Last modified by Mengting Qiu on 2024/04/02 16:44

From version 35.11
edited by Xiaoling
on 2022/06/14 14:06
Change comment: There is no comment for this version
To version 91.1
edited by Xiaoling
on 2022/07/09 09:57
Change comment: There is no comment for this version

Summary

Details

Page properties
Title
... ... @@ -1,1 +1,1 @@
1 -LSE01-LoRaWAN Soil Moisture & EC Sensor User Manual
1 +NDDS75 NB-IoT Distance Detect Sensor User Manual
Content
... ... @@ -1,11 +1,12 @@
1 1  (% style="text-align:center" %)
2 -[[image:image-20220606151504-2.jpeg||height="554" width="554"]]
2 +[[image:image-20220709085040-1.png||height="542" width="524"]]
3 3  
4 4  
5 5  
6 +
7 +
6 6  **Table of Contents:**
7 7  
8 -{{toc/}}
9 9  
10 10  
11 11  
... ... @@ -12,774 +12,677 @@
12 12  
13 13  
14 14  
15 -= 1. Introduction =
16 += 1.  Introduction =
16 16  
17 -== 1.1 ​What is LoRaWAN Soil Moisture & EC Sensor ==
18 +== 1.1 ​ What is NDDS75 Distance Detection Sensor ==
18 18  
19 19  (((
20 20  
21 21  
22 -The Dragino LSE01 is a (% style="color:#4f81bd" %)**LoRaWAN Soil Moisture & EC Sensor**(%%) for IoT of Agriculture. It is designed to measure the soil moisture of saline-alkali soil and loamy soil. The soil sensor uses FDR method to calculate the soil moisture with the compensation from soil temperature and conductivity. It also has been calibrated in factory for Mineral soil type.
23 -)))
24 -
25 25  (((
26 -It detects (% style="color:#4f81bd" %)**Soil Moisture**(%%), (% style="color:#4f81bd" %)**Soil Temperature**(%%) and (% style="color:#4f81bd" %)**Soil Conductivity**(%%), and uploads the value via wireless to LoRaWAN IoT Server.
24 +The Dragino NDDS75 is a (% style="color:blue" %)**NB-IoT Distance Detection Sensor**(%%) for Internet of Things solution. It is designed to measure the distance between the sensor and a flat object. The distance detection sensor is a module that uses ultrasonic sensing technology for distance measurement, and temperature compensation is performed internally to improve the reliability of data.
25 +\\The NDDS75 can be applied to scenarios such as horizontal distance measurement, liquid level measurement, parking management system, object proximity and presence detection, intelligent trash can management system, robot obstacle avoidance, automatic control, sewer, bottom water level monitoring, etc. It detects the distance between the measured object and the sensor, and uploads the value via wireless to IoT Server via NB-IoT Network.
26 +\\NarrowBand-Internet of Things (NB-IoT) is a standards-based low power wide area (LPWA) technology developed to enable a wide range of new IoT devices and services. NB-IoT significantly improves the power consumption of user devices, system capacity and spectrum efficiency, especially in deep coverage.
27 +\\NDDS75 supports different uplink methods include (% style="color:blue" %)**TCP, MQTT, UDP and CoAP** (%%)for different application requirement.
28 +\\NDDS75 is powered by (% style="color:blue" %)**8500mAh Li-SOCI2 battery**(%%), It is designed for long term use up to 5 years. (Actually Battery life depends on the use environment, update period & uplink method)
29 +\\To use NDDS75, user needs to check if there is NB-IoT coverage in local area and with the bands NDDS75 supports. If the local operate support it, user needs to get a NB-IoT SIM card from local operator and install NDDS75 to get NB-IoT network connection.
27 27  )))
28 28  
29 -(((
30 -The LoRa wireless technology used in LES01 allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption.
32 +
31 31  )))
32 32  
33 -(((
34 -LES01 is powered by (% style="color:#4f81bd" %)**4000mA or 8500mAh Li-SOCI2 battery**(%%), It is designed for long term use up to 10 years.
35 -)))
36 -
37 -(((
38 -Each LES01 is pre-load with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect after power on.
39 -)))
40 -
41 -
42 42  [[image:1654503236291-817.png]]
43 43  
44 44  
45 -[[image:1654503265560-120.png]]
38 +[[image:1657327959271-447.png]]
46 46  
47 47  
48 48  
49 -== 1.2 ​Features ==
42 +== 1.2 ​ Features ==
50 50  
51 -* LoRaWAN 1.0.3 Class A
44 +
45 +* NB-IoT Bands: B1/B3/B8/B5/B20/B28 @H-FDD
52 52  * Ultra low power consumption
53 -* Monitor Soil Moisture
54 -* Monitor Soil Temperature
55 -* Monitor Soil Conductivity
56 -* Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865
47 +* Distance Detection by Ultrasonic technology
48 +* Flat object range 280mm - 7500mm
49 +* Accuracy: ±(1cm+S*0.3%) (S: Distance)
50 +* Cable Length: 25cm
57 57  * AT Commands to change parameters
58 58  * Uplink on periodically
59 59  * Downlink to change configure
60 60  * IP66 Waterproof Enclosure
61 -* 4000mAh or 8500mAh Battery for long term use
55 +* Micro SIM card slot for NB-IoT SIM
56 +* 8500mAh Battery for long term use
62 62  
58 +== 1.3  Specification ==
63 63  
64 64  
65 -== 1.3 Specification ==
61 +(% style="color:#037691" %)**Common DC Characteristics:**
66 66  
67 -Measure Volume: Base on the centra pin of the probe, a cylinder with 7cm diameter and 10cm height.
63 +* Supply Voltage: 2.1v ~~ 3.6v
64 +* Operating Temperature: -40 ~~ 85°C
68 68  
69 -[[image:image-20220606162220-5.png]]
66 +(% style="color:#037691" %)**NB-IoT Spec:**
70 70  
68 +* - B1 @H-FDD: 2100MHz
69 +* - B3 @H-FDD: 1800MHz
70 +* - B8 @H-FDD: 900MHz
71 +* - B5 @H-FDD: 850MHz
72 +* - B20 @H-FDD: 800MHz
73 +* - B28 @H-FDD: 700MHz
71 71  
75 +(% style="color:#037691" %)**Battery:**
72 72  
73 -== ​1.4 Applications ==
77 +* Li/SOCI2 un-chargeable battery
78 +* Capacity: 8500mAh
79 +* Self Discharge: <1% / Year @ 25°C
80 +* Max continuously current: 130mA
81 +* Max boost current: 2A, 1 second
74 74  
83 +(% style="color:#037691" %)**Power Consumption**
84 +
85 +* STOP Mode: 10uA @ 3.3v
86 +* Max transmit power: 350mA@3.3v
87 +
88 +
89 +== ​1.4  Applications ==
90 +
91 +* Smart Buildings & Home Automation
92 +* Logistics and Supply Chain Management
93 +* Smart Metering
75 75  * Smart Agriculture
95 +* Smart Cities
96 +* Smart Factory
76 76  
77 77  (% class="wikigeneratedid" id="H200B1.5FirmwareChangelog" %)
78 78  ​
79 79  
80 -== 1.5 Firmware Change log ==
81 81  
82 82  
83 -**LSE01 v1.0 :**  Release
103 +== 1.5  Pin Definitions ==
84 84  
85 85  
106 +[[image:1657328609906-564.png]]
86 86  
87 -= 2. Configure LSE01 to connect to LoRaWAN network =
88 88  
89 -== 2.1 How it works ==
90 90  
110 += 2.  Use NDDS75 to communicate with IoT Server =
111 +
112 +== 2.1  How it works ==
113 +
91 91  (((
92 -The LSE01 is configured as LoRaWAN OTAA Class A mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and power on the LSE0150. It will automatically join the network via OTAA and start to send the sensor value
115 +The NDDS75 is equipped with a NB-IoT module, the pre-loaded firmware in NDDS75 will get environment data from sensors and send the value to local NB-IoT network via the NB-IoT module The NB-IoT network will forward this value to IoT server via the protocol defined by NDDS75.
93 93  )))
94 94  
118 +
95 95  (((
96 -In case you can’t set the OTAA keys in the LoRaWAN OTAA server, and you have to use the keys from the server, you can [[use AT Commands >>||anchor="H3.200BUsingtheATCommands"]].
120 +The diagram below shows the working flow in default firmware of NDDS75:
97 97  )))
98 98  
123 +(((
124 +
125 +)))
99 99  
127 +[[image:1657328659945-416.png]]
100 100  
101 -== 2.2 ​Quick guide to connect to LoRaWAN server (OTAA) ==
129 +(((
130 +
131 +)))
102 102  
103 -Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LG308>>url:http://www.dragino.com/products/lora/item/140-lg308.html]] as a LoRaWAN gateway in this example.
104 104  
134 +== 2.2 ​ Configure the NDDS75 ==
105 105  
106 -[[image:1654503992078-669.png]]
107 107  
137 +=== 2.2.1 Test Requirement ===
108 108  
109 -The LG308 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
139 +(((
140 +To use NDDS75 in your city, make sure meet below requirements:
141 +)))
110 110  
143 +* Your local operator has already distributed a NB-IoT Network there.
144 +* The local NB-IoT network used the band that NSE01 supports.
145 +* Your operator is able to distribute the data received in their NB-IoT network to your IoT server.
111 111  
112 -(% style="color:blue" %)**Step 1**(%%):  Create a device in TTN with the OTAA keys from LSE01.
147 +(((
148 +Below figure shows our testing structure. Here we have NB-IoT network coverage by China Mobile, the band they use is B8.  The NDDS75 will use CoAP((% style="color:red" %)120.24.4.116:5683)(%%) or raw UDP((% style="color:red" %)120.24.4.116:5601)(%%) or MQTT((% style="color:red" %)120.24.4.116:1883)(%%)or TCP((% style="color:red" %)120.24.4.116:5600)(%%)protocol to send data to the test server
149 +)))
113 113  
114 -Each LSE01 is shipped with a sticker with the default device EUI as below:
115 115  
116 -[[image:image-20220606163732-6.jpeg]]
152 +[[image:1657328756309-230.png]]
117 117  
118 -You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot:
119 119  
120 -**Add APP EUI in the application**
121 121  
156 +=== 2.2.2 Insert SIM card ===
122 122  
123 -[[image:1654504596150-405.png]]
158 +(((
159 +Insert the NB-IoT Card get from your provider.
160 +)))
124 124  
162 +(((
163 +User need to take out the NB-IoT module and insert the SIM card like below:
164 +)))
125 125  
126 126  
127 -**Add APP KEY and DEV EUI**
167 +[[image:1657328884227-504.png]]
128 128  
129 -[[image:1654504683289-357.png]]
130 130  
131 131  
171 +=== 2.2.3 Connect USB – TTL to NDDS75 to configure it ===
132 132  
133 -(% style="color:blue" %)**Step 2**(%%): Power on LSE01
173 +(((
174 +(((
175 +User need to configure NDDS75 via serial port to set the (% style="color:blue" %)**Server Address** / **Uplink Topic** (%%)to define where and how-to uplink packets. NDDS75 support AT Commands, user can use a USB to TTL adapter to connect to NDDS75 and use AT Commands to configure it, as below.
176 +)))
177 +)))
134 134  
179 +[[image:image-20220709092052-2.png]]
135 135  
136 -Put a Jumper on JP2 to power on the device. ( The Jumper must be in FLASH position).
181 +**Connection:**
137 137  
138 -[[image:image-20220606163915-7.png]]
183 + (% style="background-color:yellow" %)USB TTL GND <~-~-~-~-> GND
139 139  
185 + (% style="background-color:yellow" %)USB TTL TXD <~-~-~-~-> UART_RXD
140 140  
141 -(% style="color:blue" %)**Step 3**(%%)**:** The LSE01 will auto join to the TTN network. After join success, it will start to upload messages to TTN and you can see the messages in the panel.
187 + (% style="background-color:yellow" %)USB TTL RXD <~-~-~-~-> UART_TXD
142 142  
143 -[[image:1654504778294-788.png]]
144 144  
190 +In the PC, use below serial tool settings:
145 145  
192 +* Baud:  (% style="color:green" %)**9600**
193 +* Data bits:** (% style="color:green" %)8(%%)**
194 +* Stop bits: (% style="color:green" %)**1**
195 +* Parity:  (% style="color:green" %)**None**
196 +* Flow Control: (% style="color:green" %)**None**
146 146  
147 -== 2.3 Uplink Payload ==
198 +(((
199 +Make sure the switch is in FLASH position, then power on device by connecting the jumper on NDDS75. NDDS75 will output system info once power on as below, we can enter the (% style="color:green" %)**password: 12345678**(%%) to access AT Command input.
200 +)))
148 148  
202 +[[image:1657329814315-101.png]]
149 149  
150 -=== 2.3.1 MOD~=0(Default Mode) ===
151 -
152 -LSE01 will uplink payload via LoRaWAN with below payload format: 
153 -
154 154  (((
155 -Uplink payload includes in total 11 bytes.
205 +(% style="color:red" %)Note: the valid AT Commands can be found at: (%%)[[https:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NDDS75/>>url:https://www.dragino.com/downloads/index.php?dir=NB-IoT/NDDS75/]]
156 156  )))
157 157  
158 -(% border="1" cellspacing="10" style="background-color:#ffffcc; width:500px" %)
159 -|(((
160 -**Size**
161 161  
162 -**(bytes)**
163 -)))|**2**|**2**|**2**|**2**|**2**|**1**
164 -|**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(((
165 -Temperature
166 166  
167 -(Reserve, Ignore now)
168 -)))|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]]|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]]|(((
169 -MOD & Digital Interrupt
210 +=== 2.2.4 Use CoAP protocol to uplink data ===
170 170  
171 -(Optional)
172 -)))
212 +(% style="color:red" %)Note: if you don't have CoAP server, you can refer this link to set up one: (%%)[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/>>http://wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/]]
173 173  
174 174  
215 +**Use below commands:**
175 175  
217 +* (% style="color:blue" %)**AT+PRO=1**  (%%) ~/~/ Set to use CoAP protocol to uplink
218 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5683   ** (%%)~/~/ to set CoAP server address and port
219 +* (% style="color:blue" %)**AT+URI=5,11,"mqtt",11,"coap",12,"0",15,"c=text1",23,"0" ** (%%) ~/~/Set COAP resource path
176 176  
221 +For parameter description, please refer to AT command set
177 177  
178 -=== 2.3.2 MOD~=1(Original value) ===
223 +[[image:1657330452568-615.png]]
179 179  
180 -This mode can get the original AD value of moisture and original conductivity (with temperature drift compensation).
181 181  
182 -(% border="1" cellspacing="10" style="background-color:#ffffcc; width:500px" %)
183 -|(((
184 -**Size**
226 +After configure the server address and (% style="color:green" %)**reset the device**(%%) (via AT+ATZ ), NDDS75 will start to uplink sensor values to CoAP server.
185 185  
186 -**(bytes)**
187 -)))|**2**|**2**|**2**|**2**|**2**|**1**
188 -|**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(((
189 -Temperature
228 +[[image:1657330472797-498.png]]
190 190  
191 -(Reserve, Ignore now)
192 -)))|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]](raw)|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]](raw)|(((
193 -MOD & Digital Interrupt
194 194  
195 -(Optional)
196 -)))
197 197  
232 +=== 2.2.5 Use UDP protocol to uplink data(Default protocol) ===
198 198  
199 199  
235 +* (% style="color:blue" %)**AT+PRO=2   ** (%%) ~/~/ Set to use UDP protocol to uplink
236 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5601   ** (%%) ~/~/ to set UDP server address and port
237 +* (% style="color:blue" %)**AT+CFM=1       ** (%%) ~/~/If the server does not respond, this command is unnecessary
200 200  
239 +[[image:1657330501006-241.png]]
201 201  
202 -=== 2.3.3 Battery Info ===
203 203  
204 -(((
205 -Check the battery voltage for LSE01.
206 -)))
242 +[[image:1657330533775-472.png]]
207 207  
208 -(((
209 -Ex1: 0x0B45 = 2885mV
210 -)))
211 211  
212 -(((
213 -Ex2: 0x0B49 = 2889mV
214 -)))
215 215  
246 +=== 2.2.6 Use MQTT protocol to uplink data ===
216 216  
217 217  
218 -=== 2.3.4 Soil Moisture ===
249 +* (% style="color:blue" %)**AT+PRO=3   ** (%%) ~/~/Set to use MQTT protocol to uplink
250 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,1883   ** (%%) ~/~/Set MQTT server address and port
251 +* (% style="color:blue" %)**AT+CLIENT=CLIENT       ** (%%)~/~/Set up the CLIENT of MQTT
252 +* (% style="color:blue" %)**AT+UNAME=UNAME                               **(%%)~/~/Set the username of MQTT
253 +* (% style="color:blue" %)**AT+PWD=PWD                                        **(%%)~/~/Set the password of MQTT
254 +* (% style="color:blue" %)**AT+PUBTOPIC=NDDS75_PUB                 **(%%)~/~/Set the sending topic of MQTT
255 +* (% style="color:blue" %)**AT+SUBTOPIC=NDDS75_SUB          **(%%) ~/~/Set the subscription topic of MQTT
219 219  
220 -(((
221 -Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil.
222 -)))
257 +[[image:1657249978444-674.png]]
223 223  
224 -(((
225 -For example, if the data you get from the register is __0x05 0xDC__, the moisture content in the soil is
226 -)))
227 227  
228 -(((
229 -
230 -)))
260 +[[image:1657330723006-866.png]]
231 231  
262 +
232 232  (((
233 -(% style="color:#4f81bd" %)**05DC(H) = 1500(D) /100 = 15%.**
264 +MQTT protocol has a much higher power consumption compare vs UDP / CoAP protocol. Please check the power analyze document and adjust the uplink period to a suitable interval.
234 234  )))
235 235  
236 236  
237 237  
238 -=== 2.3.5 Soil Temperature ===
269 +=== 2.2.7 Use TCP protocol to uplink data ===
239 239  
240 -(((
241 - Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is 0x09 0xEC, the temperature content in the soil is
242 -)))
243 243  
244 -(((
245 -**Example**:
246 -)))
272 +* (% style="color:blue" %)**AT+PRO=4   ** (%%) ~/~/ Set to use TCP protocol to uplink
273 +* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5600   **(%%) ~/~/ to set TCP server address and port
247 247  
248 -(((
249 -If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/100 = 2.61 °C
250 -)))
275 +[[image:image-20220709093918-1.png]]
251 251  
252 -(((
253 -If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C
254 -)))
255 255  
278 +[[image:image-20220709093918-2.png]]
256 256  
257 257  
258 -=== 2.3.6 Soil Conductivity (EC) ===
259 259  
260 -(((
261 -Obtain (% style="color:#4f81bd" %)**__soluble salt concentration__**(%%) in soil or (% style="color:#4f81bd" %)**__soluble ion concentration in liquid fertilizer__**(%%) or (% style="color:#4f81bd" %)**__planting medium__**(%%). The value range of the register is 0 - 20000(Decimal)( Can be greater than 20000).
262 -)))
282 +=== 2.2.8 Change Update Interval ===
263 263  
264 -(((
265 -For example, if the data you get from the register is 0x00 0xC8, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm.
266 -)))
284 +User can use below command to change the (% style="color:green" %)**uplink interval**.
267 267  
268 -(((
269 -Generally, the EC value of irrigation water is less than 800uS / cm.
270 -)))
286 +* (% style="color:blue" %)**AT+TDC=600      ** (%%)~/~/ Set Update Interval to 600s
271 271  
272 272  (((
273 -
289 +(% style="color:red" %)**NOTE:**
274 274  )))
275 275  
276 276  (((
277 -
293 +(% style="color:red" %)1. By default, the device will send an uplink message every 1 hour.
278 278  )))
279 279  
280 -=== 2.3.7 MOD ===
281 281  
282 -Firmware version at least v2.1 supports changing mode.
283 283  
284 -For example, bytes[10]=90
298 +== 2.3  Uplink Payload ==
285 285  
286 -mod=(bytes[10]>>7)&0x01=1.
300 +In this mode, uplink payload includes in total 14 bytes
287 287  
288 288  
289 -**Downlink Command:**
303 +(% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:510px" %)
304 +|=(% style="width: 60px;" %)(((
305 +**Size(bytes)**
306 +)))|=(% style="width: 50px;" %)**6**|=(% style="width: 25px;" %)2|=(% style="width: 25px;" %)**2**|=(% style="width: 70px;" %)**1**|=(% style="width: 60px;" %)**2**|=(% style="width: 50px;" %)**1**
307 +|(% style="width:97px" %)**Value**|(% style="width:83px" %)[[Device ID>>||anchor="H2.4.1A0A0DeviceID"]]|(% style="width:41px" %)[[Ver>>||anchor="H2.4.2A0VersionInfo"]]|(% style="width:46px" %)[[BAT>>||anchor="H2.4.3A0BatteryInfo"]]|(% style="width:123px" %)[[Signal Strength>>||anchor="H2.4.4A0SignalStrength"]]|(% style="width:108px" %)[[Distance (unit: mm)>>||anchor="H2.4.5A0SoilMoisture"]]|(% style="width:80px" %)[[Interrupt>>||anchor="H2.4.8A0DigitalInterrupt"]]
290 290  
291 -If payload = 0x0A00, workmode=0
309 +(((
310 +If we use the MQTT client to subscribe to this MQTT topic, we can see the following information when the NDDS751 uplink data.
311 +)))
292 292  
293 -If** **payload =** **0x0A01, workmode=1
294 294  
314 +[[image:1657331036973-987.png]]
295 295  
296 -
297 -=== 2.3.8 ​Decode payload in The Things Network ===
298 -
299 -While using TTN network, you can add the payload format to decode the payload.
300 -
301 -
302 -[[image:1654505570700-128.png]]
303 -
304 304  (((
305 -The payload decoder function for TTN is here:
317 +The payload is ASCII string, representative same HEX:
306 306  )))
307 307  
308 308  (((
309 -LSE01 TTN Payload Decoder: [[https:~~/~~/www.dropbox.com/sh/si8icbrjlamxqdb/AAACYwjsxxr5fj_vpqRtrETAa?dl=0>>https://www.dropbox.com/sh/si8icbrjlamxqdb/AAACYwjsxxr5fj_vpqRtrETAa?dl=0]]
321 +0x72403155615900640c6c19029200 where:
310 310  )))
311 311  
324 +* (((
325 +Device ID: 0x724031556159 = 724031556159
326 +)))
327 +* (((
328 +Version: 0x0064=100=1.0.0
329 +)))
312 312  
313 -== 2.4 Uplink Interval ==
331 +* (((
332 +BAT: 0x0c6c = 3180 mV = 3.180V
333 +)))
334 +* (((
335 +Signal: 0x19 = 25
336 +)))
337 +* (((
338 +Distance: 0x0292= 658 mm
339 +)))
340 +* (((
341 +Interrupt: 0x00 = 0
342 +)))
314 314  
315 -The LSE01 by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link: [[Change Uplink Interval>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H4.1ChangeUplinkInterval"]]
316 316  
317 317  
318 318  
319 -== 2.5 Downlink Payload ==
347 +== 2. Payload Explanation and Sensor Interface ==
320 320  
321 -By default, LSE50 prints the downlink payload to console port.
322 322  
323 -[[image:image-20220606165544-8.png]]
350 +=== 2.4.1  Device ID ===
324 324  
352 +(((
353 +By default, the Device ID equal to the last 6 bytes of IMEI.
354 +)))
325 325  
326 326  (((
327 -**Examples:**
357 +User can use (% style="color:blue" %)**AT+DEUI**(%%) to set Device ID
328 328  )))
329 329  
330 330  (((
331 -
361 +**Example:**
332 332  )))
333 333  
334 -* (((
335 -**Set TDC**
364 +(((
365 +AT+DEUI=A84041F15612
336 336  )))
337 337  
338 338  (((
339 -If the payload=0100003C, it means set the END Node’s TDC to 0x00003C=60(S), while type code is 01.
369 +The Device ID is stored in a none-erase area, Upgrade the firmware or run **AT+FDR** won't erase Device ID.
340 340  )))
341 341  
372 +
373 +
374 +=== 2.4.2  Version Info ===
375 +
342 342  (((
343 -Payload:    01 00 00 1E    TDC=30S
377 +Specify the software version: 0x64=100, means firmware version 1.00.
344 344  )))
345 345  
346 346  (((
347 -Payload:    01 00 00 3C    TDC=60S
381 +For example: 0x00 64 : this device is NDDS75 with firmware version 1.0.0.
348 348  )))
349 349  
384 +
385 +
386 +=== 2.4.3  Battery Info ===
387 +
350 350  (((
351 -
389 +Check the battery voltage for LSE01.
352 352  )))
353 353  
354 -* (((
355 -**Reset**
392 +(((
393 +Ex1: 0x0B45 = 2885mV
356 356  )))
357 357  
358 358  (((
359 -If payload = 0x04FF, it will reset the LSE01
397 +Ex2: 0x0B49 = 2889mV
360 360  )))
361 361  
362 362  
363 -* **CFM**
364 364  
365 -Downlink Payload: 05000001, Set AT+CFM=1 or 05000000 , set AT+CFM=0
402 +=== 2.4.4  Signal Strength ===
366 366  
404 +(((
405 +NB-IoT Network signal Strength.
406 +)))
367 367  
408 +(((
409 +**Ex1: 0x1d = 29**
410 +)))
368 368  
369 -== 2.6 ​Show Data in DataCake IoT Server ==
412 +(((
413 +(% style="color:blue" %)**0**(%%)  -113dBm or less
414 +)))
370 370  
371 371  (((
372 -[[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps:
417 +(% style="color:blue" %)**1**(%%)  -111dBm
373 373  )))
374 374  
375 375  (((
376 -
421 +(% style="color:blue" %)**2...30**(%%) -109dBm... -53dBm
377 377  )))
378 378  
379 379  (((
380 -**Step 1**: Be sure that your device is programmed and properly connected to the network at this time.
425 +(% style="color:blue" %)**31**  (%%) -51dBm or greater
381 381  )))
382 382  
383 383  (((
384 -**Step 2**: To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps:
429 +(% style="color:blue" %)**99**   (%%) Not known or not detectable
385 385  )))
386 386  
387 387  
388 -[[image:1654505857935-743.png]]
389 389  
434 +=== 2.4.5  Soil Moisture ===
390 390  
391 -[[image:1654505874829-548.png]]
436 +Get the distance. Flat object range 280mm - 7500mm.
392 392  
393 -Step 3: Create an account or log in Datacake.
438 +For example, if the data you get from the register is **__0x0B 0x05__**, the distance between the sensor and the measured object is
394 394  
395 -Step 4: Search the LSE01 and add DevEUI.
440 +(((
441 +(((
442 +(% style="color:#4f81bd" %)** 0B05(H) = 2821(D) = 2821mm.**
443 +)))
444 +)))
396 396  
446 +(((
447 +
448 +)))
397 397  
398 -[[image:1654505905236-553.png]]
450 +(((
451 +
452 +)))
399 399  
454 +=== 2.4.6  Digital Interrupt ===
400 400  
401 -After added, the sensor data arrive TTN, it will also arrive and show in Mydevices.
456 +(((
457 +Digital Interrupt refers to pin (% style="color:blue" %)**GPIO_EXTI**(%%), and there are different trigger methods. When there is a trigger, the NDDS75 will send a packet to the server.
458 +)))
402 402  
403 -[[image:1654505925508-181.png]]
460 +(((
461 +The command is:
462 +)))
404 404  
464 +(((
465 +(% style="color:blue" %)**AT+INTMOD=3 **(%%) ~/~/(more info about INMOD please refer [[**AT Command Manual**>>url:https://www.dragino.com/downloads/downloads/NB-IoT/NBSN95/DRAGINO_NBSN95-NB_AT%20Commands_v1.1.0.pdf]])**.**
466 +)))
405 405  
406 406  
407 -== 2.7 Frequency Plans ==
469 +(((
470 +The lower four bits of this data field shows if this packet is generated by interrupt or not. Click here for the hardware and software set up.
471 +)))
408 408  
409 -The LSE01 uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.
410 410  
474 +(((
475 +Example:
476 +)))
411 411  
412 -=== 2.7.1 EU863-870 (EU868) ===
478 +(((
479 +0x(00): Normal uplink packet.
480 +)))
413 413  
414 -(% style="color:#037691" %)** Uplink:**
482 +(((
483 +0x(01): Interrupt Uplink Packet.
484 +)))
415 415  
416 -868.1 - SF7BW125 to SF12BW125
417 417  
418 -868.3 - SF7BW125 to SF12BW125 and SF7BW250
419 419  
420 -868.5 - SF7BW125 to SF12BW125
488 +=== 2.4.7  ​+5V Output ===
421 421  
422 -867.1 - SF7BW125 to SF12BW125
490 +(((
491 +NDDS75 will enable +5V output before all sampling and disable the +5v after all sampling. 
492 +)))
423 423  
424 -867.3 - SF7BW125 to SF12BW125
425 425  
426 -867.5 - SF7BW125 to SF12BW125
495 +(((
496 +The 5V output time can be controlled by AT Command.
497 +)))
427 427  
428 -867.7 - SF7BW125 to SF12BW125
499 +(((
500 +(% style="color:blue" %)**AT+5VT=1000**
501 +)))
429 429  
430 -867.9 - SF7BW125 to SF12BW125
503 +(((
504 +Means set 5V valid time to have 1000ms. So the real 5V output will actually have 1000ms + sampling time for other sensors.
505 +)))
431 431  
432 -868.8 - FSK
433 433  
434 434  
435 -(% style="color:#037691" %)** Downlink:**
509 +== 2.5  Downlink Payload ==
436 436  
437 -Uplink channels 1-9 (RX1)
511 +By default, NSE01 prints the downlink payload to console port.
438 438  
439 -869.525 - SF9BW125 (RX2 downlink only)
513 +[[image:image-20220708133731-5.png]]
440 440  
441 441  
516 +(((
517 +(% style="color:blue" %)**Examples:**
518 +)))
442 442  
443 -=== 2.7.2 US902-928(US915) ===
520 +(((
521 +
522 +)))
444 444  
445 -Used in USA, Canada and South America. Default use CHE=2
524 +* (((
525 +(% style="color:blue" %)**Set TDC**
526 +)))
446 446  
447 -(% style="color:#037691" %)**Uplink:**
528 +(((
529 +If the payload=0100003C, it means set the END Node's TDC to 0x00003C=60(S), while type code is 01.
530 +)))
448 448  
449 -903.9 - SF7BW125 to SF10BW125
532 +(((
533 +Payload:    01 00 00 1E    TDC=30S
534 +)))
450 450  
451 -904.1 - SF7BW125 to SF10BW125
536 +(((
537 +Payload:    01 00 00 3C    TDC=60S
538 +)))
452 452  
453 -904.3 - SF7BW125 to SF10BW125
540 +(((
541 +
542 +)))
454 454  
455 -904.5 - SF7BW125 to SF10BW125
544 +* (((
545 +(% style="color:blue" %)**Reset**
546 +)))
456 456  
457 -904.7 - SF7BW125 to SF10BW125
548 +(((
549 +If payload = 0x04FF, it will reset the NSE01
550 +)))
458 458  
459 -904.9 - SF7BW125 to SF10BW125
460 460  
461 -905.1 - SF7BW125 to SF10BW125
553 +* (% style="color:blue" %)**INTMOD**
462 462  
463 -905.3 - SF7BW125 to SF10BW125
555 +(((
556 +Downlink Payload: 06000003, Set AT+INTMOD=3
557 +)))
464 464  
465 465  
466 -(% style="color:#037691" %)**Downlink:**
467 467  
468 -923.3 - SF7BW500 to SF12BW500
561 +== 2. ​LED Indicator ==
469 469  
470 -923.9 - SF7BW500 to SF12BW500
563 +(((
564 +The NSE01 has an internal LED which is to show the status of different state.
471 471  
472 -924.5 - SF7BW500 to SF12BW500
473 473  
474 -925.1 - SF7BW500 to SF12BW500
567 +* When power on, NSE01 will detect if sensor probe is connected, if probe detected, LED will blink four times. (no blinks in this step is no probe)
568 +* Then the LED will be on for 1 second means device is boot normally.
569 +* After NSE01 join NB-IoT network. The LED will be ON for 3 seconds.
570 +* For each uplink probe, LED will be on for 500ms.
571 +)))
475 475  
476 -925.7 - SF7BW500 to SF12BW500
477 477  
478 -926.3 - SF7BW500 to SF12BW500
479 479  
480 -926.9 - SF7BW500 to SF12BW500
481 481  
482 -927.5 - SF7BW500 to SF12BW500
576 +== 2.7  Installation in Soil ==
483 483  
484 -923.3 - SF12BW500(RX2 downlink only)
578 +__**Measurement the soil surface**__
485 485  
580 +(((
581 +Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting. [[https:~~/~~/img.alicdn.com/imgextra/i3/2005165265/O1CN010rj9Oh1olPsQxrdUK_!!2005165265.jpg>>url:https://img.alicdn.com/imgextra/i3/2005165265/O1CN010rj9Oh1olPsQxrdUK_!!2005165265.jpg]]
582 +)))
486 486  
584 +[[image:1657259653666-883.png]] ​
487 487  
488 -=== 2.7.3 CN470-510 (CN470) ===
489 489  
490 -Used in China, Default use CHE=1
587 +(((
588 +
491 491  
492 -(% style="color:#037691" %)**Uplink:**
590 +(((
591 +Dig a hole with diameter > 20CM.
592 +)))
493 493  
494 -486.3 - SF7BW125 to SF12BW125
594 +(((
595 +Horizontal insert the probe to the soil and fill the hole for long term measurement.
596 +)))
597 +)))
495 495  
496 -486.5 - SF7BW125 to SF12BW125
599 +[[image:1654506665940-119.png]]
497 497  
498 -486.7 - SF7BW125 to SF12BW125
601 +(((
602 +
603 +)))
499 499  
500 -486.9 - SF7BW125 to SF12BW125
501 501  
502 -487.1 - SF7BW125 to SF12BW125
606 +== 2. Firmware Change Log ==
503 503  
504 -487.3 - SF7BW125 to SF12BW125
505 505  
506 -487.5 - SF7BW125 to SF12BW125
609 +Download URL & Firmware Change log
507 507  
508 -487.7 - SF7BW125 to SF12BW125
611 +[[www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/Firmware/]]
509 509  
510 510  
511 -(% style="color:#037691" %)**Downlink:**
614 +Upgrade Instruction: [[Upgrade_Firmware>>||anchor="H5.1200BHowtoUpgradeFirmware"]]
512 512  
513 -506.7 - SF7BW125 to SF12BW125
514 514  
515 -506.9 - SF7BW125 to SF12BW125
516 516  
517 -507.1 - SF7BW125 to SF12BW125
618 +== 2.9  ​Battery Analysis ==
518 518  
519 -507.3 - SF7BW125 to SF12BW125
620 +=== 2.9.1  ​Battery Type ===
520 520  
521 -507.5 - SF7BW125 to SF12BW125
522 522  
523 -507.7 - SF7BW125 to SF12BW125
524 -
525 -507.9 - SF7BW125 to SF12BW125
526 -
527 -508.1 - SF7BW125 to SF12BW125
528 -
529 -505.3 - SF12BW125 (RX2 downlink only)
530 -
531 -
532 -
533 -=== 2.7.4 AU915-928(AU915) ===
534 -
535 -Default use CHE=2
536 -
537 -(% style="color:#037691" %)**Uplink:**
538 -
539 -916.8 - SF7BW125 to SF12BW125
540 -
541 -917.0 - SF7BW125 to SF12BW125
542 -
543 -917.2 - SF7BW125 to SF12BW125
544 -
545 -917.4 - SF7BW125 to SF12BW125
546 -
547 -917.6 - SF7BW125 to SF12BW125
548 -
549 -917.8 - SF7BW125 to SF12BW125
550 -
551 -918.0 - SF7BW125 to SF12BW125
552 -
553 -918.2 - SF7BW125 to SF12BW125
554 -
555 -
556 -(% style="color:#037691" %)**Downlink:**
557 -
558 -923.3 - SF7BW500 to SF12BW500
559 -
560 -923.9 - SF7BW500 to SF12BW500
561 -
562 -924.5 - SF7BW500 to SF12BW500
563 -
564 -925.1 - SF7BW500 to SF12BW500
565 -
566 -925.7 - SF7BW500 to SF12BW500
567 -
568 -926.3 - SF7BW500 to SF12BW500
569 -
570 -926.9 - SF7BW500 to SF12BW500
571 -
572 -927.5 - SF7BW500 to SF12BW500
573 -
574 -923.3 - SF12BW500(RX2 downlink only)
575 -
576 -
577 -
578 -=== 2.7.5 AS920-923 & AS923-925 (AS923) ===
579 -
580 -(% style="color:#037691" %)**Default Uplink channel:**
581 -
582 -923.2 - SF7BW125 to SF10BW125
583 -
584 -923.4 - SF7BW125 to SF10BW125
585 -
586 -
587 -(% style="color:#037691" %)**Additional Uplink Channel**:
588 -
589 -(OTAA mode, channel added by JoinAccept message)
590 -
591 -(% style="color:#037691" %)**AS920~~AS923 for Japan, Malaysia, Singapore**:
592 -
593 -922.2 - SF7BW125 to SF10BW125
594 -
595 -922.4 - SF7BW125 to SF10BW125
596 -
597 -922.6 - SF7BW125 to SF10BW125
598 -
599 -922.8 - SF7BW125 to SF10BW125
600 -
601 -923.0 - SF7BW125 to SF10BW125
602 -
603 -922.0 - SF7BW125 to SF10BW125
604 -
605 -
606 -(% style="color:#037691" %)**AS923 ~~ AS925 for Brunei, Cambodia, Hong Kong, Indonesia, Laos, Taiwan, Thailand, Vietnam**:
607 -
608 -923.6 - SF7BW125 to SF10BW125
609 -
610 -923.8 - SF7BW125 to SF10BW125
611 -
612 -924.0 - SF7BW125 to SF10BW125
613 -
614 -924.2 - SF7BW125 to SF10BW125
615 -
616 -924.4 - SF7BW125 to SF10BW125
617 -
618 -924.6 - SF7BW125 to SF10BW125
619 -
620 -
621 -(% style="color:#037691" %)** Downlink:**
622 -
623 -Uplink channels 1-8 (RX1)
624 -
625 -923.2 - SF10BW125 (RX2)
626 -
627 -
628 -
629 -=== 2.7.6 KR920-923 (KR920) ===
630 -
631 -Default channel:
632 -
633 -922.1 - SF7BW125 to SF12BW125
634 -
635 -922.3 - SF7BW125 to SF12BW125
636 -
637 -922.5 - SF7BW125 to SF12BW125
638 -
639 -
640 -(% style="color:#037691" %)**Uplink: (OTAA mode, channel added by JoinAccept message)**
641 -
642 -922.1 - SF7BW125 to SF12BW125
643 -
644 -922.3 - SF7BW125 to SF12BW125
645 -
646 -922.5 - SF7BW125 to SF12BW125
647 -
648 -922.7 - SF7BW125 to SF12BW125
649 -
650 -922.9 - SF7BW125 to SF12BW125
651 -
652 -923.1 - SF7BW125 to SF12BW125
653 -
654 -923.3 - SF7BW125 to SF12BW125
655 -
656 -
657 -(% style="color:#037691" %)**Downlink:**
658 -
659 -Uplink channels 1-7(RX1)
660 -
661 -921.9 - SF12BW125 (RX2 downlink only; SF12BW125 might be changed to SF9BW125)
662 -
663 -
664 -
665 -=== 2.7.7 IN865-867 (IN865) ===
666 -
667 -(% style="color:#037691" %)** Uplink:**
668 -
669 -865.0625 - SF7BW125 to SF12BW125
670 -
671 -865.4025 - SF7BW125 to SF12BW125
672 -
673 -865.9850 - SF7BW125 to SF12BW125
674 -
675 -
676 -(% style="color:#037691" %) **Downlink:**
677 -
678 -Uplink channels 1-3 (RX1)
679 -
680 -866.550 - SF10BW125 (RX2)
681 -
682 -
683 -
684 -
685 -== 2.8 LED Indicator ==
686 -
687 -The LSE01 has an internal LED which is to show the status of different state.
688 -
689 -* Blink once when device power on.
690 -* Solid ON for 5 seconds once device successful Join the network.
691 -* Blink once when device transmit a packet.
692 -
693 -== 2.9 Installation in Soil ==
694 -
695 -**Measurement the soil surface**
696 -
697 -
698 -[[image:1654506634463-199.png]] ​
699 -
700 700  (((
701 -(((
702 -Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting.
624 +The NSE01 battery is a combination of an 8500mAh Li/SOCI2 Battery and a Super Capacitor. The battery is none-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter.
703 703  )))
704 -)))
705 705  
706 706  
707 -[[image:1654506665940-119.png]]
708 -
709 709  (((
710 -Dig a hole with diameter > 20CM.
629 +The battery is designed to last for several years depends on the actually use environment and update interval. 
711 711  )))
712 712  
713 -(((
714 -Horizontal insert the probe to the soil and fill the hole for long term measurement.
715 -)))
716 716  
717 -
718 -== 2.10 ​Firmware Change Log ==
719 -
720 720  (((
721 -**Firmware download link:**
634 +The battery related documents as below:
722 722  )))
723 723  
724 -(((
725 -[[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/]]
726 -)))
637 +* [[Battery Dimension>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]
638 +* [[Lithium-Thionyl Chloride Battery datasheet>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]
639 +* [[Lithium-ion Battery-Capacitor datasheet>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]
727 727  
728 728  (((
729 -
642 +[[image:image-20220708140453-6.png]]
730 730  )))
731 731  
732 -(((
733 -**Firmware Upgrade Method: **[[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome]]
734 -)))
735 735  
736 -(((
737 -
738 -)))
739 739  
740 -(((
741 -**V1.0.**
742 -)))
647 +=== 2.9.2  Power consumption Analyze ===
743 743  
744 744  (((
745 -Release
650 +Dragino battery powered product are all runs in Low Power mode. We have an update battery calculator which base on the measurement of the real device. User can use this calculator to check the battery life and calculate the battery life if want to use different transmit interval.
746 746  )))
747 747  
748 748  
749 -== 2.11 ​Battery Analysis ==
750 -
751 -=== 2.11.1 ​Battery Type ===
752 -
753 753  (((
754 -The LSE01 battery is a combination of a 4000mAh Li/SOCI2 Battery and a Super Capacitor. The battery is non-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter.
655 +Instruction to use as below:
755 755  )))
756 756  
757 757  (((
758 -The battery is designed to last for more than 5 years for the LSN50.
659 +(% style="color:blue" %)**Step 1:  **(%%)Downlink the up-to-date DRAGINO_Battery_Life_Prediction_Table.xlsx from: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/]]
759 759  )))
760 760  
662 +
761 761  (((
762 -(((
763 -The battery-related documents are as below:
664 +(% style="color:blue" %)**Step 2: **(%%) Open it and choose
764 764  )))
765 -)))
766 766  
767 767  * (((
768 -[[Battery Dimension>>url:http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/&file=LSN50-Battery-Dimension.pdf]],
668 +Product Model
769 769  )))
770 770  * (((
771 -[[Lithium-Thionyl Chloride Battery  datasheet>>url:https://www.dragino.com/downloads/downloads/datasheet/Battery/ER26500/ER26500_Datasheet-EN.pdf]],
671 +Uplink Interval
772 772  )))
773 773  * (((
774 -[[Lithium-ion Battery-Capacitor datasheet>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC_1520_datasheet.jpg]], [[Tech Spec>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC1520%20Technical%20Specification20171123.pdf]]
674 +Working Mode
775 775  )))
776 776  
777 - [[image:image-20220610172436-1.png]]
677 +(((
678 +And the Life expectation in difference case will be shown on the right.
679 +)))
778 778  
681 +[[image:image-20220708141352-7.jpeg]]
779 779  
780 780  
781 -=== 2.11.2 ​Battery Note ===
782 782  
685 +=== 2.9.3  ​Battery Note ===
686 +
783 783  (((
784 784  The Li-SICO battery is designed for small current / long period application. It is not good to use a high current, short period transmit method. The recommended minimum period for use of this battery is 5 minutes. If you use a shorter period time to transmit LoRa, then the battery life may be decreased.
785 785  )))
... ... @@ -786,303 +786,176 @@
786 786  
787 787  
788 788  
789 -=== 2.11.3 Replace the battery ===
693 +=== 2.9. Replace the battery ===
790 790  
791 791  (((
792 -If Battery is lower than 2.7v, user should replace the battery of LSE01.
696 +The default battery pack of NSE01 includes a ER26500 plus super capacitor. If user can't find this pack locally, they can find ER26500 or equivalence without the SPC1520 capacitor, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes).
793 793  )))
794 794  
699 +
700 +
701 += 3. ​ Access NB-IoT Module =
702 +
795 795  (((
796 -You can change the battery in the LSE01.The type of battery is not limited as long as the output is between 3v to 3.6v. On the main board, there is a diode (D1) between the battery and the main circuit. If you need to use a battery with less than 3.3v, please remove the D1 and shortcut the two pads of it so there won’t be voltage drop between battery and main board.
704 +Users can directly access the AT command set of the NB-IoT module.
797 797  )))
798 798  
799 799  (((
800 -The default battery pack of LSE01 includes a ER18505 plus super capacitor. If user can’t find this pack locally, they can find ER18505 or equivalence, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes)
708 +The AT Command set can refer the BC35-G NB-IoT Module AT Command: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=datasheet/other_vendors/BC35-G/>>url:https://www.dragino.com/downloads/index.php?dir=datasheet/other_vendors/BC35-G/]] 
801 801  )))
802 802  
711 +[[image:1657261278785-153.png]]
803 803  
804 804  
805 -= 3. ​Using the AT Commands =
806 806  
807 -== 3.1 Access AT Commands ==
715 += 4.  Using the AT Commands =
808 808  
717 +== 4.1  Access AT Commands ==
809 809  
810 -LSE01 supports AT Command set in the stock firmware. You can use a USB to TTL adapter to connect to LSE01 for using AT command, as below.
719 +See this link for detail: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/]]
811 811  
812 -[[image:1654501986557-872.png||height="391" width="800"]]
813 813  
722 +AT+<CMD>?  : Help on <CMD>
814 814  
815 -Or if you have below board, use below connection:
724 +AT+<CMD>         : Run <CMD>
816 816  
726 +AT+<CMD>=<value> : Set the value
817 817  
818 -[[image:1654502005655-729.png||height="503" width="801"]]
728 +AT+<CMD>=?  : Get the value
819 819  
820 820  
821 -
822 -In the PC, you need to set the serial baud rate to (% style="color:green" %)**9600**(%%) to access the serial console for LSE01. LSE01 will output system info once power on as below:
823 -
824 -
825 - [[image:1654502050864-459.png||height="564" width="806"]]
826 -
827 -
828 -Below are the available commands, a more detailed AT Command manual can be found at [[AT Command Manual>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/]]: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/]]
829 -
830 -
831 -(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>? **(%%) : Help on <CMD>
832 -
833 -(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD> **(%%) : Run <CMD>
834 -
835 -(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>=<value>**(%%) : Set the value
836 -
837 -(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>=?**(%%)  : Get the value
838 -
839 -
840 840  (% style="color:#037691" %)**General Commands**(%%)      
841 841  
842 -(% style="background-color:#dcdcdc" %)**AT**(%%)  : Attention       
733 +AT  : Attention       
843 843  
844 -(% style="background-color:#dcdcdc" %)**AT?**(%%)  : Short Help     
735 +AT?  : Short Help     
845 845  
846 -(% style="background-color:#dcdcdc" %)**ATZ**(%%)  : MCU Reset    
737 +ATZ  : MCU Reset    
847 847  
848 -(% style="background-color:#dcdcdc" %)**AT+TDC**(%%)  : Application Data Transmission Interval 
739 +AT+TDC  : Application Data Transmission Interval
849 849  
741 +AT+CFG  : Print all configurations
850 850  
851 -(% style="color:#037691" %)**Keys, IDs and EUIs management**
743 +AT+CFGMOD           : Working mode selection
852 852  
853 -(% style="background-color:#dcdcdc" %)**AT+APPEUI**(%%)              : Application EUI      
745 +AT+INTMOD            : Set the trigger interrupt mode
854 854  
855 -(% style="background-color:#dcdcdc" %)**AT+APPKEY**(%%)              : Application Key     
747 +AT+5VT  : Set extend the time of 5V power  
856 856  
857 -(% style="background-color:#dcdcdc" %)**AT+APPSKEY**(%%)            : Application Session Key
749 +AT+PRO  : Choose agreement
858 858  
859 -(% style="background-color:#dcdcdc" %)**AT+DADDR**(%%)              : Device Address     
751 +AT+WEIGRE  : Get weight or set weight to 0
860 860  
861 -(% style="background-color:#dcdcdc" %)**AT+DEUI**(%%)                   : Device EUI     
753 +AT+WEIGAP  : Get or Set the GapValue of weight
862 862  
863 -(% style="background-color:#dcdcdc" %)**AT+NWKID**(%%)               : Network ID (You can enter this command change only after successful network connection
755 +AT+RXDL  : Extend the sending and receiving time
864 864  
865 -(% style="background-color:#dcdcdc" %)**AT+NWKSKEY**(%%)          : Network Session Key Joining and sending date on LoRa network  
757 +AT+CNTFAC  : Get or set counting parameters
866 866  
867 -(% style="background-color:#dcdcdc" %)**AT+CFM**(%%)  : Confirm Mode       
759 +AT+SERVADDR  : Server Address
868 868  
869 -(% style="background-color:#dcdcdc" %)**AT+CFS**(%%)                     : Confirm Status       
870 870  
871 -(% style="background-color:#dcdcdc" %)**AT+JOIN**(%%)  : Join LoRa? Network       
762 +(% style="color:#037691" %)**COAP Management**      
872 872  
873 -(% style="background-color:#dcdcdc" %)**AT+NJM**(%%)  : LoRa? Network Join Mode    
764 +AT+URI            : Resource parameters
874 874  
875 -(% style="background-color:#dcdcdc" %)**AT+NJS**(%%)                     : LoRa? Network Join Status    
876 876  
877 -(% style="background-color:#dcdcdc" %)**AT+RECV**(%%)                  : Print Last Received Data in Raw Format
767 +(% style="color:#037691" %)**UDP Management**
878 878  
879 -(% style="background-color:#dcdcdc" %)**AT+RECVB**(%%)                : Print Last Received Data in Binary Format      
769 +AT+CFM          : Upload confirmation mode (only valid for UDP)
880 880  
881 -(% style="background-color:#dcdcdc" %)**AT+SEND**(%%)                  : Send Text Data      
882 882  
883 -(% style="background-color:#dcdcdc" %)**AT+SENB**(%%)                  : Send Hexadecimal Data
772 +(% style="color:#037691" %)**MQTT Management**
884 884  
774 +AT+CLIENT               : Get or Set MQTT client
885 885  
886 -(% style="color:#037691" %)**LoRa Network Management**
776 +AT+UNAME  : Get or Set MQTT Username
887 887  
888 -(% style="background-color:#dcdcdc" %)**AT+ADR**(%%)          : Adaptive Rate
778 +AT+PWD                  : Get or Set MQTT password
889 889  
890 -(% style="background-color:#dcdcdc" %)**AT+CLASS**(%%)  : LoRa Class(Currently only support class A
780 +AT+PUBTOPI : Get or Set MQTT publish topic
891 891  
892 -(% style="background-color:#dcdcdc" %)**AT+DCS**(%%)  : Duty Cycle Settin
782 +AT+SUBTOPIC  : Get or Set MQTT subscription topic
893 893  
894 -(% style="background-color:#dcdcdc" %)**AT+DR**(%%)  : Data Rate (Can Only be Modified after ADR=0)     
895 895  
896 -(% style="background-color:#dcdcdc" %)**AT+FCD**(%%)  : Frame Counter Downlink       
785 +(% style="color:#037691" %)**Information**          
897 897  
898 -(% style="background-color:#dcdcdc" %)**AT+FCU**(%%)  : Frame Counter Uplink   
787 +AT+FDR  : Factory Data Reset
899 899  
900 -(% style="background-color:#dcdcdc" %)**AT+JN1DL**(%%)  : Join Accept Delay1
789 +AT+PWOR : Serial Access Password
901 901  
902 -(% style="background-color:#dcdcdc" %)**AT+JN2DL**(%%)  : Join Accept Delay2
903 903  
904 -(% style="background-color:#dcdcdc" %)**AT+PNM**(%%)  : Public Network Mode   
905 905  
906 -(% style="background-color:#dcdcdc" %)**AT+RX1DL**(%%)  : Receive Delay1      
793 += ​5.  FAQ =
907 907  
908 -(% style="background-color:#dcdcdc" %)**AT+RX2DL**(%%)  : Receive Delay2      
795 +== 5.1 How to Upgrade Firmware ==
909 909  
910 -(% style="background-color:#dcdcdc" %)**AT+RX2DR**(%%)  : Rx2 Window Data Rate 
911 911  
912 -(% style="background-color:#dcdcdc" %)**AT+RX2FQ**(%%)  : Rx2 Window Frequency
913 -
914 -(% style="background-color:#dcdcdc" %)**AT+TXP**(%%)  : Transmit Power
915 -
916 -(% style="background-color:#dcdcdc" %)**AT+ MOD**(%%)  : Set work mode
917 -
918 -
919 -(% style="color:#037691" %)**Information** 
920 -
921 -(% style="background-color:#dcdcdc" %)**AT+RSSI**(%%)           : RSSI of the Last Received Packet   
922 -
923 -(% style="background-color:#dcdcdc" %)**AT+SNR**(%%)           : SNR of the Last Received Packet   
924 -
925 -(% style="background-color:#dcdcdc" %)**AT+VER**(%%)           : Image Version and Frequency Band       
926 -
927 -(% style="background-color:#dcdcdc" %)**AT+FDR**(%%)           : Factory Data Reset
928 -
929 -(% style="background-color:#dcdcdc" %)**AT+PORT**(%%)  : Application Port    
930 -
931 -(% style="background-color:#dcdcdc" %)**AT+CHS**(%%)  : Get or Set Frequency (Unit: Hz) for Single Channel Mode
932 -
933 - (% style="background-color:#dcdcdc" %)**AT+CHE**(%%)  : Get or Set eight channels mode, Only for US915, AU915, CN470
934 -
935 -
936 -= ​4. FAQ =
937 -
938 -== 4.1 ​How to change the LoRa Frequency Bands/Region? ==
939 -
940 940  (((
941 -You can follow the instructions for [[how to upgrade image>>||anchor="H2.10200BFirmwareChangeLog"]].
942 -When downloading the images, choose the required image file for download. ​
799 +User can upgrade the firmware for 1) bug fix, 2) new feature release.
943 943  )))
944 944  
945 945  (((
946 -
803 +Please see this link for how to upgrade:  [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H2.HardwareUpgradeMethodSupportList>>http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H2.HardwareUpgradeMethodSupportList]]
947 947  )))
948 948  
949 949  (((
950 -How to set up LSE01 to work in 8 channel mode By default, the frequency bands US915, AU915, CN470 work in 72 frequencies. Many gateways are 8 channel gateways, and in this case, the OTAA join time and uplink schedule is long and unpredictable while the end node is hopping in 72 frequencies.
807 +(% style="color:red" %)Notice, NSE01 and LSE01 share the same mother board. They use the same connection and method to update.
951 951  )))
952 952  
953 -(((
954 -
955 -)))
956 956  
957 -(((
958 -You can configure the end node to work in 8 channel mode by using the AT+CHE command. The 500kHz channels are always included for OTAA.
959 -)))
960 960  
961 -(((
962 -
963 -)))
812 +== 5.2  Can I calibrate NSE01 to different soil types? ==
964 964  
965 965  (((
966 -For example, in **US915** band, the frequency table is as below. By default, the end node will use all channels (0~~71) for OTAA Join process. After the OTAA Join, the end node will use these all channels (0~~71) to send uplink packets.
815 +NSE01 is calibrated for saline-alkali soil and loamy soil. If users want to use it for other soil, they can calibrate the value in the IoT platform base on the value measured by saline-alkali soil and loamy soil. The formula can be found at [[this link>>https://www.dragino.com/downloads/downloads/LoRa_End_Node/LSE01/Calibrate_to_other_Soil_20220605.pdf]].
967 967  )))
968 968  
969 -[[image:image-20220606154726-3.png]]
970 970  
819 += 6.  Trouble Shooting =
971 971  
972 -When you use the TTN network, the US915 frequency bands use are:
821 +== 6.1  ​Connection problem when uploading firmware ==
973 973  
974 -* 903.9 - SF7BW125 to SF10BW125
975 -* 904.1 - SF7BW125 to SF10BW125
976 -* 904.3 - SF7BW125 to SF10BW125
977 -* 904.5 - SF7BW125 to SF10BW125
978 -* 904.7 - SF7BW125 to SF10BW125
979 -* 904.9 - SF7BW125 to SF10BW125
980 -* 905.1 - SF7BW125 to SF10BW125
981 -* 905.3 - SF7BW125 to SF10BW125
982 -* 904.6 - SF8BW500
983 983  
984 984  (((
985 -Because the end node is now hopping in 72 frequency, it makes it difficult for the devices to Join the TTN network and uplink data. To solve this issue, you can access the device via the AT commands and run:
825 +**Please see: **[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H3.3Troubleshooting>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H3.3Troubleshooting]]
986 986  )))
987 987  
988 -(% class="box infomessage" %)
828 +(% class="wikigeneratedid" %)
989 989  (((
990 -**AT+CHE=2**
991 -)))
992 -
993 -(% class="box infomessage" %)
994 -(((
995 -**ATZ**
996 -)))
997 -
998 -(((
999 -to set the end node to work in 8 channel mode. The device will work in Channel 8-15 & 64-71 for OTAA, and channel 8-15 for Uplink.
1000 -)))
1001 -
1002 -(((
1003 1003  
1004 1004  )))
1005 1005  
1006 -(((
1007 -The **AU915** band is similar. Below are the AU915 Uplink Channels.
1008 -)))
1009 1009  
1010 -[[image:image-20220606154825-4.png]]
834 +== 6.2  AT Command input doesn't work ==
1011 1011  
1012 -
1013 -
1014 -= 5. Trouble Shooting =
1015 -
1016 -== 5.1 ​Why I can’t join TTN in US915 / AU915 bands? ==
1017 -
1018 -It is due to channel mapping. Please see the [[Eight Channel Mode>>doc:Main.LoRaWAN Communication Debug.WebHome||anchor="H2.NoticeofUS9152FCN4702FAU915Frequencyband"]] section above for details.
1019 -
1020 -
1021 -== 5.2 AT Command input doesn’t work ==
1022 -
1023 1023  (((
1024 -In the case if user can see the console output but can’t type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn’t send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.
1025 -)))
837 +In the case if user can see the console output but can't type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn't send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.
1026 1026  
1027 -
1028 -== 5.3 Device rejoin in at the second uplink packet ==
1029 -
1030 -(% style="color:#4f81bd" %)**Issue describe as below:**
1031 -
1032 -[[image:1654500909990-784.png]]
1033 -
1034 -
1035 -(% style="color:#4f81bd" %)**Cause for this issue:**
1036 -
1037 -(((
1038 -The fuse on LSE01 is not large enough, some of the soil probe require large current up to 5v 800mA, in a short pulse. When this happen, it cause the device reboot so user see rejoin.
839 +
1039 1039  )))
1040 1040  
1041 1041  
1042 -(% style="color:#4f81bd" %)**Solution: **
843 += 7. ​ Order Info =
1043 1043  
1044 -All new shipped LSE01 after 2020-May-30 will have this to fix. For the customer who see this issue, please bypass the fuse as below:
1045 1045  
1046 -[[image:1654500929571-736.png||height="458" width="832"]]
846 +Part Number**:** (% style="color:#4f81bd" %)**NSE01**
1047 1047  
1048 1048  
1049 -= 6. ​Order Info =
1050 -
1051 -
1052 -Part Number**:** (% style="color:#4f81bd" %)**LSE01-XX-YY**
1053 -
1054 -
1055 -(% style="color:#4f81bd" %)**XX**(%%)**:** The default frequency band
1056 -
1057 -* (% style="color:red" %)**AS923**(%%): LoRaWAN AS923 band
1058 -* (% style="color:red" %)**AU915**(%%): LoRaWAN AU915 band
1059 -* (% style="color:red" %)**EU433**(%%): LoRaWAN EU433 band
1060 -* (% style="color:red" %)**EU868**(%%): LoRaWAN EU868 band
1061 -* (% style="color:red" %)**KR920**(%%): LoRaWAN KR920 band
1062 -* (% style="color:red" %)**US915**(%%): LoRaWAN US915 band
1063 -* (% style="color:red" %)**IN865**(%%):  LoRaWAN IN865 band
1064 -* (% style="color:red" %)**CN470**(%%): LoRaWAN CN470 band
1065 -
1066 -(% style="color:#4f81bd" %)**YY**(%%)**: **Battery Option
1067 -
1068 -* (% style="color:red" %)**4**(%%): 4000mAh battery
1069 -* (% style="color:red" %)**8**(%%): 8500mAh battery
1070 -
1071 1071  (% class="wikigeneratedid" %)
1072 1072  (((
1073 1073  
1074 1074  )))
1075 1075  
1076 -= 7. Packing Info =
854 += 8.  Packing Info =
1077 1077  
1078 1078  (((
1079 1079  
1080 1080  
1081 1081  (% style="color:#037691" %)**Package Includes**:
1082 -)))
1083 1083  
1084 -* (((
1085 -LSE01 LoRaWAN Soil Moisture & EC Sensor x 1
861 +* NSE01 NB-IoT Soil Moisture & EC Sensor x 1
862 +* External antenna x 1
1086 1086  )))
1087 1087  
1088 1088  (((
... ... @@ -1089,24 +1089,19 @@
1089 1089  
1090 1090  
1091 1091  (% style="color:#037691" %)**Dimension and weight**:
1092 -)))
1093 1093  
1094 -* (((
1095 -Device Size: cm
870 +* Size: 195 x 125 x 55 mm
871 +* Weight:   420g
1096 1096  )))
1097 -* (((
1098 -Device Weight: g
1099 -)))
1100 -* (((
1101 -Package Size / pcs : cm
1102 -)))
1103 -* (((
1104 -Weight / pcs : g
1105 1105  
874 +(((
1106 1106  
876 +
877 +
878 +
1107 1107  )))
1108 1108  
1109 -= 8. Support =
881 += 9.  Support =
1110 1110  
1111 1111  * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
1112 1112  * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.com]]
1657245163077-232.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +81.0 KB
Content
1657246476176-652.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +492.6 KB
Content
1657249419225-449.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +81.0 KB
Content
1657249468462-536.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +483.6 KB
Content
1657249793983-486.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +85.8 KB
Content
1657249831934-534.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +72.5 KB
Content
1657249864775-321.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +87.0 KB
Content
1657249930215-289.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +77.3 KB
Content
1657249978444-674.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +139.5 KB
Content
1657249990869-686.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +96.9 KB
Content
1657250217799-140.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +98.7 KB
Content
1657250255956-604.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +99.0 KB
Content
1657259653666-883.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +344.4 KB
Content
1657260785982-288.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +138.2 KB
Content
1657261119050-993.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +126.1 KB
Content
1657261278785-153.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +126.1 KB
Content
1657271519014-786.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +71.5 KB
Content
1657327959271-447.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +78.3 KB
Content
1657328609906-564.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +492.6 KB
Content
1657328659945-416.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +78.8 KB
Content
1657328756309-230.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +78.5 KB
Content
1657328884227-504.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +483.6 KB
Content
1657329814315-101.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +85.3 KB
Content
1657330452568-615.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +71.3 KB
Content
1657330472797-498.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +68.9 KB
Content
1657330501006-241.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +119.2 KB
Content
1657330533775-472.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +74.9 KB
Content
1657330723006-866.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +74.1 KB
Content
1657331036973-987.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +83.8 KB
Content
image-20220708101224-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +22.2 KB
Content
image-20220708101605-2.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +87.5 KB
Content
image-20220708110657-3.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +251.7 KB
Content
image-20220708111918-4.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +38.8 KB
Content
image-20220708133731-5.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +8.7 KB
Content
image-20220708140453-6.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +132.7 KB
Content
image-20220708141352-7.jpeg
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +102.7 KB
Content
image-20220709084038-1.jpeg
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +72.0 KB
Content
image-20220709084137-2.jpeg
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +72.0 KB
Content
image-20220709084207-3.jpeg
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +72.0 KB
Content
image-20220709084458-4.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +199.5 KB
Content
image-20220709085040-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +200.4 KB
Content
image-20220709092052-2.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +247.3 KB
Content
image-20220709093918-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +42.2 KB
Content
image-20220709093918-2.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +61.9 KB
Content