<
From version < 35.12 >
edited by Xiaoling
on 2022/06/14 14:07
To version < 65.11 >
edited by Xiaoling
on 2022/07/08 15:44
>
Change comment: There is no comment for this version

Summary

Details

Page properties
Title
... ... @@ -1,1 +1,1 @@
1 -LSE01-LoRaWAN Soil Moisture & EC Sensor User Manual
1 +NSE01 - NB-IoT Soil Moisture & EC Sensor User Manual
Content
... ... @@ -3,6 +3,14 @@
3 3  
4 4  
5 5  
6 +
7 +
8 +
9 +
10 +
11 +
12 +
13 +
6 6  **Table of Contents:**
7 7  
8 8  {{toc/}}
... ... @@ -12,65 +12,82 @@
12 12  
13 13  
14 14  
15 -= 1. Introduction =
16 16  
17 -== 1.1 ​What is LoRaWAN Soil Moisture & EC Sensor ==
24 += 1.  Introduction =
18 18  
26 +== 1.1 ​ What is LoRaWAN Soil Moisture & EC Sensor ==
27 +
19 19  (((
20 20  
21 21  
22 -The Dragino LSE01 is a (% style="color:#4f81bd" %)**LoRaWAN Soil Moisture & EC Sensor**(%%) for IoT of Agriculture. It is designed to measure the soil moisture of saline-alkali soil and loamy soil. The soil sensor uses FDR method to calculate the soil moisture with the compensation from soil temperature and conductivity. It also has been calibrated in factory for Mineral soil type.
31 +(((
32 +Dragino NSE01 is an (% style="color:blue" %)**NB-IOT soil moisture & EC sensor**(%%) for agricultural IoT. Used to measure the soil moisture of saline-alkali soil and loam. The soil sensor uses the FDR method to calculate soil moisture and compensates it with soil temperature and electrical conductivity. It has also been calibrated for mineral soil types at the factory.
23 23  )))
24 24  
25 25  (((
26 -It detects (% style="color:#4f81bd" %)**Soil Moisture**(%%), (% style="color:#4f81bd" %)**Soil Temperature**(%%) and (% style="color:#4f81bd" %)**Soil Conductivity**(%%), and uploads the value via wireless to LoRaWAN IoT Server.
36 +It can detect (% style="color:blue" %)**Soil Moisture, Soil Temperature and Soil Conductivity**(%%), and upload its value to the server wirelessly.
27 27  )))
28 28  
29 29  (((
30 -The LoRa wireless technology used in LES01 allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption.
40 +The wireless technology used in NSE01 allows the device to send data at a low data rate and reach ultra-long distances, providing ultra-long-distance spread spectrum Communication.
31 31  )))
32 32  
33 33  (((
34 -LES01 is powered by (% style="color:#4f81bd" %)**4000mA or 8500mAh Li-SOCI2 battery**(%%), It is designed for long term use up to 10 years.
44 +NSE01 are powered by (% style="color:blue" %)**8500mAh Li-SOCI2**(%%) batteries, which can be used for up to 5 years.  
35 35  )))
36 36  
37 -(((
38 -Each LES01 is pre-load with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect after power on.
47 +
39 39  )))
40 40  
41 -
42 42  [[image:1654503236291-817.png]]
43 43  
44 44  
45 -[[image:1654503265560-120.png]]
53 +[[image:1657245163077-232.png]]
46 46  
47 47  
48 48  
49 -== 1.2 ​Features ==
57 +== 1.2 ​ Features ==
50 50  
51 -* LoRaWAN 1.0.3 Class A
52 -* Ultra low power consumption
59 +* NB-IoT Bands: B1/B3/B8/B5/B20/B28 @H-FDD
53 53  * Monitor Soil Moisture
54 54  * Monitor Soil Temperature
55 55  * Monitor Soil Conductivity
56 -* Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865
57 57  * AT Commands to change parameters
58 58  * Uplink on periodically
59 59  * Downlink to change configure
60 60  * IP66 Waterproof Enclosure
61 -* 4000mAh or 8500mAh Battery for long term use
67 +* Ultra-Low Power consumption
68 +* AT Commands to change parameters
69 +* Micro SIM card slot for NB-IoT SIM
70 +* 8500mAh Battery for long term use
62 62  
63 63  
73 +== 1.3  Specification ==
64 64  
65 -== 1.3 Specification ==
66 66  
76 +(% style="color:#037691" %)**Common DC Characteristics:**
77 +
78 +* Supply Voltage: 2.1v ~~ 3.6v
79 +* Operating Temperature: -40 ~~ 85°C
80 +
81 +(% style="color:#037691" %)**NB-IoT Spec:**
82 +
83 +* - B1 @H-FDD: 2100MHz
84 +* - B3 @H-FDD: 1800MHz
85 +* - B8 @H-FDD: 900MHz
86 +* - B5 @H-FDD: 850MHz
87 +* - B20 @H-FDD: 800MHz
88 +* - B28 @H-FDD: 700MHz
89 +
90 +Probe(% style="color:#037691" %)** Specification:**
91 +
67 67  Measure Volume: Base on the centra pin of the probe, a cylinder with 7cm diameter and 10cm height.
68 68  
69 -[[image:image-20220606162220-5.png]]
94 +[[image:image-20220708101224-1.png]]
70 70  
71 71  
72 72  
73 -== ​1.4 Applications ==
98 +== ​1.4  Applications ==
74 74  
75 75  * Smart Agriculture
76 76  
... ... @@ -77,1012 +77,722 @@
77 77  (% class="wikigeneratedid" id="H200B1.5FirmwareChangelog" %)
78 78  ​
79 79  
80 -== 1.5 Firmware Change log ==
105 +== 1.5  Pin Definitions ==
81 81  
82 82  
83 -**LSE01 v1.0 :**  Release
108 +[[image:1657246476176-652.png]]
84 84  
85 85  
86 86  
87 -= 2. Configure LSE01 to connect to LoRaWAN network =
112 += 2.  Use NSE01 to communicate with IoT Server =
88 88  
89 -== 2.1 How it works ==
114 +== 2.1  How it works ==
90 90  
91 -(((
92 -The LSE01 is configured as LoRaWAN OTAA Class A mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and power on the LSE0150. It will automatically join the network via OTAA and start to send the sensor value
93 -)))
94 94  
95 95  (((
96 -In case you can’t set the OTAA keys in the LoRaWAN OTAA server, and you have to use the keys from the server, you can [[use AT Commands >>||anchor="H3.200BUsingtheATCommands"]].
118 +The NSE01 is equipped with a NB-IoT module, the pre-loaded firmware in NSE01 will get environment data from sensors and send the value to local NB-IoT network via the NB-IoT module.  The NB-IoT network will forward this value to IoT server via the protocol defined by NSE01.
97 97  )))
98 98  
99 99  
100 -
101 -== 2.2 ​Quick guide to connect to LoRaWAN server (OTAA) ==
102 -
103 -Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LG308>>url:http://www.dragino.com/products/lora/item/140-lg308.html]] as a LoRaWAN gateway in this example.
104 -
105 -
106 -[[image:1654503992078-669.png]]
107 -
108 -
109 -The LG308 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
110 -
111 -
112 -(% style="color:blue" %)**Step 1**(%%):  Create a device in TTN with the OTAA keys from LSE01.
113 -
114 -Each LSE01 is shipped with a sticker with the default device EUI as below:
115 -
116 -[[image:image-20220606163732-6.jpeg]]
117 -
118 -You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot:
119 -
120 -**Add APP EUI in the application**
121 -
122 -
123 -[[image:1654504596150-405.png]]
124 -
125 -
126 -
127 -**Add APP KEY and DEV EUI**
128 -
129 -[[image:1654504683289-357.png]]
130 -
131 -
132 -
133 -(% style="color:blue" %)**Step 2**(%%): Power on LSE01
134 -
135 -
136 -Put a Jumper on JP2 to power on the device. ( The Jumper must be in FLASH position).
137 -
138 -[[image:image-20220606163915-7.png]]
139 -
140 -
141 -(% style="color:blue" %)**Step 3**(%%)**:** The LSE01 will auto join to the TTN network. After join success, it will start to upload messages to TTN and you can see the messages in the panel.
142 -
143 -[[image:1654504778294-788.png]]
144 -
145 -
146 -
147 -== 2.3 Uplink Payload ==
148 -
149 -
150 -=== 2.3.1 MOD~=0(Default Mode) ===
151 -
152 -LSE01 will uplink payload via LoRaWAN with below payload format: 
153 -
154 154  (((
155 -Uplink payload includes in total 11 bytes.
123 +The diagram below shows the working flow in default firmware of NSE01:
156 156  )))
157 157  
158 -(% border="1" cellspacing="10" style="background-color:#ffffcc; width:500px" %)
159 -|(((
160 -**Size**
126 +[[image:image-20220708101605-2.png]]
161 161  
162 -**(bytes)**
163 -)))|**2**|**2**|**2**|**2**|**2**|**1**
164 -|**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(((
165 -Temperature
166 -
167 -(Reserve, Ignore now)
168 -)))|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]]|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]]|(((
169 -MOD & Digital Interrupt
170 -
171 -(Optional)
128 +(((
129 +
172 172  )))
173 173  
174 174  
175 175  
134 +== 2.2 ​ Configure the NSE01 ==
176 176  
177 177  
178 -=== 2.3.2 MOD~=1(Original value) ===
137 +=== 2.2.1 Test Requirement ===
179 179  
180 -This mode can get the original AD value of moisture and original conductivity (with temperature drift compensation).
181 181  
182 -(% border="1" cellspacing="10" style="background-color:#ffffcc; width:500px" %)
183 -|(((
184 -**Size**
140 +(((
141 +To use NSE01 in your city, make sure meet below requirements:
142 +)))
185 185  
186 -**(bytes)**
187 -)))|**2**|**2**|**2**|**2**|**2**|**1**
188 -|**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(((
189 -Temperature
144 +* Your local operator has already distributed a NB-IoT Network there.
145 +* The local NB-IoT network used the band that NSE01 supports.
146 +* Your operator is able to distribute the data received in their NB-IoT network to your IoT server.
190 190  
191 -(Reserve, Ignore now)
192 -)))|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]](raw)|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]](raw)|(((
193 -MOD & Digital Interrupt
194 -
195 -(Optional)
148 +(((
149 +Below figure shows our testing structure. Here we have NB-IoT network coverage by China Mobile, the band they use is B8.  The NSE01 will use CoAP((% style="color:red" %)120.24.4.116:5683)(%%) or raw UDP((% style="color:red" %)120.24.4.116:5601)(%%) or MQTT((% style="color:red" %)120.24.4.116:1883)(%%)or TCP((% style="color:red" %)120.24.4.116:5600)(%%)protocol to send data to the test server
196 196  )))
197 197  
198 198  
153 +[[image:1657249419225-449.png]]
199 199  
200 200  
201 201  
202 -=== 2.3.3 Battery Info ===
157 +=== 2.2.2 Insert SIM card ===
203 203  
204 204  (((
205 -Check the battery voltage for LSE01.
160 +Insert the NB-IoT Card get from your provider.
206 206  )))
207 207  
208 208  (((
209 -Ex1: 0x0B45 = 2885mV
164 +User need to take out the NB-IoT module and insert the SIM card like below:
210 210  )))
211 211  
212 -(((
213 -Ex2: 0x0B49 = 2889mV
214 -)))
215 215  
168 +[[image:1657249468462-536.png]]
216 216  
217 217  
218 -=== 2.3.4 Soil Moisture ===
219 219  
220 -(((
221 -Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil.
222 -)))
172 +=== 2.2.3 Connect USB – TTL to NSE01 to configure it ===
223 223  
224 224  (((
225 -For example, if the data you get from the register is __0x05 0xDC__, the moisture content in the soil is
226 -)))
227 -
228 228  (((
229 -
176 +User need to configure NSE01 via serial port to set the (% style="color:blue" %)**Server Address** / **Uplink Topic** (%%)to define where and how-to uplink packets. NSE01 support AT Commands, user can use a USB to TTL adapter to connect to NSE01 and use AT Commands to configure it, as below.
230 230  )))
231 -
232 -(((
233 -(% style="color:#4f81bd" %)**05DC(H) = 1500(D) /100 = 15%.**
234 234  )))
235 235  
236 236  
181 +**Connection:**
237 237  
238 -=== 2.3.5 Soil Temperature ===
183 + (% style="background-color:yellow" %)USB TTL GND <~-~-~-~-> GND
239 239  
240 -(((
241 - Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is 0x09 0xEC, the temperature content in the soil is
242 -)))
185 + (% style="background-color:yellow" %)USB TTL TXD <~-~-~-~-> UART_RXD
243 243  
244 -(((
245 -**Example**:
246 -)))
187 + (% style="background-color:yellow" %)USB TTL RXD <~-~-~-~-> UART_TXD
247 247  
248 -(((
249 -If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/100 = 2.61 °C
250 -)))
251 251  
190 +In the PC, use below serial tool settings:
191 +
192 +* Baud:  (% style="color:green" %)**9600**
193 +* Data bits:** (% style="color:green" %)8(%%)**
194 +* Stop bits: (% style="color:green" %)**1**
195 +* Parity:  (% style="color:green" %)**None**
196 +* Flow Control: (% style="color:green" %)**None**
197 +
252 252  (((
253 -If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C
199 +Make sure the switch is in FLASH position, then power on device by connecting the jumper on NSE01. NSE01 will output system info once power on as below, we can enter the (% style="color:green" %)**password: 12345678**(%%) to access AT Command input.
254 254  )))
255 255  
202 +[[image:image-20220708110657-3.png]]
256 256  
204 +(% style="color:red" %)Note: the valid AT Commands can be found at: (%%)[[http:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/]]
257 257  
258 -=== 2.3.6 Soil Conductivity (EC) ===
259 259  
260 -(((
261 -Obtain (% style="color:#4f81bd" %)**__soluble salt concentration__**(%%) in soil or (% style="color:#4f81bd" %)**__soluble ion concentration in liquid fertilizer__**(%%) or (% style="color:#4f81bd" %)**__planting medium__**(%%). The value range of the register is 0 - 20000(Decimal)( Can be greater than 20000).
262 -)))
263 263  
264 -(((
265 -For example, if the data you get from the register is 0x00 0xC8, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm.
266 -)))
208 +=== 2.2.4 Use CoAP protocol to uplink data ===
267 267  
268 -(((
269 -Generally, the EC value of irrigation water is less than 800uS / cm.
270 -)))
210 +(% style="color:red" %)Note: if you don't have CoAP server, you can refer this link to set up one: (%%)[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/>>http://wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/]]
271 271  
272 -(((
273 -
274 -)))
275 275  
276 -(((
277 -
278 -)))
213 +**Use below commands:**
279 279  
280 -=== 2.3.7 MOD ===
215 +* (% style="color:blue" %)**AT+PRO=1**  (%%) ~/~/ Set to use CoAP protocol to uplink
216 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5683   ** (%%)~/~/ to set CoAP server address and port
217 +* (% style="color:blue" %)**AT+URI=5,11,"mqtt",11,"coap",12,"0",15,"c=text1",23,"0" ** (%%) ~/~/Set COAP resource path
281 281  
282 -Firmware version at least v2.1 supports changing mode.
219 +For parameter description, please refer to AT command set
283 283  
284 -For example, bytes[10]=90
221 +[[image:1657249793983-486.png]]
285 285  
286 -mod=(bytes[10]>>7)&0x01=1.
287 287  
224 +After configure the server address and (% style="color:green" %)**reset the device**(%%) (via AT+ATZ ), NSE01 will start to uplink sensor values to CoAP server.
288 288  
289 -**Downlink Command:**
226 +[[image:1657249831934-534.png]]
290 290  
291 -If payload = 0x0A00, workmode=0
292 292  
293 -If** **payload =** **0x0A01, workmode=1
294 294  
230 +=== 2.2.5 Use UDP protocol to uplink data(Default protocol) ===
295 295  
232 +This feature is supported since firmware version v1.0.1
296 296  
297 -=== 2.3.8 ​Decode payload in The Things Network ===
298 298  
299 -While using TTN network, you can add the payload format to decode the payload.
235 +* (% style="color:blue" %)**AT+PRO=2   ** (%%) ~/~/ Set to use UDP protocol to uplink
236 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5601   ** (%%) ~/~/ to set UDP server address and port
237 +* (% style="color:blue" %)**AT+CFM=1       ** (%%) ~/~/If the server does not respond, this command is unnecessary
300 300  
239 +[[image:1657249864775-321.png]]
301 301  
302 -[[image:1654505570700-128.png]]
303 303  
304 -(((
305 -The payload decoder function for TTN is here:
306 -)))
242 +[[image:1657249930215-289.png]]
307 307  
308 -(((
309 -LSE01 TTN Payload Decoder: [[https:~~/~~/www.dropbox.com/sh/si8icbrjlamxqdb/AAACYwjsxxr5fj_vpqRtrETAa?dl=0>>https://www.dropbox.com/sh/si8icbrjlamxqdb/AAACYwjsxxr5fj_vpqRtrETAa?dl=0]]
310 -)))
311 311  
312 312  
313 -== 2.4 Uplink Interval ==
246 +=== 2.2.6 Use MQTT protocol to uplink data ===
314 314  
315 -The LSE01 by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link: [[Change Uplink Interval>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H4.1ChangeUplinkInterval"]]
248 +This feature is supported since firmware version v110
316 316  
317 317  
251 +* (% style="color:blue" %)**AT+PRO=3   ** (%%) ~/~/Set to use MQTT protocol to uplink
252 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,1883   ** (%%) ~/~/Set MQTT server address and port
253 +* (% style="color:blue" %)**AT+CLIENT=CLIENT       ** (%%)~/~/Set up the CLIENT of MQTT
254 +* (% style="color:blue" %)**AT+UNAME=UNAME                               **(%%)~/~/Set the username of MQTT
255 +* (% style="color:blue" %)**AT+PWD=PWD                                        **(%%)~/~/Set the password of MQTT
256 +* (% style="color:blue" %)**AT+PUBTOPIC=NSE01_PUB                    **(%%)~/~/Set the sending topic of MQTT
257 +* (% style="color:blue" %)**AT+SUBTOPIC=NSE01_SUB          **(%%) ~/~/Set the subscription topic of MQTT
318 318  
319 -== 2.5 Downlink Payload ==
259 +[[image:1657249978444-674.png]]
320 320  
321 -By default, LSE50 prints the downlink payload to console port.
322 322  
323 -[[image:image-20220606165544-8.png]]
262 +[[image:1657249990869-686.png]]
324 324  
325 325  
326 326  (((
327 -**Examples:**
266 +MQTT protocol has a much higher power consumption compare vs UDP / CoAP protocol. Please check the power analyze document and adjust the uplink period to a suitable interval.
328 328  )))
329 329  
330 -(((
331 -
332 -)))
333 333  
334 -* (((
335 -**Set TDC**
336 -)))
337 337  
338 -(((
339 -If the payload=0100003C, it means set the END Node’s TDC to 0x00003C=60(S), while type code is 01.
340 -)))
271 +=== 2.2.7 Use TCP protocol to uplink data ===
341 341  
342 -(((
343 -Payload:    01 00 00 1E    TDC=30S
344 -)))
273 +This feature is supported since firmware version v110
345 345  
346 -(((
347 -Payload:    01 00 00 3C    TDC=60S
348 -)))
349 349  
350 -(((
351 -
352 -)))
276 +* (% style="color:blue" %)**AT+PRO=4   ** (%%) ~/~/ Set to use TCP protocol to uplink
277 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5600   **(%%) ~/~/ to set TCP server address and port
353 353  
354 -* (((
355 -**Reset**
356 -)))
279 +[[image:1657250217799-140.png]]
357 357  
358 -(((
359 -If payload = 0x04FF, it will reset the LSE01
360 -)))
361 361  
282 +[[image:1657250255956-604.png]]
362 362  
363 -* **CFM**
364 364  
365 -Downlink Payload: 05000001, Set AT+CFM=1 or 05000000 , set AT+CFM=0
366 366  
286 +=== 2.2.8 Change Update Interval ===
367 367  
288 +User can use below command to change the (% style="color:green" %)**uplink interval**.
368 368  
369 -== 2.6 ​Show Data in DataCake IoT Server ==
290 +* (% style="color:blue" %)**AT+TDC=600      ** (%%)~/~/ Set Update Interval to 600s
370 370  
371 371  (((
372 -[[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps:
293 +(% style="color:red" %)**NOTE:**
373 373  )))
374 374  
375 375  (((
376 -
297 +(% style="color:red" %)1. By default, the device will send an uplink message every 1 hour.
377 377  )))
378 378  
379 -(((
380 -**Step 1**: Be sure that your device is programmed and properly connected to the network at this time.
381 -)))
382 382  
383 -(((
384 -**Step 2**: To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps:
385 -)))
386 386  
302 +== 2.3  Uplink Payload ==
387 387  
388 -[[image:1654505857935-743.png]]
304 +In this mode, uplink payload includes in total 18 bytes
389 389  
306 +(% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:510px" %)
307 +|=(% style="width: 50px;" %)(((
308 +**Size(bytes)**
309 +)))|=(% style="width: 50px;" %)**6**|=(% style="width: 25px;" %)2|=(% style="width: 25px;" %)**2**|=(% style="width: 80px;" %)**1**|=(% style="width: 80px;" %)**2**|=(% style="width: 80px;" %)**2**|=(% style="width: 80px;" %)**2**|=(% style="width: 40px;" %)**1**
310 +|(% style="width:97px" %)**Value**|(% style="width:83px" %)[[Device ID>>||anchor="H2.4.1A0A0DeviceID"]]|(% style="width:41px" %)[[Ver>>||anchor="H2.4.2A0VersionInfo"]]|(% style="width:46px" %)[[BAT>>||anchor="H2.4.3A0BatteryInfo"]]|(% style="width:123px" %)[[Signal Strength>>||anchor="H2.4.4A0SignalStrength"]]|(% style="width:108px" %)[[Soil Moisture>>||anchor="H2.4.5A0SoilMoisture"]]|(% style="width:133px" %)[[Soil Temperature>>||anchor="H2.4.6A0SoilTemperature"]]|(% style="width:159px" %)[[Soil Conductivity(EC)>>||anchor="H2.4.7A0SoilConductivity28EC29"]]|(% style="width:80px" %)[[Interrupt>>||anchor="H2.4.8A0DigitalInterrupt"]]
390 390  
391 -[[image:1654505874829-548.png]]
312 +If we use the MQTT client to subscribe to this MQTT topic, we can see the following information when the NSE01 uplink data.
392 392  
393 -Step 3: Create an account or log in Datacake.
394 394  
395 -Step 4: Search the LSE01 and add DevEUI.
315 +[[image:image-20220708111918-4.png]]
396 396  
397 397  
398 -[[image:1654505905236-553.png]]
318 +The payload is ASCII string, representative same HEX:
399 399  
320 +0x72403155615900640c7817075e0a8c02f900 where:
400 400  
401 -After added, the sensor data arrive TTN, it will also arrive and show in Mydevices.
322 +* Device ID: 0x 724031556159 = 724031556159
323 +* Version: 0x0064=100=1.0.0
402 402  
403 -[[image:1654505925508-181.png]]
325 +* BAT: 0x0c78 = 3192 mV = 3.192V
326 +* Singal: 0x17 = 23
327 +* Soil Moisture: 0x075e= 1886 = 18.86  %
328 +* Soil Temperature:0x0a8c =2700=27 °C
329 +* Soil Conductivity(EC) = 0x02f9 =761 uS /cm
330 +* Interrupt: 0x00 = 0
404 404  
405 405  
333 +== 2.4  Payload Explanation and Sensor Interface ==
406 406  
407 -== 2.7 Frequency Plans ==
408 408  
409 -The LSE01 uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.
336 +=== 2.4.1  Device ID ===
410 410  
338 +By default, the Device ID equal to the last 6 bytes of IMEI.
411 411  
412 -=== 2.7.1 EU863-870 (EU868) ===
340 +User can use (% style="color:blue" %)**AT+DEUI**(%%) to set Device ID
413 413  
414 -(% style="color:#037691" %)** Uplink:**
342 +**Example:**
415 415  
416 -868.1 - SF7BW125 to SF12BW125
344 +AT+DEUI=A84041F15612
417 417  
418 -868.3 - SF7BW125 to SF12BW125 and SF7BW250
346 +The Device ID is stored in a none-erase area, Upgrade the firmware or run AT+FDR won't erase Device ID.
419 419  
420 -868.5 - SF7BW125 to SF12BW125
421 421  
422 -867.1 - SF7BW125 to SF12BW125
423 423  
424 -867.3 - SF7BW125 to SF12BW125
350 +=== 2.4.2  Version Info ===
425 425  
426 -867.5 - SF7BW125 to SF12BW125
352 +Specify the software version: 0x64=100, means firmware version 1.00.
427 427  
428 -867.7 - SF7BW125 to SF12BW125
354 +For example: 0x00 64 : this device is NSE01 with firmware version 1.0.0.
429 429  
430 -867.9 - SF7BW125 to SF12BW125
431 431  
432 -868.8 - FSK
433 433  
358 +=== 2.4.3  Battery Info ===
434 434  
435 -(% style="color:#037691" %)** Downlink:**
360 +(((
361 +Check the battery voltage for LSE01.
362 +)))
436 436  
437 -Uplink channels 1-9 (RX1)
364 +(((
365 +Ex1: 0x0B45 = 2885mV
366 +)))
438 438  
439 -869.525 - SF9BW125 (RX2 downlink only)
368 +(((
369 +Ex2: 0x0B49 = 2889mV
370 +)))
440 440  
441 441  
442 442  
443 -=== 2.7.2 US902-928(US915) ===
374 +=== 2.4. Signal Strength ===
444 444  
445 -Used in USA, Canada and South America. Default use CHE=2
376 +NB-IoT Network signal Strength.
446 446  
447 -(% style="color:#037691" %)**Uplink:**
378 +**Ex1: 0x1d = 29**
448 448  
449 -903.9 - SF7BW125 to SF10BW125
380 +(% style="color:blue" %)**0**(%%)  -113dBm or less
450 450  
451 -904.1 - SF7BW125 to SF10BW125
382 +(% style="color:blue" %)**1**(%%)  -111dBm
452 452  
453 -904.3 - SF7BW125 to SF10BW125
384 +(% style="color:blue" %)**2...30**(%%) -109dBm... -53dBm
454 454  
455 -904.5 - SF7BW125 to SF10BW125
386 +(% style="color:blue" %)**31**  (%%) -51dBm or greater
456 456  
457 -904.7 - SF7BW125 to SF10BW125
388 +(% style="color:blue" %)**99**   (%%) Not known or not detectable
458 458  
459 -904.9 - SF7BW125 to SF10BW125
460 460  
461 -905.1 - SF7BW125 to SF10BW125
462 462  
463 -905.3 - SF7BW125 to SF10BW125
392 +=== 2.4.5  Soil Moisture ===
464 464  
394 +(((
395 +Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil.
396 +)))
465 465  
466 -(% style="color:#037691" %)**Downlink:**
398 +(((
399 +For example, if the data you get from the register is **__0x05 0xDC__**, the moisture content in the soil is
400 +)))
467 467  
468 -923.3 - SF7BW500 to SF12BW500
402 +(((
403 +
404 +)))
469 469  
470 -923.9 - SF7BW500 to SF12BW500
406 +(((
407 +(% style="color:#4f81bd" %)**05DC(H) = 1500(D) /100 = 15%.**
408 +)))
471 471  
472 -924.5 - SF7BW500 to SF12BW500
473 473  
474 -925.1 - SF7BW500 to SF12BW500
475 475  
476 -925.7 - SF7BW500 to SF12BW500
412 +=== 2.4.6  Soil Temperature ===
477 477  
478 -926.3 - SF7BW500 to SF12BW500
414 +(((
415 + Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is __**0x09 0xEC**__, the temperature content in the soil is
416 +)))
479 479  
480 -926.9 - SF7BW500 to SF12BW500
418 +(((
419 +**Example**:
420 +)))
481 481  
482 -927.5 - SF7BW500 to SF12BW500
422 +(((
423 +If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/100 = 2.61 °C
424 +)))
483 483  
484 -923.3 - SF12BW500(RX2 downlink only)
426 +(((
427 +If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C
428 +)))
485 485  
486 486  
487 487  
488 -=== 2.7.3 CN470-510 (CN470) ===
432 +=== 2.4. Soil Conductivity (EC) ===
489 489  
490 -Used in China, Default use CHE=1
434 +(((
435 +Obtain (% style="color:#4f81bd" %)**__soluble salt concentration__**(%%) in soil or (% style="color:#4f81bd" %)**__soluble ion concentration in liquid fertilizer__**(%%) or (% style="color:#4f81bd" %)**__planting medium__**(%%). The value range of the register is 0 - 20000(Decimal)( Can be greater than 20000).
436 +)))
491 491  
492 -(% style="color:#037691" %)**Uplink:**
438 +(((
439 +For example, if the data you get from the register is __**0x00 0xC8**__, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm.
440 +)))
493 493  
494 -486.3 - SF7BW125 to SF12BW125
442 +(((
443 +Generally, the EC value of irrigation water is less than 800uS / cm.
444 +)))
495 495  
496 -486.5 - SF7BW125 to SF12BW125
446 +(((
447 +
448 +)))
497 497  
498 -486.7 - SF7BW125 to SF12BW125
450 +(((
451 +
452 +)))
499 499  
500 -486.9 - SF7BW125 to SF12BW125
454 +=== 2.4. Digital Interrupt ===
501 501  
502 -487.1 - SF7BW125 to SF12BW125
456 +Digital Interrupt refers to pin (% style="color:blue" %)**GPIO_EXTI**(%%), and there are different trigger methods. When there is a trigger, the NSE01 will send a packet to the server.
503 503  
504 -487.3 - SF7BW125 to SF12BW125
458 +The command is:
505 505  
506 -487.5 - SF7BW125 to SF12BW125
460 +(% style="color:blue" %)**AT+INTMOD=3 **(%%) ~/~/(more info about INMOD please refer [[**AT Command Manual**>>url:https://www.dragino.com/downloads/downloads/NB-IoT/NBSN95/DRAGINO_NBSN95-NB_AT%20Commands_v1.1.0.pdf]])**.**
507 507  
508 -487.7 - SF7BW125 to SF12BW125
509 509  
463 +The lower four bits of this data field shows if this packet is generated by interrupt or not. Click here for the hardware and software set up.
510 510  
511 -(% style="color:#037691" %)**Downlink:**
512 512  
513 -506.7 - SF7BW125 to SF12BW125
466 +Example:
514 514  
515 -506.9 - SF7BW125 to SF12BW125
468 +0x(00): Normal uplink packet.
516 516  
517 -507.1 - SF7BW125 to SF12BW125
470 +0x(01): Interrupt Uplink Packet.
518 518  
519 -507.3 - SF7BW125 to SF12BW125
520 520  
521 -507.5 - SF7BW125 to SF12BW125
522 522  
523 -507.7 - SF7BW125 to SF12BW125
474 +=== 2.4.9  ​+5V Output ===
524 524  
525 -507.9 - SF7BW125 to SF12BW125
476 +NSE01 will enable +5V output before all sampling and disable the +5v after all sampling. 
526 526  
527 -508.1 - SF7BW125 to SF12BW125
528 528  
529 -505.3 - SF12BW125 (RX2 downlink only)
479 +The 5V output time can be controlled by AT Command.
530 530  
481 +(% style="color:blue" %)**AT+5VT=1000**
531 531  
483 +Means set 5V valid time to have 1000ms. So the real 5V output will actually have 1000ms + sampling time for other sensors.
532 532  
533 -=== 2.7.4 AU915-928(AU915) ===
534 534  
535 -Default use CHE=2
536 536  
537 -(% style="color:#037691" %)**Uplink:**
487 +== 2.5  Downlink Payload ==
538 538  
539 -916.8 - SF7BW125 to SF12BW125
489 +By default, NSE01 prints the downlink payload to console port.
540 540  
541 -917.0 - SF7BW125 to SF12BW125
491 +[[image:image-20220708133731-5.png]]
542 542  
543 -917.2 - SF7BW125 to SF12BW125
544 544  
545 -917.4 - SF7BW125 to SF12BW125
494 +(((
495 +(% style="color:blue" %)**Examples:**
496 +)))
546 546  
547 -917.6 - SF7BW125 to SF12BW125
498 +(((
499 +
500 +)))
548 548  
549 -917.8 - SF7BW125 to SF12BW125
502 +* (((
503 +(% style="color:blue" %)**Set TDC**
504 +)))
550 550  
551 -918.0 - SF7BW125 to SF12BW125
506 +(((
507 +If the payload=0100003C, it means set the END Node's TDC to 0x00003C=60(S), while type code is 01.
508 +)))
552 552  
553 -918.2 - SF7BW125 to SF12BW125
510 +(((
511 +Payload:    01 00 00 1E    TDC=30S
512 +)))
554 554  
514 +(((
515 +Payload:    01 00 00 3C    TDC=60S
516 +)))
555 555  
556 -(% style="color:#037691" %)**Downlink:**
518 +(((
519 +
520 +)))
557 557  
558 -923.3 - SF7BW500 to SF12BW500
522 +* (((
523 +(% style="color:blue" %)**Reset**
524 +)))
559 559  
560 -923.9 - SF7BW500 to SF12BW500
526 +(((
527 +If payload = 0x04FF, it will reset the NSE01
528 +)))
561 561  
562 -924.5 - SF7BW500 to SF12BW500
563 563  
564 -925.1 - SF7BW500 to SF12BW500
531 +* (% style="color:blue" %)**INTMOD**
565 565  
566 -925.7 - SF7BW500 to SF12BW500
533 +Downlink Payload: 06000003, Set AT+INTMOD=3
567 567  
568 -926.3 - SF7BW500 to SF12BW500
569 569  
570 -926.9 - SF7BW500 to SF12BW500
571 571  
572 -927.5 - SF7BW500 to SF12BW500
537 +== 2. ​LED Indicator ==
573 573  
574 -923.3 - SF12BW500(RX2 downlink only)
539 +(((
540 +The NSE01 has an internal LED which is to show the status of different state.
575 575  
576 576  
543 +* When power on, NSE01 will detect if sensor probe is connected, if probe detected, LED will blink four times. (no blinks in this step is no probe)
544 +* Then the LED will be on for 1 second means device is boot normally.
545 +* After NSE01 join NB-IoT network. The LED will be ON for 3 seconds.
546 +* For each uplink probe, LED will be on for 500ms.
547 +)))
577 577  
578 -=== 2.7.5 AS920-923 & AS923-925 (AS923) ===
579 579  
580 -(% style="color:#037691" %)**Default Uplink channel:**
581 581  
582 -923.2 - SF7BW125 to SF10BW125
583 583  
584 -923.4 - SF7BW125 to SF10BW125
552 +== 2.7  Installation in Soil ==
585 585  
554 +__**Measurement the soil surface**__
586 586  
587 -(% style="color:#037691" %)**Additional Uplink Channel**:
556 +Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting. [[https:~~/~~/img.alicdn.com/imgextra/i3/2005165265/O1CN010rj9Oh1olPsQxrdUK_!!2005165265.jpg>>url:https://img.alicdn.com/imgextra/i3/2005165265/O1CN010rj9Oh1olPsQxrdUK_!!2005165265.jpg]]
588 588  
589 -(OTAA mode, channel added by JoinAccept message)
558 +[[image:1657259653666-883.png]] ​
590 590  
591 -(% style="color:#037691" %)**AS920~~AS923 for Japan, Malaysia, Singapore**:
592 592  
593 -922.2 - SF7BW125 to SF10BW125
561 +(((
562 +
594 594  
595 -922.4 - SF7BW125 to SF10BW125
564 +(((
565 +Dig a hole with diameter > 20CM.
566 +)))
596 596  
597 -922.6 - SF7BW125 to SF10BW125
568 +(((
569 +Horizontal insert the probe to the soil and fill the hole for long term measurement.
570 +)))
571 +)))
598 598  
599 -922.8 - SF7BW125 to SF10BW125
573 +[[image:1654506665940-119.png]]
600 600  
601 -923.0 - SF7BW125 to SF10BW125
575 +(((
576 +
577 +)))
602 602  
603 -922.0 - SF7BW125 to SF10BW125
604 604  
580 +== 2.8  ​Firmware Change Log ==
605 605  
606 -(% style="color:#037691" %)**AS923 ~~ AS925 for Brunei, Cambodia, Hong Kong, Indonesia, Laos, Taiwan, Thailand, Vietnam**:
607 607  
608 -923.6 - SF7BW125 to SF10BW125
583 +Download URL & Firmware Change log
609 609  
610 -923.8 - SF7BW125 to SF10BW125
585 +[[www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/Firmware/]]
611 611  
612 -924.0 - SF7BW125 to SF10BW125
613 613  
614 -924.2 - SF7BW125 to SF10BW125
588 +Upgrade Instruction: [[Upgrade_Firmware>>||anchor="H5.1200BHowtoUpgradeFirmware"]]
615 615  
616 -924.4 - SF7BW125 to SF10BW125
617 617  
618 -924.6 - SF7BW125 to SF10BW125
619 619  
592 +== 2.9  ​Battery Analysis ==
620 620  
621 -(% style="color:#037691" %)** Downlink:**
594 +=== 2.9.1  ​Battery Type ===
622 622  
623 -Uplink channels 1-8 (RX1)
624 624  
625 -923.2 - SF10BW125 (RX2)
597 +The NSE01 battery is a combination of an 8500mAh Li/SOCI2 Battery and a Super Capacitor. The battery is none-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter.
626 626  
627 627  
600 +The battery is designed to last for several years depends on the actually use environment and update interval. 
628 628  
629 -=== 2.7.6 KR920-923 (KR920) ===
630 630  
631 -Default channel:
603 +The battery related documents as below:
632 632  
633 -922.1 - SF7BW125 to SF12BW125
605 +* [[Battery Dimension>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]
606 +* [[Lithium-Thionyl Chloride Battery datasheet>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]
607 +* [[Lithium-ion Battery-Capacitor datasheet>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]
634 634  
635 -922.3 - SF7BW125 to SF12BW125
636 -
637 -922.5 - SF7BW125 to SF12BW125
638 -
639 -
640 -(% style="color:#037691" %)**Uplink: (OTAA mode, channel added by JoinAccept message)**
641 -
642 -922.1 - SF7BW125 to SF12BW125
643 -
644 -922.3 - SF7BW125 to SF12BW125
645 -
646 -922.5 - SF7BW125 to SF12BW125
647 -
648 -922.7 - SF7BW125 to SF12BW125
649 -
650 -922.9 - SF7BW125 to SF12BW125
651 -
652 -923.1 - SF7BW125 to SF12BW125
653 -
654 -923.3 - SF7BW125 to SF12BW125
655 -
656 -
657 -(% style="color:#037691" %)**Downlink:**
658 -
659 -Uplink channels 1-7(RX1)
660 -
661 -921.9 - SF12BW125 (RX2 downlink only; SF12BW125 might be changed to SF9BW125)
662 -
663 -
664 -
665 -=== 2.7.7 IN865-867 (IN865) ===
666 -
667 -(% style="color:#037691" %)** Uplink:**
668 -
669 -865.0625 - SF7BW125 to SF12BW125
670 -
671 -865.4025 - SF7BW125 to SF12BW125
672 -
673 -865.9850 - SF7BW125 to SF12BW125
674 -
675 -
676 -(% style="color:#037691" %) **Downlink:**
677 -
678 -Uplink channels 1-3 (RX1)
679 -
680 -866.550 - SF10BW125 (RX2)
681 -
682 -
683 -
684 -
685 -== 2.8 LED Indicator ==
686 -
687 -The LSE01 has an internal LED which is to show the status of different state.
688 -
689 -* Blink once when device power on.
690 -* Solid ON for 5 seconds once device successful Join the network.
691 -* Blink once when device transmit a packet.
692 -
693 -== 2.9 Installation in Soil ==
694 -
695 -**Measurement the soil surface**
696 -
697 -
698 -[[image:1654506634463-199.png]] ​
699 -
700 700  (((
701 -(((
702 -Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting.
610 +[[image:image-20220708140453-6.png]]
703 703  )))
704 -)))
705 705  
706 706  
707 -[[image:1654506665940-119.png]]
708 708  
709 -(((
710 -Dig a hole with diameter > 20CM.
711 -)))
615 +=== 2.9.2  Power consumption Analyze ===
712 712  
713 713  (((
714 -Horizontal insert the probe to the soil and fill the hole for long term measurement.
618 +Dragino battery powered product are all runs in Low Power mode. We have an update battery calculator which base on the measurement of the real device. User can use this calculator to check the battery life and calculate the battery life if want to use different transmit interval.
715 715  )))
716 716  
717 717  
718 -== 2.10 ​Firmware Change Log ==
719 -
720 720  (((
721 -**Firmware download link:**
623 +Instruction to use as below:
722 722  )))
723 723  
724 724  (((
725 -[[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/]]
627 +(% style="color:blue" %)**Step 1:  **(%%)Downlink the up-to-date DRAGINO_Battery_Life_Prediction_Table.xlsx from: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/]]
726 726  )))
727 727  
728 -(((
729 -
730 -)))
731 731  
732 732  (((
733 -**Firmware Upgrade Method: **[[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome]]
632 +(% style="color:blue" %)**Step 2: **(%%) Open it and choose
734 734  )))
735 735  
736 -(((
737 -
635 +* (((
636 +Product Model
738 738  )))
739 -
740 -(((
741 -**V1.0.**
638 +* (((
639 +Uplink Interval
742 742  )))
641 +* (((
642 +Working Mode
643 +)))
743 743  
744 744  (((
745 -Release
646 +And the Life expectation in difference case will be shown on the right.
746 746  )))
747 747  
649 +[[image:image-20220708141352-7.jpeg]]
748 748  
749 -== 2.11 ​Battery Analysis ==
750 750  
751 -=== 2.11.1 ​Battery Type ===
752 752  
753 -(((
754 -The LSE01 battery is a combination of a 4000mAh Li/SOCI2 Battery and a Super Capacitor. The battery is non-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter.
755 -)))
653 +=== 2.9.3  ​Battery Note ===
756 756  
757 757  (((
758 -The battery is designed to last for more than 5 years for the LSN50.
656 +The Li-SICO battery is designed for small current / long period application. It is not good to use a high current, short period transmit method. The recommended minimum period for use of this battery is 5 minutes. If you use a shorter period time to transmit LoRa, then the battery life may be decreased.
759 759  )))
760 760  
761 -(((
762 -(((
763 -The battery-related documents are as below:
764 -)))
765 -)))
766 766  
767 -* (((
768 -[[Battery Dimension>>url:http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/&file=LSN50-Battery-Dimension.pdf]],
769 -)))
770 -* (((
771 -[[Lithium-Thionyl Chloride Battery  datasheet>>url:https://www.dragino.com/downloads/downloads/datasheet/Battery/ER26500/ER26500_Datasheet-EN.pdf]],
772 -)))
773 -* (((
774 -[[Lithium-ion Battery-Capacitor datasheet>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC_1520_datasheet.jpg]], [[Tech Spec>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC1520%20Technical%20Specification20171123.pdf]]
775 -)))
776 776  
777 - [[image:image-20220610172436-1.png]]
661 +=== 2.9.4  Replace the battery ===
778 778  
779 -
780 -
781 -=== 2.11.2 ​Battery Note ===
782 -
783 783  (((
784 -The Li-SICO battery is designed for small current / long period application. It is not good to use a high current, short period transmit method. The recommended minimum period for use of this battery is 5 minutes. If you use a shorter period time to transmit LoRa, then the battery life may be decreased.
664 +The default battery pack of NSE01 includes a ER26500 plus super capacitor. If user can't find this pack locally, they can find ER26500 or equivalence without the SPC1520 capacitor, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes).
785 785  )))
786 786  
787 787  
788 788  
789 -=== 2.11.3 Replace the battery ===
669 += 3. ​ Access NB-IoT Module =
790 790  
791 791  (((
792 -If Battery is lower than 2.7v, user should replace the battery of LSE01.
672 +Users can directly access the AT command set of the NB-IoT module.
793 793  )))
794 794  
795 795  (((
796 -You can change the battery in the LSE01.The type of battery is not limited as long as the output is between 3v to 3.6v. On the main board, there is a diode (D1) between the battery and the main circuit. If you need to use a battery with less than 3.3v, please remove the D1 and shortcut the two pads of it so there won’t be voltage drop between battery and main board.
676 +The AT Command set can refer the BC35-G NB-IoT Module AT Command: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=datasheet/other_vendors/BC35-G/>>url:https://www.dragino.com/downloads/index.php?dir=datasheet/other_vendors/BC35-G/]] 
797 797  )))
798 798  
799 -(((
800 -The default battery pack of LSE01 includes a ER18505 plus super capacitor. If user can’t find this pack locally, they can find ER18505 or equivalence, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes)
801 -)))
679 +[[image:1657261278785-153.png]]
802 802  
803 803  
804 804  
805 -= 3. Using the AT Commands =
683 += 4.  Using the AT Commands =
806 806  
807 -== 3.1 Access AT Commands ==
685 +== 4.1  Access AT Commands ==
808 808  
687 +See this link for detail: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/]]
809 809  
810 -LSE01 supports AT Command set in the stock firmware. You can use a USB to TTL adapter to connect to LSE01 for using AT command, as below.
811 811  
812 -[[image:1654501986557-872.png||height="391" width="800"]]
690 +AT+<CMD>?  : Help on <CMD>
813 813  
692 +AT+<CMD>         : Run <CMD>
814 814  
815 -Or if you have below board, use below connection:
694 +AT+<CMD>=<value> : Set the value
816 816  
696 +AT+<CMD>=?  : Get the value
817 817  
818 -[[image:1654502005655-729.png||height="503" width="801"]]
819 819  
820 -
821 -
822 -In the PC, you need to set the serial baud rate to (% style="color:green" %)**9600**(%%) to access the serial console for LSE01. LSE01 will output system info once power on as below:
823 -
824 -
825 - [[image:1654502050864-459.png||height="564" width="806"]]
826 -
827 -
828 -Below are the available commands, a more detailed AT Command manual can be found at [[AT Command Manual>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/]]: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/]]
829 -
830 -
831 -(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>? **(%%) : Help on <CMD>
832 -
833 -(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD> **(%%) : Run <CMD>
834 -
835 -(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>=<value>**(%%) : Set the value
836 -
837 -(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>=?**(%%)  : Get the value
838 -
839 -
840 840  (% style="color:#037691" %)**General Commands**(%%)      
841 841  
842 -(% style="background-color:#dcdcdc" %)**AT**(%%)  : Attention       
701 +AT  : Attention       
843 843  
844 -(% style="background-color:#dcdcdc" %)**AT?**(%%)  : Short Help     
703 +AT?  : Short Help     
845 845  
846 -(% style="background-color:#dcdcdc" %)**ATZ**(%%)  : MCU Reset    
705 +ATZ  : MCU Reset    
847 847  
848 -(% style="background-color:#dcdcdc" %)**AT+TDC**(%%)  : Application Data Transmission Interval 
707 +AT+TDC  : Application Data Transmission Interval
849 849  
709 +AT+CFG  : Print all configurations
850 850  
851 -(% style="color:#037691" %)**Keys, IDs and EUIs management**
711 +AT+CFGMOD           : Working mode selection
852 852  
853 -(% style="background-color:#dcdcdc" %)**AT+APPEUI**(%%)              : Application EUI      
713 +AT+INTMOD            : Set the trigger interrupt mode
854 854  
855 -(% style="background-color:#dcdcdc" %)**AT+APPKEY**(%%)              : Application Key     
715 +AT+5VT  : Set extend the time of 5V power  
856 856  
857 -(% style="background-color:#dcdcdc" %)**AT+APPSKEY**(%%)            : Application Session Key
717 +AT+PRO  : Choose agreement
858 858  
859 -(% style="background-color:#dcdcdc" %)**AT+DADDR**(%%)              : Device Address     
719 +AT+WEIGRE  : Get weight or set weight to 0
860 860  
861 -(% style="background-color:#dcdcdc" %)**AT+DEUI**(%%)                   : Device EUI     
721 +AT+WEIGAP  : Get or Set the GapValue of weight
862 862  
863 -(% style="background-color:#dcdcdc" %)**AT+NWKID**(%%)               : Network ID (You can enter this command change only after successful network connection
723 +AT+RXDL  : Extend the sending and receiving time
864 864  
865 -(% style="background-color:#dcdcdc" %)**AT+NWKSKEY**(%%)          : Network Session Key Joining and sending date on LoRa network  
725 +AT+CNTFAC  : Get or set counting parameters
866 866  
867 -(% style="background-color:#dcdcdc" %)**AT+CFM**(%%)  : Confirm Mode       
727 +AT+SERVADDR  : Server Address
868 868  
869 -(% style="background-color:#dcdcdc" %)**AT+CFS**(%%)                     : Confirm Status       
870 870  
871 -(% style="background-color:#dcdcdc" %)**AT+JOIN**(%%)  : Join LoRa? Network       
730 +(% style="color:#037691" %)**COAP Management**      
872 872  
873 -(% style="background-color:#dcdcdc" %)**AT+NJM**(%%)  : LoRa? Network Join Mode    
732 +AT+URI            : Resource parameters
874 874  
875 -(% style="background-color:#dcdcdc" %)**AT+NJS**(%%)                     : LoRa? Network Join Status    
876 876  
877 -(% style="background-color:#dcdcdc" %)**AT+RECV**(%%)                  : Print Last Received Data in Raw Format
735 +(% style="color:#037691" %)**UDP Management**
878 878  
879 -(% style="background-color:#dcdcdc" %)**AT+RECVB**(%%)                : Print Last Received Data in Binary Format      
737 +AT+CFM          : Upload confirmation mode (only valid for UDP)
880 880  
881 -(% style="background-color:#dcdcdc" %)**AT+SEND**(%%)                  : Send Text Data      
882 882  
883 -(% style="background-color:#dcdcdc" %)**AT+SENB**(%%)                  : Send Hexadecimal Data
740 +(% style="color:#037691" %)**MQTT Management**
884 884  
742 +AT+CLIENT               : Get or Set MQTT client
885 885  
886 -(% style="color:#037691" %)**LoRa Network Management**
744 +AT+UNAME  : Get or Set MQTT Username
887 887  
888 -(% style="background-color:#dcdcdc" %)**AT+ADR**(%%)          : Adaptive Rate
746 +AT+PWD                  : Get or Set MQTT password
889 889  
890 -(% style="background-color:#dcdcdc" %)**AT+CLASS**(%%)  : LoRa Class(Currently only support class A
748 +AT+PUBTOPI : Get or Set MQTT publish topic
891 891  
892 -(% style="background-color:#dcdcdc" %)**AT+DCS**(%%)  : Duty Cycle Settin
750 +AT+SUBTOPIC  : Get or Set MQTT subscription topic
893 893  
894 -(% style="background-color:#dcdcdc" %)**AT+DR**(%%)  : Data Rate (Can Only be Modified after ADR=0)     
895 895  
896 -(% style="background-color:#dcdcdc" %)**AT+FCD**(%%)  : Frame Counter Downlink       
753 +(% style="color:#037691" %)**Information**          
897 897  
898 -(% style="background-color:#dcdcdc" %)**AT+FCU**(%%)  : Frame Counter Uplink   
755 +AT+FDR  : Factory Data Reset
899 899  
900 -(% style="background-color:#dcdcdc" %)**AT+JN1DL**(%%)  : Join Accept Delay1
757 +AT+PWOR : Serial Access Password
901 901  
902 -(% style="background-color:#dcdcdc" %)**AT+JN2DL**(%%)  : Join Accept Delay2
903 903  
904 -(% style="background-color:#dcdcdc" %)**AT+PNM**(%%)  : Public Network Mode   
905 905  
906 -(% style="background-color:#dcdcdc" %)**AT+RX1DL**(%%)  : Receive Delay1      
761 += ​5.  FAQ =
907 907  
908 -(% style="background-color:#dcdcdc" %)**AT+RX2DL**(%%)  : Receive Delay2      
763 +== 5.1 How to Upgrade Firmware ==
909 909  
910 -(% style="background-color:#dcdcdc" %)**AT+RX2DR**(%%)  : Rx2 Window Data Rate 
911 911  
912 -(% style="background-color:#dcdcdc" %)**AT+RX2FQ**(%%)  : Rx2 Window Frequency
913 -
914 -(% style="background-color:#dcdcdc" %)**AT+TXP**(%%)  : Transmit Power
915 -
916 -(% style="background-color:#dcdcdc" %)**AT+ MOD**(%%)  : Set work mode
917 -
918 -
919 -(% style="color:#037691" %)**Information** 
920 -
921 -(% style="background-color:#dcdcdc" %)**AT+RSSI**(%%)           : RSSI of the Last Received Packet   
922 -
923 -(% style="background-color:#dcdcdc" %)**AT+SNR**(%%)           : SNR of the Last Received Packet   
924 -
925 -(% style="background-color:#dcdcdc" %)**AT+VER**(%%)           : Image Version and Frequency Band       
926 -
927 -(% style="background-color:#dcdcdc" %)**AT+FDR**(%%)           : Factory Data Reset
928 -
929 -(% style="background-color:#dcdcdc" %)**AT+PORT**(%%)  : Application Port    
930 -
931 -(% style="background-color:#dcdcdc" %)**AT+CHS**(%%)  : Get or Set Frequency (Unit: Hz) for Single Channel Mode
932 -
933 - (% style="background-color:#dcdcdc" %)**AT+CHE**(%%)  : Get or Set eight channels mode, Only for US915, AU915, CN470
934 -
935 -
936 -= ​4. FAQ =
937 -
938 -== 4.1 ​How to change the LoRa Frequency Bands/Region? ==
939 -
940 940  (((
941 -You can follow the instructions for [[how to upgrade image>>||anchor="H2.10200BFirmwareChangeLog"]].
942 -When downloading the images, choose the required image file for download. ​
767 +User can upgrade the firmware for 1) bug fix, 2) new feature release.
943 943  )))
944 944  
945 945  (((
946 -
771 +Please see this link for how to upgrade:  [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H2.HardwareUpgradeMethodSupportList>>http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H2.HardwareUpgradeMethodSupportList]]
947 947  )))
948 948  
949 949  (((
950 -How to set up LSE01 to work in 8 channel mode By default, the frequency bands US915, AU915, CN470 work in 72 frequencies. Many gateways are 8 channel gateways, and in this case, the OTAA join time and uplink schedule is long and unpredictable while the end node is hopping in 72 frequencies.
775 +(% style="color:red" %)Notice, NSE01 and LSE01 share the same mother board. They use the same connection and method to update.
951 951  )))
952 952  
953 -(((
954 -
955 -)))
956 956  
957 -(((
958 -You can configure the end node to work in 8 channel mode by using the AT+CHE command. The 500kHz channels are always included for OTAA.
959 -)))
960 960  
961 -(((
962 -
963 -)))
780 += 6.  Trouble Shooting =
964 964  
965 -(((
966 -For example, in **US915** band, the frequency table is as below. By default, the end node will use all channels (0~~71) for OTAA Join process. After the OTAA Join, the end node will use these all channels (0~~71) to send uplink packets.
967 -)))
782 +== 6.1  ​Connection problem when uploading firmware ==
968 968  
969 -[[image:image-20220606154726-3.png]]
970 970  
971 -
972 -When you use the TTN network, the US915 frequency bands use are:
973 -
974 -* 903.9 - SF7BW125 to SF10BW125
975 -* 904.1 - SF7BW125 to SF10BW125
976 -* 904.3 - SF7BW125 to SF10BW125
977 -* 904.5 - SF7BW125 to SF10BW125
978 -* 904.7 - SF7BW125 to SF10BW125
979 -* 904.9 - SF7BW125 to SF10BW125
980 -* 905.1 - SF7BW125 to SF10BW125
981 -* 905.3 - SF7BW125 to SF10BW125
982 -* 904.6 - SF8BW500
983 -
785 +(% class="wikigeneratedid" %)
984 984  (((
985 -Because the end node is now hopping in 72 frequency, it makes it difficult for the devices to Join the TTN network and uplink data. To solve this issue, you can access the device via the AT commands and run:
787 +(% style="font-size:14px" %)**Please see: **(%%)[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H3.3Troubleshooting>>http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H3.3Troubleshooting||style="background-color: rgb(255, 255, 255); font-size: 14px;"]]
986 986  )))
987 987  
988 -(% class="box infomessage" %)
989 -(((
990 -**AT+CHE=2**
991 -)))
992 992  
993 -(% class="box infomessage" %)
994 -(((
995 -**ATZ**
996 -)))
997 997  
998 -(((
999 -to set the end node to work in 8 channel mode. The device will work in Channel 8-15 & 64-71 for OTAA, and channel 8-15 for Uplink.
1000 -)))
792 +== 6.2  AT Command input doesn't work ==
1001 1001  
1002 1002  (((
1003 -
795 +In the case if user can see the console output but can't type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn't send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.
1004 1004  )))
1005 1005  
1006 -(((
1007 -The **AU915** band is similar. Below are the AU915 Uplink Channels.
1008 -)))
1009 1009  
1010 -[[image:image-20220606154825-4.png]]
1011 1011  
800 += 7. ​ Order Info =
1012 1012  
1013 1013  
1014 -= 5. Trouble Shooting =
803 +Part Number**:** (% style="color:#4f81bd" %)**NSE01**
1015 1015  
1016 -== 5.1 ​Why I can’t join TTN in US915 / AU915 bands? ==
1017 1017  
1018 -It is due to channel mapping. Please see the [[Eight Channel Mode>>doc:Main.LoRaWAN Communication Debug.WebHome||anchor="H2.NoticeofUS9152FCN4702FAU915Frequencyband"]] section above for details.
1019 -
1020 -
1021 -== 5.2 AT Command input doesn’t work ==
1022 -
1023 -(((
1024 -In the case if user can see the console output but can’t type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn’t send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.
1025 -)))
1026 -
1027 -
1028 -== 5.3 Device rejoin in at the second uplink packet ==
1029 -
1030 -(% style="color:#4f81bd" %)**Issue describe as below:**
1031 -
1032 -[[image:1654500909990-784.png]]
1033 -
1034 -
1035 -(% style="color:#4f81bd" %)**Cause for this issue:**
1036 -
1037 -(((
1038 -The fuse on LSE01 is not large enough, some of the soil probe require large current up to 5v 800mA, in a short pulse. When this happen, it cause the device reboot so user see rejoin.
1039 -)))
1040 -
1041 -
1042 -(% style="color:#4f81bd" %)**Solution: **
1043 -
1044 -All new shipped LSE01 after 2020-May-30 will have this to fix. For the customer who see this issue, please bypass the fuse as below:
1045 -
1046 -[[image:1654500929571-736.png||height="458" width="832"]]
1047 -
1048 -
1049 -= 6. ​Order Info =
1050 -
1051 -
1052 -Part Number**:** (% style="color:#4f81bd" %)**LSE01-XX-YY**
1053 -
1054 -
1055 -(% style="color:#4f81bd" %)**XX**(%%)**:** The default frequency band
1056 -
1057 -* (% style="color:red" %)**AS923**(%%): LoRaWAN AS923 band
1058 -* (% style="color:red" %)**AU915**(%%): LoRaWAN AU915 band
1059 -* (% style="color:red" %)**EU433**(%%): LoRaWAN EU433 band
1060 -* (% style="color:red" %)**EU868**(%%): LoRaWAN EU868 band
1061 -* (% style="color:red" %)**KR920**(%%): LoRaWAN KR920 band
1062 -* (% style="color:red" %)**US915**(%%): LoRaWAN US915 band
1063 -* (% style="color:red" %)**IN865**(%%):  LoRaWAN IN865 band
1064 -* (% style="color:red" %)**CN470**(%%): LoRaWAN CN470 band
1065 -
1066 -(% style="color:#4f81bd" %)**YY**(%%)**: **Battery Option
1067 -
1068 -* (% style="color:red" %)**4**(%%): 4000mAh battery
1069 -* (% style="color:red" %)**8**(%%): 8500mAh battery
1070 -
1071 1071  (% class="wikigeneratedid" %)
1072 1072  (((
1073 1073  
1074 1074  )))
1075 1075  
1076 -= 7. Packing Info =
811 += 8.  Packing Info =
1077 1077  
1078 1078  (((
1079 1079  
1080 1080  
1081 1081  (% style="color:#037691" %)**Package Includes**:
1082 -)))
1083 1083  
1084 -* (((
1085 -LSE01 LoRaWAN Soil Moisture & EC Sensor x 1
818 +
819 +* NSE01 NB-IoT Soil Moisture & EC Sensor x 1
820 +* External antenna x 1
1086 1086  )))
1087 1087  
1088 1088  (((
... ... @@ -1089,24 +1089,20 @@
1089 1089  
1090 1090  
1091 1091  (% style="color:#037691" %)**Dimension and weight**:
1092 -)))
1093 1093  
1094 -* (((
1095 -Device Size: cm
828 +
829 +* Size: 195 x 125 x 55 mm
830 +* Weight:   420g
1096 1096  )))
1097 -* (((
1098 -Device Weight: g
1099 -)))
1100 -* (((
1101 -Package Size / pcs : cm
1102 -)))
1103 -* (((
1104 -Weight / pcs : g
1105 1105  
833 +(((
1106 1106  
835 +
836 +
837 +
1107 1107  )))
1108 1108  
1109 -= 8. Support =
840 += 9.  Support =
1110 1110  
1111 1111  * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
1112 1112  * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.com]]
1657245163077-232.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +81.0 KB
Content
1657246476176-652.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +492.6 KB
Content
1657249419225-449.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +81.0 KB
Content
1657249468462-536.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +483.6 KB
Content
1657249793983-486.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +85.8 KB
Content
1657249831934-534.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +72.5 KB
Content
1657249864775-321.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +87.0 KB
Content
1657249930215-289.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +77.3 KB
Content
1657249978444-674.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +139.5 KB
Content
1657249990869-686.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +96.9 KB
Content
1657250217799-140.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +98.7 KB
Content
1657250255956-604.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +99.0 KB
Content
1657259653666-883.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +344.4 KB
Content
1657260785982-288.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +138.2 KB
Content
1657261119050-993.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +126.1 KB
Content
1657261278785-153.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +126.1 KB
Content
image-20220708101224-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +22.2 KB
Content
image-20220708101605-2.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +87.5 KB
Content
image-20220708110657-3.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +251.7 KB
Content
image-20220708111918-4.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +38.8 KB
Content
image-20220708133731-5.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +8.7 KB
Content
image-20220708140453-6.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +132.7 KB
Content
image-20220708141352-7.jpeg
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +102.7 KB
Content
Copyright ©2010-2022 Dragino Technology Co., LTD. All rights reserved
Dragino Wiki v2.0