 534 534 535 -Default use CHE=2 446 +((( 447 +Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is __**0x09 0xEC**__, the temperature content in the soil is 448 +))) 536 536 537 -(% style="color:#037691" %)**Uplink:** 450 +((( 451 +**Example**: 452 +))) 538 538 539 -916.8 - SF7BW125 to SF12BW125 454 +((( 455 +If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/100 = 2.61 °C 456 +))) 540 540 541 -917.0 - SF7BW125 to SF12BW125 458 +((( 459 +If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C 460 +))) 542 542 543 -917.2 - SF7BW125 to SF12BW125 544 544 545 -917.4 - SF7BW125 to SF12BW125 546 546 547 - 917.6-SF7BW125toSF12BW125464 +=== 2.4.7 Soil Conductivity (EC) === 548 548 549 -917.8 - SF7BW125 to SF12BW125 466 +((( 467 +Obtain (% style="color:#4f81bd" %)**__soluble salt concentration__**(%%) in soil or (% style="color:#4f81bd" %)**__soluble ion concentration in liquid fertilizer__**(%%) or (% style="color:#4f81bd" %)**__planting medium__**(%%). The value range of the register is 0 - 20000(Decimal)( Can be greater than 20000). 468 +))) 550 550 551 -918.0 - SF7BW125 to SF12BW125 470 +((( 471 +For example, if the data you get from the register is __**0x00 0xC8**__, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm. 472 +))) 552 552 553 -918.2 - SF7BW125 to SF12BW125 474 +((( 475 +Generally, the EC value of irrigation water is less than 800uS / cm. 476 +))) 554 554 478 +((( 479 + 480 +))) 555 555 556 -(% style="color:#037691" %)**Downlink:** 482 +((( 483 + 484 +))) 557 557 558 - 923.3-SF7BW500toSF12BW500486 +=== 2.4.8 Digital Interrupt === 559 559 560 -923.9 - SF7BW500 to SF12BW500 488 +((( 489 +Digital Interrupt refers to pin (% style="color:blue" %)**GPIO_EXTI**(%%), and there are different trigger methods. When there is a trigger, the NSE01 will send a packet to the server. 490 +))) 561 561 562 -924.5 - SF7BW500 to SF12BW500 492 +((( 493 +The command is: 494 +))) 563 563 564 -925.1 - SF7BW500 to SF12BW500 496 +((( 497 +(% style="color:blue" %)**AT+INTMOD=3 **(%%) ~/~/(more info about INMOD please refer [[**AT Command Manual**>>url:https://www.dragino.com/downloads/downloads/NB-IoT/NBSN95/DRAGINO_NBSN95-NB_AT%20Commands_v1.1.0.pdf]])**.** 498 +))) 565 565 566 -925.7 - SF7BW500 to SF12BW500 567 567 568 -926.3 - SF7BW500 to SF12BW500 501 +((( 502 +The lower four bits of this data field shows if this packet is generated by interrupt or not. Click here for the hardware and software set up. 503 +))) 569 569 570 -926.9 - SF7BW500 to SF12BW500 571 571 572 -927.5 - SF7BW500 to SF12BW500 506 +((( 507 +Example: 508 +))) 573 573 574 -923.3 - SF12BW500(RX2 downlink only) 510 +((( 511 +0x(00): Normal uplink packet. 512 +))) 575 575 514 +((( 515 +0x(01): Interrupt Uplink Packet. 516 +))) 576 576 577 577 578 -=== 2.7.5 AS920-923 & AS923-925 (AS923) === 579 579 580 - (% style="color:#037691"%)**DefaultUplinkchannel:**520 +=== 2.4.9 +5V Output === 581 581 582 -923.2 - SF7BW125 to SF10BW125 522 +((( 523 +NSE01 will enable +5V output before all sampling and disable the +5v after all sampling. 524 +))) 583 583 584 -923.4 - SF7BW125 to SF10BW125 585 585 527 +((( 528 +The 5V output time can be controlled by AT Command. 529 +))) 586 586 587 -(% style="color:#037691" %)**Additional Uplink Channel**: 531 +((( 532 +(% style="color:blue" %)**AT+5VT=1000** 533 +))) 588 588 589 -(OTAA mode, channel added by JoinAccept message) 535 +((( 536 +Means set 5V valid time to have 1000ms. So the real 5V output will actually have 1000ms + sampling time for other sensors. 537 +))) 590 590 591 -(% style="color:#037691" %)**AS920~~AS923 for Japan, Malaysia, Singapore**: 592 592 593 -922.2 - SF7BW125 to SF10BW125 594 594 595 - 922.4- SF7BW125toSF10BW125541 +== 2.5 Downlink Payload == 596 596 597 - 922.6-SF7BW125toSF10BW125543 +By default, NSE01 prints the downlink payload to console port. 598 598 599 - 922.8- SF7BW125to SF10BW125545 +[[image:image-20220708133731-5.png]] 600 600 601 -923.0 - SF7BW125 to SF10BW125 602 602 603 -922.0 - SF7BW125 to SF10BW125 548 +((( 549 +(% style="color:blue" %)**Examples:** 550 +))) 604 604 552 +((( 553 + 554 +))) 605 605 606 -(% style="color:#037691" %)**AS923 ~~ AS925 for Brunei, Cambodia, Hong Kong, Indonesia, Laos, Taiwan, Thailand, Vietnam**: 556 +* ((( 557 +(% style="color:blue" %)**Set TDC** 558 +))) 607 607 608 -923.6 - SF7BW125 to SF10BW125 560 +((( 561 +If the payload=0100003C, it means set the END Node's TDC to 0x00003C=60(S), while type code is 01. 562 +))) 609 609 610 -923.8 - SF7BW125 to SF10BW125 564 +((( 565 +Payload: 01 00 00 1E TDC=30S 566 +))) 611 611 612 -924.0 - SF7BW125 to SF10BW125 568 +((( 569 +Payload: 01 00 00 3C TDC=60S 570 +))) 613 613 614 -924.2 - SF7BW125 to SF10BW125 572 +((( 573 + 574 +))) 615 615 616 -924.4 - SF7BW125 to SF10BW125 576 +* ((( 577 +(% style="color:blue" %)**Reset** 578 +))) 617 617 618 -924.6 - SF7BW125 to SF10BW125 580 +((( 581 +If payload = 0x04FF, it will reset the NSE01 582 +))) 619 619 620 620 621 -(% style="color: #037691" %)**ownlink:**585 +* (% style="color:blue" %)**INTMOD** 622 622 623 -Uplink channels 1-8 (RX1) 587 +((( 588 +Downlink Payload: 06000003, Set AT+INTMOD=3 589 +))) 624 624 625 -923.2 - SF10BW125 (RX2) 626 626 627 627 593 +== 2.6 LED Indicator == 628 628 629 -=== 2.7.6 KR920-923 (KR920) === 595 +((( 596 +The NSE01 has an internal LED which is to show the status of different state. 630 630 631 -Default channel: 632 632 633 -922.1 - SF7BW125 to SF12BW125 599 +* When power on, NSE01 will detect if sensor probe is connected, if probe detected, LED will blink four times. (no blinks in this step is no probe) 600 +* Then the LED will be on for 1 second means device is boot normally. 601 +* After NSE01 join NB-IoT network. The LED will be ON for 3 seconds. 602 +* For each uplink probe, LED will be on for 500ms. 603 +))) 634 634 635 -922.3 - SF7BW125 to SF12BW125 636 636 637 -922.5 - SF7BW125 to SF12BW125 638 638 639 639 640 - (%style="color:#037691"%)**Uplink:(OTAA mode, channeladded by JoinAccept message)**608 +== 2.7 Installation in Soil == 641 641 642 - 922.1- SF7BW125toSF12BW125610 +__**Measurement the soil surface**__ 643 643 644 -922.3 - SF7BW125 to SF12BW125 612 +((( 613 +Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting. [[https:~~/~~/img.alicdn.com/imgextra/i3/2005165265/O1CN010rj9Oh1olPsQxrdUK_!!2005165265.jpg>>url:https://img.alicdn.com/imgextra/i3/2005165265/O1CN010rj9Oh1olPsQxrdUK_!!2005165265.jpg]] 614 +))) 645 645 646 - 922.5- SF7BW125to SF12BW125616 +[[image:1657259653666-883.png]] 647 647 648 -922.7 - SF7BW125 to SF12BW125 649 649 650 -922.9 - SF7BW125 to SF12BW125 619 +((( 620 + 651 651 652 -923.1 - SF7BW125 to SF12BW125 622 +((( 623 +Dig a hole with diameter > 20CM. 624 +))) 653 653 654 -923.3 - SF7BW125 to SF12BW125 626 +((( 627 +Horizontal insert the probe to the soil and fill the hole for long term measurement. 628 +))) 629 +))) 655 655 631 +[[image:1654506665940-119.png]] 656 656 657 -(% style="color:#037691" %)**Downlink:** 633 +((( 634 + 635 +))) 658 658 659 -Uplink channels 1-7(RX1) 660 660 661 - 921.9- SF12BW125 (RX2 downlink only; SF12BW125might bechangedtoSF9BW125)638 +== 2.8 Firmware Change Log == 662 662 663 663 641 +Download URL & Firmware Change log 664 664 665 - === 2.7.7IN865-867 (IN865) ===643 +[[www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/Firmware/]] 666 666 667 -(% style="color:#037691" %)** Uplink:** 668 668 669 - 865.0625- SF7BW125toSF12BW125646 +Upgrade Instruction: [[Upgrade_Firmware>>||anchor="H5.1200BHowtoUpgradeFirmware"]] 670 670 671 -865.4025 - SF7BW125 to SF12BW125 672 672 673 -865.9850 - SF7BW125 to SF12BW125 674 674 650 +== 2.9 Battery Analysis == 675 675 676 - (%style="color:#037691"%)**Downlink:**652 +=== 2.9.1 Battery Type === 677 677 678 -Uplink channels 1-3 (RX1) 679 679 680 -866.550 - SF10BW125 (RX2) 681 - 682 - 683 - 684 - 685 -== 2.8 LED Indicator == 686 - 687 -The LSE01 has an internal LED which is to show the status of different state. 688 - 689 -* Blink once when device power on. 690 -* Solid ON for 5 seconds once device successful Join the network. 691 -* Blink once when device transmit a packet. 692 - 693 -== 2.9 Installation in Soil == 694 - 695 -**Measurement the soil surface** 696 - 697 - 698 -[[image:1654506634463-199.png]] 699 - 700 700 ((( 701 -((( 702 -Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting. 656 +The NSE01 battery is a combination of an 8500mAh Li/SOCI2 Battery and a Super Capacitor. The battery is none-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter. 703 703 ))) 704 -))) 705 705 706 706 707 -[[image:1654506665940-119.png]] 708 - 709 709 ((( 710 - Dig aholewithdiameter>20CM.661 +The battery is designed to last for several years depends on the actually use environment and update interval. 711 711 ))) 712 712 713 -((( 714 -Horizontal insert the probe to the soil and fill the hole for long term measurement. 715 -))) 716 716 717 - 718 -== 2.10 Firmware Change Log == 719 - 720 720 ((( 721 - **Firmware downloadlink:**666 +The battery related documents as below: 722 722 ))) 723 723 724 - (((725 -[[ http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/]]726 - )))669 +* [[Battery Dimension>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]] 670 +* [[Lithium-Thionyl Chloride Battery datasheet>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]] 671 +* [[Lithium-ion Battery-Capacitor datasheet>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]] 727 727 728 728 ((( 729 - 674 +[[image:image-20220708140453-6.png]] 730 730 ))) 731 731 732 -((( 733 -**Firmware Upgrade Method: **[[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome]] 734 -))) 735 735 736 -((( 737 - 738 -))) 739 739 740 -((( 741 -**V1.0.** 742 -))) 679 +=== 2.9.2 Power consumption Analyze === 743 743 744 744 ((( 745 - Release682 +Dragino battery powered product are all runs in Low Power mode. We have an update battery calculator which base on the measurement of the real device. User can use this calculator to check the battery life and calculate the battery life if want to use different transmit interval. 746 746 ))) 747 747 748 748 749 -== 2.11 Battery Analysis == 750 - 751 -=== 2.11.1 Battery Type === 752 - 753 753 ((( 754 - The LSE01 battery is a combination of a 4000mAh Li/SOCI2 Battery and a Super Capacitor. The batteryis non-rechargeablebattery type with a lowdischargerate (<2% per year). Thistype ofbattery is commonly used in IoT devices such aswater meter.687 +Instruction to use as below: 755 755 ))) 756 756 757 757 ((( 758 - Thebatterys designedlastforrethan5 years fortheSN50.691 +(% style="color:blue" %)**Step 1: **(%%)Downlink the up-to-date DRAGINO_Battery_Life_Prediction_Table.xlsx from: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/]] 759 759 ))) 760 760 694 + 761 761 ((( 762 -((( 763 -The battery-related documents are as below: 696 +(% style="color:blue" %)**Step 2: **(%%) Open it and choose 764 764 ))) 765 -))) 766 766 767 767 * ((( 768 - [[Battery Dimension>>url:http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/&file=LSN50-Battery-Dimension.pdf]],700 +Product Model 769 769 ))) 770 770 * ((( 771 - [[Lithium-ThionylChloride Battery datasheet>>url:https://www.dragino.com/downloads/downloads/datasheet/Battery/ER26500/ER26500_Datasheet-EN.pdf]],703 +Uplink Interval 772 772 ))) 773 773 * ((( 774 - [[Lithium-ion Battery-Capacitor datasheet>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC_1520_datasheet.jpg]],[[Tech Spec>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC1520%20Technical%20Specification20171123.pdf]]706 +Working Mode 775 775 ))) 776 776 777 - [[image:image-20220610172436-1.png]] 709 +((( 710 +And the Life expectation in difference case will be shown on the right. 711 +))) 778 778 713 +[[image:image-20220708141352-7.jpeg]] 779 779 780 780 781 -=== 2.11.2 Battery Note === 782 782 717 +=== 2.9.3 Battery Note === 718 + 783 783 ((( 784 784 The Li-SICO battery is designed for small current / long period application. It is not good to use a high current, short period transmit method. The recommended minimum period for use of this battery is 5 minutes. If you use a shorter period time to transmit LoRa, then the battery life may be decreased. 785 785 ))) ... ... @@ -786,303 +786,176 @@ 786 786 787 787 788 788 789 -=== 2. 11.3Replace the battery ===725 +=== 2.9.4 Replace the battery === 790 790 791 791 ((( 792 - IfBattery is lower than 2.7v,usershouldreplace the battery ofLSE01.728 +The default battery pack of NSE01 includes a ER26500 plus super capacitor. If user can't find this pack locally, they can find ER26500 or equivalence without the SPC1520 capacitor, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes). 793 793 ))) 794 794 731 + 732 + 733 += 3. Access NB-IoT Module = 734 + 795 795 ((( 796 - You can changethe battery in the LSE01.The type of battery isnot limitedas longas the outputis between 3v to 3.6v. On the main board, there is a diode (D1) between the battery and the maincircuit. If you need to use a battery with lessthan 3.3v, pleaseremovethe D1and shortcut thewopadsofitso therewon’tbe voltage drop between battery andmain board.736 +Users can directly access the AT command set of the NB-IoT module. 797 797 ))) 798 798 799 799 ((( 800 -The defaultbattery packof LSE01 includesa ER18505 plussupercapacitor.Ifusercan’tfind this pack locally, theycan find ER18505orequivalence,whichwillalsoworkinmostcase.The SPC can enlargethebattery lifeforigh frequency use(updateperiod below5minutes)740 +The AT Command set can refer the BC35-G NB-IoT Module AT Command: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=datasheet/other_vendors/BC35-G/>>url:https://www.dragino.com/downloads/index.php?dir=datasheet/other_vendors/BC35-G/]] 801 801 ))) 802 802 743 +[[image:1657261278785-153.png]] 803 803 804 804 805 -= 3. Using the AT Commands = 806 806 807 -= =3.1AccessAT Commands ==747 += 4. Using the AT Commands = 808 808 749 +== 4.1 Access AT Commands == 809 809 810 - LSE01supportsATCommandsetn the stock firmware.Youcanuse a USB toTTLadaptertoconnect to LSE01forusing ATcommand,asbelow.751 +See this link for detail: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/]] 811 811 812 -[[image:1654501986557-872.png||height="391" width="800"]] 813 813 754 +AT+<CMD>? : Help on <CMD> 814 814 815 - Orifyouhavebelowboard,usebelowconnection:756 +AT+<CMD> : Run <CMD> 816 816 758 +AT+<CMD>=<value> : Set the value 817 817 818 - [[image:1654502005655-729.png||height="503"width="801"]]760 +AT+<CMD>=? : Get the value 819 819 820 820 821 - 822 -In the PC, you need to set the serial baud rate to (% style="color:green" %)**9600**(%%) to access the serial console for LSE01. LSE01 will output system info once power on as below: 823 - 824 - 825 - [[image:1654502050864-459.png||height="564" width="806"]] 826 - 827 - 828 -Below are the available commands, a more detailed AT Command manual can be found at [[AT Command Manual>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/]]: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/]] 829 - 830 - 831 -(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>? **(%%) : Help on <CMD> 832 - 833 -(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD> **(%%) : Run <CMD> 834 - 835 -(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>=<value>**(%%) : Set the value 836 - 837 -(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>=?**(%%) : Get the value 838 - 839 - 840 840 (% style="color:#037691" %)**General Commands**(%%) 841 841 842 - (% style="background-color:#dcdcdc" %)**AT**(%%): Attention765 +AT : Attention 843 843 844 - (% style="background-color:#dcdcdc" %)**AT?**(%%): Short Help767 +AT? : Short Help 845 845 846 - (% style="background-color:#dcdcdc" %)**ATZ**(%%): MCU Reset769 +ATZ : MCU Reset 847 847 848 - (% style="background-color:#dcdcdc" %)**AT+TDC**(%%): Application Data Transmission Interval771 +AT+TDC : Application Data Transmission Interval 849 849 773 +AT+CFG : Print all configurations 850 850 851 - (%style="color:#037691"%)**Keys,IDsand EUIs management**775 +AT+CFGMOD : Working mode selection 852 852 853 - (% style="background-color:#dcdcdc" %)**AT+APPEUI**(%%)ApplicationEUI777 +AT+INTMOD : Set the trigger interrupt mode 854 854 855 - (% style="background-color:#dcdcdc" %)**AT+APPKEY**(%%)ApplicationKey779 +AT+5VT : Set extend the time of 5V power 856 856 857 - (% style="background-color:#dcdcdc" %)**AT+APPSKEY**(%%)Application Session Key781 +AT+PRO : Choose agreement 858 858 859 - (% style="background-color:#dcdcdc" %)**AT+DADDR**(%%)DeviceAddress783 +AT+WEIGRE : Get weight or set weight to 0 860 860 861 - (% style="background-color:#dcdcdc" %)**AT+DEUI**(%%)DeviceEUI785 +AT+WEIGAP : Get or Set the GapValue of weight 862 862 863 - (% style="background-color:#dcdcdc" %)**AT+NWKID**(%%):NetworkID(Youcanenterthiscommandchangeonlyaftersuccessful networkconnection)787 +AT+RXDL : Extend the sending and receiving time 864 864 865 - (% style="background-color:#dcdcdc" %)**AT+NWKSKEY**(%%)NetworkSession KeyJoining and sending dateon LoRa network789 +AT+CNTFAC : Get or set counting parameters 866 866 867 - (% style="background-color:#dcdcdc" %)**AT+CFM**(%%)ConfirmMode791 +AT+SERVADDR : Server Address 868 868 869 -(% style="background-color:#dcdcdc" %)**AT+CFS**(%%) : Confirm Status 870 870 871 -(% style=" background-color:#dcdcdc" %)**AT+JOIN**(%%): JoinLoRa? Network794 +(% style="color:#037691" %)**COAP Management** 872 872 873 - (% style="background-color:#dcdcdc" %)**AT+NJM**(%%)LoRa? Network Join Mode796 +AT+URI : Resource parameters 874 874 875 -(% style="background-color:#dcdcdc" %)**AT+NJS**(%%) : LoRa? Network Join Status 876 876 877 -(% style=" background-color:#dcdcdc" %)**AT+RECV**(%%) :PrintLast Received Data inRaw Format799 +(% style="color:#037691" %)**UDP Management** 878 878 879 - (% style="background-color:#dcdcdc" %)**AT+RECVB**(%%)Print LastReceived DatainBinaryFormat801 +AT+CFM : Upload confirmation mode (only valid for UDP) 880 880 881 -(% style="background-color:#dcdcdc" %)**AT+SEND**(%%) : Send Text Data 882 882 883 -(% style=" background-color:#dcdcdc" %)**AT+SENB**(%%): Send Hexadecimal Data804 +(% style="color:#037691" %)**MQTT Management** 884 884 806 +AT+CLIENT : Get or Set MQTT client 885 885 886 - (%style="color:#037691"%)**LoRaNetworkManagement**808 +AT+UNAME : Get or Set MQTT Username 887 887 888 - (% style="background-color:#dcdcdc" %)**AT+ADR**(%%):AdaptiveRate810 +AT+PWD : Get or Set MQTT password 889 889 890 - (% style="background-color:#dcdcdc" %)**AT+CLASS**(%%):LoRaClass(Currentlyonly supportclassA812 +AT+PUBTOPIC : Get or Set MQTT publish topic 891 891 892 - (% style="background-color:#dcdcdc" %)**AT+DCS**(%%):DutyCycleSetting814 +AT+SUBTOPIC : Get or Set MQTT subscription topic 893 893 894 -(% style="background-color:#dcdcdc" %)**AT+DR**(%%) : Data Rate (Can Only be Modified after ADR=0) 895 895 896 -(% style=" background-color:#dcdcdc" %)**AT+FCD**(%%) : Frame Counter Downlink817 +(% style="color:#037691" %)**Information** 897 897 898 - (% style="background-color:#dcdcdc" %)**AT+FCU**(%%): Frame CounterUplink819 +AT+FDR : Factory Data Reset 899 899 900 - (% style="background-color:#dcdcdc" %)**AT+JN1DL**(%%):JoinAcceptDelay1821 +AT+PWORD : Serial Access Password 901 901 902 -(% style="background-color:#dcdcdc" %)**AT+JN2DL**(%%) : Join Accept Delay2 903 903 904 -(% style="background-color:#dcdcdc" %)**AT+PNM**(%%) : Public Network Mode 905 905 906 - (% style="background-color:#dcdcdc"%)**AT+RX1DL**(%%): Receive Delay1825 += 5. FAQ = 907 907 908 - (% style="background-color:#dcdcdc"%)**AT+RX2DL**(%%): ReceiveDelay2827 +== 5.1 How to Upgrade Firmware == 909 909 910 -(% style="background-color:#dcdcdc" %)**AT+RX2DR**(%%) : Rx2 Window Data Rate 911 911 912 -(% style="background-color:#dcdcdc" %)**AT+RX2FQ**(%%) : Rx2 Window Frequency 913 - 914 -(% style="background-color:#dcdcdc" %)**AT+TXP**(%%) : Transmit Power 915 - 916 -(% style="background-color:#dcdcdc" %)**AT+ MOD**(%%) : Set work mode 917 - 918 - 919 -(% style="color:#037691" %)**Information** 920 - 921 -(% style="background-color:#dcdcdc" %)**AT+RSSI**(%%) : RSSI of the Last Received Packet 922 - 923 -(% style="background-color:#dcdcdc" %)**AT+SNR**(%%) : SNR of the Last Received Packet 924 - 925 -(% style="background-color:#dcdcdc" %)**AT+VER**(%%) : Image Version and Frequency Band 926 - 927 -(% style="background-color:#dcdcdc" %)**AT+FDR**(%%) : Factory Data Reset 928 - 929 -(% style="background-color:#dcdcdc" %)**AT+PORT**(%%) : Application Port 930 - 931 -(% style="background-color:#dcdcdc" %)**AT+CHS**(%%) : Get or Set Frequency (Unit: Hz) for Single Channel Mode 932 - 933 - (% style="background-color:#dcdcdc" %)**AT+CHE**(%%) : Get or Set eight channels mode, Only for US915, AU915, CN470 934 - 935 - 936 -= 4. FAQ = 937 - 938 -== 4.1 How to change the LoRa Frequency Bands/Region? == 939 - 940 940 ((( 941 -You can follow the instructions for [[how to upgrade image>>||anchor="H2.10200BFirmwareChangeLog"]]. 942 -When downloading the images, choose the required image file for download. 831 +User can upgrade the firmware for 1) bug fix, 2) new feature release. 943 943 ))) 944 944 945 945 ((( 946 - 835 +Please see this link for how to upgrade: [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H2.HardwareUpgradeMethodSupportList>>http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H2.HardwareUpgradeMethodSupportList]] 947 947 ))) 948 948 949 949 ((( 950 - Howtosetup LSE01 towork in 8 channel modeBy default,thefrequency bandsUS915,AU915, CN470 work in 72 frequencies.Many gatewaysare8 channelgateways, andin thiscase,theOTAA join timeand uplink scheduleis longandunpredictable while the end nodeis hoppingin 72 frequencies.839 +(% style="color:red" %)Notice, NSE01 and LSE01 share the same mother board. They use the same connection and method to update. 951 951 ))) 952 952 953 -((( 954 - 955 -))) 956 956 957 -((( 958 -You can configure the end node to work in 8 channel mode by using the AT+CHE command. The 500kHz channels are always included for OTAA. 959 -))) 960 960 961 -((( 962 - 963 -))) 844 +== 5.2 Can I calibrate NSE01 to different soil types? == 964 964 965 965 ((( 966 - Forexample,in **US915**band,the frequencytablesasbelow. By default,the endnodewilluse all channels(0~~71)forOTAAJoinprocess.AftertheOTAAJoin,theend nodewilluse these allchannels(0~~71)tosenduplinkkets.847 +NSE01 is calibrated for saline-alkali soil and loamy soil. If users want to use it for other soil, they can calibrate the value in the IoT platform base on the value measured by saline-alkali soil and loamy soil. The formula can be found at [[this link>>https://www.dragino.com/downloads/downloads/LoRa_End_Node/LSE01/Calibrate_to_other_Soil_20220605.pdf]]. 967 967 ))) 968 968 969 -[[image:image-20220606154726-3.png]] 970 970 851 += 6. Trouble Shooting = 971 971 972 - Whenyouuse the TTNnetwork,theUS915 frequencybandsuseare:853 +== 6.1 Connection problem when uploading firmware == 973 973 974 -* 903.9 - SF7BW125 to SF10BW125 975 -* 904.1 - SF7BW125 to SF10BW125 976 -* 904.3 - SF7BW125 to SF10BW125 977 -* 904.5 - SF7BW125 to SF10BW125 978 -* 904.7 - SF7BW125 to SF10BW125 979 -* 904.9 - SF7BW125 to SF10BW125 980 -* 905.1 - SF7BW125 to SF10BW125 981 -* 905.3 - SF7BW125 to SF10BW125 982 -* 904.6 - SF8BW500 983 983 984 984 ((( 985 - Becausethendnodeisnow hoppingin72 frequency,itmakesitdifficulttheevicestoJointhe TTN network and uplinkta.Tosolve thisissue, you canccess thedevice viatheAT commandsandrun:857 +**Please see: **[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H3.3Troubleshooting>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H3.3Troubleshooting]] 986 986 ))) 987 987 988 -(% class=" boxinfomessage" %)860 +(% class="wikigeneratedid" %) 989 989 ((( 990 -**AT+CHE=2** 991 -))) 992 - 993 -(% class="box infomessage" %) 994 -((( 995 -**ATZ** 996 -))) 997 - 998 -((( 999 -to set the end node to work in 8 channel mode. The device will work in Channel 8-15 & 64-71 for OTAA, and channel 8-15 for Uplink. 1000 -))) 1001 - 1002 -((( 1003 1003 1004 1004 ))) 1005 1005 1006 -((( 1007 -The **AU915** band is similar. Below are the AU915 Uplink Channels. 1008 -))) 1009 1009 1010 - [[image:image-20220606154825-4.png]]866 +== 6.2 AT Command input doesn't work == 1011 1011 1012 - 1013 - 1014 -= 5. Trouble Shooting = 1015 - 1016 -== 5.1 Why I can’t join TTN in US915 / AU915 bands? == 1017 - 1018 -It is due to channel mapping. Please see the [[Eight Channel Mode>>doc:Main.LoRaWAN Communication Debug.WebHome||anchor="H2.NoticeofUS9152FCN4702FAU915Frequencyband"]] section above for details. 1019 - 1020 - 1021 -== 5.2 AT Command input doesn’t work == 1022 - 1023 1023 ((( 1024 -In the case if user can see the console output but can’t type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn’t send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string. 1025 -))) 869 +In the case if user can see the console output but can't type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn't send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string. 1026 1026 1027 - 1028 -== 5.3 Device rejoin in at the second uplink packet == 1029 - 1030 -(% style="color:#4f81bd" %)**Issue describe as below:** 1031 - 1032 -[[image:1654500909990-784.png]] 1033 - 1034 - 1035 -(% style="color:#4f81bd" %)**Cause for this issue:** 1036 - 1037 -((( 1038 -The fuse on LSE01 is not large enough, some of the soil probe require large current up to 5v 800mA, in a short pulse. When this happen, it cause the device reboot so user see rejoin. 871 + 1039 1039 ))) 1040 1040 1041 1041 1042 - (% style="color:#4f81bd"%)**Solution:**875 += 7. Order Info = 1043 1043 1044 -All new shipped LSE01 after 2020-May-30 will have this to fix. For the customer who see this issue, please bypass the fuse as below: 1045 1045 1046 - [[image:1654500929571-736.png||height="458" width="832"]]878 +Part Number**:** (% style="color:#4f81bd" %)**NSE01** 1047 1047 1048 1048 1049 -= 6. Order Info = 1050 - 1051 - 1052 -Part Number**:** (% style="color:#4f81bd" %)**LSE01-XX-YY** 1053 - 1054 - 1055 -(% style="color:#4f81bd" %)**XX**(%%)**:** The default frequency band 1056 - 1057 -* (% style="color:red" %)**AS923**(%%): LoRaWAN AS923 band 1058 -* (% style="color:red" %)**AU915**(%%): LoRaWAN AU915 band 1059 -* (% style="color:red" %)**EU433**(%%): LoRaWAN EU433 band 1060 -* (% style="color:red" %)**EU868**(%%): LoRaWAN EU868 band 1061 -* (% style="color:red" %)**KR920**(%%): LoRaWAN KR920 band 1062 -* (% style="color:red" %)**US915**(%%): LoRaWAN US915 band 1063 -* (% style="color:red" %)**IN865**(%%): LoRaWAN IN865 band 1064 -* (% style="color:red" %)**CN470**(%%): LoRaWAN CN470 band 1065 - 1066 -(% style="color:#4f81bd" %)**YY**(%%)**: **Battery Option 1067 - 1068 -* (% style="color:red" %)**4**(%%): 4000mAh battery 1069 -* (% style="color:red" %)**8**(%%): 8500mAh battery 1070 - 1071 1071 (% class="wikigeneratedid" %) 1072 1072 ((( 1073 1073 1074 1074 ))) 1075 1075 1076 -= 7. Packing Info =886 += 8. Packing Info = 1077 1077 1078 1078 ((( 1079 1079 1080 1080 1081 1081 (% style="color:#037691" %)**Package Includes**: 1082 -))) 1083 1083 1084 -* (((1085 - LSE01LoRaWAN SoilMoisture& EC Sensorx 1893 +* NSE01 NB-IoT Soil Moisture & EC Sensor x 1 894 +* External antenna x 1 1086 1086 ))) 1087 1087 1088 1088 ((( ... ... @@ -1089,24 +1089,19 @@ 1089 1089 1090 1090 1091 1091 (% style="color:#037691" %)**Dimension and weight**: 1092 -))) 1093 1093 1094 -* (((1095 - DeviceSize:cm902 +* Size: 195 x 125 x 55 mm 903 +* Weight: 420g 1096 1096 ))) 1097 -* ((( 1098 -Device Weight: g 1099 -))) 1100 -* ((( 1101 -Package Size / pcs : cm 1102 -))) 1103 -* ((( 1104 -Weight / pcs : g 1105 1105 906 +((( 1106 1106 908 + 909 + 910 + 1107 1107 ))) 1108 1108 1109 -= 8. Support =913 += 9. Support = 1110 1110 1111 1111 * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule. 1112 1112 * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.com]]
- 1657245163077-232.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +81.0 KB - Content
- 1657246476176-652.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +492.6 KB - Content
- 1657249419225-449.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +81.0 KB - Content
- 1657249468462-536.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +483.6 KB - Content
- 1657249793983-486.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +85.8 KB - Content
- 1657249831934-534.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +72.5 KB - Content
- 1657249864775-321.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +87.0 KB - Content
- 1657249930215-289.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +77.3 KB - Content
- 1657249978444-674.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +139.5 KB - Content
- 1657249990869-686.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +96.9 KB - Content
- 1657250217799-140.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +98.7 KB - Content
- 1657250255956-604.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +99.0 KB - Content
- 1657259653666-883.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +344.4 KB - Content
- 1657260785982-288.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +138.2 KB - Content
- 1657261119050-993.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +126.1 KB - Content
- 1657261278785-153.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +126.1 KB - Content
- 1657271519014-786.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +71.5 KB - Content
- 1657327959271-447.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +78.3 KB - Content
- image-20220708101224-1.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +22.2 KB - Content
- image-20220708101605-2.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +87.5 KB - Content
- image-20220708110657-3.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +251.7 KB - Content
- image-20220708111918-4.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +38.8 KB - Content
- image-20220708133731-5.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +8.7 KB - Content
- image-20220708140453-6.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +132.7 KB - Content
- image-20220708141352-7.jpeg
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +102.7 KB - Content
- image-20220709084038-1.jpeg
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +72.0 KB - Content
- image-20220709084137-2.jpeg
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +72.0 KB - Content
- image-20220709084207-3.jpeg
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +72.0 KB - Content
- image-20220709084458-4.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +199.5 KB - Content
- image-20220709085040-1.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +200.4 KB - Content